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Abstract

Let K be a knot type for which the quadratic term of the Conway polynomial is
nontrivial, and let γ : R Ñ R3 be an analytic Z-periodic function with non-vanishing
derivative which parameterizes a knot of type K in space. We prove that there exists a
sequence of numbers 0 ď t1 ă t2 ă ... ă t6 ă 1 so that the polygonal path obtained by
cyclically connecting the points γpt1q, γpt2q, ..., γpt6q by line segments is a trefoil knot.

1 Introduction

We investigate the existence of piecewise linear trefoils inscribed in a knot. In particular, we
consider the problem of finding six points on a given knot which form a Trefoil knot when
cyclically connected by straight line segments in the same order in which they appear. Our
main result is as follows.

Theorem 1. Let K be a knot type for which the quadratic term of the Conway polynomial
is nontrivial, and let γ : R Ñ R3 be an analytic Z-periodic function with non-vanishing
derivative which parameterizes a knot of type K in space. Then there exists a sequence of
numbers 0 ď t1 ă t2 ă ... ă t6 ă 1 so that the polygonal path obtained by cyclically connecting
the points γpt1q, γpt2q, ..., γpt6q by line segments is a trefoil knot.

For the proof, we will begin by defining a submanifold of configuration space which
lies inside the closure of the set of 6-tuples which form trefoils. Then, we will use some
intersection theory to prove that if the quadratic term of the Conway polynomial of our
knot is nontrivial then a 1-parameter family of 6-tuples of points on our knot lies in this
submanifold. Finally, we will use some geometric arguments relying on the analyticity of the
parameterization to show that we can perturb one of those 6-tuples to make a trefoil.

It appears quite challenging to remove the requirement that the curve be analytic. The
same sort of difficulties that arise in removing regularity requirements in the Toeplitz in-
scribed square problem also arise in the problem of inscribed trefoils. A simple limiting
argument fails to work because the trefoils cannot be guaranteed not to degenerate to planar
configurations, much like how when one approximates a Jordan curve by smoothings, the
inscribed squares cannot be guaranteed not to shrink to zero. In order to relax the regularity
requirements in these kind of problems, we likely need new geometric insights. [8]

2 A Submanifold of Configuration Space

If X is a manifold, then CnpXq will denote the space of all n-tuples of distinct points of X.
This is called the n-th (labeled) configuration space of X. In this section we will construct
a submanifold of C6pS

3q with some interesting properties.
Consider a small geometrically spherical 4-ball in real projective 4-space, B4 Ď RP4.

Given a point p not inside of B4, we can consider the lines in RP4 that pass through p as
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well as some part of B4. These lines either intersect BB4 at two distinct points, or they lie
tangent to BB4, intersecting it at exactly one point. For fixed p, let Tp be the set of points in
BB4 at which some line passing through p and tangent to BB4 intersects BB4. The set Tp is
a 2-sphere that divides BB4 into two regions. Furthermore, for any line that passes through
p and intersects BB4 at two distinct points, the two intersection points will lie on different
sides of Tp. This means that if `1, `2, `3 are three distinct lines that each pass through p and
each intersect BB4 at two points, then there is a well-defined partition of the six intersection
points into two groups of three which is determined by grouping together intersection points
that lie on the same side of Tp. Let us define a graph with the six intersection points as its
vertices and and edge between two vertices if they are on the same side of Tp or they lie on the
same line from the set t`1, `2, `3u. We will call this graph Gp`1, `2, `3q. Regardless of which
three lines we pick, this graph will be isomorphic to the edge graph of a triangular prism.
One interesting property of this graph is that its compliment graph is cyclic. Therefore, if
we define Cyc6 to be the graph with vertices t1, ..., 6u and edges between any two numbers
that differ by 1 mod 6, then we may select a graph isomorphism from the compliment graph
Gcp`1`2`3q to the fixed cyclic graph Cyc6. We now define M to be the moduli space for the
following data:

1) A point p P RP4zB4.

2) An unordered triple of distinct lines t`1, `2, `3u that each pass through p and each
intersect the 3-sphere BB4 at exactly two points.

3) A specified graph isomorphism Gcp`1, `2, `3q Ñ Cyc6.

Figure 1: A representative for a point in M .
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Alternatively, we could have simply defined M as the subset of C6pS
3q consisting of 6-

tuples px1, ..., x6q so that (when we identify S3 with BB4 Ď RP4) the lines going through the
pairs of points px1, x4q, px2, x5q, and px3, x6q all meet at a single point in RP4. This makes
it clear that M admits an embedding into C6pS

3q by taking a point in M to the 6-tuple of
intersection points ordered via the labeling induced by the map to Cyc6. It should be noted
that when stereographically projected to R3, an element of M generically consists of the set
of vertices for a triangular prism inscribed in a sphere.
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Proposition 1. The manifold M is diffeomorphic to Rˆ S3 ˆ C3pR3q.

Proof. The tangent bundle of RP3 is trivial, so there is a choice of diffeomorphism, contin-
uously depending on p P RP4zB4, from R3 to the space of lines that pass through p and
intersect BB4 at exactly two points. Furthermore, the data of a specified graph isomorphism
Gcp`1, `2, `3q Ñ Cyc6 is equivalent to a specified ordering of the three lines along with a
specified side of the partition determined by Tp. To see why this equivalence holds, we see
that the ordering of `1, `2, `3 allows us to determine an orientation for the graph Gcp`1, `2, `3q,
and the specified side of the partition determined by Tp allows us to select a single base point
out of the six intersection points by choosing the intersection point of the first line which
lies in the specified side of the partition. The base point along with the orientation defines
an isomorphism. Now, we have enough information to say that M is diffeomorphic to a
double cover for pRP4zB4q ˆ C3pR3q. Therefore, to complete the proof we simply need to
check that Z{2 » π1pRP4zB4q acts nontrivially on the orientation of Gcp`1, `2, `3q determined
by the specified isomorphism to Cyc6. This is straightforward to check, as this Z{2 action
corresponds to a 180 degree rotation of our configuration of points in S3, and this reverses
the orientation of the cyclic order.

Corollary 1. The manifold M is 13 dimensional and orientable.

Proof. Rˆ S3 ˆ C3pR3q is 13 dimensional and orientable.

Proposition 2. The manifold M is properly embedded in C6pS
3q.

Proof. We can define three functions M Ñ Rě0 via the diffeomorphism to Rˆ S3 ˆC3pR3q

that was constructed in the proof of Proposition 1. The first function, which we will call
f1, will take a point to the absolute value of the R component of that point. The second
function f2 will take a point in M to the reciprocal of the minimum distance between two of
the three points in R3 from the C3pR3q component. The third function f3 will take a point in
M to the maximum distance from zero of the three points in R3 from the C3pR3q component.
These functions have the property that any subset of M on which all of these functions are
bounded has compact closure. Therefore, we see that if q1, q2, ... is a sequence of points in M
that eventually leaves every compact set, then this sequence has a subsequence qn1 , qn2 , ...
such that for some i P t1, 2, 3u, the sequence fipqn1q, fipqn2q, ... goes to `8. Therefore, to
show that M is properly embedded in C6pS

3q, it suffices to prove that if i P t1, 2, 3u and
q1, q2, ... is a sequence of points in M with fipq1q, fipq2q, ... going to `8, then q1, q2, ... does
not have a limit in C6pS

3q. For i “ 1, such a sequence will have p approaching BB4 which
will cause three of the intersection points to become arbitrarily close to each other. For i “ 2,
the minimum distance between a pair of intersection points will go to zero because two lines
will get arbitrarily close. For i “ 3, the distance between the two intersection points from
some line will go to zero because some line will get arbitrarily close to being tangent to BB4.
Therefore, we see that M must be properly embedded.

Perhaps the most interesting aspect of M is how it interacts with knots. Let γ : RÑ S3

be a Z-periodic parameterization of a knot. We define Qγ Ď C6pS
3q to be the set of all

6-tuples of the form pγpt1q, ..., γpt6qq such that t1 ă t2 ă ... ă t6 ă t1 ` 1. We will see that
the oriented intersection class of M with Qγ is well-defined in H1pQγq despite the fact that
these two manifolds are non-compact.

Proposition 3. Qγ is diffeomorphic to R5 ˆ S1.

Proof. We can select a point of Qγ by first selecting t1, and then selecting positive real
numbers s1, ..., s6 such that s1 ` ... ` s6 “ 1 and then setting tn “ t1 ` s1 ` ... ` sn´1.
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The only redundancy is the choice of t1 which only matters mod Z. This demonstrates that
a point of Qγ is determined uniquely by a point in S1 and a point in the interior of the
5-simplex, meaning that Qγ is diffeomorphic to R5 ˆ S1.

Corollary 2. The manifold Qγ is 6 dimensional and orientable

Proof. R5 ˆ S1 is 6 dimensional and orientable.

Proposition 4. The manifold Qγ is properly embedded in C6pS
3q.

Proof. If a sequence of points in Qγ eventually leaves every compact set, then using the
notation from Proposition 3, the minimum value of s1, ..., s6 must go to zero. This means
that the minimum distance between two points must go to zero in C6pS

3q.

Let γ : R Ñ S3 be a Z-periodic smooth parameterization of a knot with nonvanishing
derivative. If we think of S3 as the unit sphere in R4, we can define the thickness τpγq to
be the infimum radius of all of the circles in R4 that lie in S3 and pass through at least
three points on the knot. For a smooth parameterization with nonvanishing derivative, the
thickness is always a positive real number, and it varies continuously with respect to the
smooth topology.

We will now prove a couple of of facts about thickness.

Proposition 5. If y1 and y2 are two points on a knot γ with a distance strictly less than
2τpγq, then, letting P denote the 2-sphere in S3 in which y1 and y2 are antipodal points, the
knot γ intersects P transversely, and intersects P only at the points y1 and y2. Thus, of the
two pieces of the knot on either side of the points y1 and y2, one piece lies entirely on one
side of P and the other piece lies entirely on the other side of P .

Proof. To demonstrate that y1 and y2 are the only intersection points with P , we simply
note that if a third point y3 lied on P then the circle passing through py1, y2, y3q would have
radius less than τpγq which contradicts our assumptions. Now, to see that the knot must
intersect P transversely, observe that if the tangent line of the knot at yi (for i “ 1 or 2)
were to be tangent to P , then taking y3 to be on the knot and very close to yi, the circle
through these points will have a radius less than τpγq which contradicts our assumptions.

Proposition 6. Given a finite set F of points on a knot γ, if some pair of the points are
within distance 2τpγq of each other, then the pair with minimal distance are adjacent with
respect to the cyclic order of the points on the knot (in the sense that there is a path on the
knot between them that does not contain any other point from the set).

Proof. From the previous proposition, we see that if y1, y2 P F have minimal distance and
that distance is less than 2τpγq, then the sphere P with y1 and y2 as its antipodes has a path
in γ passing through the inside of this sphere and going from y1 to y2. If any point from F
lied on this path, then that point would be closer to y1 than y2 and this would contradict
minimality.

Proposition 7. Let γ : R Ñ S3 be a smooth parameterization of a knot with nonvan-
ishing derivative. Then, considering S3 as the unit sphere in R4, for any 6-tuple of points
px1, ..., xnq PM XQγ Ď C6pS

3q and any i ‰ j from 1 to 6, we have |xi ´ xj | ě 2τpγq.

Proof. We will derive a contradiction from assuming that there exists a point px1, ..., x6q P
M XQγ such that the pair of indices i, j with minimal |xi ´ xj | have |xi ´ xj | ă 2τpγq. By
Proposition 6 we have that i and j are adjacent with respect to the cyclic ordering of the knot.
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Recalling the construction of M , we have that xi and xj are from different lines, and they lie
on different sides of the partition Tp. This means that if xk is the other point on the same
line as xi and x` is the other point on the same line as xj , then the four points xi, xj , xk, x`
lie on a circle in such a way that xi and xj are non-adjacent. However, the closest pair of
points on a cyclic polygon must be adjacent. This means that the pair of points of minimal
distance from of the set txi, xj , xk, x`u are not xi and xj , which contradicts our assumption
of minimality.

Proposition 8. Despite M and Qγ being non-compact, the oriented intersection homology
class rM XQγs P H1pQγq is well-defined and invariant with respect to isotopies of γ.

Proof. Let Kε denote the compact subset of C6pS
3q consisting of 6-tuples for which each pair

of points are no less than a distance of ε apart. From Proposition 7, we see that Qγ XM
lies inside K2τpγq, and therefore lies strictly within the interior of Kτpγq. This means that
we can make M transverse to Qγ by applying a small isotopy that only modifies the inside
of Kτpγq. Let M 1 be the perturbation of M we get after applying such an isotopy. Then
M 1XQγ is an oriented 1-dimensional manifold that lies inside of Qγ , and it therefore defines
a homology class which we denote rM X Qγs P H1pQγq. First, we must check that this
homology class does not depend on M 1. Let M 1

0 and M 1
1 be two choices for M 1. Then we let

Mptq be an isotopy so that Mp0q “ M 1
0 and Mp1q “ M 1

1, and Mptq agrees with M outside
of Kτpγq. Then Mptq for t P r0, 1s can be thought of as a submanifold M of C6pS

3q ˆ r0, 1s,
and we can perturbe this manifold slightly to make a submanifold M1 of C6pS

3qˆ r0, 1s that
intersects Qγˆr0, 1s transversely. The intersection then yields a cobordism from M 1

0XQγ to
M 1

1XQγ over Qγ . This demonstrates that the homology class does not depend on the choice
of M 1. Now, we must show that the homology class we have defined is an isotopy invariant
of γ. Take an isotopy γt. As the manifolds Qγt vary with t P r0, 1s we get a submanifold
Q of C6pS

3q ˆ r0, 1s. Now, let ε “ mintPr0,1s τpγtq, which exists and is positive because τ
is continuously dependent on γ. The intersection Q X pM ˆ r0, 1sq is inside the interior
of the compact set Kε ˆ r0, 1s so we can let M be a perturbation of M ˆ r0, 1s which is
unperturbed outside of Kεˆr0, 1s and is transverse to Q. Then, QXM is a cobordism in Q
from a manifold in Qγ0 representing rM XQγ0s to a manifold in Qγ1 representing rM XQγ1s.
Furthermore, Q is homotopy equivalent via the inclusions to both Qγ0 and to Qγ1 . This
demonstrates that the homology class in H1pQγq is isotopy invariant with respect to γ, and
is therefore a knot invariant.

We have a canonical, continuously dependent diffeomorphism Qγ Ñ R5 ˆ S1 from the
proof of Proposition 3. Therefore, the knot invariant rM XQγs can essentially be thought of
as an integer, but with sign dependent on our choice of orientations for Qγ , M , and S1.

3 Identifying the Intersection Class

The invariant constructed in Proposition 8 will be denoted by Kpγq “ rM X Qγs. In this
section, we will identify Kpγq as the quadratic term of the Conway polynomial multiplied by
some fixed element of H1pQγq » Z.

Proposition 9. Kpγq is a rank 2 Vassiliev invariant.

Proof. Fix a stereographic inclusion R3 Ď S3.
Let γ : R Ñ R3 be a smooth Z-periodic parameterization with non-vanishing derivative

for an immersed circle in R3 with exactly three transverse self-intersection points p1, p2, p3.
Now, let v1, v2, v3 be nonzero vectors such that both tangent lines to γ at pi are orthogonal to
vi for each i. Take small disjoint closed spherical neighborhoods N1, N2, N3 centered around
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the points p1, p2, p3 respectively. We can assume that these neighborhoods are small enough
that for each ball Ni, the curve γ intersects the boundary transversely at exactly four points,
and the two intervals in S1 between these points map to intersecting strands of the curve
γ, and at no point in Ni is the tangent line of γ parallel to vi. Lastly, at each point pi,
we make an arbitrary distinction between the two intersecting strands in Ni, calling them
strand 1 and strand 2. We choose six smooth periodic functions, labeled bi,j : R Ñ Rě0
where i ranges from 1 to 3, and corresponds to the indices of the self-intersection points,
and j ranges from 1 to 2, denoting the strand. We require that these functions have support
in the pre-image of their corresponding strand, and are nonzero at the points that map to
pi. Now, given an ε ą 0, we define γs1,s2,s3ptq “ γptq ` ε

ř3
i“1 sipbi,1ptq ´ bi,2ptqqvi. We will

think of ps1, s2, s3, tq ÞÑ γs1,s2,s3ptq as a function r´1, 1s3ˆRÑ S3. We will fix ε to be small
enough that the following properties hold.

1) If γptq P Ni then γs1,s2,s3ptq P Ni.

2) For each i “ 1, 2, 3, if γptq and γpt1q are both in Ni, and γs1,s2,s3ptq “ γs1
1,s

1
2,s

1
3
ptq and

we have sis
1
i ą 0, then t “ t1 pmod Zq and si “ s1i.

We will call γs1,s2,s3 the resolution of the self intersecting curve γ. To prove that K is a
rank 2 invariant, we must prove that the following formula holds.

ÿ

s1,s2,s3Pt´1,1u

s1s2s3 ¨ Kpγs1,s2,s3q “ 0 (1)

Select a point p on γ away from the neighborhoods N1, N2, N3. If Qpγs1,s2,s3 denotes the
submanifold of Qγs1,s2,s3 consisting of 6-tuples where the first term is p, then as a consequence
of Proposition 8, we see that the oriented intersection number of Qpγs1,s2,s3 and M , which
we will denote by rM X Qpγs1,s2,s3 s, equals Kpγs1,s2,s3q. To prove our proposition, we will
describe a way to perturb the manifolds Qpγs1,s2,s3 so that they overlap in a nice way that
makes Equation 1 obvious.

Let t0 be a real number with γpt0q “ p. Now, if we fix a 5-tuple pt1, ..., t5q of real numbers,
we define Ni to be “doubled” if the two intersecting segments of γ passing through Ni each
contain at least one point from tγpt1q, ..., γpt5qu. Now, let θ1, θ2, θ3 be smooth functions
which map 5-tuples pt1, ..., t5q of real numbers into the closed interval r0, 1s, such that if Ni

is not doubled with respect to pt1, ..., t5q, then θipt1, ..., t5q “ 0, and if both points in S1 that
map to pi are represented in tt1, ..., t5u, then θipt1, ..., t5q “ 1.

We are now ready to define, for any triple s1, s2, s3 P t´1, 1u, a perturbation of Qpγs1,s2,s3 .

We will call our perturbation Q̃pγs1,s2,s3 and we produce it by moving each 6-tuple of the form
pp, γs1,s2,s3pt1q, ..., γs1,s2,s3pt5qq to the 6-tuple

pp, γs1¨θ1pt1,...,t5q,...,s3¨θ3pt1,...,t5qpt1q, ..., γs1¨θ1pt1,...,t5q,...,s3¨θ3pt1,...,t5qpt5qq (2)

via the isotopy pp, g1pα, t1, ..., t5q, ..., g5pα, t1, ..., t5qq, α P r0, 1s where

gipα, t1, ..., t5q “ γs1¨p1´αp1´θ1pt1,...,t5qqq,...,s3¨p1´αp1´θ1pt1,...,t5qqqptiq

For convenience, we will write Q̃pγs1,s2,s3 pt1, ..., t5q as shorthand to denote the 6-tuple in (2).
One way to describe what is geometrically happening here is to think of this isotopy

as bringing the submanifold Qpγs1,s2,s3 as close to the subset of 6-tuples that lie on γ as we
possibly can. Indeed, if there are no doubled neighborhoods, then our perturbed 6-tuple
consists only of points that lie in γ. In order to avoid points coinciding with each other, we
have introduced the notion of doubled neighborhoods, and selected our perturbation so that
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when a doubled neighborhood occurs, the points move back away from γ to the resolved arc.
We will now describe how this perturbation causes our submanifolds to overlap nicely.

By the reverse pigeonhole principle, every 5-tuple pt1, ..., t5q has at least one non-doubled
neighborhood Ni. Suppose s11, s

1
2, s

1
3 are such that we have si “ ´s

1
i and sj “ s1j for j ‰ i.

Then since Ni is not doubled, we have that Q̃pγs1,s2,s3 pt1, ..., t5q “ Q̃pγs1
1,s

1
2,s

1
3
pt1, ..., t5q. This

demonstrates that our perturbed manifolds overlap. If M intersects Q̃pγs1,s2,s3 transversely

at the point Q̃pγs1,s2,s3 pt1, ..., t5q then it also intersects Q̃γs1
1,s

1
2,s

1
3

transversely at the point

Q̃pγs1
1,s

1
2,s

1
3
pt1, ..., t5q, and because the parameterization by t1, ..., t5 determines the orientation,

the sign of these intersections will be the same. Furthermore, s1s2s3 “ ´s
1
1s
1
2s
1
3 so the signs

for the sum in Equation 1 cancel. Therefore, all we need to do to prove Equation 1 is justify
the claim that the isotopy pp, g1pα, t1, ..., t5q, ..., g5pα, t1, ..., t5qq described above preserves the
oriented intersection number of each perturbed manifold with M .

For convenience, we will write

g0pα, t1, ..., t5q “ γs1¨p1´αp1´θ1pt1,...,t5qqq,...,s3¨p1´αp1´θ1pt1,...,t5qqqpt0q “ p

To prove that the oriented intersection number is preserved, we can use the same argu-
ment as in Propositions 7 and 8. All we need for this argument to work is to show that
if two terms of a 6-tuple of the form pg0pα, t1, ..., t5q, ..., g5pα, t1, ..., t5qq are sufficiently close
together, then the two terms of minimal distance are adjacent with respect to the cyclic order-
ing. To prove this, observe that the derivative of γs1¨p1´αp1´θ1pt1,...,t5qqq,...,s3¨p1´αp1´θ1pt1,...,t5qqq
is always nonzero, and gipα, t1, ..., t5q ‰ gjpα, t1, ..., t5q when ti ‰ tj pmod Zq. Now suppose
for the sake of contradiction we have a sequence of pairs px1, x

1
1q, px2, x

1
2q, ... each of which

are the pair of minimal distance in some 6-tuple pp, g1pα, t1, ..., t5q, ..., g5pα, t1, ..., t5qq, and
each of which are cyclically non adjacent in that 6-tuple, and limnÑ8 |xn ´ x1n| “ 0. Let
rn, r

1
n P R{Z and αn P r0, 1s be such that

γs1¨p1´αnp1´θ1pt1,...,t5qqq,...,s3¨p1´αnp1´θ1pt1,...,t5qqqprnq “ xn

and
γs1¨p1´αnp1´θ1pt1,...,t5qqq,...,s3¨p1´αnp1´θ1pt1,...,t5qqqpr

1
nq “ x1n

Now, if the distance between rn and r1n goes to zero as n Ñ 8, then the limit points of
xn will be points where the derivative of γs1¨p1´αp1´θ1pt1,...,t5qqq,...,s3¨p1´αp1´θ1pt1,...,t5qqq is zero
for some α which yields a contradiction. Otherwise, there will be a subsequence with the
distance between rni and r1ni

bounded below, and by compactness, we get gipα, t1, ..., t5q “
gjpα, t1, ..., t5q with ti ‰ tj which yields a contradiction.

Proposition 10. If γ is an unknot, Kpγq “ 0.

Proof. By Proposition 8, we only need to prove that Kpγq “ 0 for γ being a great circle. For
this choice of γ, the manifold Qγ does not intersect M at all because if three lines intersecting
outside of B4 in RP4 each pass through two points on a great circle in BB4, at least one of
those lines will have its intersection points adjacent along the great circle, which means the
order of the points will be wrong and the 6-tuple will not be in M .

Proposition 11. If γ is a trefoil knot, Kpγq is a nontrivial element of H1pQγq.

Proof. By Proposition 8, we only need to prove that Kpγq is a nontrivial element of H1pQγq
when γ is the embedding of the trefoil in S3 Ď R4 given by

γptq “
1
?

2
pcosp4πtq, sinp4πtq, cosp6πtq, sinp6πtqq
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Let p “ γp0q. Then we want to compute the oriented intersection number of Qpγ with M .
First, notice that Qpγ XM contains the 6-tuple pγp0q, γp16q, ..., γp

5
6qq, and the intersection is

transverse at this point. We claim that the remaining points, if they exist, must have an
even contribution to K. To prove this, we first define two actions of pZ{2Zq on R4. Our
actions will be denoted by τ1 and τ2, where τ1 negates the second and fourth coordinates
in R4, and τ2 negates the third and fourth coordinates in R4. Now, we extend these two
actions to C6pS

3q. The action τ1 is first applied term-wise to each term in the 6-tuple, and
then we apply the permutation px1, ..., x6q ÞÑ px1, x6, x5, x4, x3, x2q. The action τ2 is first
applied term-wise, and then we apply the permutation px1, ..., x6q ÞÑ px4, x5, x6, x1, x2, x3q.
Combining τ1 and τ2, we get a pZ{2Zq2 action on both R4 and C6pS

3q. Inside C6pS
3q, the

intersection Qpγ XM is mapped to itself under τ1. Let pQpγ XMqτ1 denote the subset of
Qpγ XM which consists of fixed points under τ1. We see that any such fixed point has γp1{2q
as the 4-th term in the 6-tuple. This lets us conclude that pQpγ XMqτ1 is mapped to itself
under τ2. Now, observe that if a point is in Qpγ XM and is fixed by both τ1 and τ2, then it
is the 6-tuple pγp0q, γp16q, ..., γp

5
6qq. If we take a small perturbation of M to M 1 which only

modifies M at points where the action of pZ{2Zq2 is free and makes the intersection with Qpγ
transverse at these points, then the intersection Qpγ XM 1 is transverse with finitely many
points. These intersection points are acted on by the involution τ1. The fixed points of τ1
are acted on by τ2, which has only one fixed point. Therefore, |Qpγ XM 1| ” 1 pmod 2q. This
proves that Kpγq ‰ 0.

It is very likely, and intuitive from a geometric perspective, that pγp0q, ..., γp56qq is the
only element of Qpγ XM . Although counting the points of Qpγ XM is a computationally
finite exercise which simply involves solving some trigonometric equations, the equations in
question are highly complicated. Without some clever algebraic or geometric trick which
simplifies the computation, it is likely that any proof that tpγp0q, ..., γp56qqu “ Qpγ XM will
be computer-assisted. I suspect that such a trick exists, but it has eluded me.

Proposition 12. K is equal to the quadratic term of the Conway polynomial multiplied by
some fixed nontrivial element of H1pQγq.

Proof. Nontrivial multiples of the quadratic term of the Conway polynomial are characterized
by being rank 2 invariants which are trivial on the unknot and nontrivial on the trefoil. [3]

4 Constructing the Inscribed Trefoil

In this section, we restrict our attention to a fixed analytic parameterization γ : RÑ R3 of a
knot which we can think of as a map RÑ S3 by composing with the stereographic projection.
Furthermore, we will assume the knot parameterized by γ has a nontrivial quadratic term
for its Conway polynomial, and thus satisfies the criteria for Theorem 1.

We define Γ to be the group of Möbius transformations of R3. This is the group of
transformations (which are defined S3 Ñ S3 but we think of as transformations on R defined
at all but at most one point) generated by translation, scaling by nonzero real constants, and
the operation which consists of mapping to S3 under the stereographic projection, applying
an isometric rotation, and then projecting back to R3.

We define a spherical trefoil knot to be any 6-tuple of points in R3 that all lie on some
sphere, and when the points are cyclically connected by line segments, produce a trefoil knot.

Proposition 13. Let px1, ..., x6q be a spherical trefoil knot lying on a sphere P . Let µ be a
Möbius transformation that does not take P to a flat plane. Then pµpx1q, ..., µpx6qq is also
a spherical trefoil knot. (But the handedness might be different from px1, ..., x6q.)
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Proof. First we prove the result for Möbius transformations that do not turn the sphere
inside out. The set of such Möbius transformations is connected, so we just need to show
that as a Möbius transformation varies and the point of inversion does not pass through P ,
the knot type of the polygonal path generated by a sequence of points on P does not change.
If the knot type were to change, there would need to be a time at which two line segments in
the polygonal path cross. For this to happen, a 4-tuple of points would need to be coplanar
when they were not previously. However, the point of inversion is not on P which implies
that our coplanar 4-tuple lies on a circle. However, Möbius transformations preserve circles
so we arrive at a contradiction because the 4-tuple would also have to lie on a circle in P and
be coplanar originally. The same argument demonstrates that we now only need to show
that there is some Möbius transformation that turns P inside out and produces a spherical
trefoil. The mirror image transformation is such an example.

We define a closed subset M0 ĂM to be the subset of M consisting of 6-tuples for which
all six points lie on some circle in S3. We also define a “stereographic trefoil” to be a 6-tuple
of points in S3 which lie on some 2-sphere and which form a spherical trefoil knot under
some choice of stereographic projection to R3. Due to Proposition 13, any stereographic
trefoil yields either a spherical trefoil knot or a coplanar set of points when stereograpically
projected to R3 under an arbitrary choice of stereographic projection.

Proposition 14. For any neighborhood U of the manifold M , there is a small isotopic
perturbation M 1 inside U such that M and M 1 coincide exactly on M0 and every point in
M 1zM0 is a stereographic trefoil.

Figure 2: A trefoil knot is formed by slightly rotating the top of a triangular prism.
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Proof. A point in MzM0 is determined by a point p in RP4zB4 and an ordered triple of
affinely independent lines p`1, `2, `3q passing through S3 at points px1, ..., x6q, as well as a
specified side of the partition determined by Tp (see the proof of Proposition 1). Then
the affine 3-space generated by the three lines passes through S3 to form a 2-sphere P
containing all points of the 6-tuple. The 2-spheres Tp and P intersect at a circle C in P ,
and we are given a specified side of P zC induced by the specified side of Tp, as well as
a specified orientation of C. This orientation of C is induced by the intersection of the
orientation of Tp which comes from the specified side, and the orientation of the span of the
lines induced by their order. Now, for any ε ą 0, we can define px11, ..., x

1
6q by isometrically

rotating (by angle ε) the specified side of P zC in the direction of the orientation of C.
For sufficiently small ε, this will yield a stereographic trefoil. See Figure 2. We select
a small ε smoothly dependent on a point in M and equal to zero exactly on M0. Now,
applying the transformation px1, ..., x6q ÞÑ px11, ..., x

1
6q at all points in MzM0 yields the desired

perturbation M 1.

Proposition 15. Suppose the analytic curve with non-vanishing derivative γ is tangent to
a plane P at the point γpt0q. Let hptq denote the distance between γptq and P . Let θptq
denote the angle between the plane P and the tangent line of γ at γptq. Then there exist
positive constants δ, ε, C so that if we have |t´ t0| ă δ then we have θptq ě C ¨ hptq1´ε.

Proof. Let n be the minimal natural number so that the n-th degree Taylor approximation
of γ at t0 does not lie in P . Then, there exists a constant C1 ą 0 so that for t sufficiently
close to t0, we have hptq ď C1|t|

n. From the derivative, we see that there exists a constant
C2 ą 0 so that for t sufficiently close to t0, we have θptq ě C2|t|

n´1. We then have the
inequality pθptq{C2q

1{pn´1q ě |t| ě phptq{C1q
1{n for t sufficiently close to t0, so we see that

θptq ě Cphptqq1´
1
n for some constant C ą 0. Letting ε “ 1

n , and letting δ be the required
closeness of t and t0, we have the desired inequality.

Proposition 16. Let P be a plane in R3, and let pa, b, cq be a triple of affinely independent
points in R3. Let θ be the angle between P and the plane spanned by pa, b, cq. For x P R3,
let hpxq be the distance between x and P . Let r be the radius of the incircle for the triangle
with vertices a, b, c. Then we have

θ ď
hpaq ` hpbq ` hpcq

r

Proof. First, let P 1 be the plane spanned by a, b, and c. If P and P 1 are parallel, then the
proposition is trivial, so assume P and P 1 intersect at some line `. Then, for x P P 1 let h1pxq
be the distance in P 1 between x and `. We have that h1pxq sinpθq “ hpxq. Furthermore,
0 ď θ ď π{2 so θ{ sinpθq ď 2. Therefore, it suffices to prove that 2r ď h1paq ` h1pbq ` h1pcq.
This inequality becomes obvious when one considers the orthogonal projection of P 1 onto
a line orthogonal to `. In such a projection, the triangle with vertices a, b, c maps to an
interval of length less than or equal to h1paq ` h1pbq ` h1pcq, and this interval contains the
projection of the incircle of the triangle which is of length 2r, therefore, we have the inequality
2r ď h1paq ` h1pbq ` h1pcq. Multiplying both sides by sinpθq{r, and using θ ď 2 sinpθq, we get
the desired inequality.

We define Z Ď C3pR3q to be the set of all triples of affinely independent points on γ such
that, at each of the points in the triple, γ is tangent to the plane passing through the triple.

Proposition 17. Every point of Z is isolated.
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Proof. By combining Propositions 15 and 16, we see that if pγpt1q, γpt2q, γpt3qq P Z spans a
plane P and t11, t

1
2, t

1
3 are sufficiently close to t1, t2, t3, then if k P t1, 2, 3u is such that γpt1kq

is maximally far from P , the angle between the tangent line to γ at t1k and P will be larger
than the angle between the plane spanned by γpt11q, γpt

1
2q, γpt

1
3q and P . This means that the

triple pγpt11q, γpt
1
2q, γpt

1
3qq cannot be in Z.

As a corollary of this proposition, Z is finite because it can be expressed as the set
of zeroes of a multivariate analytic function, and such a set is locally connected [4] [1].
However, in the hopes that minimizing the use of analyticity will make it easier to generalize
our arguments to larger classes of curves, we will avoid using the finiteness of Z. The only
fact we will use about about analytically parameterized curves is that they intersect every
plane at only finitely many points, and at those points, Proposition 15 is satisfied.

Proposition 18. Let R be the subset of Qγ consisting of 6-tuples which are coplanar in
some plane P and which contain a triple of points in Z. Then, there exists a finite sequence
of sets R1, ..., Rn with

Ťn
i“1Ri “ R and such that for each i, every point of Ri is an isolated

point of the set Ri. In particular, we can do this with n “ 20.

Proof. Bijectively associate the numbers 1, ..., 20 with the size three subsets of t1, ..., 6u.
Then, let Ri, for i “ 1, ..., 20, be the set of coplanar 6-tuples of points on γ for which the
triple of points associated to the number i is in Z. We see that

Ť20
i“1Ri “ R, so we only

need to show that every point of Ri is an isolated point of Ri. The curve γ passes through
every plane only finitely many times, and every point of Z is isolated. This means that every
point of Ri must also be isolated.

Let A be a subset of a manifold. We write rpAq to denote the Cantor-Bendixson derivative
of A. [6] That is to say, the subset of A consisting of all non-isolated points. We write rnpAq
to denote iteration of r.

Proposition 19. Suppose X and Y are closed subsets of a manifold M so that X Ď Y and
there exist sets R1, ..., Rn so that Y zX “

Ťn
i“1Ri and each point of Ri is an isolated point

of the set Ri. Then we have rnpY q Ď X.

Proof. We proceed by contradiction. Suppose there exists a point x P rnpY qzX. There
must exist a number a so that x P Ra. Then, since X is closed and every point of Ra
is isolated, there exists an open neighborhood U around x that does not intersect X and
has U X Ra “ txu. We recursively define a sequence of triples px0, U0, a0q, ..., pxn, Un, anq.
For the base case, we set x0 “ x, U0 “ U , and a0 “ a. Now, suppose we have triples
px0, U0, a0q, ..., pxk´1, Uk´1, ak´1q such that U0 Ě U1 Ě ... Ě Uk´1 are open sets, and for all
i P t0, ..., k ´ 1u we have xi P r

n´ipY qzX, and Ui X Rai “ txiu, and all numbers a0, ..., ak´1
are distinct elements of t1, ..., nu. Then, xk´1 P r

n`1´kpY qzX so as long as k ď n we can find
points in rn´kpY qzX that lie inside any neighborhood of xk´1. We can then select xk to be
any point of rn´kpY qzX that lies inside of Uk´1ztx0, ..., xk´1u. We now select ak to be any
number so that xk P Rak . Finally, we select Uk to be any open neighborhood around xk which
lies inside Uk´1ztx0, ..., xk´1u and is sufficiently small that Uk X Rak “ txku, which can be
done because every point of Rak is isolated. We see that the triples px0, U0, a0q, ..., pxk, Uk, akq
are such that U0 Ě U1 Ě ... Ě Uk´1, and for all i P t0, ..., ku we have xi P r

n´ipY qzX, and
Ui X Rai “ txiu. We also need to show that all numbers a0, ..., ak are distinct. For all i P
t1, ..., k´1u, we observe that xk P Ui and xk ‰ xi, and since RaiXUi “ txiu S xk and xk P Rak
we have ak ‰ ai. We already had a0, ..., ak´1 distinct so we now have a0, ..., ak distinct. We
can continue this induction until we have px0, U0, a0q, ..., pxn, Un, anq with the properties
described above. In particular, we have constructed n` 1 distinct numbers a0, ..., an, all of
which lie in the set t1, ..., nu. This is a contradiction.
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Let P be an oriented plane in R3 and let x “ γptq be a point at which γ intersects P .
We call x a two-sided point if for every interval I around t, the set γpIq containins points on
both sides of P . We call x a positive (resp. negative) one-sided point if there is an interval
I around t so that γpIq contains points on the top (resp. bottom) side of P but no points
on the bottom (resp. top) side of P . Since γ is analytic, every intersection point falls into
one of these three classes because γpIq can never lie entirely inside P .

Proposition 20. For some choice of M 1 as in Proposition 14, there exists real numbers
t1 ă ... ă t6 ă t1 ` 1 so that pγpt1q, ..., γpt6qq P Qγ XM 1 and such that one of the three
following possibilities holds.

1) The 6-tuple pγpt1q, ..., γpt6qq forms a trefoil knot.

2) The 6-tuple pγpt1q, ..., γpt6qq lies in some plane P , is a stereographic trefoil, and at most
three of the points in the 6-tuple are one-sided intersection points in P .

3) The 6-tuple pγpt1q, ..., γpt6qq lies in some circle C of finite radius, and if P is the plane
containing the circle C, at most two of the points in the 6-tuple are one-sided in P .

Proof. By making M 1 sufficiently close to M , we can guarantee that for arbitrarily small
perturbations of M 1, the intersection with Qγ is a 1-manifold with orientation class mapping
to Kpγq P H1pQγq. This means that, although we cannot obviously guarantee that M 1 and
Qγ intersect transversely, we can guarantee that Qγ XM

1 is compact and any neighborhood
of Qγ XM

1 contains a loop which is essential in in the space Qγ . That is to say, the induced

map from cohomology to Čech cohomology Z » H1pQγq Ñ qH1pQγ XM
1q is nontrivial. We

now proceed by contradiction to prove the proposition, so suppose no point satisfying 1, 2,
or 3 exists.

Let L be the subset of Qγ XM
1 consisting of collinear 6-tuples. We claim that for some

n, we have
rnpQγ XM

1q Ď L

First, observe that every point in Qγ XM
1 must be coplanar in R3 because there cannot be

any trefoils on γ. Second, we see that in a stereographic trefoil, there are never four points
that lie on a circle because a 6-tuple trefoil in R3 can never have four coplanar points. This
means that any 6-tuple in Qγ XM

1zM0 lies in a plane P , has at least four one-sided points,
and these points do not lie on a line. Furthermore, any 6-tuple in Qγ XM0 is either colinear,
or all points lie on a circle of finite radius in a plane P with at least three one-sided points.
Any three points on a circle of finite radius fail to be colinear, so we have that every point
of Qγ XM

1 is either a colinear 6-tuple or a coplanar 6-tuple lying on a plane P with a triple
of affinely independent one-sided intersection points. Now, from Propositions 18 and 19, we
see that

rnpQγ XM
1q Ď Qγ XM

1 X L Ď L

for some n, which demonstrates that our claim is true.
Now, r only removes isolated points and thus cannot affect Čech cohomology in degrees

other than zero. Therefore, we may select a connected set X Ď rnpQγ X M 1q such that

H1pQγq Ñ qH1pXq is nontrivial. From what we have shown so far, X consists only of
colinear 6-tuples. Furthermore, X is connected so we may conclude that the linear order
(modulo reversal) on the terms of the 6-tuple is constant. This means that there are fixed
numbers e1, e2 from 1 to 6 so that for every 6-tuple px1, ..., x6q P X, the points xe1 and xe2
are the endpoints of the minimal line segment containing the 6-tuple. Now, select some x in
the curve γ which is an extremal point for the convex hull of the knot, and select some m
from 1 to 6 such that m ‰ e1 and m ‰ e2. Since H1pQγq Ñ qH1pXq is nontrivial, there is a
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6-tuple px1, ..., x6q P X for which xm “ x, however no line segment in the convex hull of the
knot has x in its interior. This gives us our contradiction.

Proposition 21. If there exist real numbers t1 ă ... ă t6 ă t1 ` 1 so that the 6-tuple
pγpt1q, ..., γpt6qq lies in some plane P , is a stereographic trefoil, and at most three of the points
are one-sided intersection points in P , then there exist real numbers t11 ă ... ă t16 ă t11` 1 so
that pγpt11q, ..., γpt

1
6qq gives a trefoil knot.

Proof. First, notice that the set of trefoils is open. This implies that the set of stereo-
graphic trefoils is an open subset of the set of cospherical 6-tuples of points. This tells us
that if there exist non-coplanar yet cospherical 6-tuples pγpt11q, ..., γpt

1
6qq arbitrarily close to

pγpt1q, ..., γpt6qq, then the proposition will be true.
To construct such arbitrarily close 6-tuples, choose an orientation for P and draw a circle

C in P that separates the positive one-sided points from the negative one-sided points. Such
a circle exists because there are only at most three one-sided points. Now, select spheres of
arbitrarily large radius that pass through C in such a way that the sphere is above P in the
part with the positive one-sided points and below P in the part with the negative one sided
points. If we look at the intersection of these spheres with γ, for sufficiently large radii, there
will be choices of intersection points arbitrarily close to pγpt1q, ..., γpt6qq because our sphere
agrees with the sidedness of all of the points. This gives us the desired pγpt11q, ..., γpt

1
6qq.

Proposition 22. If we have t1 ă ... ă t6 ă t1 ` 1 so that pγpt1q, ..., γpt6qq P Qγ X M0

and pγpt1q, ..., γpt6qq lies on a circle C of finite radius in such a way that if P is the plane
containing C then P has at most two one-sided points from the 6-tuple, then there exist
t11 ă ... ă t16 ă t11 ` 1 so that pγpt11q, ..., γpt

1
6qq gives a trefoil knot.

Figure 3: A element of M0 on a circle is perturbed with vectors orthogonal to the plane of
the circle to produce a trefoil.

Proof. First, observe that there exists a 6-tuple of vectors pv1, ..., v6q orthogonal to P so
that for every ε ą 0 the 6-tuple px1pεq, ..., x6pεqq “ pγpt1q ` εv1, ..., γpt6q ` εv6q gives a
trefoil. See Figure 3 for an example. Such 6-tuples of vectors are preserved under translation
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perpandicular to P and reflection across a vector subspace paralell to P . Therefore, we can
assume without loss of generality that vi points towards the same side as the sidedness of
γptiq whenever γptiq is a one-sided point. (We can translate and reflect to get this condition
on both one-sided points.) Now, we create pγpt11pεqq, ..., γpt

1
6pεqqq by selecting γpt1ipεqq to be

the closest point on γ to xipεq that lies in the plane paralell to P that contains xipεq. By
our sidedness assumption, this will always be possible for sufficiently small ε. Now, we claim
that for sufficiently small ε, the 6-tuple pγpt11pεqq, ..., γpt

1
6pεqqq is a trefoil.

To see that this is true, consider an affine transformation that fixes P and stretches the
component orthogonal to P . We may select such a transformation Tε depending on ε so
that the 6-tuple pTεx1pεq, ..., Tεx6pεqq does not depend on ε. Furthermore, since Tε does not
modify the component of vectors paralell to P , we have that pTεγpt

1
1pεqq, ..., Tεγpt

1
6pεqqq limits

to the same trefoil as pTεx1pεq, ..., Tεx6pεqq. Since the set of trefoils is open, this implies that
pTεγpt

1
1pεqq, ..., Tεγpt

1
6pεqqq, and thus pγpt11pεqq, ..., γpt

1
6pεqqq, is a trefoil for small ε.

We now have a proof of Theorem 1.

Proof of Theorem 1. Combine propositions 20, 21, and 22.

5 Questions

The theorem we have presented in this paper bears a strong resemblance to a theorem
from [2] in which it is shown that if a knot has a nontrivial quadratic term of its Conway
Polynomial, then it has an alternating quadrisecant. Indeed, alternating quadrisecants are
very close to being inscribed trefoil knots. To see why this is the case, if one doubles up the
middle two points in an alternating quadrisecant, then there will be a small perturbation
of this configuration of points in R3 that creates a very skinny trefoil knot. It seems quite
likely that there is an alternate proof of Theorem 1 that comes from a careful analysis of a
knot in the neighborhood of an alternating quadrisecant. We therefore make the following
conjecture which would connect these two results in the most obvious way possible.

Conjecture 1. If γ : RÑ R3 is an analytic Z-periodic parameterization with non vanishing
derivative for a knot with nontrivial quadratic term of its Conway polynomial, then for
every ε ą 0, there exist two sequences of real numbers t1 ă t2 ă ... ă t6 ă t1 ` 1 and
s1 ă ... ă s4 ă s1 ` 1 so that the points γpt1q, ..., γpt6q form a trefoil knot when connected
cyclically by line segments, the points γps1q, γps3q, γps2q, γps4q lie in order on some line, and
the distances minj“1,2,3,4 |γptiq ´ γpsjq| for i “ 1, ..., 6 are all less than ε.

In [5], Elizabeth Denne showed that all nontrivial knots have alternating quadrisecants.
Therefore, if there is indeed a connection between alternating quadrisecants and inscribed
trefoils, it may be possible to drop the assumption of nontriviality of the quadratic term of
the conway polynomial from Theorem 1, replacing it with the nontriviality of the knot.

It is not easy to generalize these results to arbitrary smooth parameterizations, let alone
continuous parameterizations. We therefore ask, all other conditions from Theorem 1 un-
changed, what degree of regularity is required from γ to obtain the result?

A corollary of our main theorem is that every analytically parameterized trefoil knot has
an inscribed trefoil knot. However, our proof gives no control over the handedness of the
inscribed trefoil. We therefore make the following conjecture.

Conjecture 2. Let γ : R Ñ R3 be an analytic Z-periodic function with non-vanishing
derivative which parameterizes a right-handed trefoil. Then there exists a sequence of num-
bers 0 ď t1 ă t2 ă ... ă t6 ă 1 so that the polygonal path obtained by cyclically connecting
the points γpt1q, γpt2q, ..., γpt6q by line segments is also a right-handed trefoil.
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Finally, are there nontrivial knot types K1 and K2, and some n ě 7, such that every
analytic parameterization of a knot of type K1 has n points on it that when connected
cyclically in order by line segments yield a knot of type K2?
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