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ON RATIONAL PERIODIC POINTS OF xd + c

MOHAMMAD SADEK

Abstract. We consider the polynomials f(x) = xd + c, where d ≥ 2 and c ∈ Q. It is

conjectured that if d = 2, then f has no rational periodic point of exact period N ≥ 4. In

this note, fixing some integer d ≥ 2, we show that the density of such polynomials with a

rational periodic point of any period among all polynomials f(x) = xd + c, c ∈ Q, is zero.

Furthermore, we establish the connection between polynomials f with periodic points and

two arithmetic sequences. This yields necessary conditions that must be satisfied by c and

d in order for the polynomial f to possess a rational periodic point of exact period N , and a

lower bound on the number of primitive prime divisors in the critical orbit of f when such

a rational periodic point exists. The note also introduces new results on the irreducibility

of iterates of f .

1. Introduction

An arithmetic dynamical system over a number field K consists of a rational function f :

Pn(K) → Pn(K) of degree at least 2 with coefficients inK where the nth iterate of f is defined

recursively by f 1(x) = f(x) and fm(x) = f(fm−1(x)) when m ≥ 2. A point P ∈ Pn(K) is

said to be a periodic (preperiodic) point for f if the orbit P, f(P ), f 2(P ), · · · , fn(P ), · · · of P

is periodic (eventually periodic). If N is the smallest positive integer such that fN(P ) = P ,

then the periodic point P is said to be of exact period N .

The following conjecture was proposed by Morton and Silverman. There exists a bound

B(D, n, d) such that if K/Q is a number field of degree D, and f : Pn(K) → Pn(K) is a

morphism of degree d ≥ 2 defined over K, then the number of K-rational preperiodic points

of f is bounded by B(D, n, d), see [11]. When f is taken to be a quadratic polynomial over

Q, the following conjecture was suggested in [13]. If N ≥ 4, then there is no quadratic

polynomial f(x) ∈ Q[x] with a rational point of exact period N . The conjecture has been

proved when N = 4, see [12], and N = 5, see [7]. A conditional proof for the case N = 6

was given in [15].

We consider the polynomial f(x) = xd + c over a number field K. If c = c1/c2 where c1
and c2 are relatively prime in the ring of integers OK of K, we investigate the divisibility

of the coefficients of the iterates fm(x), m ≥ 2, by the prime divisors of c1 and c2. Using

these divisibility criteria, we approach three questions concerning the arithmetic dynamical

system of f(x) = xd + c: (i) When is f(x) stable over K? (ii) Fixing d, what is the density
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2 M. SADEK

of such polynomials with periodic points? (iii) Given that f(x) possesses a rational periodic

point of period n, should this yield necessary conditions satisfied by d and c?

The stability question in arithmetic dynamical systems concerns the irreducibility of the

iterates of f(x) over K. More precisely, a polynomial f(x) is said to be stable over a field K

if fn(x) is irreducible over K for every n ≥ 1. In [1], the authors showed that most monic

quadratic polynomials in Z[x] are stable over Q. One may find sufficient conditions for an

irreducible monic quadratic polynomial in Z[x] to be stable over Q in [8]. It was shown

that f(x) = x2 + c ∈ Z[x] is stable over Q if f(x) is irreducible itself, see [14]. Further, the

polynomial f(x) = xd + c ∈ Z[x], d ≥ 2, is known to be stable over Q if f(x) is irreducible,

see [6].

Unlike the situation over OK , f(x) = xd + c ∈ K[x] can be irreducible over K whereas

fn(x) is reducible over K for some n > 1. In this note, if c = c1/c2 where c1 and c2 are

relatively prime in OK , we show that the existence of a prime divisor p of c1 such that

gcd(νp(c1), d) = 1, where νp is the valuation of K at the prime p, implies the stability of

f(x). For instance, if d is prime and c1 is not a dth-power modulo units in OK, then f(x) is

stable.

Assuming that u1/u2 is a periodic point of f(x) of exact period n, where u1 and u2 are

relatively prime in OK , we give several results on the divisibility of the coefficients of the

iterate fn(x) by prime divisors of u1 and u2. This enables us to show that if f(x) has a

K-rational periodic point, then c2 must be a d-th power modulo units in OK . More precisely,

c2 = ud
2 modulo units. Fixing d, a hight argument, then, yields that the density of such

polynomials with periodic points among all polynomials f(x) = xd+ c is zero. In particular,

almost all polynomials f(x) = xd + c satisfy the conjecture of Morton and Silverman.

We establish the connection between a periodic point u1/u2 of f(x) = xd + c ∈ Q[x]

of period n and the sequence um
1 − um

2 , m = 1, 2, · · · . In fact, we show that c1 divides

udn−1
1 − udn−1

2 , yet none of the prime divisors of c1 divide u1 − u2. This provides us with

necessary conditions on c1 in order for f(x) to have such a periodic point. For instance, one

knows that if p is a prime divisor of c1 such that gcd(p − 1, dn − 1) = 1, then f(x) has no

periodic points of period n.

Finally, we display the relation between rational periodic points of the polynomials f(x) =

xd + c ∈ Q[x] and another sequence, namely the sequence of the iterates, fn(0), evaluated

at 0. One may consult [10] for several results on the existence of primitive prime divisors of

such sequences. In this note, we show that the existence of a periodic point of f(x) of exact

period n implies a lower bound on the number of primitive prime divisors of fn(0).

2. Valuations of the coefficients of the iterates of f

In this section, we assume that K is an arbitrary field unless otherwise stated.
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Lemma 2.1. Let f(x) = xd+ c, d ≥ 2, c ∈ K. One has fn(0) = c+ cdgn(c) where gn ∈ Z[x]

is a polynomial of degree dn−1 − d, n ≥ 2.

Proof: Since f 2(0) = c + cd, the statement is true when n = 2 by taking g2(x) = 1. Now,

an induction argument will yield the statement. Assume that fn(0) = c + cdgn(c) where

gn(x) ∈ Z[x] is of degree dn−1 − d. One has that fn+1(0) = c+ (fn(0))d. One observes that

fn+1(0) = c+ (c+ cdgn(c))
d = c+ cd

(

1 + cd−1gn(c)
)d

.

We set gn+1(x) =
(

1 + xd−1gn(x)
)d
. The polynomial gn+1(x) ∈ Z[x]. Moreover, since gn has

degree dn−1−d by assumption, one gets that the degree of gn+1 is d(d
n−1−d+d−1) = dn−d.

✷

The following lemma gives an explicit description of the coefficients of fn(x).

Proposition 2.2. Let f(x) = xd + c, d ≥ 2, c ∈ K. Assume that fn(x) = f0 + f1x
d +

f2x
2d + . . .+ fdn−1xdn . The following statements are correct.

a) fdn−1 = 1.

b) fi ∈ cZ[c] for every 0 ≤ i < dn−1.

c) deg fi = dn−1 − i for 0 ≤ i ≤ dn−1.

Proof: That f0 ∈ cZ[c] and deg f0 in Z[c] is dn−1 is implied by Lemma 2.1.

We now follow an induction argument. For the polynomial f 2(x), one has

f 2(x) = (xd + c)d + c = xd2 +
d−1
∑

i=0

(

d

i

)

cd−ixid + c

= xd2 + c
d−1
∑

i=1

(

d

i

)

cd−1−ixid + c + cd.

Since fi =

(

d

i

)

cd−i ∈ cZ[c], 1 ≤ i < d − 1, is of degree < d, the statement is correct for

f 2(x).

Assume the statement holds for fn(x). One obtains the following equalities

fn+1(x) = (fn(x))d + c =
[

f0 + f1x
d + f2x

2d + . . .+ fdn−1−1x
dn−d + xdn

]d
+ c

=
[

c
(

f ′
0 + f ′

1x
d + f ′

2x
2d + . . .+ f ′

dn−1−1x
dn−d

)

+ xdn
]d

+ c

where f ′
i = fi/c ∈ Z[c] and deg f ′

i < dn−1 − 1 by assumption. Setting f ′(x) = f ′
0 + f ′

1x
d +

f ′
2x

2d + . . .+ f ′
dn−1−1x

dn−1

, one obtains

fn+1(x) = xdn+1

+

d
∑

i=1

(

d

i

)

cif ′(x)ixdn(d−i) + c.
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It is obvious that each coefficient of fn+1(x)− xdn+1

is in cZ[c].

For part c), one sees that

fn+1(x) = (fn(x))d + c =
(

f0 + f1x
d + f2x

2d + . . .+ fdn−1−1x
dn−d + xdn

)d
+ c.

We are looking for the degree of the coefficient of xld in the latter expansion where 0 ≤ l ≤ dn.

Using an induction argument, we assume that deg fi = dn−1 − i in Z[c]. In view of the

multinomial expansion, the latter expansion is given by

fn+1(x) =
∑

k0+k1+...+kdn=d

(

d

k0, . . . , kdn

) dn
∏

t=0

(ftx
td)kt + c.

Using the induction assumption, the degree of the coefficient of xld in fn+1(x) is obtained

as follows
dn
∑

t=0

kt(d
n−1 − t) = dn−1

dn
∑

t=0

kt −
dn
∑

t=0

tkt

where
dn
∑

t=0

kt = d and
dn
∑

t=0

tktd = ld. ✷

The following corollary is a straight forward result of the proposition above.

Corollary 2.3. Let K be a discrete valuation field with ring of integers OK. Let f(x) =

xd + c, d ≥ 2, where c = c1/c2 is such that c1 and c2 are relatively prime in OK. Assume

that fn(x) = f0 + f1x
d + f2x

2d + . . .+ fdn−1xdn. Then

cd
n−1

2 fn(x) = F0(c1, c2)+F1(c1, c2)x
d+F2(c1, c2)x

2d+. . .+Fdn−1−1(c1, c2)x
dn−d+Fdn−1(c1, c2)x

dn

where Fi(c1, c2) = cd
n−1

2 fi ∈ Z[c1, c2] is a homogeneous polynomial of degree dn−1. Moreover,

Fi(c1, c2) ∈ c1c
i
2Z[c1, c2] if i 6= dn−1; and Fdn−1(c1, c2) = cd

n−1

2 .

Proof: Since fi ∈ cZ[c], i 6= dn−1, and deg fi = dn−1 − i for 0 ≤ i ≤ dn−1, see Proposition

2.2, we may clear the denominators of the coefficients fi’s by multiplying throughout by

cd
n−1

2 , hence the result is obtained. ✷

3. The stability of f(x) = xd + c

Let K be a field with valuation ν whose value group is Z. Let F [x] ∈ K[x] be the

polynomial F0 + F1x+ . . .+ Fkx
k where F0 6= 0 and Fk 6= 0.

The Newton polygon of F over K is constructed as follows. We consider the following

points in the real plane: Ai = (i, ν(Fi)) for i = 0, . . . , k. If Fi = 0 for some i, then we omit

the corresponding point Ai. The Newton polygon of F over K is defined to be the lower

convex hull of these points. More precisely, we consider the broken line P0P1 . . . Pl where
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P0 = A0, P1 = Ai1 where i1 is the largest integer such that there are no points Ai below the

line segment P0P1. Similarly, P2 is Ai2 where i2 is the largest integer such that there are no

point Ai below the line segment P1P2. In a similar fashion, we may define Pi, i = 2, . . . , l,

where Pl = Ak. If some line segments of the broken line P0P1 . . . Pl pass through points

in the plane with integer coordinates, then such points in the plane will be also considered

as vertices of the broken line. Therefore, we may add s ≥ 0 more points to the vertices

P0P1 . . . Pl. The Newton polygon of F over K is the polygon Q0Q1 . . . Ql+s obtained after

relabelling all these points from left to the right, where Q0 = P0 and Ql+s = Pl.

The following theorem generalizes Eisenstein’s criterion of irreducibility, see for example

[5, Theorem 9.1.13].

Theorem 3.1 (Eisenstein-Dumas Criterion). Let K be a field with valuation ν whose value

group is Z. Let F (x) = F0 +F1x+ . . .+Fkx
k ∈ K[x] with F0Fk 6= 0. If the Newton polygon

of F over K consists of the only line segment from (0, m) to (k, 0) and if gcd(k,m) = 1,

then F is irreducible over K.

We recall that xd + c is irreducible over a field K if and only if for every prime p dividing

d, −c is not a pth-power in K; and if 4 | d then c is not 4 times a 4th-power in K, see [9,

Theorem 8.1.6].

Theorem 3.2. Let K be a number field with ring of integers OK. Let f(x) = xd + c, d ≥ 2,

be such that c = c1/c2 is such that c1 and c2 are relatively prime in OK. Assume that there

is a prime p in OK such that gcd(νp(c1), d) = 1 where νp is the valuation of K at the prime

p. Then f(x) is stable over K.

Proof: Let Kp be the completion of K with respect to the prime p and νp be the corre-

sponding valuation. In view of Corollary 2.3, one has fn(x) =
Hn(x)

cd
n−1

2

where

Hn(x) = F0(c1, c2)+F1(c1, c2)x
d+F2(c1, c2)x

2d+ . . .+Fdn−1−1(c1, c2)x
dn−d+Fdn−1(c1, c2)x

dn

and Fi(c1, c2) = cd
n−1

2 fi. Now we consider the Newton polygon of the polynomial Hn(x) ∈

Z[c1, c2][x] over Kp. According to Lemma 2.1, one has νp(F0(c1, c2)) = νp(c1). Proposition

2.2 indicates that νp(Fi(c1, c2)) ≥ νp(c1) if 1 ≤ i < dn and νp(Fdn(c1, c2)) = νp

(

cd
n−1

2

)

= 0

where the latter equality follows from the fact that c1 and c2 are relatively prime. Therefore,

the Newton polygon of Hn(x) consists of one line segment joining the two points (0, νp(c1))

and (dn, 0). Since gcd(νp(c1), d
n) = 1 by assumption, Theorem 3.1 yields that Hn(x) is

irreducible over Kp, hence over K. This implies that f(x) is stable. ✷

Corollary 3.3. Let K be a number field and f(x) = xd + c, d ≥ 2, where c = c1/c2 is such

that c1 and c2 are relatively prime in the ring of integers OK of K. Assume that c1 is not
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of the form uvp for any prime divisor p of d, where v ∈ OK and u is a unit of OK. Then

f(x) is stable over K.

In particular, if f(x) = xd + c where d is prime, then f(x) is stable over K if c1 is not a

dth-power modulo units in OK.

In what follows, we see some examples of polynomials f(x) violating the relative primality

condition gcd(νp(c1), d) = 1 in Theorem 3.2. We remark that these polynomials are not

stable.

Example 3.4. If one considers the polynomial f(x) = xd − cd, c ∈ K, over a field K, then

f(x) is not stable as f 1(x) = f(x) is reducible. The polynomial f(x) = x2−4/3 is irreducible

over Q since 4/3 is not a square in Q, yet f 2(x) =

(

x2 − 2x+
2

3

)(

x2 + 2x+
2

3

)

.

4. Periodic points

From now on K is a number field with ring of integers OK . We will write O×
K for the

group of units in OK . If p is a prime in OK , then νp is the valuation of K at p.

We consider f(x) = xd + c where c = c1/c2 such that c1 ∈ OK and c2 ∈ OK/O
×
K

are relatively prime in OK . Given u ∈ K, the orbit of u under f is the set Of(u) =
{

u, f(u), f 2(u), . . .
}

. By a periodic point u of exact period n, we mean that fn(u) = u and

that n is the smallest such positive integer. In particular, the polynomial fn(x) − x has a

zero at u and Of(u) is a finite set with exactly n elements. Moreover, any point in the orbit

Of(u) is a periodic point with period n. In particular, fn(x)−x has at least n linear factors.

In accordance with Corollary 2.3, one recalls that

fn(x) =
F0(c1, c2) + F1(c1, c2)x

d + F2(c1, c2)x
2d + . . .+ Fdn−1−1(c1, c2)x

dn−d + Fdn−1(c1, c2)x
dn

cd
n−1

2

.

Finding the zeros of fn(x)− x is equivalent to finding the zeros of the following polynomial

Gn(x) = F0(c1, c2)− cd
n−1

2 x+ F1(c1, c2)x
d + F2(c1, c2)x

2d + . . .+ Fdn−1−1(c1, c2)x
dn−d + Fdn−1(c1, c2)x

dn .

Given that u1/u2 is a periodic point of period n of f(x), where u1 and u2 are relatively prime

in OK and u2 ∈ OK/O
×
K, one multiplies throughout times udn

2 to get

F0u
dn

2 − cd
n−1

2 u1u
dn−1
2 + F1u

d
1u

dn−d
2 + F2u

2d
1 udn−2d

2 + . . .+ Fdn−1−1u
dn−d
1 ud

2 + Fdn−1udn

1 = 0

(1)

where Fi := Fi(c1, c2).
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4.1. The denominators c2 and u2 of c and u.

Proposition 4.1. Let f(x) = xd + c1/c2 such that c1 ∈ OK and c2 ∈ OK/O
×
K are relatively

prime in OK. Let u1/u2 be a periodic point of f(x) with period n where u1, u2 ∈ OK are

relatively prime. The following properties hold.

a) ud
2 | Fdn−1 = cd

n−1

2 .

b) c2 and F0 are relatively prime in OK.

c) c2 | u
dn

2 .

d) c2 and u2 have exactly the same prime divisors.

Proof: (a) follows directly from eq (1) and the fact that u1 and u2 are relatively prime in

OK .

For (b), Lemma 2.1 yields that

F0 = c1c
dn−1−1
2 + cd

n−1−d
2 cd1gn(c1/c2), gn(x) =

dn−1−d
∑

i=0

gn,ix
i, gn,i ∈ Z

= c1c
dn−1−1
2 + cd

n−1−d
2 cd1

dn−1−d
∑

i=0

gn,i(c1/c2)
i

= c1c
dn−1−1
2 +

dn−1−d
∑

i=0

gn,ic
d+i
1 cd

n−1−d−i
2 ∈ c1Z[c1, c2].

Every term in the latter expansion of F0 is divisible by c2 except for the term whose coefficient

is gn,dn−1−d = 1. Since c1 and c2 are relatively prime, it follows that c2 and F0 are relatively

prime in OK .

For (c), since Fi ∈ ci2Z[c1, c2] except when i = 0, see Corollary 2.3, this yields that

c2 | F0u
dn

2 , see eq (1). Since by (c), one knows that c2 and F0 are relatively prime, it follows

that c2 | u
dn

2 . Part (d) follows from (a) and (c). ✷

Corollary 4.2. Let c ∈ OK. If f(x) = xd + c, d ≥ 2, has a periodic point u, then u ∈ OK.

Proof: This follows from Proposition 4.1 (d). ✷

Theorem 4.3. Let f(x) = xd + c1/c2, d ≥ 2, such that c1 ∈ OK and c2 ∈ OK/O
×
K are

relatively prime in OK. Let u1/u2 be a periodic point of f(x) where u1, u2 ∈ OK are relatively

prime. One has c2 = ud
2.

Proof: We assume that u1/u2 is of period n. Let p be a prime divisor of u2. Proposition

4.1 d) implies that p divides c2. Considering eq (1), one sets α := νp(c
dn−1

2 u1u
dn−1
2 ) =
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dn−1νp(c2) + (dn − 1)νp(u2). We also set

αl : = νp(Flu
ld
1 u

dn−ld
2 ) = νp(Fl) + (dn − ld)νp(u2), 0 < l < dn−1

≥ lνp(c2) + (dn − ld)νp(u2)

= dnνp(u2) + l(νp(c2)− dνp(u2)),

see Corollary 2.3. Furthermore, we define

αdn−1 := νp(Fdn−1) = νp(c
dn−1

2 ) = dn−1νp(c2), α0 := νp(F0u
dn

2 ) = dnνp(u2),

see Corollary 2.3 and Proposition 4.1 b), respectively.

If νp(c2) < dνp(u2), then

min
0≤l<dn−1

αl > dn−1νp(c2) = αdn−1 .

In this case, either αdn−1 = αr for some r 6= dn−1, which is impossible, or αdn−1 = α which

is again impossible as νp(u2) > 0.

If νp(c2) > dνp(u2), then

min
0<l≤dn−1

αl > dnνp(u2) = α0.

In the latter case, since α0 6= αr for any r 6= 0, one must have α0 = α. It follows that

νp(u2) = dn−1νp(c2) which contradicts our assumption that νp(c2) > dνp(u2).

One concludes that it must be the case that νp(c2) = dνp(u2) for any common prime

divisor of c2 and u2. Therefore, assuming that u2 ∈ OK/O
×
K , one obtains that c2 = ud

2. ✷

Remark 4.4. If u1/u2 is a periodic point of f(x) = xd + c1/c2 where ci and ui are as in

Theorem 4.3, then c2 = ud
2. In other words, a periodic point of f(x) of any period will have

the same denominator. In particular, if f j(u1/u2) = v1,j/v2,j, j = 1, 2, . . ., are the elements

in the orbit Of(u1/u2) of u1/u2, where v1,j and v2,j are relatively prime in OK , then one may

assume that v2,j = u2 for every j. In fact, since c2 = ud
2, one has f(u1/u2) = (ud

1 + c1)/u
d
2.

Therefore, ud−1
2 | (ud

1 + c1).

The following is a direct consequence of Theorem 4.3.

Corollary 4.5. If f(x) = xd + c1/c2, d ≥ 2, where c1 and c2 are relatively prime and c2 is

not a dth-power in OK, then f has no periodic points of any period. In particular, there are

infinitely many polynomials f(x) = xd + c that have no periodic points of any period.

Corollary 4.6. Let u1/u2 be a periodic point of exact period n of f(x) = xd + c1/c2, where

ci and ui are as above. If g(x) = x/ud−1
2 and h(x) = xd + c1, then u1 is a periodic point of

the polynomial g ◦ h ∈ K[x] of exact period n.
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Proof: Recall that since c2 = ud
2, see Theorem 4.3, one has f(u1/u2) = (ud

1 + c1)/u
d
2.

As f(u1/u2) is an element in Of(u1/u2), it follows that ud−1
2 divides ud

1 + c1, see Remark

4.4. In other words, f(u1/u2) = (g ◦ h(u1))/u2, where g ◦ h(u1), u2 ∈ OK are relatively

prime. Now the statement follows by a simple induction argument to show that f j(u1/u2) =

(g ◦ h)j(u1)/u2. Now the statement of the corollary holds because fn(u1/u2) = u1/u2. ✷

Corollary 4.5 can be strengthened in the following manner over Q. We recall that for

c = a/b ∈ Q where gcd(a, b) = 1, one may define the height of c to be h(c) = max{|a|, |b|}.

Fixing d ≥ 2, we define the following two subsets in Q

S(N) =

{

α

β
: α ∈ Z, β ∈ Z+, gcd(α, β) = 1, h

(

α

β

)

≤ N

}

,

Sd(N) =

{

α

β
: α ∈ Z, β ∈ Z+, h

(

α

β

)

≤ N, β is a d-th power

}

.

We will show that lim
N→∞

|Sd(N)|

|S(N)|
= 0. This implies the following consequence. Fixing d ≥ 2,

if f(x) = xd + c1/c2 ∈ Q[x], where c1 ∈ Z and c2 ∈ Z+ are relatively prime in Z, has

a periodic point, then c2 is a d-th power. In other words, if we consider the set of such

polynomials with periodic points such that the height of c1/c2 is less than N , then according

to Theorem 4.3, the set of those c1/c2 is contained in Sd(N). This means that the density

of polynomials xd + c which have periodic points among all polynomials of the form xd + c,

c ∈ Q, is zero. This can be restated as follows: Fixing d ≥ 2, almost all polynomials xd + c,

c ∈ Q, have no periodic points.

Proposition 4.7. For an integer d ≥ 2, one has the following asymptotic formula

|Sd(N)|

|S(N)|
∼

π2

6N (d−1)/d
as N → ∞.

Proof: It is clear that |Sd(N)| is asymptotically 2N (d+1)/d. A standard analytic number

theory exercise shows that
∑

0<α,β≤N, gcd(α,β)=1

1

is asymptotically 6N2/π2. It follows that |Sd(N)|/|S(N)| is asymptotically
2π2

12N (d−1)/d
. ✷

Fixing d ≥ 2, we set

P (N) = {c ∈ Q : h(c) ≤ N} ,

Pd(N) =
{

c ∈ Q : xd + c has a periodic point, h(c) ≤ N
}

.

According to Theorem 4.3, one has |Pd(N)|/|P (N)| < |Sd(N)|/|S(N)|. Now, the following

result holds as a direct consequence of Proposition 4.7.
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Theorem 4.8. One has the following limit lim
N→∞

Pd(N)

P (N)
= 0.

The above limit holds if one replaces Q with a number field. The proof is similar but the

hight function has to be changed appropriately.

4.2. The numerators c1 and u1 of c and u. We now deduce some divisibility conditions

on the numerators of c and u. Recall that

Gn(x) = F0 − cd
n−1

2 x+ F1x
d + F2x

2d + . . .+ Fdn−1−1x
dn−d + Fdn−1xdn ,

and eq (1) is given by

F0u
dn

2 − cd
n−1

2 u1u
dn−1
2 + F1u

d
1u

dn−d
2 + F2u

2d
1 udn−2d

2 + . . .+ Fdn−1−1u
dn−d
1 ud

2 + Fdn−1udn

1 = 0.

In the following lemma, we list some of the divisibility criteria satisfied by the numerator u1

of a periodic point u1/u2 of f(x) = xd + c1/c2 of exact period n > 1.

Lemma 4.9. The following statements hold.

a) If p is a prime such that νp(u1) = a, then νp(F0) = a. In particular, u1 ‖ F0.

b) c1 and u1 are relatively prime in OK.

c) u1 ‖
F0

c1
; and

F0

c1
and c1 are relatively prime in OK.

d) c1 | (u
dn−1
1 − udn−1

2 ).

Proof: We will be mainly considering eq (1) above. For (a), that νp(F0) ≥ a is a direct

consequence of eq (1) and the fact that u1 and u2 are relatively prime. If pa+1 | F0, then this

will imply that p divides the coefficient of the linear term in u1, namely, cd
n−1

2 udn−1
2 , which

is a contradiction.

For (b), according to Corollary 4.6, the linear factor
(

x− (g ◦ h)j(u1)/u2

)

, 1 ≤ j ≤ n,

divides Gn(x). In other words, u2x − (g ◦ h)j(u1) divides udn

2 Gn(x/u2). In particular, one

sees that u1(u
d
1 + c1)/u

d−1
2 divides F0. It follows that if there is a common prime divisor p

of c1 and u1 such that νp(u1) = a, then ν(F0) > a which contradicts (a).

Since F0 = c1c
dn−1−1
2 +

dn−1−d
∑

i=0

gn,ic
d+i
1 cd

n−1−d−i
2 ∈ c1Z[c1, c2], see Lemma 2.1, part (c) follows

directly from (a) and (b) and the condition that c1 and c2 are relatively prime in OK .

Since Fi ∈ c1Z[c1, c2], i 6= dn−1, it follows that

c1 | Fdn−1udn

1 − cd
n−1

2 u1u
dn−1
2 = cd

n−1

2 u1(u
dn−1
1 − udn−1

2 ).

Since c1 is relatively prime to both u1 and u2 in OK , where the latter relative primality holds

because c2 = ud
2, this yields that c1 | (u

dn−1
1 − udn−1

2 ). ✷
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5. Periodic points and divisors of arithmetic sequences

In the rest of this note, we illustrate the connection between periodic points of the poly-

nomial f(x) = xd + c ∈ Q[x] and two arithmetic sequences.

Let c = c1/c2 be such that c1 ∈ Z and c2 ∈ Z+ are relatively prime. Given that u1/u2

is a periodic point of exact period n of xd + c, the orbit of u1/u2 is the set Of(u1/u2) =

{f j(u1/u2) : j = 1, 2, 3, . . .}. We recall that f j(u1/u2) = (g◦h)j(u1)/u2 where h(x) = xd+c1
and g(x) = x/ud−1

2 , j = 1, 2, . . ., see Remark 4.4 and Corollary 4.6. We set u1,j = (g◦h)j(u1).

In this section, fixing i and j, we consider the sequence
uk
1,i − uk

1,j

u1,i − u1,j

, k = 1, 2, 3, . . .. We

investigate the divisibility of the terms of the latter sequence by prime divisors of c1. In

fact, according to Lemma 4.9 d), if p is a prime divisor of c1, then p |
(

udn−1
1,l − udn−1

2

)

for

every l. Therefore, p | (udn−1
1,i − udn−1

1,j ) for any i and j.

We first prove the coprimality of u1,i and u1,j for any choice of i and j, i 6= j.

Lemma 5.1. Let f(x) = xd + c1/c2 ∈ K[x] where c1 ∈ OK and c2 ∈ OK/O
×
K are relatively

prime. If u1/u2 is a periodic point of exact period n, where u1 and u2 are relatively prime

in OK, then u1,i and u1,j are relatively prime for any i 6= j.

Proof: Let p be a common prime divisor of u1,i and u1,j. Assume that νp(u1,k) = ak,

k = i, j. According to Lemma 4.9, one has νp(F0) = ai = aj where F0 is defined as before.

Since both u1,i/u2 and u1,j/u2 are periodic points of f(x), it follows that they are zeros of

the polynomial Gn(x) defined in §4. In particular, u1,iu1,j divides F0. Therefore, if p was a

prime divisor of both u1,i and u1,j, this would contradict the fact that νp(F0) = ai. ✷

Theorem 5.2. Let u1/u2 be a periodic point of f(x) = xd + c ∈ Q[x] of exact period n

where c = c1/c2 is as above. Assume, moreover, that there is a prime p | c1 such that

gcd(p, dn − 1) = 1, then p ∤ (u1,i − u1,j), for all i 6= j. In particular, p |
udn−1
1,i − udn−1

1,j

u1,i − u1,j

.

Proof: Let p be a prime such that p|c1 and gcd(p, dn−1) = 1. We assume on the contrary

that νp(u1,i − u1,j) = α > 0. We set bi,j(m) =
um
1,i − um

1,j

u1,i − u1,j

. We recall that

gcd(bi,j(k), bi,j(l)) = bi,j(g), g = gcd(k, l),

see [4, Theorem VI].

Since νp(u1,i − u1,j) = α, one has νp(u
p
1,i − up

1,j) ≥ α+1, see [3, Theorem III]. Noting that

gcd (bi,j(m), bi,j(p)) = bi,j(1) = 1 whenever gcd(m, p) = 1 and that νp(u
k
1,i − uk

1,j) ≥ α for all

k ≥ 1, one has νp(u
m
1,i − um

1,j) = νp(u1,i − u1,j) = α whenever gcd(m, p) = 1.
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Since u1,i/u2 is a point in the orbit of u1/u2, hence a periodic point of period n, one has

fn(u1,i/u2) = u1,i/u2. Thus, eq (1) may be written for u1,i/u2 as follows

F0u
dn

2 + F1u
d
1,iu

dn−d
2 + F2u

2d
1,iu

dn−2d
2 + . . .+ Fdn−1−1u

dn−d
1,i ud

2 + Fdn−1udn

1,i = cd
n−1

2 u1,iu
dn−1
2 .

(2)

Similarly,

F0u
dn

2 + F1u
d
1,ju

dn−d
2 + F2u

2d
1,ju

dn−2d
2 + . . .+ Fdn−1−1u

dn−d
1,j ud

2 + Fdn−1udn

1,j = cd
n−1

2 u1,ju
dn−1
2 .

(3)

Multiplying (2) and (3) times udn

1,j and udn

1,i, respectively, and subtracting the two resulting
equations, one obtains

F0u
dn

2
(udn

1,i − udn

1,j) + F1

(

udn

−d
1,i − udn

−d
1,j

)

ud
1,iu

d
1,ju

dn

−d
2

+ F2

(

udn

−2d
1,i − udn

−2d
1,j

)

u2d
1,iu

2d
1,ju

dn

−2d
2

+ . . .

+Fdn−1
−1

(

ud
1,i − ud

1,j

)

udn

−d
1,i udn

−d
1,j ud

2
= cd

n−1

2

(

udn

−1

1,i − udn

−1

1,j

)

u1,iu1,ju
dn

−1

2
.(4)

One recalls that Fi ∈ c1Z[c1, c2] for i 6= dn−1, see Corollary 2.3, and pα||(u1,i − u1,j). This

yields that the left hand side of eq (4) is divisible by pα+1. Now since c1 is relatively prime

to each of c2, u2, u1,i and u1,j, it follows that p
α+1 divides

(

udn−1
1,i − udn−1

1,j

)

on the right hand

side of eq (4), which is a contradiction as gcd(p, dn − 1) = 1. ✷

Corollary 5.3. Let u1/u2 be a periodic point of xd+c of exact period n where c = c1/c2 is as

above. If there is a prime p such that p | c1 and gcd(p, dn−1) = 1, then gcd(p−1, dn−1) > 1.

In fact, if dn − 1 is prime, then p ≡ 1 mod (dn − 1), in particular, p > dn.

Proof: Since gcd(p, dn − 1) = 1, one knows that p ∤ (u1,i − u1,j), see Theorem 5.2. We

recall that

gcd(bi,j(k), bi,j(l)) = bi,j(g), g = gcd(k, l).

Since νp
(

up−1
1,i − up−1

1,j

)

> 0 by Fermat’s Little Theorem, one knows that νp(bi,j(p − 1)) >

0. Furthermore, as c1 |
(

udn−1
1,i − udn−1

1,j

)

, one has νp(bi,j(d
n − 1)) > 0. It follows that

gcd(p− 1, dn − 1) > 1.

If dn−1 is prime, then dn−1 is the order of u1u
−1
2 mod p. This implies that (dn−1) | p−1.

✷

Remark 5.4. Let p be a prime divisor of c1 such that gcd(p, dn − 1) = 1. In view of

Corollary 5.3, if gcd(p− 1, dn − 1) = 1, then xd + c1/c2 has no periodic points of period n.

Furthermore, if dn − 1 is prime, then dn − 1 divides p − 1 for every prime divisor p of c1.

Finally, if p | (um
1,i − um

1,j) for some m < (dn − 1), then gcd(m, p − 1) > 1. In particular, if

gcd(m, p− 1) = 1 for any m < dn − 1, then p is a primitive prime divisor of
udn−1
1,i − udn−1

1,j

u1,i − u1,j
.
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Example 5.5. Let m > 1. Let the polynomial f(x) = x2 +2m be such that 2m− 1 is prime.

If n > 1 is an integer such that gcd(m,n) = 1, then gcd(2m−1, 2n−1) = 1. Thus, Corollary

5.3 implies that f(x) = x2 + 2m has no periodic point of period n when gcd(m,n) = 1.

6. A remark on primitive prime divisors of fn(0)

We recall that if xi, i = 1, 2, . . ., is a sequence in the ring of integers OK of a number field

K, then the term xn is said to have a primitive prime divisor p if p is a prime such that

νp(xn) > 0, and νp(xm) = 0 for any m < n.

Set f(x) = xd + c1/c2 ∈ K[x], c1 ∈ OK , c2 ∈ OK/O
×
K, d ≥ 2. In this section, we write

F n
0 for cd

n−1

2 fn(0). It is known that the sequence F n
0 is a divisibility sequence. In particular,

Fm
0 | F n

0 whenever m | n. Several results were proved concerning the existence of primitive

prime divisors for each term of the sequence F n
0 , see for example [10].

Lemma 6.1. Let K be a number field with ring of integers OK. Let g(x) ∈ OK [x] and

u ∈ OK be such that there is a prime p dividing gm(u) and gn(u), n > m. Then p divides

gn−m(0).

Proof: This follows directly by observing that gn(u) = gn−m(gm(u)). ✷

Theorem 6.2. If u1/u2 is a periodic point of f(x) = xd + c1/c2 ∈ K[x] of exact period n,

where ui, ci are as before, then every prime divisor of u1 is a primitive prime divisor of F n
0 ,

n > 1.

Proof: One knows that u1 | (F n
0 /c1), see Lemma 4.9 c). We assume that p is a prime

divisor of u1 such that p | Fm
0 for m < n. According to Lemma 6.1, one has νp(F

n−m
0 ) > 0.

Let m be the smallest such positive integer. One knows that m ≥ 2 since gcd(c1, u1) = 1,

see Lemma 4.9 b). By successive application of the division algorithm, one has m | n.

Therefore, if n is prime, then it is impossible for p to divide Fm
0 for m < n.

Now, we assume n is composite. Let q1 and q2 be two distinct prime divisors of n where

n = qiki. We consider the polynomial gi(x) = fki(x). One has gi(0), g
2
i (0) = f 2ki(0), g3i (0) =

f 3ki(0), . . . , gqii (0) = fn(0). Since fn(0) = gqii (0), Lemma 4.9 implies that νp(g
qi
i (0)) > 0.

Since qi is prime, it follows that the smaller possible integer l such that νp(g
l
i(0)) > 0 is

l = 1. In other words, νp(f
k1(0)), νp(f

k2(0)) > 0. This yields that either k1 | k2 or k2 | k1, a

contradiction. ✷

Corollary 6.3. If f(x) = xd + c1/c2 ∈ Q[x] has a periodic point of period n, then F n
0 has

at least n− 1 distinct primitive prime divisors.

Proof: This follows immediately from Theorem 6.2 and Lemma 5.1. ✷
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