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Abstract. We consider the convergence of point-to-point partition functions for the half-space
directed polymer model in dimension 1+1 in the intermediate disorder regime as introduced for the
full space model by Alberts, Khanin and Quastel in [AKQ]. By scaling the inverse temperature

as βn−1/4, the point-to-point partition function converges to the chaos series for the solution to
stochastic heat equation with Robin boundary condition and delta initial data. Furthermore, the
convergence result is then applied to the exact-solvable log-gamma directed polymer model in a
half-space.

1. Introduction

The directed polymers were introduced in the statistical physics literature by Huse and Henley
[HH] in 1985 and received first rigorous mathematical treatment in 1988 by Imbrie and Spencer
[IS]. The monograph [Com] is a great resource for the foundational work in this area. Over the last
thirty years, the directed polymers played an important role as a playground of many fascinating
problems in the probability world.

Among those different directions opened up by directed polymers, in dimension 1+1, its connec-
tion to the KPZ universality class [Cor] has attracted extensive attention. The polymer measure in
dimension 1+1 is a random probability measure on paths in a random environment, which favors
higher weighted paths. It is constructed through up / right paths on Z2 with path measure re-
weighted by an i.i.d. random environment presented at each lattice points. The KPZ universality
conjecture concerns the large scale asymptotic behavior of the polymer free energy and there are
two characteristic scalings , the 1:2:3 KPZ scaling and the weak noise scaling, known as the strong
KPZ universality conjecture and the weak KPZ universality conjecture respectively.

In the direction of the strong KPZ universality conjecture for directed polymers, the first rigorous
verification of the 1/3 fluctuation of polymer free energy was proven for a special case [Sep], where
the integrable log-gamma polymers were introduced. Among directed polymers, the log-gamma
directed polymer model was special in the same way as the last passage percolation models with ex-
ponential or geometric weights are special among corner growth models. Namely, both demonstrate
integrable structures and permit explicit computations. [COSZ] computed the Laplace transform
of the point-to-point partition function. [BCR] transformed that formula into a Fredholm deter-
minant and performed asymptotic analysis, with motivation from Macdonald process formulas in
[BC].

Under the weak noise scaling, the convergence of polymer free energy in dimension 1+1 to KPZ
equation has been established in the remarkable work by Alberts, Khanin and Quastel in [AKQ],
which is known to have proved the weak KPZ universality conjecture for directed polymers.

It is natural to ask the same question for the half-space polymers. The half-space directed
polymers are constructed through up / right paths constrained to stay in the half-quadrant with
path measure re-weighted by two random environments(X present only at the boundary and ω
in the bulk). Compared to the full space case, the extra boundary environment X penalizes or
rewards the path measure every time the walker visits the origin in an i.i.d. manner. The main
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2 XUAN WU

Theorem 2.2 of this paper builds the connection between half-space directed polymers and half-
space stochastic heat equation(SHE) with Robin boundary condition/KPZ equation with Neumann
boundary condition.

Aside from the general half-space polymer model, recently there has also been considerable
attention focused on the exact-solvable log-gamma polymers, see the recent work in [BBC] and
[OSZ]. But presently no rigorous asymptotics have been proved. This motivates to apply the
convergence results for general half-space polymer model to the log-gamma case, see Section 7.
Our result was further used in [Par1] to obtain an equality-in-distribution for SHE on the half
space with different boundary conditions.

More generally, half-space KPZ universality is also studied by other half-space models approached
from the perspective of scaling to KPZ equation and also from the perspective of exact solvability.
On half-space asymmetric simple exclusion process (ASEP), [CS] showed that the height func-
tion converges to Hopf-Cole solution of KPZ equation with Neumann boundary condition(Robin
boundary condition for SHE). With stronger estimates developed, [Par2] extended their results to
negative values of the boundary condition. In the exact solvability direction, [BBCW] studied half-
line ASEP as a scaling limit of a stochastic six-vertex model in a half-quadrant and found exact
formulas for half-space KPZ/SHE with µ = −1/2, see (2.8). See also in [GH] for the study of KPZ
equation with Neumann boundary conditions in the context of the theory of regularity structures.

Outline. In Section 2 we give a precise formulation of our main result Theorem 2.2 and heuristics
of the proof are provided in Section 3. The techniques we borrow from U-statistics are stated in
Section 4. Our main technical estimates are provided in Section 5 with proofs postponed to the
appendix. We leave the proof of our main theorem to Section 6. In the last Section 7, we discuss the
half-space log-gamma polymer model and apply our main theorem to get an analogous convergence
result for the point-to-point partition function.

Acknowledgement. The author is very grateful to Ivan Corwin for his incredible guidance and
many encouraging conversations, and also extends thanks to Guillaume Barraquand and Promit
Ghosal for their helpful discussions related to this work. The author is in particular very grateful to
an anonymous referee for pointing out many typos/errors and for providing numerous suggestions.
The author was partially supported by NSF grant of Ivan Corwin’s DMS-1664650 as well as the
NSF grant DMS-1441467 for PCMI, at which this work started.

2. Definitions of the model and main results

The aim of this paper is to study the SHE limits of half-space directed polymers in a random
environment. We start with definitions of the half-space polymers.

2.1. Half-space Polymers. Consider an n-step simple symmetric random walk on non-negative
integers N0 with a totally reflecting barrier at the origin. The law of this walk is equal to that of
the absolute value of a standard symmetric random walk on Z. Denote the reflecting random walk
probability measure by PR on paths starting from origin at time 0 and we also denote Pm,xR as the
probability measure on paths starting at x ≥ 0 at time m ≥ 0. This measure Pm,xR will serve as our
background probability measure throughout this paper and we omit the superscript when there is
no ambiguity about the starting point and time. For a path S, let Si denote its location at time i
and define transition probability for a random walk starting at x at time m and arriving at y ≥ 0
at time n ≥ m by

p(m,n, x, y) :=
∑

S:Sn=y

Pm,xR (S).

Such path measures will be affected by two environments and we start with the boundary envi-
ronment. Let X = {Xi} be a sequence of i.i.d. non-negative random variables and we refer to X
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as the boundary random environment. Define the random transition kernel as

pX(m,n, x, y) :=
∑

S:Sn=y

 ∏
m≤i<n:Si=0

Xi

 · Pm,xR (S).(2.1)

Denote N as the set of positive natural numbers while N0 also includes zero and denote [m,n]Z as
the integers inside [m,n]. Given a path S : [m,n]→ N0, define the corresponding random measure
PX as

PX(S) :=

 ∏
m≤i<n:Si=0

Xi

PR(S).

PX is a measure-valued random variable with randomness inherited from X. Note that in general
PX is not a probability measure due to the “punishing” or “rewarding” effects caused by the random
environment X when paths visit the origin.

When the boundary random environment is deterministic such that Xi ≡ γ ≥ 0, γ is denoted
as the reflection rate for the barrier at origin. It follows that the barrier is absorbing if 0 ≤ γ < 1,
totally reflecting if γ = 1, and rewarding if γ > 1. Now the transition kernel pγ(m,n, x, y) also
becomes deterministic. Explicitly,

pγ(m,n, x, y) :=
n−m∑
j=0

γjPm,xR (Nm,n = j, Sn = y).(2.2)

Here Nm,n is the total visits to the origin as

Nm,n(S) := #{i ∈ [m,n− 1]Z | Si = 0}.(2.3)

Let ω(i, x) for (i, x) ∈ N0 × N0 be an i.i.d. collection of random variables and we refer to
ω := {ω(i, x)} as the bulk random environment. The energy of an n-step nearest neighbor walk S
in the environment ω is defined as:

Hω
n (S) :=

n−1∑
i=0

ω(i, Si).

Define the polymer probability measure with randomness inherited from both the bulk random
environment ω and the boundary random environment X as:

Pω,Xn,β (S) :=
1

Zω,X(n;β)
eβH

ω
n (S) · PX(S)

=
1

Zω,X(n;β)
eβH

ω
n (S) ·

 ∏
0≤i<n:Si=0

Xi

 · PR(S).

Here β is a parameter, called inverse temperature. The normalization term Zω,X(n;β) is a point-
to-line partition function, defined as:

Zω,X(n;β) := ER

eβHω
n (S)

 ∏
0≤i<n:Si=0

Xi

 ,
where the expectation is taken with respect to the reflecting random walk measure PR and preserves
randomness from ω and X.
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The main goal of this paper is to study the limiting behavior of the following point-to-point
partition function:

(2.4) Zω,X (n, x;β) := ER

eβHω
n (S)

 ∏
0≤i<n:Si=0

Xi

 · 1{Sn = x}

 ,
where 1 is the indicator function. Note that {Sn = x} is non-empty only if n and x have the same
parity, which we denote as n ↔ x. Generally, for n ∈ N and x ∈ R, denote [x]n as the largest
integer among which are smaller than x and enjoys the same parity as n, i.e.

[x]n := max{m ∈ Z | m ≤ x, m↔ n}.(2.5)

2.2. Stochastic Heat Equation with Robin boundary condition. In this section we intro-
duce the SHE with Robin boundary condition, which arises as a weak scaling limit of the half-space
directed polymers. We also provide the expression of the chaos series for its solution, a series of
multiple stochastic integrals over a Robin heat kernel with respect to a space-time white noise.

2.2.1. 1-D heat equation with Robin boundary condition.

Definition 2.1. We say ρµ(t, x, y) is the fundamental solution to 1-D heat equation on R≥0 with
Robin boundary condition and initial data δ(y − x) if

∂tρµ(t, x, y) =
1

2
∂xxρµ(t, x, y)(2.6)

∂xρµ|x=0 = µ · ρµ|x=0,

and if for any function ϕ(x),

v(t, x) =

∫ ∞
0

ρµ(t, x, y)ϕ(y)dy

solves heat equation with initial condition

v(0, x) = ϕ(x).

There are a few equivalent forms of the Robin heat kernel. We will make use of the following
form which can be found in [CS, Lemma 4.4].

ρµ(t, x, y) =(2πt)−1/2
(
e−(y−x)2/(2t) − e−(y+x)2/(2t)

)
(2.7)

+ 2(2πt3)−1/2

∫ ∞
0

(y + x+ s)e−µs−(y+x+s)2/(2t)ds.

2.2.2. Stochastic Heat equation with Robin boundary condition. Consider the stochastic heat equa-
tion with multiplicative noise

(2.8) ∂tzβ =
1

2
∂xxzβ + βzβ · ξ

with delta initial data and Robin boundary condition:

zβ(0, ·) = δ(0)

∂xzβ(·, x)|x=0 = µ · zβ(·, 0).

Here ξ(t, x) is a white noise on R≥0 × R≥0 with covariance structure

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).

For details about white noise and full space SHE, we refer to [AKQ, Section 3]. Further discussions
can be found in [Jan].
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With the help of the Robin heat kernel, the mild solution is given by

zβ(t, x) =
∞∑
k=0

∫
∆k(t)

∫
Rk≥0

ρµ(t− tk, xk, x) · βk
k∏
i=1

ρµ(ti − ti−1, xi−1, xi)dξ
⊗k(t,x),(2.9)

where ∆k(t) = {0 = t0 < t1 < · · · < tk ≤ t} and x0 = 0.
To simply the notation, we define the k-fold operator as follows. Let k ∈ N0 and g(t1, t2, x1, x2)

be a function defined on 0 ≤ t1 < t2 and (x1, x2) ∈ R2. Fk[g](t, x; t,x) : (R>0×R)×∆k(t)×Rk → R
is defined as

(2.10) Fk[g](t, x; t,x) := g(tk, t, xk, x)
k∏
j=1

g(tj−1, tj , xj−1, xj).

Here the convention t0 = x0 = 0 has been used. Let

ρµ,k(t, x; t,x) = Fk[ρµ](t, x; t,x),(2.11)

with the understanding that ρµ(s, t, ·, ·) := ρµ(t− s, ·, ·). Then

zβ(t, x) =
∞∑
k=0

∫
∆k(t)

∫
Rk≥0

βkρµ,k(t, x; t,x)dξ⊗k(t,x).

Our main result below shows that by diffusively scaling the random walks, under intermediate
disorder scaling(βn−1/4) and critical scaling near the boundary, the point-to-point partition function
converges to z√2β(t, x), solution to SHE. The convergence takes place in the topology of supremum

norm on bounded continuous functions, denoted as
(d)−−→. Denote λ(β) = logE[eβω], our main

theorem is as follows.

Theorem 2.2. Fix µ ∈ R. Let ω be i.i.d. random environment with mean zero and variance one
which satisfies λ(β0) <∞ for some β0 > 0. For n ∈ N, let γ = 1−µ/

√
n. Assume that X satisfies

E[X] = γ and that E [|X − E[X]|3] ≤ Kn−ε for some ε ∈ (0, 1] and K > 0. Then

2−1n1/2e−bntcλ(βn−1/4)Zω,X
(
bntc, [x

√
n]bntc;βn

−1/4
) (d)−→ z√2β(t, x).

Here [x
√
n]bntc is the largest integer which is smaller than x

√
n and has the same parity as bntc.

See (2.5).

Remark 2.3. Here we require the third moment assumption in order to prove tightness and we
do not believe this is the optimal case.

3. Heuristics and ideas of proof

In this section we attempt to explain why βn−1/4 and γ = 1−µ/
√
n are natural scalings. We also

provide heuristics behind the proof of the Main Theorem 2.2 and comment on the main technical
ingredients. First let us summarize the setup of half-space polymers in the following Table 1. Note
that in the left picture, random walk trajectories are pictured as paths in a half-quadrant while
the partition functions are defined with respect to random walks on non-negative integers. The
equivalence between these two formulations is clear and in this way the figure better illustrate the
idea. For simplicity of notations, we omit the floor function when it does not cause ambiguity, e.g.
bntc, [x

√
n]bntc.

The tuning at boundary, γ = 1 − µ/
√
n, is clear. When the background random walk is scaled

diffusively, the total number of visits to the boundary of this random walk is of scale
√
n. In the

average sense, in order to see a non-trivial limit of
∏

0≤i<n:Si=0

Xi, we must have γ − 1 = O
(

1√
n

)
.
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Half-quadrant polymers with ω and X Definition of partition functions

ω(i, j), i.i.d.

j ≥ i

Xi, i.i.d.

(0, 0)

( 1
2
nt+ 1

2
x
√

n, 1

2
nt− 1

2
x
√

n)
Let β > 0, the scaled point-to-point partition function
is defined as:

Zω,X
(
nt, x
√
n;βn−1/4

)
:=

ER

eβn−1/4Hω
nt(S)

 ∏
0≤i<nt
Si=0

Xi

 · 1{Snt = x
√
n}

.

Table 1. Summary of the half-space polymer model. The expectation is taken
with respect to probability measure PR and preserves randomness from ω and X.
Hω
n (S) :=

∑n−1
i=0 ω(i, Si) is the energy of an n-step nearest neighbor walk S

.

The strategy for proving Theorem 2.2 is to first prove the convergence for a modified partition
function Zω. Zω takes the form of a discrete chaos series with random walk transition probability
kernel. The techniques of U-statistics in Section 4 provide criteria for convergence of discrete chaos
series to continuous ones. Furthermore we rewrite the unmodified partition function Zω in the
same form as Zωn with a perturbed environment ωn, still of mean zero but with variance only
asymptotically one. In addition, the same strategy will be applied in the log-gamma polymer
model, where we will need to deal with the issue that the random environment will only be i.i.d.
on the diagonal and the bulk respectively.

Denote Dn
k as a discrete integer simplex:

Dn
k := {i = (i1 · · · , ik) ∈ Nk0 : 0 ≤ i1 < · · · < ik < n}.(3.1)

We define a k-fold transition kernel pX,k(n, y; i,y) for (n, y, i,y) ∈ (N×N0)×Dn
k×Nk0 of a half-space

random walk with a barrier at origin that arrives at y in n steps.

pX,k(n, y; i,y) := pX(ik, n, yk, y)

k∏
j=1

pX(ij−1, ij , yj−1, yj).(3.2)

Here the convention i0 = x0 = 0 has been used. The modified point-to-point partition is defined
as:

Zω,X (n, y;β) := ER

n−1∏
i=0

(
1 + βω(i, Si)

)
·

 ∏
0≤i<n:Si=0

Xi

 · 1{Sn = y}

(3.3)

Expanding the above product in the expectation and by a direct computation, Zω,X(n, y;β) could
be written as a discrete sum of weighted chaos,

Zω,X(n, y;β) = pX(0, n, 0, y) +

n∑
k=1

βk
∑
i∈Dnk

∑
y∈Nk0

pX,k(n, y; i,y)ω(i,y),(3.4)

where ω(i,y) :=
k∏
j=1

ω(ij , yj).
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Heuristically we may see why SHE (2.9) arise in the limit. Under the diffusive scaling and
boundary tuning (γ = 1−µ/

√
n), random walk transition probabilities converge to the Robin heat

kernel. Moreover, the random environment ω approximates White noise by scaling β to zero in a
critical manner (i.e. βn1/4). To made this rigorous, we need local limit theorem and L2 bounds on
the k-fold random transition kernels pX,k(n, y; i,y). These are the main technical inputs of these
paper and are provided in Section 5.

To see that βn−1/4 is the critical scaling, it is illustrative to check that the k = 1 term in the
summation above has order O(

√
n). For simplicity, assume Xi ≡ 1 and consider the point-to line

case, i.e. do not fix the endpoint. Now it suffices to show that n−1/4
∑
i

∑
x

ω(i, x)P(Si = x) stays

bounded as a random variable (with randomness inherited from ω). This could be easily seen from
taking the second moment. In detail, we see that

Eω

(
n−1/4

∑
i

∑
x

ω(i, x)P(Si = x)

)2

= n−1/2Eω

∑
i

∑
x

ω(i, x)P(Si = x)
∑
j

∑
y

ω(j, y)P(S̃j = y)


= n−1/2

∑
i,j

∑
x,y

Eω [ω(i, x)ω(j, y)]P(Si = x)P(S̃j = y)

= n−1/2
∑
i=j

∑
x=y

P(Si = x)P(S̃j = y)

= O(1).

Here S, S̃ are two independent random walk paths. The third equality follows from taking expec-
tation with respect to ω by Fubini theorem. Only the the intersection points of S, S̃ will contribute
to the sum as ω is i.i.d. of mean zero and variance one. From general theory of 1-D random walks,
we know that S and S̃ intersect O(

√
n) times on average and this explains the scaling βn−1/4.

4. U-statistics

The techniques of U-statistics are convenient for obtaining convergence of partition functions
Zω, which take the form of discrete chaos. As the results about U-statistics are already presented
in [AKQ, Section 4], we choose to state the results and refer the proofs to their counterparts in
[AKQ]. See [CSZ] for a more general treatment of discrete chaos expansion with more general
random environment.

We start with introducing the definition of U-statistics and then quote a technical lemma
(Lemma 4.3). In application to log-gamma polymer models, we need to allow a slightly more
general setting. See Lemma 4.4.

Recall that n↔ x denotes n and x have the same parity. More generally, i↔ y means that all
corresponding entries share the same parity. Let Rnk be the collection of rectangles, defined as:

Rnk :=

{[
n−1i, n−1(i + 1)

)
×
[
n−1/2y, n−1/2(y + 2)

)
: i ∈ Dn

k ,y ∈ Nk0, i↔ y

}
.

Here Dn
k is integer simplex defined in (3.1) and 1 is the k-dimensional vector (1, 1, · · · , 1). Also[

n−1i, n−1(i + 1)
)

:=
[
n−1i1, n

−1(i1 + 1)
)
× · · · ×

[
n−1ik, n

−1(ik + 1)
)
,

and similarly,[
n−1/2y, n−1/2(y + 2)

)
:=
[
n−1/2y1, n

−1/2(y1 + 2)
)
× · · · ×

[
n−1/2yk, n

−1/2(yk + 2)
)
.
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For a L2 function g on [0, 1]k ×Rk≥0, take n ≥ 1, the corresponding U-statistics Snk (g) of g could
be viewed as a weighted average of a discretization of g through the random environment ω. We
now discretize L2([0, 1]k ×Rk≥0) functions by replacing their values with their integral mean values

on rectangles in Rnk . Consider a function g ∈ L2([0, 1]k × Rk≥0), define gn by specifying the values
of gn on every R ∈ Rnk , more specifically we define

gn|R :=
1

|R|

∫
R
g.

where |R| = 2kn−3k/2. Note that g is constant on every single R and for each n, k fixed, each pair
(i,y) ∈ Dn

k × Nk0 (i↔ y) corresponds to a unique R ∈ Rnk .
For the convenience of applying U-statistics results we consider sums over unordered sets

Enk := {i ∈ [1, n]kZ : ij 6= il for j 6= l}.

Recall that ω(i,y) =
k∏
j=1

ω(ij , yj).

Definition 4.1. The corresponding U-statistics of g ∈ L2([0, 1]k × Rk≥0) is defined as

(4.1) Snk (g;ω) := 2k/2
∑
i∈Enk

∑
y∈Nk0

gn

(
n−1i, n−1/2y

)
ω(i,y) · 1{i↔ y}.

The following lemma, proved as [AKQ, Lemma 4.1], bounds the second moment of Snk (g;ω) from
above.

Lemma 4.2. Let Snk (g;ω) be a U-statistics as in (4.1). For any linear combinations of functions

g1, · · · , gm ∈ L2([0, 1]k × Rk≥0) through α1, · · · , αk ∈ R, we have

m∑
l=1

αlSnk (gl;ω) = Snk

(
m∑
l=1

αlgl;ω

)
.

Moreover, if random environment variables satisfy moment conditions E[ω(i, x)] = 0 and Var[ω(i, x)] =
σ2, then

E
[
Snk (g)2

]
≤ σ2kn3k/2 ‖g‖2L2([0,1]k×Rk≥0) .

Note that the U-statistics is invariant under permutation for (t,x) and we denote

Sym g(t,x) =
1

k!

∑
π∈σk

g(πt, πx),

where σk is the symmetric group of degree k.
For G = (g0, g1, g2, . . .) ∈

⊕
k≥0 L

2([0, 1]k × Rk≥0), define its chaos series I(G) as follows,

I(G) :=

∞∑
k=0

∫
[0,1]k

∫
Rk≥0

Sym gk(t,x)ξ⊗k(dt dx)

=
∞∑
k=0

∫
[0,1]k

∫
Rk≥0

gk(t,x)ξ⊗k(dt dx).

The following lemma, proved as [AKQ, Theorem 4.5], shows that under mild conditions, the
U-statistics converges in distribution to the continuum chaos series.
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Lemma 4.3. Let ωn(i, x), (i, x) ∈ N0×N0 be a sequence of i.i.d. random environments that satisfy

E[ωn] = 0, and lim
n→∞

E[ω2
n] = 1.(4.2)

Let G = (g0, g1, g2, . . .) ∈
⊕

k≥0 L
2([0, 1]k × Rk≥0) with

lim
N→∞

lim sup
n→∞

∞∑
k=N

E[ω2
n]k ‖gk‖L2 = 0.(4.3)

Then as n→∞,

Sn(G) :=
∞∑
k=0

n−3k/4Snk (gk;ωn)
(d)−−−−−→ I(G).

Moreover, suppose G1, . . . , Gm ∈
⊕

k≥0 L
2([0, 1]k×Rk≥0) all satisfy (4.3). Then as n→∞, we have

the joint convergence: (
Sn(G1), . . . ,Sn(Gm)

) (d)−−−−−→
(
I(G1), . . . , I(Gm)

)
.

For the application to log-gamma polymer model, we need the following lemma for a perturbed
random environment ω̃.

Lemma 4.4. Let ω̃n(i, x), (i, x) ∈ N2
0 be a sequence of random environments. Assume that for

fixed n, ω̃n(i, x), (i, x) ∈ N0 × N are i.i.d. random variables and that ω̃n(i, 0), i ∈ N0 are also i.i.d.
random variables. Furthermore, assume that E[ω̃n(i, 0)] = E[ω̃n(i, 1)] = 0, limn→∞ E[ω̃2

n(i, 1)] = 1
and that

σ2 := sup
n∈N,x∈N0

E[ω̃2
n(i, x)] <∞.

Then, replacing (4.3) with

lim
N→∞

lim sup
n→∞

∞∑
k=N

σ2k ‖gk‖L2 = 0,(4.4)

the convergence results in Lemma 4.3 still hold with ωn replaced by ω̃n.

Proof. The proof follows as a trivial reasoning in [AKQ, Theorem 4.5]. �

5. Estimates on discrete transition kernel

We record in this section estimates that will be needed in proving Theorem 2.2. Their proofs are
postponed to the appendix. Recall that pγ defined in (2.2) is the deterministic transition kernel
as X ≡ γ. Lemma 5.1 concerns pointwise upper bounds for pγ . In particular, it shows that pγ
enjoys exponential decay. Lemma 5.2 proves the local limit theorem for pγ . Lemma 5.3 bounds the
variance of the random transition kernel pX in terms of pγ . Combined with Lemma 5.1, it implies
the variance of pX also decays exponentially.

Lemma 5.1. For any µ ∈ R and τ ≥ 1, there exist a constant B0(µ, τ) and a universal constant C0

such that the following statement holds. For n ∈ N, m ∈ [1, τn]Z and (x, y) ∈ N2
0, let γ = 1−µ/

√
n.

Then

pγ(0,m, x, y) ≤ 2B0(µ, τ)m−1/2e−(x−y)2/(C0m).

Lemma 5.2. For any µ ∈ R, 0 < ε < 1 and M, τ ≥ 1, there exists Err(n;µ, ε,M, τ) such that
the following statement holds. Assume that n ∈ N, t ∈ [ε, τ ] and (x, y) ∈ [0,M ]2 with nt ∈ N,√
nx,
√
ny ∈ Z and nt↔

√
n(y − x). Let γ = 1− µ/

√
n. Then∣∣∣2−1n1/2pγ(0, nt,

√
nx,
√
ny)− ρµ(t, x, y)

∣∣∣ ≤ Err(n;µ, ε,M, τ).
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Furthermore,

lim
n→∞

Err(n;µ, ε,M, τ) = 0.

See the expression for ρµ in (2.7).

Lemma 5.3. Fix n ∈ N, τ ≥ 1, ε ∈ (0, 1] and K ≥ 1. Assume that Var[Xi] ≤ Kn−ε and that
E[X] = γ = 1− µ/

√
n. There exists c(n; τ, ε,K) such that the following statement holds. For any

integers m ∈ [1, nτ ]Z and (x, y) ∈ N2
0, we have

Var[pX(0,m, x, y)] ≤ c(n; τ, ε,K)p2
max{1,γ2}(0,m, x, y).

Furthermore,

lim
n→∞

c(n, τ, ε,K) = 0.

6. Proof of the Main theorem

For simplicity, we first treat the case t = 1 and explain how to proceed with general t > 0. In order
to prove the convergence of the point-to-point partition functions Zω,X(n, [x

√
n]n;βn−1/4) as in

(2.4), we begin with identifying Zω,X(n, [x
√
n]n;βn−1/4) with a U-statistics of pX,k(n, [x

√
n]n; i,y)

as in (3.2) and then use the techniques of U-statistics.

As pX,k(bntc, [x
√
n]bntc; i,y) is only defined on lattice points (i,y) ∈ Dbntck × Nk0, which verify

the parity condition, we will interpolate the discrete transition kernel pX,k(bntc, [x
√
n]bntc; i,y) to

be a L2 function on [0, t]k × Rk≥0. Given x ∈ R≥0 and i ∈ N, recall that [x]i defined in (2.5) is the
largest integer among the ones that are smaller than x and are of the same parity as i. For a point

x ∈ Rk≥0 and i ∈ Dbntck , define [x]i ∈ Nk0 by ([x]i)k = [xk]ik .

Given (t, x) ∈ R>0 × R≥0 and (t,x) ∈ [0, t]k × Rk≥0, let m = bntc, y = [
√
nx]m, i = bntc and

y = [
√
nx]i. Define the scaled extension νnX,k as

(6.1) νnX,k(t, x; t,x) := 2−(k+1)n(k+1)/2pX,k(m, y; i,y) · 1{i ∈ Dm
k }.

Note that now νnX,k also takes care of the diffusive scaling for pX,k. Under above definitions, νnX,k
is constant on the rectangles of Rnk . Note that for i ∈ Enk ,y ∈ Nk0 such that i↔ y,

νnX,k(t, x;n−1i, n−1/2y) = 2−(k+1)n(k+1)/2pX,k(m, y; i,y) · 1{i ∈ Dm
k }.

Recall the definition of Snk as in (4.1) and note that νnX,k is constant on the rectangles of Rnk and

zero elsewhere, we compute the U-statistics of νnX,k(1, x; ·, ·) as follows,

Snk (νnX,k(1, x; ·, ·);ω) = 2k/2
∑
i∈Enk

∑
y∈Nk0

νnX,k

(
1, x;n−1i, n−1/2y

)
· ω(i,y) · 1{i↔ y}

= 2−k/2−1n(k+1)/2
∑
i∈Dnk

∑
y∈Nk0

pX,k(n, y; i,y) · ω(i,y).

Here y = [x]n and the parity condition is handled by the pX,k and summation is over i ∈ Dn
k . We

could rewrite the modified point-to-point partition function as

Zω,γ(n, [x
√
n]n;βn−1/4) = 2n−1/2

n∑
k=0

2k/2βkn−3k/4Snk (νnX,k(1, x; ·, ·);ω).(6.2)

The following two lemmas seek to bound νnX,k. Lemma 6.2 gives the L2 bound and L2 convergence

of νnγ,k(t, x; t,x).
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Lemma 6.1. Fix µ ∈ R and τ ≥ 1. There exist a constant B1(µ, τ) and a universal constant
constant C1 such that the following statement holds. For any n ∈ N, define

Θn(t1, t2, x1, x2) := B1 max{t2 − t1, 2n−1}−1/2e−(x2−x1)2/(C1 max{t2−t1,2n−1}).

Let γ = 1− µ/
√
n. Then for all n ≥ 1, t ∈ (0, τ ], x ∈ R and (t,x) ∈ ∆k(t)× Rk, we have

νnγ,k(t, x; t,x) ≤ Fk[Θn](t, x; t,x).

Here the k-fold operator Fk is define in (2.10).

Proof. Let m = bntc y = [
√
nx]m, i = bntc and y = [

√
nx]i. Without loss of generality we may

assume i ∈ Dm
k as otherwise νnγ,k(t, x; t,x) = 0. In particular, m− ik ≥ 1 and ij − ij−1 ≥ 1. By the

definition of νnγ,k(t, x; t,x), it suffices to show that

2−1n1/2pγ(ij−1, ij , yj−1, yj) ≤Θn(tj−1, tj , xj−1, xj),

2−1n1/2pγ(ik,m, yk, y) ≤Θn(tk, t, xk, x).

We give the proof for the first inequality. The proof for the second is identical. From Lemma
5.1,

2−1n1/2pγ(ij−1, ij , yj−1, yj) ≤ Bn1/2(ij − ij−1)−1/2e−(yj−yj−1)2/[C(ij−ij−1)].

We assume first that tj − tj−1 ≥ 2n−1. Then

(tj − tj−1)/2 ≤ n−1(ij − ij−1) ≤ 2(tj − tj−1).

Together with
n(xj − xj−1)2 ≤ 2(yj − yj−1)2 + 4,

The assertion follows. The proof for tj − tj−1 < 2n−1 is similar by using

n−1 ≤ n−1(ij − ij−1) ≤ 3n−1.

The proof is finished. �

Lemma 6.2. Fix µ ∈ R and τ ≥ 1. There exists a constant B2(µ, τ) such the the following
statement holds. For all n ∈ N, let γ = 1− µ/

√
n. For all k ≥ 1, t ∈ (0, τ ] and x ∈ R≥0, we have∥∥νnγ,k(t, x; ·, ·)

∥∥2

L2 ≤ tk/2−1e−x
2/[C1 max{t,2k/n}]B2(µ, τ)k/Γ((k + 1)/2),(6.3)

lim
n→∞

∥∥νnγ,k(t, x; ·, ·)− ρµ,k(t, x; ·, ·)
∥∥
L2 = 0.(6.4)

Proof. We start with (6.3). By a direct computation,

Fk[Θn](t, x; t,x)2 = Bk+1
1 (max{t− tk, 2n−1})−1/2

k∏
j=1

(max{tj − tj−1, 2n
−1})−1/2

×Fk[Θn](1,
√

2x; t,
√

2x).

Through change of variables, for any t ∈ ∆k(t),∫
Rk

Fk[Θn](t,
√

2x; t,
√

2x)dx ≤ Bk+1t−1/2e−x
2/[C1 max{t,2k/n}].

For simplicity, we denote t̄ = max{t, 2k/n}. Thus

sup
n∈N

∥∥νnγ,k(t, x; ·, ·)
∥∥2

L2 ≤Bkt−1/2e−x
2/(C1 t̄)

∫
∆k(t)

(max{t− tk, 2n−1})−1/2
k∏
j=1

(max{tj − tj−1, 2n
−1})−1/2dt

≤Bkt−1/2e−x
2/(C1 t̄)

∫
∆k(t)

(t− tk)−1/2
k∏
j=1

(tj − tj−1)−1/2dt
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≤tk/2−1e−x
2/(C1 t̄)Bk/Γ((k + 1)/2).

Here we have used (see [AKQ, Section 3.4])∫
∆k

(t− tk)−1/2
k∏
j=1

(tj − tj−1)−1/2dt = π(k+1)/2/Γ((k + 1)/2).

Next, we turn to showing (6.4). By the local limit theorem Lemma 5.2, νnγ,k(t, x; ·, ·) converges

to ρµ,k(t, x; ·, ·) pointwisely. By the argument above we see that Fk[Θn](t, x; ·, ·) converges to
Fk[Θ∞](t, x; ·, ·) in L2. Here

Θ∞(t1, t2, x1, x2) := B1(t2 − t1)−1/2e−(x2−x1)2/(C1(t2−t1)).

Thus (6.4) follows by the dominated convergence theorem. �

By identifying Zω,γ(n, [x
√
n]n;βn−1/4) with the U-statistics as in (6.2), we are ready to prove

the main Theorem 2.2 in a few steps as follows.

Proof of Theorem 2.2. Define the environment field ωn by

eβn
−1/4ω(i,x)−λ(βn−1/4) = 1 + βn−1/4ωn(i, x).(6.5)

Note that as E[eβ0ω] < ∞, λ(βn−1/2) is well-defined as βn−1/4 ≤ β0. From the definition of

λ(βn−1/4), we have E[ωn] = 0. It is straightforward to check that E[ω2
n] = 1 +O(n−1/4). Hence ωn

satisfies (4.2). Moreover we have

2−1n1/2e−nλ(βn−1/4)Zω,X
(
n, [x
√
n]n;βn−1/4

)
=2−1n1/2ER

[
n∏
i=0

(
1 + βn−1/4ωn(i, Si)

)
1{Sn = [x

√
n]n}

]
=2−1n1/2Zωn,X

(
n, [x
√
n]n;βn−1/4

)
.

Step 1: Fix x ∈ R≥0. We first prove the convergence of 2−1n1/2Zωn,γ(n, [x
√
n]n;βn−1/4). By

(6.3) and (6.4),

‖ρµ,k(1, x; ·, ·)‖2L2 ≤ e−2x2/C1B2(µ, 1)2/Γ((k + 1)/2).

It is easy to see that (4.3) holds. Hence by Lemma 4.3 it follows that for all β > 0, as n→∞,

∞∑
k=0

2k/2βkn−3k/4Snk (ρµ,k(1, x; ·, ·);ωn)
(d)−→ z√2β(1, x).(6.6)

See the chaos expansion of z√2β(1, x) in (2.9) . Now it suffices to show that the difference

J :=
∞∑
k=0

2k/2βkn−3k/4Snk (ρµ,k(1, x; ·, ·);ωn)− 2−1n1/2Zωn,γ(n, [x
√
n]n;βn−1/4).

converges to 0 in L2. By splitting the above series and applying linearity of Snk , we have

J =

∞∑
k=0

2k/2βkn−3k/4Snk (ρµ,k(1, x; ·, ·);ωn)−
n∑
k=0

2k/2βkn−3k/4Snk (νnγ,k(1, x; ·, ·);ωn)

=
n∑
k=0

2k/2βkn−3k/4Snk
(
ρµ,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·);ωn

)
+

∞∑
k=n+1

2k/2βkn−3k/4Snk (ρµ,k(1, x; ·, ·);ωn).
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Because Snk (ρµ,k(1, x; ·, ·);ωn) are independent for different k, by Lemma 4.2 the second moment of
the second term is bounded from above by

∞∑
k=n+1

E[ω2
n]k2kβ2k‖ρµ,k(1, x; ·, ·)‖2L2 ≤

∞∑
k=n+1

E[ω2
n]k2kβ2ke−2x2/C1B2(µ)k/Γ((k + 1)/2).

Thus the second term converges to zero as n goes to infinity. We now turn to the first term. By
Lemma 4.2 we have

E

( n∑
k=0

2k/2βkn−3k/4Snk
(
ρµ,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·)

))2
 ≤ n∑

k=0

E[ω2
n]k2kβ2k

∥∥ρµ,k(1, x; ·, ·)−νnγ,k(1, x; ·, ·)
∥∥2

L2 .

Lemma 6.2 shows that for any k, as n→∞,
∥∥ρµ,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·)

∥∥2

L2 → 0. Together with∥∥ρµ,k(1, x; ·, ·) − νnγ,k(1, x; ·, ·)
∥∥2

L2 ≤ 4e−x
2/C1 max{1,2k/n}B2(µ, 1)k/Γ((k + 1)/2) from Lemma 6.3, it

follows by dominated convergence theorem that

lim
n→∞

n∑
k=0

E[ω2
n]k2kβ2k

∥∥ρµ,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·)
∥∥2

L2 = 0.

We then conclude that

2−1n1/2Zωn,γ(n, [x
√
n]n;βn−1/4)

(d)−→ z√2β(1, x).

Step 1 is finished.

Step 2: We now turn to demonstrating convergence of Zωn,X(n, [x
√
n]n;βn−1/4) where random-

ness is also present at the boundary random environment. It suffices to show

2−1n1/2
(
Zωn,X(n, [x

√
n]n;βn−1/4)− Zωn,γ(n, [x

√
n]n;βn−1/4)

)
(d)−−→ 0.

We have

2−1n1/2
(
Zωn,X(n, [x

√
n]n;βn−1/4)− Zωn,γ(n, [x

√
n]n;βn−1/4)

)
=

n∑
k=0

2k/2βkn−3k/4Snk
(
νnX,k(1, x; ·, ·)− νnγ,k(1, x; ·, ·);ωn

)
.

By Lemma 4.2,

Var
[
2−1n1/2

(
Zω,Xn ([x

√
n]n;βn−1/4)− Zω,γn ([x

√
n]n;βn−1/4)

)]
≤

n∑
k=0

E[ω2
n]k2kβ2k

∫
∆k×Rk≥0

E
[
νnX,k(1, x; t,x)− νnγ,k(1, x; t,x)

]2
dtdx.

Recall the definition for νnX,k(1, x; t,x) as in (6.1) and the definition for the k-fold transition

kernel pX,k as in (3.2). Fix n ∈ N. Let y = [
√
nx]n, i = bntc and y = [x]i. Without loss of

generality we may assume i ∈ Dn
k . As E

[
νnX,k

]
= νnγ,k, it follows that

22(k+1)nk+1E
[
(νnX,k − νnγ,k)(1, x; t,x)

]2
= E[p2

X(ik, n, yk, y)]

k∏
j=1

E[p2
X(ij−1, ij , yj−1, yj)]− p2

γ(ik, n, yk, y)

k∏
j=1

p2
γ(ij−1, ij , yj−1, yj)



14 XUAN WU

By Lemma 5.3, under the assumption Var(Xi) ≤ Kn−ε, Var[pX(m,n, x, y)] = c(n; ε,K)p2
max{1,γ2}(m,n, x, y)

with limn→∞ c(n; ε,K) = 0. Hence

0 ≤ E[p2
X(m,n, x, y)]− p2

γ(m,n, x, y) ≤ c(n; ε,K)p2
max{1,γ2}(m,n, x, y).

By taking n large enough, we may assume c(n; ε,K) ≤ 1. Then

0 ≤E[p2
X(ik, n, yk, y)]

k∏
j=1

E[p2
γ(ij−1, ij , yj−1, yj ]− p2

γ(ik, n, yk, y)
k∏
j=1

p2
γ(ij−1, ij , yj−1, yj)

≤2kc(n; ε,K)p2
max{1,γ2}(ik, n, yk, y)

k∏
j=1

p2
max{1,γ2}(ij−1, ij , yj−1, yj)

=2kc(n; ε,K)νnmax{1,γ2},k(1, x, t,x).

By (6.3), we deduce∫
[0,1]k×Rk≥0

E
[
(νnX,k − νnγ,k)(1, x, t,x)

]2
dtdx ≤ c(n; ε,K)Bk/Γ((k + 1)/2).

Hence

Var
[
2−1n1/2

(
Zω,X(n, [x

√
n]n;βn−1/4)− Zω,γ(n, [x

√
n]n;βn−1/4)

)]
≤c(n, ε,K)

∞∑
k=0

E[ω2
n]kBkβ2k/Γ((k + 1)/2)→ 0.

As a result,

2−1n1/2e−nλ(βn−1/4)Zω,X
(
n, [x
√
n]n;βn−1/4

)
= 2−1n1/2Zωn,X(n, [x

√
n]n;βn−1/4)

(d)−−−→ z√2β(1, x).

This proves the one point convergence of 2−1n1/2e−nλ(βn−1/4)Zω,X
(
n, [x
√
n]n;βn−1/4

)
.

Note that for all t > 0, Lemma 5.3 and Lemma 6.2 hold. Hence the argument above actually

yields the convergence of 2−1n1/2e−ntλ(βn−1/4)Zω,X
(
bntc, [x

√
n]bntc;βn

−1/4
)

to z√2β(t, x) for arbi-

trary t > 0 and x ∈ R. Furthermore, by the joint convergence in Lemma 4.3, the finite dimensional
convergence also follows.

Step 3: Now in order to show the weak convergence as a process, it suffices to show the tightness
of the above process, which could be done by a similar argument as in [AKQ, Appendix B]. They
first deduced an integral form in terms of the random walk transition kernel for the modified point-
to-point partition function Z(x, k) from the discrete stochastic heat equation that Z(x, k) satisfies
and then developed the modulus of continuity for the partition function with estimates for heat
kernel. In our case, for deterministic Xi ≡ γ, we could derive a similar integral form for the
point-to-point partition function but in terms of transition kernel for half-line random walk with
a barrier at origin and then the similar estimates follow given that Robin heat kernel has similar
decay behavior as standard heat kernel as in Lemma 5.1. For Xi under the assumption of Theorem
2.2, from Remark A.8, we have that E[|ν1

X,1 − ν1
γ,1|α] converges to zero in L1([0, 1]× R≥0) for any

1 ≤ α < 3. Here ν1
X,1 and ν1

γ,1 are interpolated (random) transition kernel as in (6.1). This allows

us to adapt the proof in [AKQ, Appendix B] to the current setting.
�
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7. Application to log-gamma polymer models

In this section we consider the half-space log-gamma polymer model, as introduced in [Sep]. We
apply the main Theorem 2.2 to the log-gamma polymer point-to-point partition function. The log-
gamma polymer models in dimension 1 + 1 are of significant importance among polymer models in
the sense that integral formulas are discovered and steepest descent analysis is allowed, see [BBC].

We start with defining the log-gamma polymer model. We first follow notations used in the
literature and then translate it to fit our setting for the general polymers. Consider a half-quadrant
V := {(i, j)|i ≥ j, i, j ∈ N0}. Assign a log-gamma random environment Y := {Yi,j , i ≥ j} on V as
follows.

Yi,i ∼ Inv-Gamma(
√
n+ µ+ 1/2), Yi,j ∼ Inv-Gamma(2

√
n), for i > j.(7.1)

Here Inv-Gamma(α) is the inverse gamma distribution with shape parameter α and scale parameter
1, and with density

1

Γ(α)
x−α−1e−1/x.

These choices of parameters correspond to the diffusive scaling and critical scaling at the origin of
the general polymers.

For an endpoint (m,n) ∈ V , define the point-to-point partition function by

ZYm,n :=
∑

S:(0,0)→(m,n)

∏
(i,j)∈S

Yi,j ,

where we sum over the up-right paths S from (0, 0) to (m,n) which always stay in the half-quadrant
V . Note that the probabilities of these paths do not sum to one since those paths having crossed
boundary x = y are not counted.

To match with the general environment setting in the half-space regime with a barrier at origin,
we need to rewrite the partition function ZY in the same form as (3.3), i.e. expectation with respect
to a reflected random walk measure. By taking

Ỹi,i =
1

2
Yi,i, Ỹi,j = Yi,j , i > j,

we have

ZYm,n = 2m+n
∑

S:(0,0)→(m,n)

2−(m+n) · 2#S · 2−#S ·
∏

(i,j)∈S

Yi,j(7.2)

= 2m+nER

 ∏
(i,j)∈S

Ỹi,j · 1{S(m+ n) = (m,n)}

 ,
where #S is the number of times that path S visits the boundary and ER is the expectation with
respected to the reflected random walk measure.

Once again we omit the floor function when it does not cause ambiguity, e.g. bntc, [x
√
n]bntc.

The following convergence result holds for log-gamma polymers.

Theorem 7.1. Let Y2,1, be a random variable distributed as in (7.1). The following convergence
results hold for the half-space log-gamma polymer model as n→∞,

(2−1n1/2)2−bntcE[Y2,1]−bntc · Zb(nt+x√n)/2c,b(nt−x
√
n)/2c

(d)−−→ z1(t, x).

Proof. From (7.2), we have

2−ntE[Y2,1]−nt · Zb(nt+x√n)/2c,b(nt−x
√
n)/2c
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= ER

 ∏
(i,j)∈S

E[Y2,1]−1Ỹi,j

1
{
S(nt) =

(
b(nt+ x

√
n)/2c, b(nt− x

√
n)/2c

)} .
Define ωn(i, j) for i ≥ j via

E[Y2,1]−1Ỹi,j =: 1 + 2−1/2n−1/4ωn(i, j), i > j;

E[Y2,1]−1Ỹi,i =: γn

(
1 + 2−1/2n−1/4ωn(i, i)

)
,

where γn := 2−1E[Yi,i]/E[Y2,1].
In these notations, it follows that

(2−1n1/2)2−ntE[Y2,1]−nt · Zb 1
2

(nt+x
√
n)c,b 1

2
(nt−x

√
n)c = 2−1n1/2Zωn,γn(bntc,

⌊√
nx
⌋
; 2−1/2n−1/4).

The shows that the log-gamma partition function is equivalent to the scaled modified point-to-point
partition function as in (3.3) with β = 1√

2
.

Furthermore, it’s clear that for i ≥ j, E[ωn(i, j)] = 0. And since

E[Inv-Gamma(α)] = (α− 1)−1, Var[Inv-Gamma(α)] = (α− 1)−2(α− 2)−1,

we deduce,

Var[ωn(i, j)] = 2n1/2 Var[Yi,j ]/E[Yi,j ]
2 = 1 +O

(
n−1/2

)
, i > j;

Var[ωn(i, i)] = 2n1/2Var[Yi,i]/E[Yi,i]
2 = 2 +O

(
n−1/2

)
.

γn = 1− µ/
√
n+O

(
n−1

)
.

Note that now the weights ωi,j on the off-diagonals are i.i.d. with mean zero and variance
asymptotically one, the weights ωi,i on the diagonal are also i.i.d. with mean zero but with variance
asymptotically two. Also for γn = 1 − µ/

√
n + O

(
n−1

)
, we have the same local limit theorem as

in Theorem 5.2.
The rest of this proof follows exactly the same argument as in Theorem 2.2, with the role of U-

statistics Lemma 4.3 being replaced by Lemma 4.4. Hence the desired convergence for log-gamma
polymer model holds. �

Appendix A. Proofs for Section 5

In this section we prove the three lemmas in Section 5, i.e. Lemmas 5.1, 5.2 and 5.3. The proofs
rely on a few lemmas on estimates for random walks. The reader may skip these lemmas first and
proceed directly to the proofs of Lemmas 5.1, 5.2 and 5.3. It will be further explained in the proofs
that which lemmas will be applied.

Recall that γ is the reflection rate, when γ ≤ 1, pγ(m,m + n, x, y) ≤ p(m,m + n, x, y), i.e the
totally reflecting case, but when γ > 1 the system will have mass coming in. Therefore we need to
estimate how frequently the walker goes to the barrier in order to estimate the discrete transition
kernel.

Recall that the transition kernel pγ is defined as

pγ(m,n, x, y) =

n−m∑
j=0

γjPm,xR (Nm,n = j, Sn = y).(A.1)

Here Nm,n is the total visits to the origin as

Nm,n(S) = #{i ∈ [m,n− 1]Z | Si = 0}.
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For the casem = 0, we denoteN0,n asNn to simplify the notation. The explicit form of Pm,xR (Nm,n =
j, Sn = y), (see Lemma A.1), can be found in [Goo, (27)]. We give a proof in the appendix for the
reader’s convenience. For (n, z) ∈ N0×Z, let T (n, z) be the probability that a simple random walk
on Z arrives at x = z after n jumps starting at origin. In other words,

T (n, z) := P0,0(Sn = z).

Lemma A.1. For any (m,n, x, y) ∈ N0 × N× N0 × N,

Pm,xR (Nm,m+n = j, Sm+n = y) =

{
T (n, y − x)− T (n, y + x) j = 0,

2(y+x+j−1)
n−j+1 T (n− j + 1, y + x+ j − 1) j ≥ 1.

And

Pm,xR (Nm,m+n = j, Sm+n = 0) =

{
(T (n− 1, 1− x)− T (n− 1, 1 + x))/2 j = 0,

x+j
n−jT (n− j, x+ j) j ≥ 1.

Note that the expression takes different form for y = 0 and y 6= 0.

The following two lemmas provide bounds on T (n, z) and follow from computations through
Stirling formula. The author did not find a reference for such results so proofs are provided in the
next section.

Lemma A.2. There exists a universal constant C2 > 0 such that the following statement holds.
For any n ∈ N, z ∈ Z, z ↔ n and |z| ≤ n, let E(n, z) := |z|3/n2 + 1/n. Then

(A.2) e−C2E(n,z) ≤ 2−1(2πn)1/2ez
2/(2n)T (n, z) ≤ eC2E(n,z).

Lemma A.3. There exists a universal constant C3 > 0 such that the following statement holds.
For any n ∈ N, z ∈ Z and z ↔ n, we have

(A.3) T (n, z) ≤ C3n
−1/2e−z

2/(C3n).

The following Lemma A.4 and Lemma A.5 seek bound for the expression in (A.1).

Lemma A.4. There exists a universal constant C4 > 0 such that the following statement holds.
For any n ≥ 1, x, y ∈ N0 with x− y ↔ n and k ≥ 0, we have

P0,x
R (Nn ≥ k|Sn = y) ≤ C4e

−k2/(C4n).(A.4)

Proof. We first consider the case that n is even and x = y = 0. From Lemma A.1, for any k ≥ 1,

P0,0
R (Nn ≥ k, Sn = 0) =

n/2∑
j≥k

j

n− j
T (n− j, j) ≤

n/2∑
j≥k

2C3(j/n)n−1/2e−j
2/(2C3n)

=2C3n
−1/2

n/2∑
j≥k

(j/
√
n)e−(j/

√
n)2/(2C3) · n−1/2,

where the inequality follows from Lemma A.3.

Let M0 > 0 be the number such that the function se−s
2/(2C3) is decreasing for s ≥ M0. If

k < M0
√
n, (A.4) holds easily as the right hand side can be made larger than 1 with suitable C4.

Now we may assume k ≥M0
√
n. By the integral test,

P0,0
R (Nn ≥ k, Sn = 0) ≤C3n

−1/2

∫ ∞
k/
√
n
se−s

2/(2C3)ds ≤ Cn−1/2e−k
2/(Cn).

From (A.2), P0,0
R (Sn = 0) = T (n, 0) ≥ 2(2πn)−1/2e−C2/n. Hence

P0,0
R (Nn ≥ k|Sn = 0) =P0,0

R (Nn ≥ k, Sn = 0)
/
P0,0
R (Sn = 0) ≤ Ce−k2/(Cn).
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Thus (A.4) follows.
Next, we consider general x, y and n. Conditioning on the first and the last time the random

walk bridge returns to the origin, we have for any k ≥ 2,

P0,x
R (Nn ≥ k|Sn = y) ≤ max

1≤j≤n
P0,0
R (Nj ≥ k − 1|Sj = 0).

The change from k to k − 1 is necessary as Nj ignores the zero at the end. Then (A.4) follows by
the previous special case x = y = 0. �

Lemma A.5. For any µ ∈ R and τ > 0, there exist a constant B3(µ, τ) and a universal constant
C5 such that the following statement holds. For any M ≥ 0, n ∈ N, m ∈ [1, τn]Z and (x, y) ∈ N2

0,
let γ = 1− µ/

√
n. Then∑

k≥M
√
n

γkP0,x
R (Nm(S) = k|Sm = y) ≤ B3(µ, τ)e−nM

2/(C5m).

Proof. As γ is decreasing in µ, we can without loss of generality assume that µ ≤ 0. By (A.4) and

γ ≤ e|µ|/
√
n, we obtain∑
k≥M

√
n

γkP0,x
R (Nm = k|Sm = y)

=(1− γ−1)
∑

k≥M
√
n+1

γkP0,x
R (Nm ≥ k|Sm = y) + γM

√
nP0,x

R (Nm ≥M
√
n|Sm = y)

≤C4|µ|n−1/2
∑

k≥M
√
n

e−k
2/(C4m)+k|µ|/

√
n + C4e

−nM2/(C4m)+M |µ|.

Here we have used summation by parts. As m ≤ τn, k|µ|/
√
n ≤ k2/(2C4m) + τC4|µ|2/2 and

M |µ| ≤ nM2/(2C4m) + τC4|µ|2/2. Hence the above is bounded by

C4e
τC4|µ|2/2

e−nM2/(2C4m) + |µ|n−1/2
∑

k≥M
√
n

e−k
2/(2C4m)

 .

By the integral test,

n−1/2
∑

k≥M
√
n

e−k
2/(2C4m) ≤ (m/n)1/2

∫ ∞
(n/m)1/2M

e−s
2/(2C4)ds ≤ Cτ1/2e−nM

2/(2C4m).

Thus the assertion follows by putting the above together. �

proof of Lemma 5.1. By taking M = 0 in Lemma A.5,

pγ(0,m, x, y) =
∑
k≥0

γkP0,x
R (Nm(S) = k|Sm = y)P0,x

R (Sm = y) ≤ B3(µ, τ)P0,x
R (Sm = y).

Together with Lemma A.3 and

P0,x
R (Sm = y) =

{
T (m, y − x) + T (m, y + x) y 6= 0,

T (m,x) y = 0.

The upper bound for pγ(0,m, x, y) follows. �

We are ready to prove the local limit theorem for pγ(m,m+n, x, y). Note that pγ(m,m+n, x, y)
is indeed time-homogeneous and we may without loss of generality assume m = 0.
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proof of Lemma 5.2. To simplify the notation, we adapt the convention that C represents universal
constants and B represents constants that depend on µ, ε, τ and M . We adapt the notation that
A1 = A2e

±A3 stands for A2e
−A3 ≤ A1 ≤ A2e

A3 . In particular, we can rewrite (A.2) as

(A.5) T (n, z) = 2(2πn)−1/2e−z
2/(2n)±C2E(m,z).

We focus on the case that y 6= 0. The proof for y = 0 is similar. Furthermore, we assume n ≥ n0

with n0 large enough depending on µ, ε, τ and M . The exact value of n0 may increase from line to
line.

Applying Lemma A.1, we have

pγ
(
0, nt,

√
nx,
√
ny
)

= T
(
nt, (y − x)

√
n
)
− T

(
nt, (y + x)

√
n
)

+ 2γ

nt∑
j=0

γj
(y + x)

√
n+ j

nt− j
T (nt− j, (y + x)

√
n+ j).

As E(nt, (y ± x)
√
n) ≤M3ε−2n−1/2 + ε−1n−1 ≤ Bn−1/2, we have

|1− e±C2E(nt,(y±x)
√
n)| ≤ Bn−1/2

provided n ≥ n0 is large enough. Therefore,∣∣∣T (nt, (y ± x)
√
n)− 2(2πnt)−1/2e−(y±x)2/(2t)

∣∣∣ ≤2(2πnt)−1/2e−(y±x)2/(2t) ·Bn−1/2

≤Bn−1.
(A.6)

Fix δ = 1/12. Consider the range j ∈ [0, (nt)
2
3
−δ]. Since γ = 1− µ/

√
n = e−µ/

√
n±Cµ2/n,

γj = e−jµ/
√
n±Cjµ2/n = e−jµ/

√
n exp(±Bn−3δ).

By (A.5), we have

T (nt− j, (y + x)
√
n+ j)× 2−1(2πnt)1/2e[(y+x)

√
n+j]2/(2nt)

=(1− j/(nt))−1/2 exp

(
−j

2nt(nt− j)
[(y + x)

√
n+ j]2 ± C2E(nt− j, (y + x)

√
n+ j)

)
.

We claim that, as n ≥ n0 large enough, the above is of the form exp(±Bn−3δ). To see the claim
holds,

e0 = 1 ≤ (1− j/(nt))−1/2 ≤ (1− (nε)−1/3+δ)−1/2 ≤ exp(Bn−1/3+δ) ≤ exp(Bn−3δ).

0 ≤ j

2nt(nt− j)
[(y + x)

√
n+ j]2 ≤ (nt)−4/3−δ[2Mn1/2 + (nt)2/3−δ]2 ≤ Bn−3δ.

E(nt− j, (y + x)
√
n+ j) =

((y + x)
√
n+ j)3

(nt− j)2
+

1

nt− j
≤ 4

(2Mn1/2 + (nt)2/3−δ)2

(nt)2
+

2

nt

≤Bn−2/3−2δ ≤ Bn−3δ.

Hence the claim holds and we have

T (nt− j, (y + x)
√
n+ j) = 2(2πnt)−1/2e−[(y+x)

√
n+j]2/(2nt) exp(±Bn−3δ).

Together with

(y + x)
√
n+ j

nt− j
=

(y + x)
√
n+ j

nt
exp(±Bn−3δ),
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we obtain that

2γ

(nt)
2
3−δ∑

j=0

γj · (y + x)
√
n+ j

nt− j
T
(
nt− j, (y + x)

√
n+ j

)

= exp(±Bn−3δ)
4√

2πnt3

(nt)
2
3−δ∑

j=0

(y + x+ j/
√
n)e−jµ/

√
n−[y+x+j/

√
n]2/(2t) · n−1/2.

As x, y ∈ [0,M ] and t ∈ [ε, τ ], we have
∫∞

0 (y + x + s)e−µs−(y+x+s)2/(2t)ds ≤ B. Define
Err′(n;µ, ε,M, τ) to be

sup
x,y∈[0,M ],t∈[ε,τ ]

∣∣∣∣∣∣∣
∫ ∞

0
(y + x+ s)e−µs−(y+x+s)2/(2t)ds−

(nt)
2
3−δ∑

j=0

(y + x+ j/
√
n)e−jµ/

√
n−[y+x+j/

√
n]2/(2t) · n−1/2

∣∣∣∣∣∣∣ .
As the function (y + x+ s)e−µs−(y+x+s)2/(2t) decays exponentially, we have

lim
n→∞

Err′(n;µ, ε,M, τ) = 0.

In short,

2γ

(nt)
2
3−δ∑

j=0

γj · (y + x)
√
n+ j

nt− j
T
(
nt− j, (y + x)

√
n+ j

)
=

4√
2πnt3

∫ ∞
0

(y + x+ s)e−µs−(y+x+s)2/(2t)ds±B(n−3δ−1/2 + n−1/2Err′(n;µ, ε,M, τ)).

Next, we consider j ∈ [(nt)
2
3
−δ, nt]. Combining Lemma A.2 and Lemma A.5,∑

j≥(nt)2/3−δ

γj+1 · 2(y + x)
√
n+ j

nt− j
T
(
nt− j, (y + x)

√
n+ j

)
=

∑
j≥(nt)2/3−δ

γj+1P0,x
R (Snt = y,Nnt(S) = j + 1)

≤Be−n1/3−2δ/B.

Adding the above estimates, we conclude that∣∣∣∣pγ (0, nt,√nx,√ny)− 2√
n
ρµ(t, x, y)

∣∣∣∣ ≤ Bn−1/2
(
n−1/2 + n−3δ + n1/2e−n

1/3−2δ/B + Err′(n;µ, ε,M, τ)
)
.

Thus the assertion follows. �

To prove Lemma 5.3, we need to bound the local time for 2-D simple random walks. For
(x1, x2) ∈ Z2, let P(x1,x2) be the law of the 2-D simple random walk starting at (S1

0 , S
2
0) = (x1, x2).

For a 2-D path (S1, S2), denote Nn as the number of visits to the origin before step n− 1. In other
words

Nn(S1, S2) := #
{
j ∈ [0, n− 1]Z | (S1

j , S
2
j ) = (0, 0)

}
.

The following lemma concerns the local time of 2-D random walks. The proof follows the argument
in [Rev, Chapter 20]. We present the proof in the next section for the reader’s convenience.

Lemma A.6. There exists a universal constant C6 > 0 such that the following statement holds.
For any n ≥ 2 and k ∈ N0,

P(0,0)(Nn ≥ k) ≤ C6e
−k/(C6 logn).

We derive the conditional version of Lemma A.6.



21

Lemma A.7. There exists a universal constant C7 > 0 such that the following statement holds.
For any n ≥ 2, k ∈ N0 and (x1, x2), (y1, y2) ∈ Z2,

P(x1,x2)(Nn ≥ k|(S1
n, S

2
n) = (y1, y2)) ≤ C7e

−k/(C7 logn)+C7 logn

Proof. We first consider the case (x1, x2) = (y1, y2) = (0, 0). As

P(0,0)(S1
n = 0, S2

n = 0) = T (n, 0)2 ≥ C−1n−1,

we have

P(0,0)(Nn ≥ k|(S1
n, S

2
n) = (0, 0)) ≤ Ce−k/(C6 logn)+logn.

Next, we consider general (x1, x2) and (y1, y2) in Z2. By conditioning on the first and the last
time the random walk bridge touches the origin,

P(x1,x2)(Nn ≥ k|(S1
n, S

2
n) = (y1, y2)) ≤ max

1≤j≤n
P(0,0)(Nj ≥ k − 1|(S1

j , S
2
j ) = (0, 0)).

The change from k to k − 1 is necessary as Nn ignores the zero at the end. Then the assertion
follows the result in the previous case. �

proof of Lemma 5.3. We adapt the notation that B represents constants depending τ, ε and K and
C represents universal constants. Without loss of generality, we assume n ≥ n0 with n0 depending
on τ, ε and K. The exact value of n0 may increase from line to line.

We compute that

E[p2
X(0,m, x, y)] = E

 ∑
Sm=y

 ∏
i:Si=0

Xi

P0,x
R (S) ·

∑
S̃m=y

 ∏
j:S̃j=0

Xi

P0,x
R (S̃)


= E

 ∑
Sm=S̃m=y

 ∏
i,j:Si=S̃j=0

XiXj

P0,x
R (S)P0,x

R (S̃)



=
∑
S,S̃

 ∏
i=j:Si=S̃i=0

E[X2
i ]


 ∏
i:Si=06=S̃i
j:S̃j=06=Sj

E[Xi]E[Xj ]

P0,x
R (S)P0,x

R (S̃).

By the independence of X, we have

E[pX(0,m, x, y)]2 =

 ∑
Sm=y

 ∏
i:Si=0

E[Xi]

P0,x
R (S) ·

∑
S̃m=y

 ∏
j:S̃j=0

E[Xj ]

P0,x
R (S̃)



=
∑

Sm=S̃m=y

 ∏
i=j:Si=S̃i=0

(E[Xi])
2


 ∏
i:Si=06=S̃i
j:S̃j=06=Sj

E[Xi]E[Xj ]

P0,x
R (S)P0,x

R (S̃).

Recall that E[Xi] = γ = 1 − µ/
√
n and let σ2 = Var[Xi]. Viewing two paths (S, S̃) as a 2-D

random walk, recall that Nm is the number of indices i ∈ [0,m− 1]Z such that (Si, S̃i) = (0, 0). We
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see that

Var[pX(0,m, x, y)] =
∑

Sm=S̃m=y

(
E[X2

i ]Nm − E[Xi]
2Nm)

 ∏
i:Si=06=S̃i
j:S̃j=06=Sj

γ

P0,x
R (S)P0,x

R (S̃)

=
∑

Sm=S̃m=y

(
(σ2 + γ2)Nm − γ2Nm)

 ∏
i:Si=06=S̃i
j:S̃j=06=Sj

γ

P0,x
R (S)P0,x

R (S̃)

:= I1 + I2.

Here I1 consists terms with Nm ≤ L and I2 contains terms with Nm > L, with L = (log n)3.
Suppose Nm ≤ L. For n ≥ n0 such that |µ|/n ≤ 1/2, and Kn−ε/(1− µ/

√
n)2 ≤ 1/2,

(σ2 + γ2)Nm − γ2Nm ≤
(
(1− µ/

√
n)2 +Kn−ε

)Nm − (1− µ/√n)2Nm
=
(
1− µ/

√
n
)2Nm [(1 +

Kn−ε

(1− µ/
√
n)2

)Nm
− 1

]
≤ BeB(logn)3/

√
n(log n)3n−ε ≤ B(log n)3n−ε.

Therefore we have

I1 ≤B(log n)3n−ε
∑

Sm=S̃m=y

max{1, γ}Nm(S)+Nm(S̃)P0,x
R (S)P0,x

R (S̃) = B(log n)3n−εp2
max{1,γ}(0,m, x, y).

From now on we assume Nm > L. Let ξ = σ2 + γ2. We claim that

(A.7)
∑

Sm=S̃m=y,Nm≥L

ξNmP0,x
R (S)P0,x

R (S̃) ≤ Be−(logn)2/Bp(0,m, x, y)2.

The proof of (A.7) is postponed to the end of this section. We now bound I2 based on (A.7).
Suppose µ ≥ 0 and hence γ ≤ 1. Then from (A.7),

I2 ≤
∑

Sm=S̃m=y,Nm≥L

ξNmP0,x
R (S)P0,x

R (S̃) ≤ Be−(logn)2/Bp(0,m, x, y)2.

Next, we consider µ < 0. Let M > 0 be a number to be determined. We further decompose I2

into I2 = I21 + I22 + I23. Here I21 contains terms with Nm(S), Nm(S̃) ≤M
√
n, I22 contains terms

with Nm(S) > M
√
n and I23 contains the rest.

If Nm(S), Nm(S̃) ≤M
√
n, ∏

i:Si=06=S̃i
j:S̃j=06=Sj

γ ≤ γ2M
√
n ≤ e−2µM .

Hence

I21 ≤e−2µM
∑

Nm≥L,Sm=S̃m=y

(
(σ2 + γ2)Nm − γ2Nm)P0,x

R (S)P0,x
R (S̃)

≤Be−2µM−(logn)2/Bp(0,m, x, y)2

provided n ≥ n0. Here we have used the bound (A.7).
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If Nm(S) > M
√
n, by Cauchy-Schwarz,

2I22 ≤
∑

Nm≥L,Sm=S̃m=y

(
(σ2 + γ2)Nm − γ2Nm)2 P0,x

R (S)P0,x
R (S̃)

+
∑

Sm=S̃m=y,Nm(S)>M
√
n

γ2Nm(S)+2Nm(S̃)P0,x
R (S)P0,x

R (S̃).

From (A.7), the first term is bounded by Be−(logn)2/Bp(0,m, x, y)2. The second term equals

pγ2(0,m, x, y)
∑

Sm=y,Nm(S)≥M
√
n

γ2Nm(S)P0,x
R (S)

=pγ2(0,m, x, y)p(0,m, x, y)
∑

k≥M
√
n

γ2kP0,x
R (Nm = k|Sm = y)

≤Be−M2/Bp2
γ2(0,m, x, y).

Here we have used Lemma A.5. By symmetry, I23 ≤ I22 has the same upper bound. Putting the
above estimates together, for µ < 0, n ≥ n0 large enough and any M > 0,

I2 ≤ (Be−2µM−(logn)2/B +Be−M
2/B)p2

γ2(0,m, x, y).

Choosing M = (log n)2/(4B|µ|), then

I2 ≤ Be−(logn)2/Bp2
γ2(0,m, x, y).

Thus the assertion follows. �

proof of (A.7).∑
Sm=S̃m=y,Nm≥L

ξNmP0,x
R (S)P0,x

R (S̃) = E(x,x)
[
ξNm1Nm≥L|(Sm, S̃m) = (y, y)

]
p2(0,m, x, y).

Through summation by parts,

E(x,x)
[
ξNm1Nm≥L|(Sm, S̃m) = (y, y)

]
=
∑
k≥L

ξkP(x,x)(Nm = k|(Sm, S̃m) = (y, y))

=(1− ξ−1)
∑

k≥L+1

ξkP(x,x)(Nm ≥ k|(Sm, S̃m) = (y, y)) + ξLP(x,x)(Nm ≥ L|(Sm, S̃m) = (y, y)).

We require n ≥ n0 such that

2C2
7 (log(τn))2 ≤(log n)3, ξ ≤ e2Kn−ε

, 2Kn−ε − 1/(2C7 log(nτ)) ≤ −1/(4C7 log n).

Here C7 is the constant in Lemma A.7. From Lemma A.7, for any k ≥ L,

P(x,x)(Nm ≥ k|(S1
m, S

2
m) = (y, y)) ≤ e−k/(C7 logm)+C7 logm ≤ e−k/(2C7 logm).

Hence

ξLP(x,x)(Nm ≥ L|(S1
m, S

2
m) = (y, y)) ≤ exp

(
L
(
2Kn−ε − 1/(2C7 logm)

))
≤ exp (−L/(4C7 log n)) ≤e−(logn)2/B.

Similarly,

(1− ξ−1)
∑

k≥L+1

ξkP(x,x)(Nm ≥ k|(S1
m, S

2
m) = (y, y))

≤CKn−ε
∑

k≥L+1

exp (−k/(4C7 log n)) ≤ B(log n)n−εe−(logn)2/B ≤ Be−(logn)2/B.

�
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Remark A.8. Under the assumption E[|Xi − E[Xi]|3] ≤ Kn−ε, we can show that E[p3
X(0,m, x, y)] =

p3
γ(0,m, x, y)+o(1)p3

max{1,γ2}(0,m, x, y) through a similar argument because the local time of higher

dimension random walks decays faster. In particular, we have E[(pX(0,m, x, y)−pγ(0,m, x, y)α)] =
o(1)p3

max{1,γ2}(0,m, x, y) for any 0 < α ≤ 3.

Appendix B

proof of Lemma A.1. For m,x ≥ 0, recall that Pm,x is the law of the symmetric simple random
walk starting at Sm = x. For (n, j) ∈ N0, define

qn,j := P0,0(Sn = j, S` 6= j for all ` ∈ [0, n− 1]Z).

As n = 0, [0,−1]Z is empty and q0,j = P0,0(S0 = j) = δ0j . For j ∈ N0, define the generating
function

Fj(s) :=

∞∑
n=0

qn,js
n.

Note that for j ≥ 1, Fj(s) = E0,0[sτ(j)] with τ(j) := inf{n ≥ 1 | Sn = j}. By the strong Markov
property, we have for j1, j2 ≥ 1, Fj1Fj2 = Fj1+j2 . As F0 = 1, the equality also holds for j1, j2 ≥ 0.
In other words, ∑

k1+k2=n, k1,k2≥0

qk1,j1qk2,j2 = qn,j1+j2 .(B.1)

Recall that for (n, z) ∈ N0×Z, T (n, z) = P0,0(Sn = z). From [Rev, Chapter 9], for any n ≥ j ≥ 1,

(B.2) qn,j =
j

n
T (n, j).

From the reflection principle, it is straightforward to derive that for any n, j ≥ 1,

P0,0(Sn = j, S` 6= 0 for all ` ∈ (0, n)Z) = qn,j .

By conditioning on the value of S1, for any n ≥ 1,

P0,0(Sn = 0, S` 6= 0 for all ` ∈ (0, n)Z) = qn−1,1.

Now we start to compute P0,x
R (Nn = 0, Sn = y). By the reflection principle, for any n ≥ 1 and

x, y ≥ 0,

P0,x
R (Nn = 0, Sn = y) =

{
T (n, y − x)− T (n, y + x) y ≥ 1

(T (n− 1, 1− x)− T (n− 1, 1 + x))/2 y = 0.

Assume j ≥ 1. For any n ≥ 1 and x, y ≥ 0, P0,x(Nn = j, Sn = y) equals∑
0≤k1<k2<...kj<n

P0,x(Sn = y, Ski = 0 for i ∈ [1, j]Z, S` 6= 0 for ` ∈ [0, n− 1]Z \ {k1, k2, . . . kj})

=
∑

0≤k1<k2<...kj<n
P0,x(Sk1 = 0, S` 6= 0 for ` ∈ [0, k1 − 1]Z)× Pkj ,0(Sn = y, S` 6= 0 for ` ∈ (kj , n)Z)

×
j−1∏
i=1

Pki,0(Ski+1
= 0, S` 6= 0 for ` ∈ (ki, ki+1)Z).

By the reflection and translation symmetry,

P0,x(Sk1 = 0, S` 6= 0 for ` ∈ [0, k1 − 1]Z) =qk1,x,

Pki,0(Ski+1
= 0, S` 6= 0 for ` ∈ (ki, ki+1)Z) =qki−ki−1−1,1,
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Pkj ,0(Sn = y, S` 6= 0 for ` ∈ (kj , n)Z) =

{
qn−kj ,y y 6= 0,
qn−kj−1,1 y = 0.

Hence for y 6= 0,

P0,x(Nn = j, Sn = y) =
∑

0≤k1<k2<...kj<n
qk1,xqn−kj ,y

j−1∏
i=1

qki−ki−1−1,1 = qn−j+1,x+y+j−1.

Here we have used (B.1). From (B.2),

P0,x
R (Nn = j, Sn = y) = 2P0,x(Nn = j, Sn = y) =

2(y + x+ j − 1)

n− j + 1
T (n− j + 1, y + x+ j − 1).

Similarly,

P0,x(Nn = j, Sn = 0) =
∑

0≤k1<k2<...kj<n
qk1,xqn−kj−1,1

j−1∏
i=1

qki−ki−1−1,1 = qn−j,x+j .

Thus

P0,x
R (Nn = j, Sn = 0) = P0,x(Nn = j, Sn = 0) =

x+ j

n− j
T (n− j, x+ j).

�

proof of Lemma A.2. During the proof we use C to denote universal constants. Recall that for
(n, z) ∈ N0 × Z, T (n, z) = P0,0(Sn = z). We first discuss the case 1/2 ≤ |z|/n ≤ 1. Under the
assumption of the lemma we have 2−n ≤ T (n, z) ≤ 1. Hence

2−n−1(2πn)1/2en/8 ≤ 2−1(2πn)1/2ez
2/(2n)T (n, z) ≤ 2−1(2πn)1/2en/2.

From the view of E(n, z) ≥ n/8 as |z| ≥ n/2, (A.2) follows for C1 large enough.

In the rest of the proof, we assume 0 ≤ z < n/2. The case −n/2 < z ≤ 0 follows by the symmetry
of T (n, z). From the Stirling formula, for any m ≥ 1,

m! ∼ (2πm)1/2mme−m.

More precisely,

1 ≤ (2πm)−1/2m−mem ·m! ≤ eC/m.
Therefore as n ≥ 1 we have(

n

(n+ z)/2

)
≤ 2n+1(2πn)−1/2

(
1− z2

n2

)−n/2−1/2(1− z
n

1 + z
n

)z/2
eC/n,(B.3) (

n

(n+ z)/2

)
≥ 2n+1(2πn)−1/2

(
1− z2

n2

)−n/2−1/2(1− z
n

1 + z
n

)z/2
e−C/(n−z).(B.4)

For any x ≥ 1,

(1 + 1/x)−1e ≤ (1 + 1/x)x ≤ e, e−1 ≤ (1− 1/x)x ≤ (1− 1/x)−1e−1.

We deduce
(

1− z2

n2

)z2/2n
≤ e−z

2/(2n)
(

1− z2

n2

)−n/2
≤ 1, 1 ≤ ez

2/(2n)
(
1− z

n

)z/2 ≤ (1− z
n

)−z2/2n
and 1 ≤ ez

2/(2n)
(
1 + z

n

)−z/2 ≤ (1 + z
n

)z2/2n
. For any 0 ≤ y ≤ 1/2, we have 1 + y ≤ eCy and

1− y ≥ e−Cy. Therefore

e−Cz
4/n3 ≤ e−z2/(2n)

(
1− z2

n2

)−n/2
≤1
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1 ≤ ez2/(2n)
(

1− z

n

)z/2
, ez

2/(2n)
(

1 +
z

n

)−z/2
≤eCz3/n2

.

Similarly, 1 ≤
(

1− z2

n2

)−1/2
≤ eCz2/n2

. Combining the above,

e−C(z4/n3−1/(n−z)) ≤ 2−(n+1)(2πn)1/2ez
2/(2n)

(
n

(n+ z)/2

)
≤ eC(z3/n2+z2/n2+1/n).

When 0 ≤ z ≤ n/2, we have bounds z4/n3 ≤ z3/(2n2), 1/(n− z) ≤ 2/n and z2/n2 ≤ z3/n2 + 1/n.
Hence for C2 large enough,

e−C2E(n,z) ≤ 2−(n+1)(2πn)1/2ez
2/(2n)

(
n

(n+ z)/2

)
≤ eC2E(n,z).

Thus (A.2) follows as T (n, z) = 2−n
(

n
(n+z)/2

)
. �

proof of Lemma A.3. From (A.2),

T (n, z) ≤ 2(2πn)−1/2e−z
2/(2n)+C2|z|3/n2+C2/n.

When |z| ≤ n/(4C2), C2|z|3/n2 ≤ z2/(4n) and the assertion follows by requiring C3 ≥ max{2(2π)−1/2eC2 , 4}.
Also, if |z| = n then T (n, z) = 2−n and (A.3) holds for C2 large enough.

In the following, we assume 1/(4C2) ≤ z/n ≤ 1− 2/n. Denote a = z/n. Rewriting (B.3)

T (n, z) ≤ 2(2πn)−1/2
(
1− a2

)−1/2
e−nI(a)+C/n,

where

I(a) =
1 + a

2
ln(1 + a) +

1− a
2

ln(1− a).

Since I(a) is non-decreasing, −nI(a) ≤ −nI(1/(4C2)) and e−nI(a) ≤ e−n/C . As a ≤ 1 − 2/n,

(1− a2)−1/2 ≤ CeC logn. Hence

T (n, z) ≤ Ce−n/C+C logn+C1/n.

Thus (A.3) follows as we take C2 large enough. �

proof of Lemma A.6. Recall that

Nn(S1, S2) = #
{
j ∈ [0, n− 1]Z | (S1

j , S
2
j ) = (0, 0)

}
.

Without loss of generality, we may assume n, k ≥ 3. Define inductively ρ0 ≡ 0 and

ρi = min{j > ρi−1 | (S1
j , S

2
j ) = (0, 0)}.

Then

{Nn ≥ k} = {ρk−1 ≤ n− 1} ⊂
k−1⋂
j=1

{ρj − ρj−1 ≤ n− 1}.

As ρ1, ρ2 − ρ1, . . . , ρk−1 − ρk−2 are i.i.d.

P(0,0)(Nn ≥ k) ≤ P(ρ1 ≤ n− 1)k−1.

By [Rev, Lemma 20.1], there exists a universal constant C such that

P(ρ1 ≤ n− 1) ≤ 1− 1/(C log(n− 1)) ≤ e1/(C log(n−1)).

Hence
P0,(0,0)(Nn ≥ k) ≤ e(k−1)/(C log(n−1))

and the assertion follows. �
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