ON RATIONAL PERIODIC POINTS OF $x^d + c$

MOHAMMAD SADEK

ABSTRACT. We consider the polynomials $f(x) = x^d + c$, where $d \ge 2$ and $c \in \mathbb{Q}$. It is conjectured that if d = 2, then f has no rational periodic point of exact period $N \ge 4$. In this note, fixing some integer $d \ge 2$, we show that the density of such polynomials with a rational periodic point of any period among all polynomials $f(x) = x^d + c$, $c \in \mathbb{Q}$, is zero. Furthermore, we establish the connection between polynomials f with periodic points and two arithmetic sequences. This yields necessary conditions that must be satisfied by c and d in order for the polynomial f to possess a rational periodic point of exact period N, and a lower bound on the number of primitive prime divisors in the critical orbit of f when such a rational periodic point exists. The note also introduces new results on the irreducibility of iterates of f.

1. INTRODUCTION

An arithmetic dynamical system over a number field K consists of a rational function f: $\mathbb{P}^n(K) \to \mathbb{P}^n(K)$ of degree at least 2 with coefficients in K where the n^{th} iterate of f is defined recursively by $f^1(x) = f(x)$ and $f^m(x) = f(f^{m-1}(x))$ when $m \ge 2$. A point $P \in \mathbb{P}^n(K)$ is said to be a periodic (preperiodic) point for f if the orbit $P, f(P), f^2(P), \dots, f^n(P), \dots$ of Pis periodic (eventually periodic). If N is the smallest positive integer such that $f^N(P) = P$, then the periodic point P is said to be of exact period N.

The following conjecture was proposed by Morton and Silverman. There exists a bound B(D, n, d) such that if K/\mathbb{Q} is a number field of degree D, and $f : \mathbb{P}^n(K) \to \mathbb{P}^n(K)$ is a morphism of degree $d \ge 2$ defined over K, then the number of K-rational preperiodic points of f is bounded by B(D, n, d), see [11]. When f is taken to be a quadratic polynomial over \mathbb{Q} , the following conjecture was suggested in [13]. If $N \ge 4$, then there is no quadratic polynomial $f(x) \in \mathbb{Q}[x]$ with a rational point of exact period N. The conjecture has been proved when N = 4, see [12], and N = 5, see [7]. A conditional proof for the case N = 6 was given in [15].

We consider the polynomial $f(x) = x^d + c$ over a number field K. If $c = c_1/c_2$ where c_1 and c_2 are relatively prime in the ring of integers O_K of K, we investigate the divisibility of the coefficients of the iterates $f^m(x)$, $m \ge 2$, by the prime divisors of c_1 and c_2 . Using these divisibility criteria, we approach three questions concerning the arithmetic dynamical system of $f(x) = x^d + c$: (i) When is f(x) stable over K? (ii) Fixing d, what is the density

Mathematics Subject Classification: 37P05, 37P15

of such polynomials with periodic points? (iii) Given that f(x) possesses a rational periodic point of period n, should this yield necessary conditions satisfied by d and c?

The stability question in arithmetic dynamical systems concerns the irreducibility of the iterates of f(x) over K. More precisely, a polynomial f(x) is said to be stable over a field K if $f^n(x)$ is irreducible over K for every $n \ge 1$. In [1], the authors showed that most monic quadratic polynomials in $\mathbb{Z}[x]$ are stable over \mathbb{Q} . One may find sufficient conditions for an irreducible monic quadratic polynomial in $\mathbb{Z}[x]$ to be stable over \mathbb{Q} in [8]. It was shown that $f(x) = x^2 + c \in \mathbb{Z}[x]$ is stable over \mathbb{Q} if f(x) is irreducible itself, see [14]. Further, the polynomial $f(x) = x^d + c \in \mathbb{Z}[x], d \ge 2$, is known to be stable over \mathbb{Q} if f(x) is irreducible, see [6].

Unlike the situation over O_K , $f(x) = x^d + c \in K[x]$ can be irreducible over K whereas $f^n(x)$ is reducible over K for some n > 1. In this note, if $c = c_1/c_2$ where c_1 and c_2 are relatively prime in O_K , we show that the existence of a prime divisor p of c_1 such that $gcd(\nu_p(c_1), d) = 1$, where ν_p is the valuation of K at the prime p, implies the stability of f(x). For instance, if d is prime and c_1 is not a d^{th} -power modulo units in O_K , then f(x) is stable.

Assuming that u_1/u_2 is a periodic point of f(x) of exact period n, where u_1 and u_2 are relatively prime in O_K , we give several results on the divisibility of the coefficients of the iterate $f^n(x)$ by prime divisors of u_1 and u_2 . This enables us to show that if f(x) has a K-rational periodic point, then c_2 must be a d-th power modulo units in O_K . More precisely, $c_2 = u_2^d$ modulo units. Fixing d, a hight argument, then, yields that the density of such polynomials with periodic points among all polynomials $f(x) = x^d + c$ is zero. In particular, almost all polynomials $f(x) = x^d + c$ satisfy the conjecture of Morton and Silverman.

We establish the connection between a periodic point u_1/u_2 of $f(x) = x^d + c \in \mathbb{Q}[x]$ of period n and the sequence $u_1^m - u_2^m$, $m = 1, 2, \cdots$. In fact, we show that c_1 divides $u_1^{d^n-1} - u_2^{d^n-1}$, yet none of the prime divisors of c_1 divide $u_1 - u_2$. This provides us with necessary conditions on c_1 in order for f(x) to have such a periodic point. For instance, one knows that if p is a prime divisor of c_1 such that $gcd(p-1, d^n-1) = 1$, then f(x) has no periodic points of period n.

Finally, we display the relation between rational periodic points of the polynomials $f(x) = x^d + c \in \mathbb{Q}[x]$ and another sequence, namely the sequence of the iterates, $f^n(0)$, evaluated at 0. One may consult [10] for several results on the existence of primitive prime divisors of such sequences. In this note, we show that the existence of a periodic point of f(x) of exact period n implies a lower bound on the number of primitive prime divisors of $f^n(0)$.

2. Valuations of the coefficients of the iterates of f

In this section, we assume that K is an arbitrary field unless otherwise stated.

Lemma 2.1. Let $f(x) = x^d + c$, $d \ge 2$, $c \in K$. One has $f^n(0) = c + c^d g_n(c)$ where $g_n \in \mathbb{Z}[x]$ is a polynomial of degree $d^{n-1} - d$, $n \ge 2$.

PROOF: Since $f^2(0) = c + c^d$, the statement is true when n = 2 by taking $g_2(x) = 1$. Now, an induction argument will yield the statement. Assume that $f^n(0) = c + c^d g_n(c)$ where $q_n(x) \in \mathbb{Z}[x]$ is of degree $d^{n-1} - d$. One has that $f^{n+1}(0) = c + (f^n(0))^d$. One observes that

$$f^{n+1}(0) = c + (c + c^d g_n(c))^d = c + c^d \left(1 + c^{d-1} g_n(c)\right)^d$$

We set $g_{n+1}(x) = (1 + x^{d-1}g_n(x))^d$. The polynomial $g_{n+1}(x) \in \mathbb{Z}[x]$. Moreover, since g_n has degree $d^{n-1} - d$ by assumption, one gets that the degree of g_{n+1} is $d(d^{n-1} - d + d - 1) = d^n - d$.

The following lemma gives an explicit description of the coefficients of $f^n(x)$.

Proposition 2.2. Let $f(x) = x^d + c$, $d \ge 2$, $c \in K$. Assume that $f^n(x) = f_0 + f_1 x^d + f_1 x^d + f_2 x^d + f_2 x^d + f_1 x^d + f_2 x^d + f_2 x^d + f_1 x^d + f_2 x^d$ $f_2 x^{2d} + \ldots + f_{d^{n-1}} x^{d^n}$. The following statements are correct.

- a) $f_{d^{n-1}} = 1$.
- b) $f_i \in c\mathbb{Z}[c]$ for every $0 \le i < d^{n-1}$. c) $\deg f_i = d^{n-1} i$ for $0 \le i \le d^{n-1}$.

PROOF: That $f_0 \in c\mathbb{Z}[c]$ and deg f_0 in $\mathbb{Z}[c]$ is d^{n-1} is implied by Lemma 2.1.

We now follow an induction argument. For the polynomial $f^{2}(x)$, one has

$$f^{2}(x) = (x^{d} + c)^{d} + c = x^{d^{2}} + \sum_{i=0}^{d-1} {d \choose i} c^{d-i} x^{id} + c$$
$$= x^{d^{2}} + c \sum_{i=1}^{d-1} {d \choose i} c^{d-1-i} x^{id} + c + c^{d}.$$

Since $f_i = {\binom{d}{i}} c^{d-i} \in c\mathbb{Z}[c], 1 \leq i < d-1$, is of degree < d, the statement is correct for $f^{2}(x).$

Assume the statement holds for $f^n(x)$. One obtains the following equalities

$$f^{n+1}(x) = (f^n(x))^d + c = \left[f_0 + f_1 x^d + f_2 x^{2d} + \dots + f_{d^{n-1}-1} x^{d^n-d} + x^{d^n}\right]^d + c$$

= $\left[c \left(f'_0 + f'_1 x^d + f'_2 x^{2d} + \dots + f'_{d^{n-1}-1} x^{d^n-d}\right) + x^{d^n}\right]^d + c$

where $f'_i = f_i/c \in \mathbb{Z}[c]$ and deg $f'_i < d^{n-1} - 1$ by assumption. Setting $f'(x) = f'_0 + f'_1 x^d + d^{n-1} - 1$ $f'_{2}x^{2d} + \ldots + f'_{d^{n-1}-1}x^{d^{n-1}}$, one obtains

$$f^{n+1}(x) = x^{d^{n+1}} + \sum_{i=1}^{d} {\binom{d}{i}} c^{i} f'(x)^{i} x^{d^{n}(d-i)} + c.$$

It is obvious that each coefficient of $f^{n+1}(x) - x^{d^{n+1}}$ is in $c\mathbb{Z}[c]$.

For part c), one sees that

$$f^{n+1}(x) = (f^n(x))^d + c = \left(f_0 + f_1 x^d + f_2 x^{2d} + \dots + f_{d^{n-1}-1} x^{d^n-d} + x^{d^n}\right)^d + c$$

We are looking for the degree of the coefficient of x^{ld} in the latter expansion where $0 \leq l \leq d^n$. Using an induction argument, we assume that deg $f_i = d^{n-1} - i$ in $\mathbb{Z}[c]$. In view of the multinomial expansion, the latter expansion is given by

$$f^{n+1}(x) = \sum_{k_0+k_1+\ldots+k_d = d} {d \choose k_0, \ldots, k_{d^n}} \prod_{t=0}^{d^n} (f_t x^{td})^{k_t} + c.$$

Using the induction assumption, the degree of the coefficient of x^{ld} in $f^{n+1}(x)$ is obtained as follows

$$\sum_{t=0}^{d^n} k_t (d^{n-1} - t) = d^{n-1} \sum_{t=0}^{d^n} k_t - \sum_{t=0}^{d^n} tk_t$$

re $\sum_{t=0}^{d^n} k_t = d$ and $\sum_{t=0}^{d^n} tk_t d = ld$.

The following corollary is a straight forward result of the proposition above.

Corollary 2.3. Let K be a discrete valuation field with ring of integers O_K . Let $f(x) = x^d + c$, $d \ge 2$, where $c = c_1/c_2$ is such that c_1 and c_2 are relatively prime in O_K . Assume that $f^n(x) = f_0 + f_1 x^d + f_2 x^{2d} + \ldots + f_{d^{n-1}} x^{d^n}$. Then $c_2^{d^{n-1}} f^n(x) = F_0(c_1, c_2) + F_1(c_1, c_2) x^d + F_2(c_1, c_2) x^{2d} + \ldots + F_{d^{n-1}-1}(c_1, c_2) x^{d^n-d} + F_{d^{n-1}}(c_1, c_2) x^{d^n}$ where $F_i(c_1, c_2) = c_2^{d^{n-1}} f_i \in \mathbb{Z}[c_1, c_2]$ is a homogeneous polynomial of degree d^{n-1} . Moreover, $F_i(c_1, c_2) \in c_1 c_2^i \mathbb{Z}[c_1, c_2]$ if $i \neq d^{n-1}$; and $F_{d^{n-1}}(c_1, c_2) = c_2^{d^{n-1}}$.

PROOF: Since $f_i \in c\mathbb{Z}[c]$, $i \neq d^{n-1}$, and deg $f_i = d^{n-1} - i$ for $0 \leq i \leq d^{n-1}$, see Proposition 2.2, we may clear the denominators of the coefficients f_i 's by multiplying throughout by $c_2^{d^{n-1}}$, hence the result is obtained.

3. The stability of $f(x) = x^d + c$

Let K be a field with valuation ν whose value group is \mathbb{Z} . Let $F[x] \in K[x]$ be the polynomial $F_0 + F_1 x + \ldots + F_k x^k$ where $F_0 \neq 0$ and $F_k \neq 0$.

The Newton polygon of F over K is constructed as follows. We consider the following points in the real plane: $A_i = (i, \nu(F_i))$ for i = 0, ..., k. If $F_i = 0$ for some i, then we omit the corresponding point A_i . The Newton polygon of F over K is defined to be the lower convex hull of these points. More precisely, we consider the broken line $P_0P_1 ... P_l$ where

4

whe

 $P_0 = A_0, P_1 = A_{i_1}$ where i_1 is the largest integer such that there are no points A_i below the line segment P_0P_1 . Similarly, P_2 is A_{i_2} where i_2 is the largest integer such that there are no point A_i below the line segment P_1P_2 . In a similar fashion, we may define $P_i, i = 2, \ldots, l$, where $P_l = A_k$. If some line segments of the broken line $P_0P_1 \ldots P_l$ pass through points in the plane with integer coordinates, then such points in the plane will be also considered as vertices of the broken line. Therefore, we may add $s \ge 0$ more points to the vertices $P_0P_1 \ldots P_l$. The Newton polygon of F over K is the polygon $Q_0Q_1 \ldots Q_{l+s}$ obtained after relabelling all these points from left to the right, where $Q_0 = P_0$ and $Q_{l+s} = P_l$.

The following theorem generalizes Eisenstein's criterion of irreducibility, see for example [5, Theorem 9.1.13].

Theorem 3.1 (Eisenstein-Dumas Criterion). Let K be a field with valuation ν whose value group is Z. Let $F(x) = F_0 + F_1x + \ldots + F_kx^k \in K[x]$ with $F_0F_k \neq 0$. If the Newton polygon of F over K consists of the only line segment from (0,m) to (k,0) and if gcd(k,m) = 1, then F is irreducible over K.

We recall that $x^d + c$ is irreducible over a field K if and only if for every prime p dividing d, -c is not a p^{th} -power in K; and if $4 \mid d$ then c is not 4 times a 4^{th} -power in K, see [9, Theorem 8.1.6].

Theorem 3.2. Let K be a number field with ring of integers O_K . Let $f(x) = x^d + c$, $d \ge 2$, be such that $c = c_1/c_2$ is such that c_1 and c_2 are relatively prime in O_K . Assume that there is a prime p in O_K such that $gcd(\nu_p(c_1), d) = 1$ where ν_p is the valuation of K at the prime p. Then f(x) is stable over K.

PROOF: Let K_p be the completion of K with respect to the prime p and ν_p be the corresponding valuation. In view of Corollary 2.3, one has $f^n(x) = \frac{H_n(x)}{c_0^{d^{n-1}}}$ where

 $H_n(x) = F_0(c_1, c_2) + F_1(c_1, c_2)x^d + F_2(c_1, c_2)x^{2d} + \ldots + F_{d^{n-1}-1}(c_1, c_2)x^{d^n-d} + F_{d^{n-1}}(c_1, c_2)x^{d^n}$ and $F_i(c_1, c_2) = c_2^{d^{n-1}}f_i$. Now we consider the Newton polygon of the polynomial $H_n(x) \in \mathbb{Z}[c_1, c_2][x]$ over K_p . According to Lemma 2.1, one has $\nu_p(F_0(c_1, c_2)) = \nu_p(c_1)$. Proposition 2.2 indicates that $\nu_p(F_i(c_1, c_2)) \ge \nu_p(c_1)$ if $1 \le i < d^n$ and $\nu_p(F_{d^n}(c_1, c_2)) = \nu_p\left(c_2^{d^{n-1}}\right) = 0$ where the latter equality follows from the fact that c_1 and c_2 are relatively prime. Therefore, the Newton polygon of $H_n(x)$ consists of one line segment joining the two points $(0, \nu_p(c_1))$ and $(d^n, 0)$. Since $gcd(\nu_p(c_1), d^n) = 1$ by assumption, Theorem 3.1 yields that $H_n(x)$ is irreducible over K_p , hence over K. This implies that f(x) is stable.

Corollary 3.3. Let K be a number field and $f(x) = x^d + c$, $d \ge 2$, where $c = c_1/c_2$ is such that c_1 and c_2 are relatively prime in the ring of integers O_K of K. Assume that c_1 is not

of the form uv^p for any prime divisor p of d, where $v \in O_K$ and u is a unit of O_K . Then f(x) is stable over K.

In particular, if $f(x) = x^d + c$ where d is prime, then f(x) is stable over K if c_1 is not a d^{th} -power modulo units in O_K .

In what follows, we see some examples of polynomials f(x) violating the relative primality condition $gcd(\nu_p(c_1), d) = 1$ in Theorem 3.2. We remark that these polynomials are not stable.

Example 3.4. If one considers the polynomial $f(x) = x^d - c^d$, $c \in K$, over a field K, then f(x) is not stable as $f^1(x) = f(x)$ is reducible. The polynomial $f(x) = x^2 - 4/3$ is irreducible over \mathbb{Q} since 4/3 is not a square in \mathbb{Q} , yet $f^2(x) = \left(x^2 - 2x + \frac{2}{3}\right)\left(x^2 + 2x + \frac{2}{3}\right)$.

4. Periodic points

From now on K is a number field with ring of integers O_K . We will write O_K^{\times} for the group of units in O_K . If p is a prime in O_K , then ν_p is the valuation of K at p.

We consider $f(x) = x^d + c$ where $c = c_1/c_2$ such that $c_1 \in O_K$ and $c_2 \in O_K/O_K^{\times}$ are relatively prime in O_K . Given $u \in K$, the orbit of u under f is the set $O_f(u) = \{u, f(u), f^2(u), \ldots\}$. By a periodic point u of exact period n, we mean that $f^n(u) = u$ and that n is the smallest such positive integer. In particular, the polynomial $f^n(x) - x$ has a zero at u and $O_f(u)$ is a finite set with exactly n elements. Moreover, any point in the orbit $O_f(u)$ is a periodic point with period n. In particular, $f^n(x) - x$ has at least n linear factors.

In accordance with Corollary 2.3, one recalls that

$$f^{n}(x) = \frac{F_{0}(c_{1}, c_{2}) + F_{1}(c_{1}, c_{2})x^{d} + F_{2}(c_{1}, c_{2})x^{2d} + \dots + F_{d^{n-1}-1}(c_{1}, c_{2})x^{d^{n}-d} + F_{d^{n-1}}(c_{1}, c_{2})x^{d^{n}}}{c_{2}^{d^{n-1}}}$$

Finding the zeros of $f^n(x) - x$ is equivalent to finding the zeros of the following polynomial

$$G^{n}(x) = F_{0}(c_{1}, c_{2}) - c_{2}^{d^{n-1}}x + F_{1}(c_{1}, c_{2})x^{d} + F_{2}(c_{1}, c_{2})x^{2d} + \ldots + F_{d^{n-1}-1}(c_{1}, c_{2})x^{d^{n}-d} + F_{d^{n-1}}(c_{1}, c_{2})x^{d^{n}-d}$$

Given that u_1/u_2 is a periodic point of period n of f(x), where u_1 and u_2 are relatively prime in O_K and $u_2 \in O_K/O_K^{\times}$, one multiplies throughout times $u_2^{d^n}$ to get

$$F_0 u_2^{d^n} - c_2^{d^{n-1}} u_1 u_2^{d^n-1} + F_1 u_1^d u_2^{d^n-d} + F_2 u_1^{2d} u_2^{d^n-2d} + \ldots + F_{d^{n-1}-1} u_1^{d^n-d} u_2^d + F_{d^{n-1}} u_1^{d^n} = 0$$
(1)

where $F_i := F_i(c_1, c_2)$.

4.1. The denominators c_2 and u_2 of c and u.

Proposition 4.1. Let $f(x) = x^d + c_1/c_2$ such that $c_1 \in O_K$ and $c_2 \in O_K/O_K^{\times}$ are relatively prime in O_K . Let u_1/u_2 be a periodic point of f(x) with period n where $u_1, u_2 \in O_K$ are relatively prime. The following properties hold.

- a) $u_2^d \mid F_{d^{n-1}} = c_2^{d^{n-1}}.$
- b) c_2 and F_0 are relatively prime in O_K .
- c) $c_2 \mid u_2^{d^n}$.
- d) c_2 and u_2 have exactly the same prime divisors.

PROOF: (a) follows directly from eq (1) and the fact that u_1 and u_2 are relatively prime in O_K .

For (b), Lemma 2.1 yields that

$$F_{0} = c_{1}c_{2}^{d^{n-1}-1} + c_{2}^{d^{n-1}-d}c_{1}^{d}g_{n}(c_{1}/c_{2}), \qquad g_{n}(x) = \sum_{i=0}^{d^{n-1}-d}g_{n,i}x^{i}, g_{n,i} \in \mathbb{Z}$$
$$= c_{1}c_{2}^{d^{n-1}-1} + c_{2}^{d^{n-1}-d}c_{1}^{d}\sum_{i=0}^{d^{n-1}-d}g_{n,i}(c_{1}/c_{2})^{i}$$
$$= c_{1}c_{2}^{d^{n-1}-1} + \sum_{i=0}^{d^{n-1}-d}g_{n,i}c_{1}^{d+i}c_{2}^{d^{n-1}-d-i} \in c_{1}\mathbb{Z}[c_{1}, c_{2}].$$

Every term in the latter expansion of F_0 is divisible by c_2 except for the term whose coefficient is $g_{n,d^{n-1}-d} = 1$. Since c_1 and c_2 are relatively prime, it follows that c_2 and F_0 are relatively prime in O_K .

For (c), since $F_i \in c_2^i \mathbb{Z}[c_1, c_2]$ except when i = 0, see Corollary 2.3, this yields that $c_2 \mid F_0 u_2^{d^n}$, see eq (1). Since by (c), one knows that c_2 and F_0 are relatively prime, it follows that $c_2 \mid u_2^{d^n}$. Part (d) follows from (a) and (c).

Corollary 4.2. Let $c \in O_K$. If $f(x) = x^d + c$, $d \ge 2$, has a periodic point u, then $u \in O_K$.

PROOF: This follows from Proposition 4.1 (d).

Theorem 4.3. Let $f(x) = x^d + c_1/c_2$, $d \ge 2$, such that $c_1 \in O_K$ and $c_2 \in O_K/O_K^{\times}$ are relatively prime in O_K . Let u_1/u_2 be a periodic point of f(x) where $u_1, u_2 \in O_K$ are relatively prime. One has $c_2 = u_2^d$.

PROOF: We assume that u_1/u_2 is of period *n*. Let *p* be a prime divisor of u_2 . Proposition 4.1 d) implies that *p* divides c_2 . Considering eq (1), one sets $\alpha := \nu_p(c_2^{d^{n-1}}u_1u_2^{d^n-1}) =$

 $d^{n-1}\nu_p(c_2) + (d^n - 1)\nu_p(u_2)$. We also set

$$\begin{aligned} \alpha_l : &= \nu_p(F_l u_1^{ld} u_2^{d^n - ld}) = \nu_p(F_l) + (d^n - ld)\nu_p(u_2), \ 0 < l < d^{n-1} \\ &\geq l\nu_p(c_2) + (d^n - ld)\nu_p(u_2) \\ &= d^n \nu_p(u_2) + l(\nu_p(c_2) - d\nu_p(u_2)), \end{aligned}$$

see Corollary 2.3. Furthermore, we define

$$\alpha_{d^{n-1}} := \nu_p(F_{d^{n-1}}) = \nu_p(c_2^{d^{n-1}}) = d^{n-1}\nu_p(c_2), \qquad \alpha_0 := \nu_p(F_0u_2^{d^n}) = d^n\nu_p(u_2),$$

see Corollary 2.3 and Proposition 4.1 b), respectively.

If $\nu_p(c_2) < d\nu_p(u_2)$, then

$$\min_{0 \le l < d^{n-1}} \alpha_l > d^{n-1} \nu_p(c_2) = \alpha_{d^{n-1}}$$

In this case, either $\alpha_{d^{n-1}} = \alpha_r$ for some $r \neq d^{n-1}$, which is impossible, or $\alpha_{d^{n-1}} = \alpha$ which is again impossible as $\nu_p(u_2) > 0$.

If $\nu_p(c_2) > d\nu_p(u_2)$, then

$$\min_{0 < l \le d^{n-1}} \alpha_l > d^n \nu_p(u_2) = \alpha_0.$$

In the latter case, since $\alpha_0 \neq \alpha_r$ for any $r \neq 0$, one must have $\alpha_0 = \alpha$. It follows that $\nu_p(u_2) = d^{n-1}\nu_p(c_2)$ which contradicts our assumption that $\nu_p(c_2) > d\nu_p(u_2)$.

One concludes that it must be the case that $\nu_p(c_2) = d\nu_p(u_2)$ for any common prime divisor of c_2 and u_2 . Therefore, assuming that $u_2 \in O_K/O_K^{\times}$, one obtains that $c_2 = u_2^d$. \Box

Remark 4.4. If u_1/u_2 is a periodic point of $f(x) = x^d + c_1/c_2$ where c_i and u_i are as in Theorem 4.3, then $c_2 = u_2^d$. In other words, a periodic point of f(x) of any period will have the same denominator. In particular, if $f^j(u_1/u_2) = v_{1,j}/v_{2,j}$, $j = 1, 2, \ldots$, are the elements in the orbit $O_f(u_1/u_2)$ of u_1/u_2 , where $v_{1,j}$ and $v_{2,j}$ are relatively prime in O_K , then one may assume that $v_{2,j} = u_2$ for every j. In fact, since $c_2 = u_2^d$, one has $f(u_1/u_2) = (u_1^d + c_1)/u_2^d$. Therefore, $u_2^{d-1} \mid (u_1^d + c_1)$.

The following is a direct consequence of Theorem 4.3.

Corollary 4.5. If $f(x) = x^d + c_1/c_2$, $d \ge 2$, where c_1 and c_2 are relatively prime and c_2 is not a d^{th} -power in O_K , then f has no periodic points of any period. In particular, there are infinitely many polynomials $f(x) = x^d + c$ that have no periodic points of any period.

Corollary 4.6. Let u_1/u_2 be a periodic point of exact period n of $f(x) = x^d + c_1/c_2$, where c_i and u_i are as above. If $g(x) = x/u_2^{d-1}$ and $h(x) = x^d + c_1$, then u_1 is a periodic point of the polynomial $g \circ h \in K[x]$ of exact period n.

PROOF: Recall that since $c_2 = u_2^d$, see Theorem 4.3, one has $f(u_1/u_2) = (u_1^d + c_1)/u_2^d$. As $f(u_1/u_2)$ is an element in $O_f(u_1/u_2)$, it follows that u_2^{d-1} divides $u_1^d + c_1$, see Remark 4.4. In other words, $f(u_1/u_2) = (g \circ h(u_1))/u_2$, where $g \circ h(u_1), u_2 \in O_K$ are relatively prime. Now the statement follows by a simple induction argument to show that $f^j(u_1/u_2) = (g \circ h)^j(u_1)/u_2$. Now the statement of the corollary holds because $f^n(u_1/u_2) = u_1/u_2$. \Box

Corollary 4.5 can be strengthened in the following manner over \mathbb{Q} . We recall that for $c = a/b \in \mathbb{Q}$ where gcd(a, b) = 1, one may define the *height* of c to be $h(c) = \max\{|a|, |b|\}$. Fixing $d \ge 2$, we define the following two subsets in \mathbb{Q}

$$S(N) = \left\{ \frac{\alpha}{\beta} : \alpha \in \mathbb{Z}, \ \beta \in \mathbb{Z}^+, \ \gcd(\alpha, \beta) = 1, \ h\left(\frac{\alpha}{\beta}\right) \le N \right\},$$

$$S_d(N) = \left\{ \frac{\alpha}{\beta} : \alpha \in \mathbb{Z}, \ \beta \in \mathbb{Z}^+, \ h\left(\frac{\alpha}{\beta}\right) \le N, \ \beta \text{ is a } d\text{-th power} \right\}.$$

We will show that $\lim_{N\to\infty} \frac{|S_d(N)|}{|S(N)|} = 0$. This implies the following consequence. Fixing $d \ge 2$, if $f(x) = x^d + c_1/c_2 \in \mathbb{Q}[x]$, where $c_1 \in \mathbb{Z}$ and $c_2 \in \mathbb{Z}^+$ are relatively prime in \mathbb{Z} , has a periodic point, then c_2 is a *d*-th power. In other words, if we consider the set of such polynomials with periodic points such that the height of c_1/c_2 is less than N, then according to Theorem 4.3, the set of those c_1/c_2 is contained in $S_d(N)$. This means that the density of polynomials $x^d + c$ which have periodic points among all polynomials of the form $x^d + c$, $c \in \mathbb{Q}$, is zero. This can be restated as follows: Fixing $d \ge 2$, almost all polynomials $x^d + c$, $c \in \mathbb{Q}$, have no periodic points.

Proposition 4.7. For an integer $d \geq 2$, one has the following asymptotic formula

$$\frac{|S_d(N)|}{|S(N)|} \sim \frac{\pi^2}{6N^{(d-1)/d}} \quad \text{as } N \to \infty.$$

PROOF: It is clear that $|S_d(N)|$ is asymptotically $2N^{(d+1)/d}$. A standard analytic number theory exercise shows that

$$\sum_{0 < \alpha, \beta \le N, \gcd(\alpha, \beta) = 1} 1$$

is asymptotically $6N^2/\pi^2$. It follows that $|S_d(N)|/|S(N)|$ is asymptotically $\frac{2\pi^2}{12N^{(d-1)/d}}$. \Box

Fixing $d \ge 2$, we set

$$P(N) = \{c \in \mathbb{Q} : h(c) \le N\},\$$

$$P_d(N) = \{c \in \mathbb{Q} : x^d + c \text{ has a periodic point, } h(c) \le N\}.$$

According to Theorem 4.3, one has $|P_d(N)|/|P(N)| < |S_d(N)|/|S(N)|$. Now, the following result holds as a direct consequence of Proposition 4.7.

Theorem 4.8. One has the following limit $\lim_{N\to\infty} \frac{P_d(N)}{P(N)} = 0.$

The above limit holds if one replaces \mathbb{Q} with a number field. The proof is similar but the hight function has to be changed appropriately.

4.2. The numerators c_1 and u_1 of c and u. We now deduce some divisibility conditions on the numerators of c and u. Recall that

$$G^{n}(x) = F_{0} - c_{2}^{d^{n-1}}x + F_{1}x^{d} + F_{2}x^{2d} + \ldots + F_{d^{n-1}-1}x^{d^{n}-d} + F_{d^{n-1}}x^{d^{n}},$$

and eq (1) is given by

 $F_0 u_2^{d^n} - c_2^{d^{n-1}} u_1 u_2^{d^n-1} + F_1 u_1^d u_2^{d^n-d} + F_2 u_1^{2d} u_2^{d^n-2d} + \ldots + F_{d^{n-1}-1} u_1^{d^n-d} u_2^d + F_{d^{n-1}} u_1^{d^n} = 0.$

In the following lemma, we list some of the divisibility criteria satisfied by the numerator u_1 of a periodic point u_1/u_2 of $f(x) = x^d + c_1/c_2$ of exact period n > 1.

Lemma 4.9. The following statements hold.

- a) If p is a prime such that $\nu_p(u_1) = a$, then $\nu_p(F_0) = a$. In particular, $u_1 \parallel F_0$.
- b) c_1 and u_1 are relatively prime in O_K . c) $u_1 \parallel \frac{F_0}{c_1}$; and $\frac{F_0}{c_1}$ and c_1 are relatively prime in O_K . d) $c_1 \mid (u_1^{d^n-1} - u_2^{d^n-1})$.

PROOF: We will be mainly considering eq (1) above. For (a), that $\nu_p(F_0) \ge a$ is a direct consequence of eq (1) and the fact that u_1 and u_2 are relatively prime. If $p^{a+1} | F_0$, then this will imply that p divides the coefficient of the linear term in u_1 , namely, $c_2^{d^{n-1}} u_2^{d^n-1}$, which is a contradiction.

For (b), according to Corollary 4.6, the linear factor $(x - (g \circ h)^j (u_1)/u_2)$, $1 \le j \le n$, divides $G^n(x)$. In other words, $u_2x - (g \circ h)^j (u_1)$ divides $u_2^{d^n} G^n(x/u_2)$. In particular, one sees that $u_1(u_1^d + c_1)/u_2^{d-1}$ divides F_0 . It follows that if there is a common prime divisor pof c_1 and u_1 such that $\nu_p(u_1) = a$, then $\nu(F_0) > a$ which contradicts (a).

Since
$$F_0 = c_1 c_2^{d^{n-1}-1} + \sum_{i=0}^{a} g_{n,i} c_1^{d+i} c_2^{d^{n-1}-d-i} \in c_1 \mathbb{Z}[c_1, c_2]$$
, see Lemma 2.1, part (c) follows

directly from (a) and (b) and the condition that c_1 and c_2 are relatively prime in O_K .

Since $F_i \in c_1 \mathbb{Z}[c_1, c_2], i \neq d^{n-1}$, it follows that

$$c_1 \mid F_{d^{n-1}} u_1^{d^n} - c_2^{d^{n-1}} u_1 u_2^{d^n-1} = c_2^{d^{n-1}} u_1 (u_1^{d^n-1} - u_2^{d^n-1}).$$

Since c_1 is relatively prime to both u_1 and u_2 in O_K , where the latter relative primality holds because $c_2 = u_2^d$, this yields that $c_1 \mid (u_1^{d^n-1} - u_2^{d^n-1})$.

5. Periodic points and divisors of arithmetic sequences

In the rest of this note, we illustrate the connection between periodic points of the polynomial $f(x) = x^d + c \in \mathbb{Q}[x]$ and two arithmetic sequences.

Let $c = c_1/c_2$ be such that $c_1 \in \mathbb{Z}$ and $c_2 \in \mathbb{Z}^+$ are relatively prime. Given that u_1/u_2 is a periodic point of exact period n of $x^d + c$, the orbit of u_1/u_2 is the set $O_f(u_1/u_2) = \{f^j(u_1/u_2) : j = 1, 2, 3, \ldots\}$. We recall that $f^j(u_1/u_2) = (g \circ h)^j(u_1)/u_2$ where $h(x) = x^d + c_1$ and $g(x) = x/u_2^{d-1}$, $j = 1, 2, \ldots$, see Remark 4.4 and Corollary 4.6. We set $u_{1,j} = (g \circ h)^j(u_1)$.

In this section, fixing *i* and *j*, we consider the sequence $\frac{u_{1,i}^k - u_{1,j}^k}{u_{1,i} - u_{1,j}}$, $k = 1, 2, 3, \ldots$ We investigate the divisibility of the terms of the latter sequence by prime divisors of c_1 . In fact, according to Lemma 4.9 d), if *p* is a prime divisor of c_1 , then $p \mid (u_{1,l}^{d^n-1} - u_2^{d^n-1})$ for every *l*. Therefore, $p \mid (u_{1,i}^{d^n-1} - u_{1,j}^{d^n-1})$ for any *i* and *j*.

We first prove the coprimality of $u_{1,i}$ and $u_{1,j}$ for any choice of i and $j, i \neq j$.

Lemma 5.1. Let $f(x) = x^d + c_1/c_2 \in K[x]$ where $c_1 \in O_K$ and $c_2 \in O_K/O_K^{\times}$ are relatively prime. If u_1/u_2 is a periodic point of exact period n, where u_1 and u_2 are relatively prime in O_K , then $u_{1,i}$ and $u_{1,j}$ are relatively prime for any $i \neq j$.

PROOF: Let p be a common prime divisor of $u_{1,i}$ and $u_{1,j}$. Assume that $\nu_p(u_{1,k}) = a_k$, k = i, j. According to Lemma 4.9, one has $\nu_p(F_0) = a_i = a_j$ where F_0 is defined as before. Since both $u_{1,i}/u_2$ and $u_{1,j}/u_2$ are periodic points of f(x), it follows that they are zeros of the polynomial $G^n(x)$ defined in §4. In particular, $u_{1,i}u_{1,j}$ divides F_0 . Therefore, if p was a prime divisor of both $u_{1,i}$ and $u_{1,j}$, this would contradict the fact that $\nu_p(F_0) = a_i$. \Box

Theorem 5.2. Let u_1/u_2 be a periodic point of $f(x) = x^d + c \in \mathbb{Q}[x]$ of exact period nwhere $c = c_1/c_2$ is as above. Assume, moreover, that there is a prime $p \mid c_1$ such that $gcd(p, d^n - 1) = 1$, then $p \nmid (u_{1,i} - u_{1,j})$, for all $i \neq j$. In particular, $p \mid \frac{u_{1,i}^{d^n - 1} - u_{1,j}^{d^n - 1}}{u_{1,i} - u_{1,j}}$.

PROOF: Let p be a prime such that $p|c_1$ and $gcd(p, d^n - 1) = 1$. We assume on the contrary that $\nu_p(u_{1,i} - u_{1,j}) = \alpha > 0$. We set $b_{i,j}(m) = \frac{u_{1,i}^m - u_{1,j}^m}{u_{1,i} - u_{1,j}}$. We recall that

$$gcd(b_{i,j}(k), b_{i,j}(l)) = b_{i,j}(g), \qquad g = gcd(k, l),$$

see [4, Theorem VI].

Since $\nu_p(u_{1,i} - u_{1,j}) = \alpha$, one has $\nu_p(u_{1,i}^p - u_{1,j}^p) \ge \alpha + 1$, see [3, Theorem III]. Noting that $\gcd(b_{i,j}(m), b_{i,j}(p)) = b_{i,j}(1) = 1$ whenever $\gcd(m, p) = 1$ and that $\nu_p(u_{1,i}^k - u_{1,j}^k) \ge \alpha$ for all $k \ge 1$, one has $\nu_p(u_{1,i}^m - u_{1,j}^m) = \nu_p(u_{1,i} - u_{1,j}) = \alpha$ whenever $\gcd(m, p) = 1$.

Since $u_{1,i}/u_2$ is a point in the orbit of u_1/u_2 , hence a periodic point of period n, one has $f^n(u_{1,i}/u_2) = u_{1,i}/u_2$. Thus, eq (1) may be written for $u_{1,i}/u_2$ as follows

$$F_{0}u_{2}^{d^{n}} + F_{1}u_{1,i}^{d}u_{2}^{d^{n}-d} + F_{2}u_{1,i}^{2d}u_{2}^{d^{n}-2d} + \ldots + F_{d^{n-1}-1}u_{1,i}^{d^{n}-d}u_{2}^{d} + F_{d^{n-1}}u_{1,i}^{d^{n}} = c_{2}^{d^{n-1}}u_{1,i}u_{2}^{d^{n}-1}$$

$$(2)$$

Similarly,

$$F_{0}u_{2}^{d^{n}} + F_{1}u_{1,j}^{d}u_{2}^{d^{n}-d} + F_{2}u_{1,j}^{2d}u_{2}^{d^{n}-2d} + \ldots + F_{d^{n-1}-1}u_{1,j}^{d^{n}-d}u_{2}^{d} + F_{d^{n-1}}u_{1,j}^{d^{n}} = c_{2}^{d^{n-1}}u_{1,j}u_{2}^{d^{n}-1}.$$
(3)

Multiplying (2) and (3) times $u_{1,j}^{d^n}$ and $u_{1,i}^{d^n}$, respectively, and subtracting the two resulting equations, one obtains

$$F_{0}u_{2}^{d^{n}}(u_{1,i}^{d^{n}}-u_{1,j}^{d^{n}})+F_{1}\left(u_{1,i}^{d^{n}-d}-u_{1,j}^{d^{n}-d}\right)u_{1,i}^{d}u_{1,j}^{d}u_{2}^{d^{n}-d}+F_{2}\left(u_{1,i}^{d^{n}-2d}-u_{1,j}^{d^{n}-2d}\right)u_{1,i}^{2d}u_{1,j}^{2d}u_{2}^{d^{n}-2d}+\dots$$

$$(4) \qquad \qquad +F_{d^{n-1}-1}\left(u_{1,i}^{d}-u_{1,j}^{d}\right)u_{1,i}^{d^{n}-d}u_{1,j}^{d^{n}-d}u_{2}^{d}=c_{2}^{d^{n-1}}\left(u_{1,i}^{d^{n}-1}-u_{1,j}^{d^{n}-1}\right)u_{1,i}u_{1,j}u_{2}^{d^{n}-1}.$$

One recalls that $F_i \in c_1\mathbb{Z}[c_1, c_2]$ for $i \neq d^{n-1}$, see Corollary 2.3, and $p^{\alpha}||(u_{1,i} - u_{1,j})$. This yields that the left hand side of eq (4) is divisible by $p^{\alpha+1}$. Now since c_1 is relatively prime to each of c_2 , u_2 , $u_{1,i}$ and $u_{1,j}$, it follows that $p^{\alpha+1}$ divides $(u_{1,i}^{d^n-1} - u_{1,j}^{d^n-1})$ on the right hand side of eq (4), which is a contradiction as $gcd(p, d^n - 1) = 1$.

Corollary 5.3. Let u_1/u_2 be a periodic point of $x^d + c$ of exact period n where $c = c_1/c_2$ is as above. If there is a prime p such that $p \mid c_1$ and $gcd(p, d^n - 1) = 1$, then $gcd(p-1, d^n - 1) > 1$. In fact, if $d^n - 1$ is prime, then $p \equiv 1 \mod (d^n - 1)$, in particular, $p > d^n$.

PROOF: Since $gcd(p, d^n - 1) = 1$, one knows that $p \nmid (u_{1,i} - u_{1,j})$, see Theorem 5.2. We recall that

$$gcd(b_{i,j}(k), b_{i,j}(l)) = b_{i,j}(g), \qquad g = gcd(k, l).$$

Since $\nu_p \left(u_{1,i}^{p-1} - u_{1,j}^{p-1} \right) > 0$ by Fermat's Little Theorem, one knows that $\nu_p(b_{i,j}(p-1)) > 0$. 0. Furthermore, as $c_1 \mid \left(u_{1,i}^{d^n-1} - u_{1,j}^{d^n-1} \right)$, one has $\nu_p(b_{i,j}(d^n-1)) > 0$. It follows that $gcd(p-1, d^n-1) > 1$.

If $d^n - 1$ is prime, then $d^n - 1$ is the order of $u_1 u_2^{-1} \mod p$. This implies that $(d^n - 1) \mid p - 1$.

Remark 5.4. Let p be a prime divisor of c_1 such that $gcd(p, d^n - 1) = 1$. In view of Corollary 5.3, if $gcd(p-1, d^n-1) = 1$, then $x^d + c_1/c_2$ has no periodic points of period n. Furthermore, if $d^n - 1$ is prime, then $d^n - 1$ divides p - 1 for every prime divisor p of c_1 . Finally, if $p \mid (u_{1,i}^m - u_{1,j}^m)$ for some $m < (d^n - 1)$, then gcd(m, p - 1) > 1. In particular, if gcd(m, p - 1) = 1 for any $m < d^n - 1$, then p is a primitive prime divisor of $\frac{u_{1,i}^{d^n-1} - u_{1,j}^{d^n-1}}{u_{1,i} - u_{1,j}}$.

Example 5.5. Let m > 1. Let the polynomial $f(x) = x^2 + 2^m$ be such that $2^m - 1$ is prime. If n > 1 is an integer such that gcd(m, n) = 1, then $gcd(2^m - 1, 2^n - 1) = 1$. Thus, Corollary 5.3 implies that $f(x) = x^2 + 2^m$ has no periodic point of period n when gcd(m, n) = 1.

6. A REMARK ON PRIMITIVE PRIME DIVISORS OF $f^n(0)$

We recall that if $x_i, i = 1, 2, ..., is$ a sequence in the ring of integers O_K of a number field K, then the term x_n is said to have a *primitive prime divisor* p if p is a prime such that $\nu_p(x_n) > 0$, and $\nu_p(x_m) = 0$ for any m < n.

Set $f(x) = x^d + c_1/c_2 \in K[x]$, $c_1 \in O_K$, $c_2 \in O_K/O_K^{\times}$, $d \ge 2$. In this section, we write F_0^n for $c_2^{d^{n-1}} f^n(0)$. It is known that the sequence F_0^n is a divisibility sequence. In particular, $F_0^m \mid F_0^n$ whenever $m \mid n$. Several results were proved concerning the existence of primitive prime divisors for each term of the sequence F_0^n , see for example [10].

Lemma 6.1. Let K be a number field with ring of integers O_K . Let $g(x) \in O_K[x]$ and $u \in O_K$ be such that there is a prime p dividing $g^m(u)$ and $g^n(u)$, n > m. Then p divides $g^{n-m}(0)$.

PROOF: This follows directly by observing that $g^n(u) = g^{n-m}(g^m(u))$.

Theorem 6.2. If u_1/u_2 is a periodic point of $f(x) = x^d + c_1/c_2 \in K[x]$ of exact period n, where u_i, c_i are as before, then every prime divisor of u_1 is a primitive prime divisor of F_0^n , n > 1.

PROOF: One knows that $u_1 \mid (F_0^n/c_1)$, see Lemma 4.9 c). We assume that p is a prime divisor of u_1 such that $p \mid F_0^m$ for m < n. According to Lemma 6.1, one has $\nu_p(F_0^{n-m}) > 0$. Let m be the smallest such positive integer. One knows that $m \ge 2$ since $gcd(c_1, u_1) = 1$, see Lemma 4.9 b). By successive application of the division algorithm, one has $m \mid n$.

Therefore, if n is prime, then it is impossible for p to divide F_0^m for m < n.

Now, we assume n is composite. Let q_1 and q_2 be two distinct prime divisors of n where $n = q_i k_i$. We consider the polynomial $g_i(x) = f^{k_i}(x)$. One has $g_i(0), g_i^2(0) = f^{2k_i}(0), g_i^3(0) = f^{3k_i}(0), \ldots, g_i^{q_i}(0) = f^n(0)$. Since $f^n(0) = g_i^{q_i}(0)$, Lemma 4.9 implies that $\nu_p(g_i^{q_i}(0)) > 0$. Since q_i is prime, it follows that the smaller possible integer l such that $\nu_p(g_i^l(0)) > 0$ is l = 1. In other words, $\nu_p(f^{k_1}(0)), \nu_p(f^{k_2}(0)) > 0$. This yields that either $k_1 \mid k_2$ or $k_2 \mid k_1$, a contradiction.

Corollary 6.3. If $f(x) = x^d + c_1/c_2 \in \mathbb{Q}[x]$ has a periodic point of period n, then F_0^n has at least n-1 distinct primitive prime divisors.

PROOF: This follows immediately from Theorem 6.2 and Lemma 5.1.

References

- O. Ahmadi, F. Luca, A. Ostafe and I. E. Shparlinski, On stable quadratic polynomials, *Glasgow Math. J.*, 54 (2012), 359–369.
- [2] M. Ayad and D. McQuillan, Irreducibility of the iterates of a quadratic polynomial over a field, Acta Arith., 93 (2000), 87–97; Corrigendum: Acta Arith., 99 (2001), 97.
- [3] G. D. Birkhoff and H. S. Vandiver, On the Integral Divisors of aⁿ bⁿ, Annals of Mathematics, 5 (1904), 173–180.
- [4] R. D. Carmichael, On the Numerical Factors of the Arithmetic Forms αⁿ±βⁿ, Annals of Mathematics, 15 (1913-1914), 30–48.
- [5] G. Chèze and A. Galligo, Four Lectures on Polynomial Absolute Factorization, Solving Polynomial Equations: Foundations, Algorithms, and Applications, Editors: A. Dickenstein and I. Z. Emiris, Springer, Algorithms and Computation in Mathematics 14, 2005.
- [6] L. Danielson and B. Fein, On the irreducibility of the iterates of $x^n b$, Proc. Amer. Math. Soc., 130 (2001), 1589–1596.
- [7] E. V. Flynn, B. Poonen and E. F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-2 curve, *Duke Math. J.*, 90 (1997), 435–463.
- [8] R. Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, J. Lond. Math. Soc., 78 (2008), 523–544.
- [9] G. Karpilovsky, *Topics in Field Theory*, Mathematics Studies (1989).
- [10] H. Krieger, Primitive prime divisors in the critical orbit of $z^d + c$, International Mathematics Research Notices, 23 (2013), 5498–5525.
- [11] P. Morton and J. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices, 2 (1994), 97–110.
- [12] P. Morton, Arithmetic properties of periodic points of quadratic maps. II., Acta Arith., 87 (1998), 89–102.
- [13] B. Poonen, The classification of rational preperiodic points of quadratic polynomials over Q: a refined conjecture, Math. Z., 228 (1998), 11–29.
- [14] M. Stoll, Galois groups over Q of some iterated polynomials, Arch. Math., 59 (1992), 239–244.
- [15] M. Stoll, Rational 6-cycles under iteration of quadratic polynomials, London Math. Soc. J. Comput. Math., 11 (2008), 367–380.

American University in Cairo, Mathematics and Actuarial Science Department, AUC Avenue, New Cairo, Egypt

E-mail address: mmsadek@aucegypt.edu