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CONFORMAL PSEUDO-SUBRIEMANNIAN FUNDAMENTAL GRADED LIE
ALGEBRAS OF SEMISIMPLE TYPE

TOMOAKI YATSUI

ABSTRACT. We introduce the notion of a conformal pseudo-subriemannian fundamental graded Lie
algebra of semisimple type. Moreover we give a classification of conformal pseudo-subriemannian
fundamental graded Lie algebras of semisimple type and their prolongations.

1. INTRODUCTION AND NOTATION

This paper is the sequel to the previous one [16]. We first recall the notion of fundamental graded
Lie algebras. Moreover we define the notion of conformal pseudo-subriemannian fundamental
graded Lie algebras, which is a generalization of conformal subriemannian fundamental graded Lie
algebras.

A graded Lie algebra (GLA) m = @ g, is called a fundamental graded Lie algebra (FGLA) if it is

p<0
a finite dimensional graded Lie algebra generated by nonzero subspace g_;. An FGLA m is said to

be of the p-th kind if g_,, # {0} and g, = {0} for p < —p. Let m = € g, be an FGLA over R such
p<0
that g_o # {0}, and let [g] be the conformal class of a nondegenerate symmetric bilinear form g on
g_1. Then the pair (m, [g]) is called a conformal pseudo-subriemannian FGLA. In particular if g is
positive definite, then (m, [g]) is called a conformal subriemannian FGLA. Also if the signature of
g has the form (r,7), then (m, [g]) is called a conformal neutral-subriemannian FGLA. Note that if
(m, [g]) is a conformal pseudo-subriemannian FGLA, so is (m, [—g]). Given two conformal pseudo-
subriemannian FGLAs (my, [¢1]) and (mao, [g2]) we say that (my,[¢g1]) is isomorphic to (my, [ga]) if
there exists a graded Lie algebra isomorphism ¢ of m; onto my such that [p*gs] = [g1]. Also we
say that (my, [g1]) is equivalent to (mg, [go]) if (my, [g1]) is isomorphic to (ma, [g2]) or (Mg, [—ga]).
Let (m, [¢g]) be a conformal pseudo-subriemannian FGLA, and let gy be the Lie algebra consisting
of all the derivations D of m satisfying the following conditions: (1) D(g,) C g, for all p < 0; (2)
Dlg_1 € co(g-1,9). There exists a GLA [ = € [, such that: (i) g, =1, for p < 0; (ii) [= P I,
PEZL PEZL
is transitive, i.e., for X € [,, p 2 0, if [X,[_;] = {0}, then X = 0; (iii) [ = €D [, is maximum
PEZL
among GLAs satisfying conditions (i) and (ii) above, which is called the prolongation of (m,[g])
(For more details on the prolongation, see [13, §5]). Note that the prolongation of (m, [¢]) is finite
dimensional (Lemma 3.2). Clearly the prolongation of (m,[g]) coincides with that of (m,[—g]).
It is known ([5], [16]) that the prolongation g = €D g, of a conformal subriemannian FGLA
PEZL
(m, [g]) satisfying the condition g; # {0} is a real rank one simple graded Lie algebra . In
contrast, there exists a conformal neutral-subriemannian FGLA (m, [¢]) such that the prolongation

g = P g, of (m,[g]) is nonsemisimple and such that g; # {0} (cf. Example 5.1). A conformal
PEZL
pseudo-subriemannian FGLA is said to be of semisimple type if the prolongation is semisimple.

In this paper we give a classification of conformal pseudo-subriemannian FGLAs of semisimple
type and their prolongations (Theorem 5.2). In particular we prove that the prolongation of a
conformal pseudo-subriemannian FGLA of semisimple type is simple. Also we give a classification
of conformal neutral-subriemannian FGLAs of semisimple type (Corollary 5.1).
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Notation and conventions.

(1) Blackboard bold is used for the standard systems Z (the ring of integers), R (real numbers),
C (complex numbers), C" (split complex numbers), the real division rings H (Hamilton’s
quaternions), H' (split quaternions), O (Cayley’s [nonassociative] octonions) and Q' (split
octonions). We denote by R.g (resp. Rxg) the set consisting of all the positive real
numbers (resp. non-negative real numbers). For K = C, C', H, H', O or O, we set
ImK={z2z€K:Rez=0}.

(2) For any real vector space V we denote by V' (C) the complexification of V.

(3) Let V be a finite dimensional real vector space, and let g be a nondegenerate symmetric
bilinear form on V. We set

so(V,g)={Aegl(V): A-g=0},
co(V,g)={Aegl(V):A-g=nag for some ns € R},
where A - g is a symmetric bilinear form on V' defined by (A-g)(z,y) = g(Az,y) + g(x, Ay)

(z,y € V). We define a linear mapping ¢’ : V. — V* by ¢°(2)(y) = g(z,y) (z,y € V).
Since ¢ is non-degenerate, ¢’ is a linear isomorphism. We denote by ¢ the inverse mapping

of ¢°.
(4) For a graded vector space V = @V, and k € Z we denote subspaces @V, and PV,
pEZ p=k p=k
by V< and V> respectively. Also we denote the subspace € V, by V_. We call V_ the
p<0

negative part of V.
(5) For a reductive Lie algebra g, we denote by g* the semisimple part of g.

(6) For a GLA g = € g, we denote by Autg(g) the group consisting of all the automorphisms
PEZ

a of g such that a(g,) = g, for all p € Z.

2. FINITE DIMENSIONAL SEMISIMPLE GRADED LIE ALGEBRAS

2.1. Finite dimensional complex semisimple graded Lie algebras. Let g = @ g, be a
PEZL
complex semisimple GLA such that the negative part g_ is an FGLA. Let b be a Cartan subalgebra

of go; then b is a Cartan subalgebra of g such that E € h, where F is the characteristic element of

g= @ g, (i.c., E is an element of gy such that [E, X] = pX for X € g,). Let A be a root system
PEZL
of (g,h). For a € A, we denote by g* the root space corresponding to . We associate to any set

of roots ) C A a subspace

0@ =) g"Cg

There exists a simple root system IT = {aq,..., o} of (g,h) such that g(ITI) C @ g, ([15, p. 441]).
p20

Clearly «;(F) is a non-negative integer. Since the negative part g_ is generate& by g_1, ;(E) is 0

or 1 ([15, Lemma 3.8]). Weput A, ={a € A:a(E)=p} and II, = A, N1I; then II = II, U II;.

When g = @ g, is a simple graded Lie algebra (SGLA), we enumerate simple roots of g as in [3].
PEZL

Moreover if g has the Dynkin diagram of type X, then g = €D g, is said to be of type (X;,II;).
PEZ
For v € 11, we put

Ay(=7) = { =7+ (AQU{0) INA={a=—y+BeA:BeAU{0}}.

2



Proposition 2.1 ([9, Ch.3, §3.5] and [1, Proposition 7.3]). The decomposition of the go-module
g_1 into irreducible submodules is given by

g1 = P s(Ai(—)).

~velly

In particular the go-module g_y is completely reducible. Moreover g(A_1(—7)) is an irreducible
go-module with highest weight —~.

From [4, Ch.VIII, §7, Propositions 11 and 12] and the table of [3] we obtain the following
proposition.

Proposition 2.2. Let g = @ g, be a finite dimensional complex SGLA satisfying the following
PEZL

conditions: (i) the negative part m is an FGLA; (ii) g_o and the semisimple part g5° of go are both
nonzero; (iii) there exists a gg°-invariant nondegenerate symmetric bilinear form g : g_1 xg_; — C.
(1) If the go-module g_; is irreducible, then g = @ g, is of type (Cy, {aa}) (I = 3) or (Fy, {au}).
PEZL
(2) If the go-module g_; is reducible and if g_1 is the direct sum of two irreducible go-submodules
of g—1 which are totally isotropic with respect to g, then g = @ g, is of type (Ai, {a1, w})
Z

or (Bu {ar,ar}) (1 = 3). "

Remark 2.1. Let g = @ g, be a complex SGLA of type (As, {a1, as}), (Ba, {a1, az}) or (Ga, {a1, as}).
PEZ
Then the semisimple part of go is {0}. We can easily construct a nondegenerate symmetric bilinear

form g on g_; satisfying the following condition: for any A € gy there exists a A4 € C such that
9([A, XT,Y) + g(X,[A)Y]) = Mg(X,Y) forall X,Y € gy
(cf. Examples 4.1, 4.2, 4.4).

2.2. Finite dimensional real semisimple graded Lie algebras. In this subsection we describe
gradations of finite dimensional real semisimple GLAs. We first notice the following proposition.

Proposition 2.3 ([15, Proposition 3.3]). The finite dimensional real SGLAs g = @@ g, fall into
PEL
the following two distinct classes:
(A) The complex SGLAs, considered as real Lie algebras;
(B) The real form of complex simple Lie algebra so that g(C) = @ ¢,(C) is a complex SGLA.

PEZL

Let g = € g, be a finite dimensional real semisimple GLA such that the negative part g_ is
PEZL

an FGLA. Let E be the characteristic element of g = € g,, and a a maximal R-diagonalizable
PEL
commutative subalgebra of g containing F. Clearly a is contained in gg. There exists a Cartan

decomposition g = ¢ @ p such that a C p ([9, Proposition 4.1]). Let b be a Cartan subalgebra of

g containing a. The complexification h(C) of b is a Cartan subalgebra of g(C). Let A be the root
system of (g(C), h(C)). We set

Ar={acA:aE)=Fk} (keZ),
A*={aecA:a(a)={0}}, A°=A\A".
Let o be the conjugation of g(C) defined by its real form g. For A € h(C)* we define the element

A7 € h(C)* by A7 = Xoo. If @ € A, then a” € A. We can choose a simple root system II of
(g(C),H(C)) such that: (i) the corresponding system of positive roots AT satisfies the following
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conditions: AT N A° is o-invariant; (ii) g(II) C g(C)xo. There exists an involutive permutation v
of the set II° such that
v = V(”}/) + Z /{Zﬁﬁ (”)/ e II°, ]{25 S Z;O).
Bell®

We set II* = A* N 11, II° = A°N1I and II; = A, NII. We shall identify the vertices of the Dynkin
diagram X; with the elements of II. The Satake diagram S5; is obtained from X; as follows: Firstly
we paint the vertices av € II® (resp. « € II°) into black (resp. white). Secondly for o € II°, if
a’ # «, then we connect the pair {«, a”} by a curved arrow. When this is done for all such pairs,
we obtain the Satake diagram .5;.

Let g = @ g, be a finite dimensional real semisimple GLA with Satake diagram S;, and let Ay,
PEZ
IT and II, be as in the above. Since g_ is an FGLA, II = Iy U II;. Furthermore the following
properties hold: (i) I1* C Ily; (ii) II; € II°; (iii) If @ € II;, then o” € Ay ([1, Theorem 8.1]). The
semisimple GLA g = @ g, is said to be of type (S;,II;) ([7, §2] and [15, §3.4]). For simplicity we
PEZ

denote by g%, (—~) the subspace g(C)(A_;(—v)) of g_1(C), where v € II;.

Proposition 2.4 ([1, Proposition 8.3]). Let g = € g, be a finite dimensional real semisimple
PEZ
GLA of type (S;,111). For v € 11y, there are two possibilities:

(1) v(y) =v. Then —° € A_1(—) and the go(C)-module g, (—) is o-invariant.
(2) v(v) # . Then —° € A_i(—v(y)) and the two irreducible go(C)-modules g<,(—v) and
0%, (=v(v)) determine one irreducible go-submodule g N (g%, (=) + g%, (—v(v))) of g_1.

3. CONFORMAL PSEUDO-SUBRIEMANNIAN FUNDAMENTAL GRADED LIE ALGEBRAS

Let m = € g, be an FGLA of the p-kind over R, where u = 2. Let ¢; and go be two nonde-
p<0
generate real symmetric bilinear forms on g_;. We say that g; is equivalent to g, if there exists

an 1 € Ry such that go = ng;. We denote by [g] the equivalence class of a nondegenerate real
symmetric bilinear form g on g_;, which is called the conformal class of g.

Let g be a nondegenerate real symmetric bilinear form on g_; with signature (r,s). We call
the pair (m,[g]) a conformal pseudo-subriemannian FGLA of type (r,s). In particular, if s = 0
(resp. r = s), then (m, [g]) is called a conformal subriemannian FGLA (resp. a conformal neutral-
subriemannian FGLA).

Let (m, [g]) be a conformal pseudo-subriemannian FGLA, and let gy be the Lie algebra consisting
of all the derivations D of m satisfying the following conditions (i) and (ii): (i) D(g,) C g, for
all p < 0; (ii) D|g-1 € co(g_1,9). Let g = € g, be the prolongation of (m,gg) (see [13, §5.2]).

PEL
We call the transitive GLA g = €D g, the prolongation of (m,[g]). If g is finite dimensional and
PEZL
semisimple, then (m, [g]) is said to be of semisimple type.

Let (my,[g1]) and (mg,[g2]) be two conformal pseudo-subriemannian FGLAs. We say that
(my, [g1]) is isomorphic to (mg,[ge]) if there exists a graded Lie algebra isomorphism ¢ of my
onto my such that [¢*ga] = [g1]. Also we say that (my, [g1]) is equivalent to (mo, [go]) if (my, [g1]) is
isomorphic to (mg, [g2]) or (mg, [—g2]).

The following lemma can be proved by the same methods as in the case of conformal subrie-
mannian FGLAs ([16, Lemma 3.1]).

Lemma 3.1. Let (m,[g]) be a conformal pseudo-subriemannian FGLA, and let g = € g, be the
PEZL
prolongation of (m,[g]). Let p_y be the representation of gy on g1 defined by p_1(A)(X) = [A, X]

(Aego, X €g_1). Wesetgo=(p_1)"(s0(g_1,9)). Then
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(1) [g0,80] C go-
(2) Let E be the characteristic element of g = @ g,. Then go = RE & go.

PEZL

Lemma 3.2. Let (m,[g]) be a conformal pseudo-subriemannian FGLA, and let g = € g, be the
PEL

prolongation of (m,[g]). Then g is finite dimensional.
Proof. We first assume that dimg_; = 3. We define a subalgebra hq of go as follows:
bo={X € g0:[X,9<0] ={0}}.
Identifying ho with a subalgebra of gl(g_1), we see that hy C co(g_1,¢). Since the second algebraic

prolongation co(g_1,¢)® of co(g_1,g) vanishes, we get b((]2) = {0}. From Corollary 1 of Theorem

11.1 in [13], it follows that g is finite dimensional. Next we assume that dimg_; = 2. There

exists a basis (ej,ez) of g_; such that g(e;,e;) = €;6;; for all i,j7 = 1,2, where ¢; € {—1,1}.
2

Note that [ej,es] # 0. For A € By, we set ad A(e;) = > ager (i = 1,2;a, € R). Since
k=1
9([A,ei],e;) + gler, [A, ea]) = Aag(es, ej), we see that 2a; = Aa and aje; + a;56; = 0. Also since

[A, [e;,ej]] =0, we get a11+ag = 0,50 Ay = 0. Hence by is considered as a subalgebra of so(g_1, g).
However since the first algebraic prolongation so(g_;, g)") of so(g_1, g) vanishes, we see that g is
finite dimensional. ]

Lemma 3.3. Let (m,[g]) be a conformal pseudo-subriemannian FGLA, and let g = €D g, be the
PEZL
prolongation of (m,[g]). If L= @, is a transitive semisimple GLA such that g, =1, for allp < 0
PEZL
and ad(lp)|g—1 C co(g_1,9), then g coincides with |.

Proof. Since ad(lp)|g—1 C co(g_1,9), [ = @[, is a graded subalgebra of g = € g,. Let t be the

pEZL PEZL
radical of g; then v is a graded ideal of g = @ g,: t = P, t, = rN g, Since m = [, we see
PEZ pEZL
that t_ = {0}. By transitivity of g = € g,, we get v = {0}, so g is semisimple. Since dimg, =
PEZL
dimg_, = dim[_, = dim [, for p > 0, we get g, = [, for p # 0. Since lp = [I_1, ] = [g-1, g1] = go,
we obtain g = [. O

The following lemma is essentially due to the proof of [2, Lemma 4.1].

Lemma 3.4. Let (m,[g]) be a conformal pseudo-subriemannian FGLA of type (r,s), and let g =

D g, be the prolongation of (m,[g]). If a is a mazimal R-diagonalizable commutative subalgebra

PEZL

of g contained in go, then dima < min{r, s} + 1. In particular, if g is semisimple, then we have

rankg g < min{r, s} + 1.

Proof. Clearly a contains the characteristic element E of g = € g,. By lemma 3.1, a can be
PEZL

decomposed into the direct sum o’ & RE, where o' is a subalgebra of a such that ad(a’)|g_1 C

50(g_1,9). Then o is R-diagonalizable in g_;. Let A, u be weights of the a’-module g_; and let

VA, V* be the corresponding weight spaces. For x € VA y € V# and t € «, we get

Hence if A + u # 0, then g(V* V#) = 0. Let a be the subspace of a’* spanned by the weights
of the a’-module g_;. Since the a’-module g_; is faithful, the annihilator space { h € a’ : A(h) =
0 for all A € a} vanishes, so dima = dima’. Thus the weights of the module span a™. There

!
exists a basis (A1, ..., \;) of a’* such that each )\; is a weight of the a’-module g_;. Then U = @ V>
i=1



is a totally isotropic subspace of (g_1,g), so dima — 1 = dimU < min{r,s}. If g is semisimple,
then rankg g equals to dim a, so we obtain rankg g < min{r, s} + 1. O

4. EXAMPLES OF CONFORMAL PSEUDO-SUBRIEMANNIAN FGLAS OF SEMISIMPLE TYPE

4.1. Conformal pseudo-subriemannian FGLAs of classical type.

Example 4.1 (cf. [12, §9] and [6, Example 3.1.2, p.241]). Let K be C, H, C' or H'. Here we
consider K as an R-algebra. We put [ = sl(n,K) (n = 3); then [ is a real simple Lie algebra. Let
K, be the m x m matrix whose (4, j)-component is d; ,11—;. We define an n x n symmetric real
matrix Sy, , as follows:

0 0 K,
Sp,q: 0 1, O (pil,QE0,2p+q=n§3),
K, 0 0

where 1, denotes the ¢ x ¢ identity matrix. Here the center column and the center row of .S, ,
should be deleted when ¢ = 0. Then S, , is a symmetric real matrix with signature (p + ¢, p) such
that S? = S,, Weput g={X €l: X*S,,+5,,X =0}, then

X1 eK, Xyp € M(l,n',K),

X11 X12 X13 X21 c M(n/717K>7
g=<¢ X = |Xn Xo2 _SPﬂXﬁ el Xar. X ImK. X (n',K
X311 —X315-1,4 - X1 51, X13 € ImK, Xy, € gl(n', K),

Xog + 5p-1,4X595p-14 = O

where n' = n—2 and we set Sy, = 1,,. Here M(p, ¢, K) denotes the set of K-valued p x g-matrices.
We define subspaces g, of g as follows:

[0 0 0
g2 = 0 0 0l €eg:XgeImK
[ X510 00
[ 0 0 0
g-1=19 | X 0 0| €g:Xo € M(n',1,K) o,
| 0 —X35-14 0
Xn 00 Xy € K, Xo € gl(n', K
o = 0 Xu 0 ca- 11 , Xoo € gl(n, K),

g N * )
O 0 —X—ll X22 + Sp—LqXQQSp—Lq == O

p={Xeg:'Xeg,} (p=12), g ={0} (pl>2).
Then g = € g, becomes a GLA whose negative part m is an FGLA of the second kind. We define

PEZL
a symmetric bilinear form g on g_; as follows:

g(X> Y) = Re(Xélep—lvth% X> Y € g-1.

Then ¢ is nondegenerate and for A € gy we obtain (ad(A)|g-1) - g = —2(ReAy;)g. Hence
ad(go)|g-1 C co(g-1,9). The conformal pseudo-subriemannian FGLA (m,[g]) is said to be of
type (HK),,q.

In case K = C or C' we know that g is denoted by su(p + ¢,p,K) (n = 2p + ¢). Note that

su(p+ ¢, p,C’) is isomorphic to sl(2p + ¢, R) for any p,q. If K= C (resp. K=C’), then g = P g,
PEZL

is a real SGLA of type ((Allla), , {o1, cu}) (I =n—1=2p+q—1,p 2 2,q = 1), ((Alllb);, {a1, a;})
l=n—-1=2p—-1,p22,q=0)or (AIV),,{q,u}) l =n—-1=qg+1,p=1,q 2 1) (resp.
((AD),, {a1,aq}) l=n—-1=2p+q—1 2= 2)), and g has the signature (2p + 2¢g — 2,2p — 2) =
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(20 —2p,2p —2) (resp. 2p+q—2,2p+q—2)=(l—1,1—1)). Here (Allla)
and (Al), are the following Satake diagrams.

(AIllb),, (AIV),

lLp’

1 2 p p+1
o) 10 T OUOO Y O I
w0 (]
@ M o WURTUPRTTTPNIPN O. l
l -1 l-p+1 I—p
1 2 p—1
[ P o R o)
P
(AILIb), < < S~
[ [ o PP O/
l -1 p+1
1/\l
(AIV)l L O @ ®e— 0
1 -1 l
(AI>l e 10 T o) o)

In case K = H or H' we know that g is denoted by sp(p + ¢, p,K). Note that sp(p + ¢,p, H')
is isomorphic to sp(2p + ¢,R) for any p, ¢ and that sp(n,R) is denoted by sp(2n,R) or sp,, (R) in
6], [9] and [11]. If K =H (resp. K = H'), then g = P g,, is a real SGLA of type ((Clla), ,, {aa})

PEZL
(l=n=2p+q23,pq=1)or ((Cllb),{az}) (n =1=2p 2 3,q = 0) (resp. ((CI)},{az})
(l=n=2p+q=3)) and g has the signature (4dp + 4qg — 4,4p — 4) = (4l — 4p — 4,4p — 4) (resp.
(4p+2q —4,4p+2q — 4) = (21 — 4,21 — 4)). Here (Clla), , (CIIb), and (CI), are the following
Satake diagrams.

L,p’

1 2 3 2p  2p+1 -1 l
(CHa)lp ) e @ s o M SRR o——o
1 2 3 2p—2 2p—1 2p
(CIIb)l N [ ] O @ e o) o<~——0
1 -1 l
(CI)I e T TTTTTTUION RO ORI O<——0

By Lemma 3.3, the prolongation of a conformal pseudo-subriemannian FGLA of type (HK),,

coincides with g = € g,.
PEL

Example 4.2 (cf.[15, §4.4 (3)]). Weput g ={ X € gl(20+ 1,R) : ' XS+ SX =0} (I = 2), where
S = S;1. More explicitly

A a B A, B,C - g[(l,R)a
g={X=|¢ 0 —d|egl@+LR): B=-B,C=~C,
C _6/ _A/ aEM(l,l,R)ageM(]ﬂl?R)

Here for an r x s-matrix X we put X' = KX K,. The Lie algebra g is a real simple Lie algebra
so(l +1,[,R) of type (BI),;. Here (BI),, is the following Satake diagram:

1 2 -1 1
BI 6! 1@ T TP TUROR R 0——=0
( 1l




We define subspaces g, of g as follows:

/T -

0 0 00 0
0 0 00 0
g5 = 0 0 00 0leg:XpneMI-11R)},
Xqo 0 000
[0 —Xi 00 0
([0 0 0 00
o0 0 00 X3 € R, Xp € gl(I - 1,R),
g2 = Xz 0 0 00 Eg:X,_ X )
0 X 0 00 42 = T2
([0 0 —X3 00
([0 o 0 0 0]
)%21 )g 8 8 8 Xy € M(I—1,1,R),
1= €g: ,
-1 0 0 xy, 0 0 %" Xy e M(1,1 - 1,R)
([0 o0 0 —X5 0
Xu 0 0 0 0
0 X 0 0 0
gdo = 0 0 O 0 0 GgZXlleR,XQQEQ[(Z—l,R) ,
0 0 0 —X4 0
0O 0 0 0 —Xp

p={Xecg:'Xeg,} (p=123), g, =1{0} (]p/>3).

Then g = € g, becomes a real SGLA of type ((BI),;, {ou, au}) whose negative part m is an FGLA
PEZL

of the third kind. We define a symmetric bilinear form g on g_; by
1
9(X,Y) = —§(X32Y21 + Y35 X01) (X,)Y € g.q).

Then g is nondegenerate, and for A € gy we see that (ad(A)|g_1) g = —A119. Hence ad(go)|g_1 C

co(g_1,9). By Lemma 3.3 (m, [¢]) is a conformal neutral-subriemannian FGLA such that g = € g,
PEZL

is the prolongation of (m, [g]). The conformal pseudo-subriemannian FGLA (m, [¢]) is said to be

of type (BI),.

4.2. Conformal pseudo-subriemannian FGLAs of exceptional type.

Example 4.3 ([8, §3]). Let K = O or O@'. Here we consider K as an R-algebra. We define a
nondegenerate symmetric bilinear form g on K by g(z,y) = 3(Zy + yz). We set

go1=01=K, go=g=ImK, g =g,®R, g,={0} for|pl >2,

where g5 = { A € s50(K,g) : A(1) =0 }. Note that gj is isomorphic to so(ImK, g). We further

put g = P g, and m = g_, & g_;. We define a bracket operation [-,-] on g as in [8, §3.2, p.444
PEZL

and §3.4, pp.447-448]. By using [8, Lemma 3.1] we can prove that g = € g, becomes a GLA
PEL
whose negative part m is an FGLA of the second kind. For A ®r € go and X|Y € g1 we

see that (ad(A @ r)|g_1) - g = —2rg, and hence ad(go)|g_1 C co(g_1,9). The conformal pseudo-
subriemannian FGLA (m, [¢]) is said to be of type (HK).

8



By [8, Theorem 3.5], in case K = O (resp. K = Q') the GLA g = @ g, is a real SGLA of

PEZL
type (FII, {ou}) (resp. (FI, {a4})). Here FII(= Fy_20)) and FI(= Fy)) are the following Satake
diagrams respectively.
1 2 3 4 1 2 3 4
FII: e o——0 o) FI: o 0——>0 o
Clearly (m,[g]) is a conformal subriemannian FGLA (resp. a conformal neutral-subriemannian
FGLA) when K = O (resp. K = Q). By Lemma 3.3, the prolongation of a conformal pseudo-

subriemannian FGLA of type (HK) coincides with g = € g,.
PEL

Example 4.4. Let V be a real vector space R?, and we set s = s[(V'). We define real vector spaces
[, (p € Z) as follows:

[o=L=R, [,=4=5V), h=saR, [,={0} (»>]2).
We define a bracket operation [-,-] on [ = @ [, as in [8, §3.1, p.450]. Then [ = @ [, becomes a

pEZL PEZ

real SGLA of type (G, {a2}) ([8, Theorem 4.3]) and the negative part m is an FGLA of the
second kind. Here Gy is the following Satake diagram:

1 2
G2(2) . 0<=0
We set V_; = Re; and V_y = Rey, where (eq, e2) is the canonical basis of V. We put s, = {X €
s : X(Vi) C Vigyp for all k}; then s = @ s, is a real SGLA of the first kind.

PEL

We define subspaces Wy (resp. W_y) (k=1,...,4) of [; (resp. [_;) as follows:
We =8 (Voy), Wi =S (Vo) @V, Wis=V_10S5%(Va), W= S (Vo)

4
then I1; = @@ Wi, We define subspaces g, of [ as follows:
k=1

gus = lag, gpr=Wi (k=%2,43,44), gi =511 D Wy,
go=5 &R, g,={0} (»>I5]).

Then [ = g = @ g, becomes a real SGLA of type (Ggg), {ov1, @2}) such that the negative part m
PEZL

is an FGLA of the 5-th kind. Let (- | -) be an inner product on S*(V') induced by the canonical
inner product on V. We define a symmetric bilinear form ¢g on g_; as follows:

9(5_1,5_1) = g(W_l, W_l) = O, g(X, u) = g(u,X) = (Xu | 6%62) (X €5 1,U € W_l).

Then ¢ is nondegenerate, and for A = A\(Ey; — Eg) @1 € go, X €51 and u € W_; (\,r € R),
we see that (ad(A)|g_1) - ¢ = (A —r)g, where E;; is an element of s such that E;je, = d;ze;. Thus
ad(go)|g—1 C co(g_1,g). Hence by Lemma 3.3 (m, [g]) is a conformal neutral-subriemannian FGLA

such that g = € g, is the prolongation of (m,[g]). The conformal pseudo-subriemannian FGLA
PEZL

(m, [g]) is said to be of type (G).

5. CLASSIFICATION OF CONFORMAL PSEUDO-SUBRIEMANNIAN FGLAS OF SEMISIMPLE TYPE

In this section we prove that a conformal pseudo-subriemannian FGLA of semisimple type is
isomorphic to one of conformal pseudo-subriemannian FGLAs given in the previous section.

Proposition 5.1. Let (m,[g]) be a conformal pseudo-subriemannian FGLA of semisimple type,

and let g = @ g, be the prolongation of (m, [g]).
PEZL



(1) If the go-module g_1 is irreducible and the go(C)-module g_1(C) is reducible, there exist
a0(C)-submodules g_,(C)D (i = 1,2) such that (i) g_1(C) = g_(C)Y @ g_,(C)?; (ii)
g_1(C)D (i = 1,2) are totally isotropic subspaces of (g_1(C),g); (iii) g_1(C)V is contra-
gredient to g_1(C)? as a §o(C)-module, where go = (p_1) " (s0(g_1,9))-

(2) If the go-module g_1 is reducible, then there exist go-submodules g(_l)l (1 = 1,2) such that:

(i) g1 = g @ g% (i) ) (4 = 1,2) are totally isotropic subspaces of (g-1,9); (iii) g%

is contragredient to g(_z as a go-module; (iv) the go(C)-modules g(f)l(C) are irreducible.

(3) g= €D g, is an SGLA of class (B).
PEZ

Proof. (1) and (2). We decompose g_; (resp. g_1(C)) into irreducible go-modules (resp. go(C)-
modules) as follows:

k K’
-1= @9(_2)1, g-1(C) = @9—1((:)()

=1
Let E; be an element of g such that [E;, X;] = —0,;X; for all X € g We first assume that gy W

&
is a nondegenerate subspace of (g_1, g). There exist elements X7, Y; of g 1 ) such that g(X1,Y1) #0.
Since

g([Er, Xu], Y1) + 9(Xq, [E4, Y1) = nE,9(X4, Y2),
we see that ng, = —2. For X; € g(_l)l (i =2),
9([Er, Xa], Xi) + (X1, [Er, Xi]) = ne,9(X0, Xa),

so g(X1, X;) = 0. Thus we get g(g(lg,g(z)) 0 (i = 2). If there exists a j = 2 such that g(_]{ is a
nondegenerate subspace of (g_1,¢), then

0= g([EjaXl]a}/l) +g(X1a [E]a}/l]) = nEJg(XbY'l) = _2g(X1>)/1)a

which is a contradiction. Hence g(_z)1 (i 2 2) are totally isotropic subspaces of (g_1, ¢). Assume that

@ # {0}. There exists j = 3 such that the restriction of g to the space g( % X g(] i is nondegenerate.

We set B = Ey+ E;. Let X5 (resp. X;) be an element of g% 1 (resp. g¥ ) such that g(X», X;) # 0.
Since
g([Eé>X2]’ Xj) + g(X2’ [EéaXJD = nEég(X%Xj)a
we see that ng, = —2. Also
0= g([Eév Xl]v Yi) + g<X17 [Eév }/1]) = _Qg(le Yi)

This is a contradiction. Therefore we obtain that g_; is an irreducible go-module. Next we assume

that g(f)l is a totally isotropic subspace of (g_1,¢g). Here we may assume that the restriction of g to

g(lf X g(_zi is nondegenerate. From the above result, g(_? is a totally isotropic subspace of (g_1, g)

and is contragredient to g(_lf as a go-module. If the restriction of g to g(_lf X g(_gi is nondegenerate,

g(?’i is contragredient to g(li as a go-module, so g(li is isomorphic to g(_?’i as a go-module, which is

a contradiction. Hence g(g( i, 9( )) = 0. Similarly we get g(g( %,g(?’)) = 0. There exists k = 4 such

that the restrlctlon of g to g(?’% X g(_l) is nondegenerate. We set B} = Ey+ Es. Let X; (i = 1,2,3, k)
be elements of g_l such that g(Xy, Xs) # 0 and ¢g(X3, Xx) # 0. Since

0= g([E1>X1]’ X2) + g(X1> [E1>X2]) = UE;Q(Xsz),
we get g = —2. On the other hand, we see that
0= g([Eia X3]>Xk) + g(X?n [Eia Xk]) = UE{Q(X&XI@)’

10



which is a contradiction. Hence g_; = g(_lf & g(_? Similarly we can prove that if the go(C)-module

g_1(C) is reducible, there exist go(C)-submodules g_;(C)® (i = 1,2) such that (i) g_,(C) =
g1 (O @ g_1(C)P; (i) g_1(C)® (i = 1,2) are totally isotropic subspaces of (g_i(C), g); (iii)
g_1(C)W is contragredient to g_1(C)® as a go(C)-module. The assertions (1) and (2) follow from
these results.

(3) We assume that g is not simple. There exist ideals al¥) and a® of g such that a() is a
simple ideal of g and g = a®) @ a®. Both ideals a¥ (i = 1,2) are graded ideals of g; we write
a® = P al’. By transitivity of g = P g,. we see that a@l # {0} (¢ = 1,2). From the results

PEZ PEL
of (1) and (2) a(_z% is contragredient to a(_lz as a go-module, which is a contradiction. Hence g is
simple. Also from the results of (1) and (2) and from [9, p.157, Example 2], it follows that g is of
class (B). O

We decompose the conformal pseudo-subriemannian FGLAs of semisimple type into the following
three classes:

(SI) The go(C)-module g_;(C) is irreducible.

(SII) The go-module g_; is irreducible and the go(C)-module g_;(C) is reducible.
(SIII) The go-module g_; is reducible.

Theorem 5.1. Let (m,[g]) be a conformal pseudo-subriemannian FGLA of semisimple type, and

let g = € g, be the prolongation of (m,[g]). Assume that (m,[g]) is of type (r,s) (r = s).
PEZL

(1) If (m,[g]) is of class (SI), then g = €D g, is an SGLA of type ((CI);, {aa}), ((Clla),,, {as}),

(b {02}) (12 3,p > 1), (L {au}), or (FIL fou}).
(2) If (m,[g]) is of class (SII), then g = nggp is an SGLA of type ((Allla);,, {1, a;}),
((AITIb),, {ar, aq}) or (AIV), {1, o}) (1 = 2).

(3) If (m,[g]) is class (SIII), then (m,[g]) is conformal neutral-subriemannian and g = € g,
PEZ

is an SGLA of type ((AL);, {a1, au}), (B, {1, cu}) (12 2) or (Gogay, {ou, a2}).

Proof. By Proposition 5.1 the complexification g(C) = € g,(C) is an SGLA. We first assume that
PEZL
(m, [g]) is of class (SI); then g(C) = @ g,(C) be of type (Xj, {a;}). Furthermore g_;(C) is an
PEZL
irreducible go(C)-module with highest weight —a; and there exists a g§°(C)-invariant symmetric

bilinear form ¢g on g_1(C). By Proposition 2.2 (1) we obtain that (X;, {a;}) is one of (C, {az})
(I 2 3), (Fy,{as}). Next we assume that (m,[g]) is of class (SII) or (SIII). By Proposition 5.1
(2), the go(C)-module g_;(C) is decomposed as follows: g_i(C) = g_,(C)M @ g_1(C)?, where
g_1(C)® (i = 1,2) are irreducible go(C)-submodule of g_;(C) such that: (i) each g_,(C)® is
totally isotropic with respect to g; (i) g_1(C)) is contragredient to g_1(C)® as a go(C)-module.
By Proposition 2.2 (2) and Remark 2.1, we obtain that g(C) = @ g,(C) is of type (A4;, {1, a1}),

PEZL
(B, {an, aq}) or (Ga, {an, as}). Hence the assertions (1)—(3) follow from Proposition 2.4, and the

tables of [11, pp.79-82] and [14, pp.30-32]. O

Proposition 5.2. Let (m,[g1]) and (m,[g2]) be two conformal pseudo-subriemannian FGLAs of
semisimple type. If the prolongation of (m,[g1]) coincides with that of (m,[g2]), then (m,[g1]) is
equivalent to (m, [gs]).

Proof. The mapping ¢ = gg o g5 induces an isomorphism of g_;(C) onto itself as a go(C)-module.
If the go(C)-module g_1(C) is reducible, then g_;(C) is the direct sum of two irreducible go(C)-
modules g_,(C)® (i = 1,2) and g_;(C)® is not isomorphic to g_;(C)® as a go(C)-module. In
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this case ¢(g_,(C)?) = g_,(C)® (i =1,2). By Schur’s lemma, there exist two complex numbers
A1, Ag such that p|g_1(C)® = Nid (i = 1,2). For X € g_1(C)M and Y € g_1(C)® we obtain
Mg1(X,Y) = g1(0(X),Y) = g2(X,Y) and \ogi(X,Y) = g1(X, p(Y)) = g2(X, V). Since g_,(C)"
are totally isotropic with respect to g, and go, we get A\; = A\g. Hence g5 = A\1g; and \; € R. Thus
we see that [g1] = [g2] or [g1] = [—g2]. Similarly we can prove that [g1] = [g2] or [g1] = [—¢2] when
the go(C)-module g_;(C) is irreducible. O

From Theorem 5.1, Proposition 5.2 and the results of §4 we obtain the following theorem.

Theorem 5.2. Let (m, [g]) be a conformal pseudo-subriemannian FGLA of semisimple type. Then

(m, [g]) is equivalent to one of conformal pseudo-subriemannian FGLAs of types (HC), ., (HC'), ,,

(HH),,, (HH),,, (HO), (HO'), (BI);, (G). The prolongation g = € g, of (m,[g]) and the signa-
PEZL

ture (r,s) of g are given in the following table.

(m,[g]) | (HC)pq (p22,q¢2 | (HC)po (p22) | (HC)1,q (¢21) | (HC)pq (p 2 1,
1) 2p+q 2 3)
g= @ng ((Allla)yp, {on, cu}) | ((AllIb)y, {ar, cu}) ((AIV)y, {ar, cu}) | ((AD), {ou, cu})
" |t=w+e-1n  (=2-1) (l=g+1) (l=2p+q-1)
(r,s) (2p+2¢—-2,2p—2) | 2p—2,2p—2) | (2¢,0) (2p+q—2,2p+
q-2)
(m,[g]) | (HH)p,q (p,g21) | (HH)po (p22) | (HH)pe (p 2 1, | (HO)
2p+q 2 3)
g= @ng ((Clla)ip, {a2}) ((ClIb)y, {az}) ((CDi,{az}) (I = | (FIL {a4})
" (I=2p+q) (1=2p) 2+ q)
(r,8) (dp+4q—4,4p—4) | (dp—4,4p —4) (4p+29—4,4p+ | (8,0)
2q —4)
(m,[g]) | (HO') (BI); (1= 2) (&)
g= péggp (FI, {as}) (BDua, {ar,au}) | (Gaz), {ou, a2})
(r, s) (4,4) (l-11-1) (1,1)

Corollary 5.1. Let (m,[g]) be a conformal pseudo-subriemannian FGLA of semisimple type.
Unless (m, [¢]) is equivalent to one of (HC),, (p = 2, ¢ =2 1), (HC),, (¢ =2 1), (HH),, (p,q¢ = 1),
(HO), it is conformal neutral-subriemannian.

Example 5.1. Let [ = [_; & [p @ [; be a real SGLA such that [_; # {0}. We assume that [ is
splittable and rank [ = 2. Let S = @ S, be a faithful irreducible graded [-module such that S is

p<0
isomorphic to [ as an l-module and such that S_; # {0}. Let t be the semidirect product of [ by

S. Here S considers as a commutative Lie algebra. We define a gradation (t,) of t as follows:
tp = [p (p z O), t_l = [_1 © S_l, tq = Sq (q é —2)

Then t = @@ t, becomes a GLA such that the negative part m is an FGLA of the third kind.
PEZL

By assumption [_; is contragredient to S_; as a ty-module. That is, there exists a ty-module
isomorphism ¢ of [_; onto S*;. We define a symmetric bilinear form g on t_; as follows:

g(X,Y) = g(Z7 W) =0, g<X7 Z) :g<ZvX) = <90(X>7Z> (XvY ely, Z,We S—l)’

Then g is nondegenerate, and hence (m, [g]) becomes a conformal neutral-subriemannian FGLA.

Clearly tis contained in the prolongation g = € g, of (m, [¢]). If g = €D g, is of type ((BI)y, {a1, v })
pEZL PEZL

(I 2 3), then { X € g1 : [X,g9-2] = {0} } = {0}, which is a contradiction. By Theorem 5.2,
(m, [g]) is not of semisimple type and g; # {0}.
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