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CONFORMAL PSEUDO-SUBRIEMANNIAN FUNDAMENTAL GRADED LIE
ALGEBRAS OF SEMISIMPLE TYPE

TOMOAKI YATSUI

Abstract. We introduce the notion of a conformal pseudo-subriemannian fundamental graded Lie
algebra of semisimple type. Moreover we give a classification of conformal pseudo-subriemannian
fundamental graded Lie algebras of semisimple type and their prolongations.

1. Introduction and notation

This paper is the sequel to the previous one [16]. We first recall the notion of fundamental graded
Lie algebras. Moreover we define the notion of conformal pseudo-subriemannian fundamental
graded Lie algebras, which is a generalization of conformal subriemannian fundamental graded Lie
algebras.

A graded Lie algebra (GLA) m =
⊕

p<0

gp is called a fundamental graded Lie algebra (FGLA) if it is

a finite dimensional graded Lie algebra generated by nonzero subspace g−1. An FGLA m is said to
be of the µ-th kind if g−µ 6= {0} and gp = {0} for p < −µ. Let m =

⊕

p<0

gp be an FGLA over R such

that g−2 6= {0}, and let [g] be the conformal class of a nondegenerate symmetric bilinear form g on
g−1. Then the pair (m, [g]) is called a conformal pseudo-subriemannian FGLA. In particular if g is
positive definite, then (m, [g]) is called a conformal subriemannian FGLA. Also if the signature of
g has the form (r, r), then (m, [g]) is called a conformal neutral-subriemannian FGLA. Note that if
(m, [g]) is a conformal pseudo-subriemannian FGLA, so is (m, [−g]). Given two conformal pseudo-
subriemannian FGLAs (m1, [g1]) and (m2, [g2]) we say that (m1, [g1]) is isomorphic to (m2, [g2]) if
there exists a graded Lie algebra isomorphism ϕ of m1 onto m2 such that [ϕ∗g2] = [g1]. Also we
say that (m1, [g1]) is equivalent to (m2, [g2]) if (m1, [g1]) is isomorphic to (m2, [g2]) or (m2, [−g2]).

Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let g0 be the Lie algebra consisting
of all the derivations D of m satisfying the following conditions: (1) D(gp) ⊂ gp for all p < 0; (2)
D|g−1 ∈ co(g−1, g). There exists a GLA l =

⊕

p∈Z

lp such that: (i) gp = lp for p ≦ 0; (ii) l =
⊕

p∈Z

lp

is transitive, i.e., for X ∈ lp, p ≧ 0, if [X, l−1] = {0}, then X = 0; (iii) l =
⊕

p∈Z

lp is maximum

among GLAs satisfying conditions (i) and (ii) above, which is called the prolongation of (m, [g])
(For more details on the prolongation, see [13, §5]). Note that the prolongation of (m, [g]) is finite
dimensional (Lemma 3.2). Clearly the prolongation of (m, [g]) coincides with that of (m, [−g]).

It is known ([5], [16]) that the prolongation g =
⊕

p∈Z

gp of a conformal subriemannian FGLA

(m, [g]) satisfying the condition g1 6= {0} is a real rank one simple graded Lie algebra . In
contrast, there exists a conformal neutral-subriemannian FGLA (m, [g]) such that the prolongation
g =

⊕

p∈Z

gp of (m, [g]) is nonsemisimple and such that g1 6= {0} (cf. Example 5.1). A conformal

pseudo-subriemannian FGLA is said to be of semisimple type if the prolongation is semisimple.
In this paper we give a classification of conformal pseudo-subriemannian FGLAs of semisimple
type and their prolongations (Theorem 5.2). In particular we prove that the prolongation of a
conformal pseudo-subriemannian FGLA of semisimple type is simple. Also we give a classification
of conformal neutral-subriemannian FGLAs of semisimple type (Corollary 5.1).
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Notation and conventions.

(1) Blackboard bold is used for the standard systems Z (the ring of integers), R (real numbers),
C (complex numbers), C′ (split complex numbers), the real division rings H (Hamilton’s
quaternions), H′ (split quaternions), O (Cayley’s [nonassociative] octonions) and O′ (split
octonions). We denote by R>0 (resp. R≧0) the set consisting of all the positive real
numbers (resp. non-negative real numbers). For K = C, C′, H, H′, O or O′, we set
ImK = { z ∈ K : Re z = 0 }.

(2) For any real vector space V we denote by V (C) the complexification of V .
(3) Let V be a finite dimensional real vector space, and let g be a nondegenerate symmetric

bilinear form on V . We set

so(V, g) = {A ∈ gl(V ) : A · g = 0 },

co(V, g) = {A ∈ gl(V ) : A · g = ηAg for some ηA ∈ R },

where A · g is a symmetric bilinear form on V defined by (A · g)(x, y) = g(Ax, y)+ g(x,Ay)
(x, y ∈ V ). We define a linear mapping g♭ : V → V ∗ by g♭(x)(y) = g(x, y) (x, y ∈ V ).
Since g is non-degenerate, g♭ is a linear isomorphism. We denote by g♯ the inverse mapping
of g♭.

(4) For a graded vector space V =
⊕

p∈Z

Vp and k ∈ Z we denote subspaces
⊕

p≦k

Vp and
⊕

p≧k

Vp

by V≦k and V≧k respectively. Also we denote the subspace
⊕

p<0

Vp by V−. We call V− the

negative part of V .
(5) For a reductive Lie algebra g, we denote by gss the semisimple part of g.
(6) For a GLA g =

⊕

p∈Z

gp we denote by Aut0(g) the group consisting of all the automorphisms

a of g such that a(gp) = gp for all p ∈ Z.

2. Finite dimensional semisimple graded Lie algebras

2.1. Finite dimensional complex semisimple graded Lie algebras. Let g =
⊕

p∈Z

gp be a

complex semisimple GLA such that the negative part g− is an FGLA. Let h be a Cartan subalgebra
of g0; then h is a Cartan subalgebra of g such that E ∈ h, where E is the characteristic element of
g =

⊕

p∈Z

gp (i.e., E is an element of g0 such that [E,X ] = pX for X ∈ gp). Let ∆ be a root system

of (g, h). For α ∈ ∆, we denote by gα the root space corresponding to α. We associate to any set
of roots Q ⊂ ∆ a subspace

g(Q) =
∑

α∈Q

gα ⊂ g.

There exists a simple root system Π = {α1, . . . , αl} of (g, h) such that g(Π) ⊂
⊕

p≧0

gp ([15, p. 441]).

Clearly αi(E) is a non-negative integer. Since the negative part g− is generated by g−1, αi(E) is 0
or 1 ([15, Lemma 3.8]). We put ∆p = {α ∈ ∆ : α(E) = p } and Πp = ∆p ∩Π; then Π = Π0 ∪ Π1.
When g =

⊕

p∈Z

gp is a simple graded Lie algebra (SGLA), we enumerate simple roots of g as in [3].

Moreover if g has the Dynkin diagram of type Xl, then g =
⊕

p∈Z

gp is said to be of type (Xl,Π1).

For γ ∈ Π1, we put

∆−1(−γ) = { −γ + (∆0 ∪ {0}) } ∩∆ = { α = −γ + β ∈ ∆ : β ∈ ∆0 ∪ {0} }.
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Proposition 2.1 ([9, Ch.3, §3.5] and [1, Proposition 7.3]). The decomposition of the g0-module

g−1 into irreducible submodules is given by

g−1 =
⊕

γ∈Π1

g(∆−1(−γ)).

In particular the g0-module g−1 is completely reducible. Moreover g(∆−1(−γ)) is an irreducible

g0-module with highest weight −γ.

From [4, Ch.VIII, §7, Propositions 11 and 12] and the table of [3] we obtain the following
proposition.

Proposition 2.2. Let g =
⊕

p∈Z

gp be a finite dimensional complex SGLA satisfying the following

conditions: (i) the negative part m is an FGLA; (ii) g−2 and the semisimple part gss0 of g0 are both

nonzero; (iii) there exists a gss0 -invariant nondegenerate symmetric bilinear form g : g−1×g−1 → C.

(1) If the g0-module g−1 is irreducible, then g =
⊕

p∈Z

gp is of type (Cl, {α2}) (l ≧ 3) or (F4, {α4}).

(2) If the g0-module g−1 is reducible and if g−1 is the direct sum of two irreducible g0-submodules

of g−1 which are totally isotropic with respect to g, then g =
⊕

p∈Z

gp is of type (Al, {α1, αl})

or (Bl, {α1, αl}) (l ≧ 3).

Remark 2.1. Let g =
⊕

p∈Z

gp be a complex SGLA of type (A2, {α1, α2}), (B2, {α1, α2}) or (G2, {α1, α2}).

Then the semisimple part of g0 is {0}. We can easily construct a nondegenerate symmetric bilinear
form g on g−1 satisfying the following condition: for any A ∈ g0 there exists a λA ∈ C such that

g([A,X ], Y ) + g(X, [A, Y ]) = λAg(X, Y ) for all X, Y ∈ g−1

(cf. Examples 4.1, 4.2, 4.4).

2.2. Finite dimensional real semisimple graded Lie algebras. In this subsection we describe
gradations of finite dimensional real semisimple GLAs. We first notice the following proposition.

Proposition 2.3 ([15, Proposition 3.3]). The finite dimensional real SGLAs g =
⊕

p∈Z

gp fall into

the following two distinct classes:

(A) The complex SGLAs, considered as real Lie algebras;

(B) The real form of complex simple Lie algebra so that g(C) =
⊕

p∈Z

gp(C) is a complex SGLA.

Let g =
⊕

p∈Z

gp be a finite dimensional real semisimple GLA such that the negative part g− is

an FGLA. Let E be the characteristic element of g =
⊕

p∈Z

gp, and a a maximal R-diagonalizable

commutative subalgebra of g containing E. Clearly a is contained in g0. There exists a Cartan
decomposition g = k ⊕ p such that a ⊂ p ([9, Proposition 4.1]). Let h be a Cartan subalgebra of
g containing a. The complexification h(C) of h is a Cartan subalgebra of g(C). Let ∆ be the root
system of (g(C), h(C)). We set

∆k = { α ∈ ∆ : α(E) = k } (k ∈ Z),

∆• = { α ∈ ∆ : α(a) = {0} }, ∆◦ = ∆ \∆•.

Let σ be the conjugation of g(C) defined by its real form g. For λ ∈ h(C)∗ we define the element
λσ ∈ h(C)∗ by λσ = λ ◦ σ. If α ∈ ∆, then ασ ∈ ∆. We can choose a simple root system Π of
(g(C), h(C)) such that: (i) the corresponding system of positive roots ∆+ satisfies the following
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conditions: ∆+ ∩∆◦ is σ-invariant; (ii) g(Π) ⊂ g(C)≧0. There exists an involutive permutation ν

of the set Π◦ such that

γσ = ν(γ) +
∑

β∈Π•

kββ (γ ∈ Π◦, kβ ∈ Z≧0).

We set Π• = ∆• ∩Π, Π◦ = ∆◦ ∩Π and Πk = ∆k ∩Π. We shall identify the vertices of the Dynkin
diagram Xl with the elements of Π. The Satake diagram Sl is obtained from Xl as follows: Firstly
we paint the vertices α ∈ Π• (resp. α ∈ Π◦) into black (resp. white). Secondly for α ∈ Π◦, if
ασ 6= α, then we connect the pair {α, ασ} by a curved arrow. When this is done for all such pairs,
we obtain the Satake diagram Sl.

Let g =
⊕

p∈Z

gp be a finite dimensional real semisimple GLA with Satake diagram Sl, and let ∆k,

Π and Πk be as in the above. Since g− is an FGLA, Π = Π0 ∪ Π1. Furthermore the following
properties hold: (i) Π• ⊂ Π0; (ii) Π1 ⊂ Π◦; (iii) If α ∈ Π1, then ασ ∈ ∆1 ([1, Theorem 8.1]). The
semisimple GLA g =

⊕

p∈Z

gp is said to be of type (Sl,Π1) ([7, §2] and [15, §3.4]). For simplicity we

denote by gC−1(−γ) the subspace g(C)(∆−1(−γ)) of g−1(C), where γ ∈ Π1.

Proposition 2.4 ([1, Proposition 8.3]). Let g =
⊕

p∈Z

gp be a finite dimensional real semisimple

GLA of type (Sl,Π1). For γ ∈ Π1, there are two possibilities:

(1) ν(γ) = γ. Then −γσ ∈ ∆−1(−γ) and the g0(C)-module gC−1(−γ) is σ-invariant.

(2) ν(γ) 6= γ. Then −γσ ∈ ∆−1(−ν(γ)) and the two irreducible g0(C)-modules gC−1(−γ) and

gC−1(−ν(γ)) determine one irreducible g0-submodule g ∩ (gC−1(−γ) + gC−1(−ν(γ))) of g−1.

3. Conformal pseudo-subriemannian fundamental graded Lie algebras

Let m =
⊕

p<0

gp be an FGLA of the µ-kind over R, where µ ≧ 2. Let g1 and g2 be two nonde-

generate real symmetric bilinear forms on g−1. We say that g1 is equivalent to g2 if there exists
an η ∈ R>0 such that g2 = ηg1. We denote by [g] the equivalence class of a nondegenerate real
symmetric bilinear form g on g−1, which is called the conformal class of g.

Let g be a nondegenerate real symmetric bilinear form on g−1 with signature (r, s). We call
the pair (m, [g]) a conformal pseudo-subriemannian FGLA of type (r, s). In particular, if s = 0
(resp. r = s), then (m, [g]) is called a conformal subriemannian FGLA (resp. a conformal neutral-
subriemannian FGLA).

Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let g0 be the Lie algebra consisting
of all the derivations D of m satisfying the following conditions (i) and (ii): (i) D(gp) ⊂ gp for
all p < 0; (ii) D|g−1 ∈ co(g−1, g). Let g =

⊕

p∈Z

gp be the prolongation of (m, g0) (see [13, §5.2]).

We call the transitive GLA g =
⊕

p∈Z

gp the prolongation of (m, [g]). If g is finite dimensional and

semisimple, then (m, [g]) is said to be of semisimple type.
Let (m1, [g1]) and (m2, [g2]) be two conformal pseudo-subriemannian FGLAs. We say that

(m1, [g1]) is isomorphic to (m2, [g2]) if there exists a graded Lie algebra isomorphism ϕ of m1

onto m2 such that [ϕ∗g2] = [g1]. Also we say that (m1, [g1]) is equivalent to (m2, [g2]) if (m1, [g1]) is
isomorphic to (m2, [g2]) or (m2, [−g2]).

The following lemma can be proved by the same methods as in the case of conformal subrie-
mannian FGLAs ([16, Lemma 3.1]).

Lemma 3.1. Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let g =
⊕

p∈Z

gp be the

prolongation of (m, [g]). Let ρ−1 be the representation of g0 on g−1 defined by ρ−1(A)(X) = [A,X ]
(A ∈ g0, X ∈ g−1). We set ĝ0 = (ρ−1)

−1(so(g−1, g)). Then
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(1) [g0, g0] ⊂ ĝ0.

(2) Let E be the characteristic element of g =
⊕

p∈Z

gp. Then g0 = RE ⊕ ĝ0.

Lemma 3.2. Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let g =
⊕

p∈Z

gp be the

prolongation of (m, [g]). Then g is finite dimensional.

Proof. We first assume that dim g−1 ≧ 3. We define a subalgebra h0 of g0 as follows:

h0 = {X ∈ g0 : [X, g≦−2] = {0}}.

Identifying h0 with a subalgebra of gl(g−1), we see that h0 ⊂ co(g−1, g). Since the second algebraic

prolongation co(g−1, g)
(2) of co(g−1, g) vanishes, we get h

(2)
0 = {0}. From Corollary 1 of Theorem

11.1 in [13], it follows that g is finite dimensional. Next we assume that dim g−1 = 2. There
exists a basis (e1, e2) of g−1 such that g(ei, ej) = εiδij for all i, j = 1, 2, where εi ∈ {−1, 1}.

Note that [e1, e2] 6= 0. For A ∈ h0, we set adA(ei) =
2
∑

k=1

akiek (i = 1, 2; aki ∈ R). Since

g([A, ei], ej) + g(e1, [A, e2]) = λAg(ei, ej), we see that 2aii = λA and ajiεj + aijεi = 0. Also since
[A, [ei, ej]] = 0, we get a11+a22 = 0, so λA = 0. Hence h0 is considered as a subalgebra of so(g−1, g).
However since the first algebraic prolongation so(g−1, g)

(1) of so(g−1, g) vanishes, we see that g is
finite dimensional. �

Lemma 3.3. Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let g =
⊕

p∈Z

gp be the

prolongation of (m, [g]). If l =
⊕

p∈Z

lp is a transitive semisimple GLA such that gp = lp for all p < 0

and ad(l0)|g−1 ⊂ co(g−1, g), then g coincides with l.

Proof. Since ad(l0)|g−1 ⊂ co(g−1, g), l =
⊕

p∈Z

lp is a graded subalgebra of g =
⊕

p∈Z

gp. Let r be the

radical of g; then r is a graded ideal of g =
⊕

p∈Z

gp: r =
⊕

p∈Z

rp, rp = r ∩ gp. Since m = l−, we see

that r− = {0}. By transitivity of g =
⊕

p∈Z

gp, we get r = {0}, so g is semisimple. Since dim gp =

dim g−p = dim l−p = dim lp for p > 0, we get gp = lp for p 6= 0. Since l0 = [l−1, l1] = [g−1, g1] = g0,
we obtain g = l. �

The following lemma is essentially due to the proof of [2, Lemma 4.1].

Lemma 3.4. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of type (r, s), and let g =
⊕

p∈Z

gp be the prolongation of (m, [g]). If a is a maximal R-diagonalizable commutative subalgebra

of g contained in g0, then dim a ≦ min{r, s} + 1. In particular, if g is semisimple, then we have

rankR g ≦ min{r, s}+ 1.

Proof. Clearly a contains the characteristic element E of g =
⊕

p∈Z

gp. By lemma 3.1, a can be

decomposed into the direct sum a′ ⊕ RE, where a′ is a subalgebra of a such that ad(a′)|g−1 ⊂
so(g−1, g). Then a′ is R-diagonalizable in g−1. Let λ, µ be weights of the a′-module g−1 and let
V λ, V µ be the corresponding weight spaces. For x ∈ V λ, y ∈ V µ and t ∈ a′, we get

0 = g([t, x], y) + g(x, [t, y]) = (λ+ µ)(t)g(x, y).

Hence if λ + µ 6= 0, then g(V λ, V µ) = 0. Let â be the subspace of a′∗ spanned by the weights
of the a′-module g−1. Since the a′-module g−1 is faithful, the annihilator space { h ∈ a′ : λ(h) =
0 for all λ ∈ â } vanishes, so dim â = dim a′. Thus the weights of the module span a′∗. There

exists a basis (λ1, . . . , λl) of a
′∗ such that each λi is a weight of the a

′-module g−1. Then U =
l
⊕

i=1

V λi
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is a totally isotropic subspace of (g−1, g), so dim a − 1 = dimU ≦ min{r, s}. If g is semisimple,
then rankR g equals to dim a, so we obtain rankR g ≦ min{r, s}+ 1. �

4. Examples of conformal pseudo-subriemannian FGLAs of semisimple type

4.1. Conformal pseudo-subriemannian FGLAs of classical type.

Example 4.1 (cf. [12, §9] and [6, Example 3.1.2, p.241]). Let K be C, H, C′ or H′. Here we
consider K as an R-algebra. We put l = sl(n,K) (n ≧ 3); then l is a real simple Lie algebra. Let
Km be the m×m matrix whose (i, j)-component is δi,m+1−j . We define an n × n symmetric real
matrix Sp,q as follows:

Sp,q =





0 0 Kp

0 1q 0
Kp 0 0



 (p ≧ 1, q ≧ 0, 2p+ q = n ≧ 3),

where 1q denotes the q × q identity matrix. Here the center column and the center row of Sp,q

should be deleted when q = 0. Then Sp,q is a symmetric real matrix with signature (p+ q, p) such
that S2

p,q = Sp,q. We put g = {X ∈ l : X∗Sp,q + Sp,qX = O }; then

g =



















X =





X11 X12 X13

X21 X22 −Sp−1,qX
∗
12

X31 −X∗
21Sp−1,q −X11



 ∈ l :

X11 ∈ K, X12 ∈ M(1, n′,K),

X21 ∈ M(n′, 1,K),

X31, X13 ∈ ImK, X22 ∈ gl(n′,K),

X22 + Sp−1,qX
∗

22Sp−1,q = O



















,

where n′ = n−2 and we set S0,m = 1m. Here M(p, q,K) denotes the set of K-valued p×q-matrices.
We define subspaces gp of g as follows:

g−2 =











0 0 0
0 0 0

X31 0 0



 ∈ g : X31 ∈ ImK







,

g−1 =











0 0 0
X21 0 0
0 −X∗

21Sp−1,q 0



 ∈ g : X21 ∈ M(n′, 1,K)







,

g0 =











X11 0 0
0 X22 0
0 0 −X11



 ∈ g :
X11 ∈ K, X22 ∈ gl(n′,K),

X22 + Sp−1,qX
∗

22Sp−1,q = O







,

gp = { X ∈ g : tX ∈ g−p } (p = 1, 2), gp = {0} (|p| > 2).

Then g =
⊕

p∈Z

gp becomes a GLA whose negative part m is an FGLA of the second kind. We define

a symmetric bilinear form g on g−1 as follows:

g(X, Y ) = Re(X∗

21Sp−1,qY21), X, Y ∈ g−1.

Then g is nondegenerate and for A ∈ g0 we obtain (ad(A)|g−1) · g = −2(ReA11)g. Hence
ad(g0)|g−1 ⊂ co(g−1, g). The conformal pseudo-subriemannian FGLA (m, [g]) is said to be of
type (HK)p,q.

In case K = C or C′ we know that g is denoted by su(p + q, p,K) (n = 2p + q). Note that
su(p+ q, p,C′) is isomorphic to sl(2p+ q,R) for any p, q. If K = C (resp. K = C′), then g =

⊕

p∈Z

gp

is a real SGLA of type ((AIIIa)l,p, {α1, αl}) (l = n−1 = 2p+q−1, p ≧ 2, q ≧ 1), ((AIIIb)l, {α1, αl})

(l = n − 1 = 2p − 1, p ≧ 2, q = 0) or ((AIV)l, {α1, αl}) (l = n − 1 = q + 1, p = 1, q ≧ 1) (resp.
((AI)l, {α1, αl}) (l = n − 1 = 2p + q − 1 ≧ 2)), and g has the signature (2p + 2q − 2, 2p − 2) =
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(2l − 2p, 2p− 2) (resp. (2p + q − 2, 2p+ q − 2) = (l − 1, l − 1)). Here (AIIIa)l,p, (AIIIb)l, (AIV)l
and (AI)l are the following Satake diagrams.

(AIIIa)l,p :

◦
1

◦
2

◦
p

•
p+1

•
•
•
l−p

◦
l−p+1

◦
l−1

◦
l

DD

��

DD

��

DD

��

(AIIIb)l :
◦
1

◦
2

◦
p−1

◦
p

◦
p+1

◦
l−1

◦
l

❖❖
❖❖

❖❖

♦♦
♦♦
♦♦

??

��

??

��

??

��

(AIV)l : ◦
1

• • ◦
l

xx &&

(AI)l : ◦
1

◦
2

◦
l−1

◦
l

In case K = H or H
′ we know that g is denoted by sp(p + q, p,K). Note that sp(p + q, p,H′)

is isomorphic to sp(2p+ q,R) for any p, q and that sp(n,R) is denoted by sp(2n,R) or sp2n(R) in
[6], [9] and [11]. If K = H (resp. K = H′), then g =

⊕

p∈Z

gp is a real SGLA of type ((CIIa)l,p, {α2})

(l = n = 2p + q ≧ 3, p, q ≧ 1), or ((CIIb)l, {α2}) (n = l = 2p ≧ 3, q = 0) (resp. ((CI)l, {α2})
(l = n = 2p + q ≧ 3)) and g has the signature (4p + 4q − 4, 4p− 4) = (4l − 4p− 4, 4p− 4) (resp.
(4p + 2q − 4, 4p + 2q − 4) = (2l − 4, 2l − 4)). Here (CIIa)l,p, (CIIb)l and (CI)l are the following
Satake diagrams.

(CIIa)l,p : •
1

◦
2

•
3

◦
2p

•
2p+1

•
l−1

•
l

ks

(CIIb)l : •
1

◦
2

•
3

◦
2p−2

•
2p−1

◦
2p

ks

(CI)l : ◦
1

◦
2

◦
l−1

◦
l

ks

By Lemma 3.3, the prolongation of a conformal pseudo-subriemannian FGLA of type (HK)p,q
coincides with g =

⊕

p∈Z

gp.

Example 4.2 (cf.[15, §4.4 (3)]). We put g = {X ∈ gl(2l+ 1,R) : tXS + SX = 0} (l ≧ 2), where
S = Sl,1. More explicitly

g =











X =





A a B

ξ 0 −a′

C −ξ′ −A′



 ∈ gl(2l + 1,R) :

A,B,C ∈ gl(l,R),

B = −B′, C = −C ′,

a ∈ M(l, 1,R), ξ ∈ M(1, l,R)











.

Here for an r × s-matrix X we put X ′ = Ks
tXKr. The Lie algebra g is a real simple Lie algebra

so(l + 1, l,R) of type (BI)l,l. Here (BI)l,l is the following Satake diagram:

(BI)l,l : ◦
1

◦
2

◦
l−1

◦
l
+3
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We define subspaces gp of g as follows:

g−3 =



































0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

X41 0 0 0 0
0 −X ′

41 0 0 0













∈ g : X41 ∈ M(l − 1, 1,R)























,

g−2 =



































0 0 0 0 0
0 0 0 0 0

X31 0 0 0 0
0 X42 0 0 0
0 0 −X31 0 0













∈ g :
X31 ∈ R, X42 ∈ gl(l − 1,R),

X ′

42 = −X42























,

g−1 =



































0 0 0 0 0
X21 0 0 0 0
0 X32 0 0 0
0 0 −X ′

32 0 0
0 0 0 −X ′

21 0













∈ g :
X21 ∈ M(l − 1, 1,R),

X32 ∈ M(1, l − 1,R)























,

g0 =



































X11 0 0 0 0
0 X22 0 0 0
0 0 0 0 0
0 0 0 −X ′

22 0
0 0 0 0 −X11













∈ g : X11 ∈ R, X22 ∈ gl(l − 1,R)























,

gp = { X ∈ g : tX ∈ g−p } (p = 1, 2, 3), gp = {0} (|p| > 3).

Then g =
⊕

p∈Z

gp becomes a real SGLA of type ((BI)l,l, {α1, αl}) whose negative part m is an FGLA

of the third kind. We define a symmetric bilinear form g on g−1 by

g(X, Y ) = −
1

2
(X32Y21 + Y32X21) (X, Y ∈ g−1).

Then g is nondegenerate, and for A ∈ g0 we see that (ad(A)|g−1) · g = −A11g. Hence ad(g0)|g−1 ⊂
co(g−1, g). By Lemma 3.3 (m, [g]) is a conformal neutral-subriemannian FGLA such that g =

⊕

p∈Z

gp

is the prolongation of (m, [g]). The conformal pseudo-subriemannian FGLA (m, [g]) is said to be
of type (BI)l.

4.2. Conformal pseudo-subriemannian FGLAs of exceptional type.

Example 4.3 ([8, §3]). Let K = O or O
′. Here we consider K as an R-algebra. We define a

nondegenerate symmetric bilinear form g on K by g(x, y) = 1
2
(x̄y + ȳx). We set

g−1 = g1 = K, g−2 = g2 = ImK, g0 = g′0 ⊕ R, gp = {0} for |p| > 2,

where g′0 = { A ∈ so(K, g) : A(1) = 0 }. Note that g′0 is isomorphic to so(ImK, g). We further
put g =

⊕

p∈Z

gp and m = g−2 ⊕ g−1. We define a bracket operation [ ·, · ] on g as in [8, §3.2, p.444

and §3.4, pp.447–448]. By using [8, Lemma 3.1] we can prove that g =
⊕

p∈Z

gp becomes a GLA

whose negative part m is an FGLA of the second kind. For A ⊕ r ∈ g0 and X, Y ∈ g−1 we
see that (ad(A ⊕ r)|g−1) · g = −2rg, and hence ad(g0)|g−1 ⊂ co(g−1, g). The conformal pseudo-
subriemannian FGLA (m, [g]) is said to be of type (HK).
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By [8, Theorem 3.5], in case K = O (resp. K = O′) the GLA g =
⊕

p∈Z

gp is a real SGLA of

type (FII, {α4}) (resp. (FI, {α4})). Here FII(= F4(−20)) and FI(= F4(4)) are the following Satake
diagrams respectively.

FII : •
1

•
2

•
3

◦
4

+3 FI : ◦
1

◦
2

◦
3

◦
4

+3

Clearly (m, [g]) is a conformal subriemannian FGLA (resp. a conformal neutral-subriemannian
FGLA) when K = O (resp. K = O

′). By Lemma 3.3, the prolongation of a conformal pseudo-
subriemannian FGLA of type (HK) coincides with g =

⊕

p∈Z

gp.

Example 4.4. Let V be a real vector space R2, and we set s = sl(V ). We define real vector spaces
lp (p ∈ Z) as follows:

l−2 = l2 = R, l−1 = l1 = S3(V ), l0 = s⊕ R, lp = {0} (p > |2|).

We define a bracket operation [·, ·] on l =
⊕

p∈Z

lp as in [8, §3.1, p.450]. Then l =
⊕

p∈Z

lp becomes a

real SGLA of type (G2(2), {α2}) ([8, Theorem 4.3]) and the negative part m is an FGLA of the
second kind. Here G2(2) is the following Satake diagram:

G2(2) : ◦
1

◦
2

❴jt

We set V−1 = Re1 and V−2 = Re2, where (e1, e2) is the canonical basis of V . We put sp = {X ∈
s : X(Vk) ⊂ Vk+p for all k}; then s =

⊕

p∈Z

sp is a real SGLA of the first kind.

We define subspaces Wk (resp. W−k) (k = 1, . . . , 4) of l1 (resp. l−1) as follows:

W±1 = S3(V−1), W±2 = S2(V−1)⊗ V−2, W±3 = V−1 ⊗ S2(V−2), W±4 = S3(V−2);

then l±1 =
4
⊕

k=1

W±k. We define subspaces gp of l as follows:

g±5 = l±2, gk = Wk (k = ±2,±3,±4), g±1 = s±1 ⊕W±1,

g0 = s0 ⊕ R, gp = {0} (p > |5|).

Then l = g =
⊕

p∈Z

gp becomes a real SGLA of type (G2(2), {α1, α2}) such that the negative part m

is an FGLA of the 5-th kind. Let (· | ·) be an inner product on S3(V ) induced by the canonical
inner product on V . We define a symmetric bilinear form g on g−1 as follows:

g(s−1, s−1) = g(W−1,W−1) = 0, g(X, u) = g(u,X) = (Xu | e21e2) (X ∈ s−1, u ∈ W−1).

Then g is nondegenerate, and for A = λ(E11 − E22) ⊕ r ∈ g0, X ∈ s−1 and u ∈ W−1 (λ, r ∈ R),
we see that (ad(A)|g−1) · g = (λ− r)g, where Eij is an element of s such that Eijek = δjkei. Thus
ad(g0)|g−1 ⊂ co(g−1, g). Hence by Lemma 3.3 (m, [g]) is a conformal neutral-subriemannian FGLA
such that g =

⊕

p∈Z

gp is the prolongation of (m, [g]). The conformal pseudo-subriemannian FGLA

(m, [g]) is said to be of type (G).

5. Classification of conformal pseudo-subriemannian FGLAs of semisimple type

In this section we prove that a conformal pseudo-subriemannian FGLA of semisimple type is
isomorphic to one of conformal pseudo-subriemannian FGLAs given in the previous section.

Proposition 5.1. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of semisimple type,

and let g =
⊕

p∈Z

gp be the prolongation of (m, [g]).
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(1) If the g0-module g−1 is irreducible and the g0(C)-module g−1(C) is reducible, there exist

g0(C)-submodules g−1(C)
(i) (i = 1, 2) such that (i) g−1(C) = g−1(C)

(1) ⊕ g−1(C)
(2); (ii)

g−1(C)
(i) (i = 1, 2) are totally isotropic subspaces of (g−1(C), g); (iii) g−1(C)

(1) is contra-

gredient to g−1(C)
(2) as a ĝ0(C)-module, where ĝ0 = (ρ−1)

−1(so(g−1, g)).

(2) If the g0-module g−1 is reducible, then there exist g0-submodules g
(i)
−1 (i = 1, 2) such that:

(i) g−1 = g
(1)
−1 ⊕ g

(2)
−1; (ii) g

(i)
−1 (i = 1, 2) are totally isotropic subspaces of (g−1, g); (iii) g

(1)
−1

is contragredient to g
(2)
−1 as a ĝ0-module; (iv) the g0(C)-modules g

(i)
−1(C) are irreducible.

(3) g =
⊕

p∈Z

gp is an SGLA of class (B).

Proof. (1) and (2). We decompose g−1 (resp. g−1(C)) into irreducible g0-modules (resp. g0(C)-
modules) as follows:

g−1 =

k
⊕

i=1

g
(i)
−1, g−1(C) =

k′
⊕

i=1

g−1(C)
(i).

Let Ei be an element of g0 such that [Ei, Xj ] = −δijXj for all Xj ∈ g
(j)
−1. We first assume that g

(1)
−1

is a nondegenerate subspace of (g−1, g). There exist elements X1, Y1 of g
(1)
−1 such that g(X1, Y1) 6= 0.

Since

g([E1, X1], Y1) + g(X1, [E1, Y1]) = ηE1g(X1, Y1),

we see that ηE1 = −2. For Xi ∈ g
(i)
−1 (i ≧ 2),

g([E1, X1], Xi) + g(X1, [E1, Xi]) = ηE1g(X1, Xi),

so g(X1, Xi) = 0. Thus we get g(g
(1)
−1, g

(i)
−1) = 0 (i ≧ 2). If there exists a j ≧ 2 such that g

(j)
−1 is a

nondegenerate subspace of (g−1, g), then

0 = g([Ej, X1], Y1) + g(X1, [Ej , Y1]) = ηEj
g(X1, Y1) = −2g(X1, Y1),

which is a contradiction. Hence g
(i)
−1 (i ≧ 2) are totally isotropic subspaces of (g−1, g). Assume that

g
(2)
−1 6= {0}. There exists j ≧ 3 such that the restriction of g to the space g

(1)
−1×g

(j)
−1 is nondegenerate.

We set E ′
2 = E2+Ej . Let X2 (resp. Xj) be an element of g

(2)
−1 (resp. g

(j)
−1) such that g(X2, Xj) 6= 0.

Since

g([E ′

2, X2], Xj) + g(X2, [E
′

2, Xj]) = ηE′

2
g(X2, Xj),

we see that ηE′

2
= −2. Also

0 = g([E ′

2, X1], Y1) + g(X1, [E
′

2, Y1]) = −2g(X1, Y1).

This is a contradiction. Therefore we obtain that g−1 is an irreducible g0-module. Next we assume

that g
(i)
−1 is a totally isotropic subspace of (g−1, g). Here we may assume that the restriction of g to

g
(1)
−1 × g

(2)
−1 is nondegenerate. From the above result, g

(2)
−1 is a totally isotropic subspace of (g−1, g)

and is contragredient to g
(1)
−1 as a ĝ0-module. If the restriction of g to g

(1)
−1 × g

(3)
−1 is nondegenerate,

g
(3)
−1 is contragredient to g

(1)
−1 as a ĝ0-module, so g

(1)
−1 is isomorphic to g

(3)
−1 as a g0-module, which is

a contradiction. Hence g(g
(1)
−1, g

(3)
−1) = 0. Similarly we get g(g

(2)
−1, g

(3)
−1) = 0. There exists k ≧ 4 such

that the restriction of g to g
(3)
−1×g

(k)
−1 is nondegenerate. We set E ′

1 = E1+E2. Let Xi (i = 1, 2, 3, k)

be elements of g
(i)
−1 such that g(X1, X2) 6= 0 and g(X3, Xk) 6= 0. Since

0 = g([E ′

1, X1], X2) + g(X1, [E
′

1, X2]) = ηE′

1
g(X1, X2),

we get ηE′

1
= −2. On the other hand, we see that

0 = g([E ′

1, X3], Xk) + g(X3, [E
′

1, Xk]) = ηE′

1
g(X3, Xk),
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which is a contradiction. Hence g−1 = g
(1)
−1 ⊕ g

(2)
−1. Similarly we can prove that if the g0(C)-module

g−1(C) is reducible, there exist g0(C)-submodules g−1(C)
(i) (i = 1, 2) such that (i) g−1(C) =

g−1(C)
(1) ⊕ g−1(C)

(2); (ii) g−1(C)
(i) (i = 1, 2) are totally isotropic subspaces of (g−1(C), g); (iii)

g−1(C)
(1) is contragredient to g−1(C)

(2) as a ĝ0(C)-module. The assertions (1) and (2) follow from
these results.

(3) We assume that g is not simple. There exist ideals a(1) and a(2) of g such that a(1) is a
simple ideal of g and g = a(1) ⊕ a(2). Both ideals a(i) (i = 1, 2) are graded ideals of g; we write

a(i) =
⊕

p∈Z

a
(i)
p . By transitivity of g =

⊕

p∈Z

gp, we see that a
(i)
−1 6= {0} (i = 1, 2). From the results

of (1) and (2) a
(2)
−1 is contragredient to a

(1)
−1 as a ĝ0-module, which is a contradiction. Hence g is

simple. Also from the results of (1) and (2) and from [9, p.157, Example 2], it follows that g is of
class (B). �

We decompose the conformal pseudo-subriemannian FGLAs of semisimple type into the following
three classes:

(SI) The g0(C)-module g−1(C) is irreducible.
(SII) The g0-module g−1 is irreducible and the g0(C)-module g−1(C) is reducible.
(SIII) The g0-module g−1 is reducible.

Theorem 5.1. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of semisimple type, and

let g =
⊕

p∈Z

gp be the prolongation of (m, [g]). Assume that (m, [g]) is of type (r, s) (r ≧ s).

(1) If (m, [g]) is of class (SI), then g =
⊕

p∈Z

gp is an SGLA of type ((CI)l, {α2}), ((CIIa)l,p, {α2}),

((CIIb)l, {α2}) (l ≧ 3, p ≧ 1), (FI, {α4}), or (FII, {α4}).
(2) If (m, [g]) is of class (SII), then g =

⊕

p∈Z

gp is an SGLA of type ((AIIIa)l,p, {α1, αl}),

((AIIIb)l, {α1, αl}) or ((AIV)l, {α1, αl}) (l ≧ 2).
(3) If (m, [g]) is class (SIII), then (m, [g]) is conformal neutral-subriemannian and g =

⊕

p∈Z

gp

is an SGLA of type ((AI)l, {α1, αl}), ((BI)l,l, {α1, αl}) (l ≧ 2) or (G2(2), {α1, α2}).

Proof. By Proposition 5.1 the complexification g(C) =
⊕

p∈Z

gp(C) is an SGLA. We first assume that

(m, [g]) is of class (SI); then g(C) =
⊕

p∈Z

gp(C) be of type (Xl, {αi}). Furthermore g−1(C) is an

irreducible g0(C)-module with highest weight −αi and there exists a gss0 (C)-invariant symmetric
bilinear form g on g−1(C). By Proposition 2.2 (1) we obtain that (Xl, {αi}) is one of (Cl, {α2})
(l ≧ 3), (F4, {α4}). Next we assume that (m, [g]) is of class (SII) or (SIII). By Proposition 5.1
(2), the g0(C)-module g−1(C) is decomposed as follows: g−1(C) = g−1(C)

(1) ⊕ g−1(C)
(2), where

g−1(C)
(i) (i = 1, 2) are irreducible g0(C)-submodule of g−1(C) such that: (i) each g−1(C)

(i) is
totally isotropic with respect to g; (ii) g−1(C)

(1) is contragredient to g−1(C)
(2) as a ĝ0(C)-module.

By Proposition 2.2 (2) and Remark 2.1, we obtain that g(C) =
⊕

p∈Z

gp(C) is of type (Al, {α1, αl}),

(Bl, {α1, αl}) or (G2, {α1, α2}). Hence the assertions (1)–(3) follow from Proposition 2.4, and the
tables of [11, pp.79–82] and [14, pp.30–32]. �

Proposition 5.2. Let (m, [g1]) and (m, [g2]) be two conformal pseudo-subriemannian FGLAs of

semisimple type. If the prolongation of (m, [g1]) coincides with that of (m, [g2]), then (m, [g1]) is

equivalent to (m, [g2]).

Proof. The mapping ϕ = g
♯
1 ◦ g

♭
2 induces an isomorphism of g−1(C) onto itself as a ĝ0(C)-module.

If the g0(C)-module g−1(C) is reducible, then g−1(C) is the direct sum of two irreducible g0(C)-
modules g−1(C)

(i) (i = 1, 2) and g−1(C)
(1) is not isomorphic to g−1(C)

(2) as a g0(C)-module. In
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this case ϕ(g−1(C)
(i)) = g−1(C)

(i) (i = 1, 2). By Schur’s lemma, there exist two complex numbers
λ1, λ2 such that ϕ|g−1(C)

(i) = λiid (i = 1, 2). For X ∈ g−1(C)
(1) and Y ∈ g−1(C)

(2) we obtain
λ1g1(X, Y ) = g1(ϕ(X), Y ) = g2(X, Y ) and λ2g1(X, Y ) = g1(X,ϕ(Y )) = g2(X, Y ). Since g−1(C)

(i)

are totally isotropic with respect to g1 and g2, we get λ1 = λ2. Hence g2 = λ1g1 and λi ∈ R. Thus
we see that [g1] = [g2] or [g1] = [−g2]. Similarly we can prove that [g1] = [g2] or [g1] = [−g2] when
the g0(C)-module g−1(C) is irreducible. �

From Theorem 5.1, Proposition 5.2 and the results of §4 we obtain the following theorem.

Theorem 5.2. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of semisimple type. Then

(m, [g]) is equivalent to one of conformal pseudo-subriemannian FGLAs of types (HC)p,q, (HC
′)p,q,

(HH)p,q, (HH
′)p,q, (HO), (HO′), (BI)l, (G). The prolongation g =

⊕

p∈Z

gp of (m, [g]) and the signa-

ture (r, s) of g are given in the following table.

(m, [g]) (HC)p,q (p ≧ 2, q ≧

1)

(HC)p,0 (p ≧ 2) (HC)1,q (q ≧ 1) (HC
′)p,q (p ≧ 1,

2p+ q ≧ 3)

g =
⊕

p∈Z

gp ((AIIIa)l,p, {α1, αl})

(l = 2p+ q − 1)

((AIIIb)l, {α1, αl})

(l = 2p− 1)

((AIV)l, {α1, αl})

(l = q + 1)

((AI)l, {α1, αl})

(l = 2p+ q − 1)

(r, s) (2p+2q− 2, 2p− 2) (2p− 2, 2p− 2) (2q, 0) (2p + q − 2, 2p +

q − 2)

(m, [g]) (HH)p,q (p, q ≧ 1) (HH)p,0 (p ≧ 2) (HH
′)p,q (p ≧ 1,

2p+ q ≧ 3)

(HO)

g =
⊕

p∈Z

gp ((CIIa)l,p, {α2})

(l = 2p+ q)

((CIIb)l, {α2})

(l = 2p)

((CI)l, {α2}) (l =

2p+ q)

(FII, {α4})

(r, s) (4p+4q− 4, 4p− 4) (4p− 4, 4p− 4) (4p+ 2q − 4, 4p+

2q − 4)

(8, 0)

(m, [g]) (HO
′) (BI)l (l ≧ 2) (G)

g =
⊕

p∈Z

gp (FI, {α4}) ((BI)l,l, {α1, αl}) (G2(2), {α1, α2})

(r, s) (4, 4) (l − 1, l − 1) (1, 1)

Corollary 5.1. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of semisimple type.
Unless (m, [g]) is equivalent to one of (HC)p,q (p ≧ 2, q ≧ 1), (HC)1,q (q ≧ 1), (HH)p,q (p, q ≧ 1),
(HO), it is conformal neutral-subriemannian.

Example 5.1. Let l = l−1 ⊕ l0 ⊕ l1 be a real SGLA such that l−1 6= {0}. We assume that l is
splittable and rank l ≧ 2. Let S =

⊕

p<0

Sp be a faithful irreducible graded l-module such that S is

isomorphic to l as an l-module and such that S−1 6= {0}. Let t be the semidirect product of l by
S. Here S considers as a commutative Lie algebra. We define a gradation (tp) of t as follows:

tp = lp (p ≧ 0), t−1 = l−1 ⊕ S−1, tq = Sq (q ≦ −2).

Then t =
⊕

p∈Z

tp becomes a GLA such that the negative part m is an FGLA of the third kind.

By assumption l−1 is contragredient to S−1 as a t0-module. That is, there exists a t0-module
isomorphism ϕ of l−1 onto S∗

−1. We define a symmetric bilinear form g on t−1 as follows:

g(X, Y ) = g(Z,W ) = 0, g(X,Z) = g(Z,X) = 〈ϕ(X), Z〉 (X, Y ∈ l−1, Z,W ∈ S−1).

Then g is nondegenerate, and hence (m, [g]) becomes a conformal neutral-subriemannian FGLA.
Clearly t is contained in the prolongation g =

⊕

p∈Z

gp of (m, [g]). If g =
⊕

p∈Z

gp is of type ((BI)l,l, {α1, αl})

(l ≧ 3), then { X ∈ g−1 : [X, g−2] = {0} } = {0}, which is a contradiction. By Theorem 5.2,
(m, [g]) is not of semisimple type and g1 6= {0}.
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