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Abstract

We provide an asymptotic analysis of a non-local Fisher-KPP type equation in periodic

media and with a non-local stable operator of order α ∈ (0, 1). We perform a long time-long

range scaling in order to prove that the stable state invades the unstable state with a speed

which is exponential in time.
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1 Introduction

1.1 The equation

We are interested in the following equation:

{
∂tn(x, t) + Lα(n)(x, t) = µ(x)n(x, t)− n(x, t)2, (x, t) ∈ R

d × [0,+∞)

n(x, 0) = n0(x) ∈ C∞
c (Rd,R+).

(1)

In the above setting, µ is a 1-periodic function, α ∈ (0, 1) is given and the term Lα denotes a
fractional elliptic operator which is defined as follow:

Lα(n)(x, t) := −PV

∫

Rd

(n(x+ h, t)− n(x, t))β(x,
h

|h|
)

dh

|h|d+2α
, (2)

where β : Rd × Sd−1 → R is a 1-periodic smooth function such that for all (x, θ) ∈ R
d × Sd−1

β(x, θ) = β(x,−θ) and 0 < b ≤ β(x, θ) ≤ B,

with b and B positive constants. When β is constant, we recover the classical fractional Laplacian
(−∆)α.

The main aim of this paper is to describe the propagation front associated to (1). We show
that the stable state invades the unstable state with an exponential speed.
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1.2 The motivation

Equation (1) models the growth and the invasion of a species subject to non-local dispersion in
a heterogeneous environment. Such models describe the situations where individuals can jump
(move rapidly) from one point to the other, for instance because of the wind for seeds or human
transportation for animals. The function n stands for the density of the population in position x

at time t. The diffusion term represented by the operator Lα describes the motions of individu-
als. The "logistic term" µ(x)n(x, t) − n(x, t)2 represents the growth rate of the population. The
heterogeneity of the environment is modeled by the periodic function µ. The regions where µ is
positive represent areas where the species are favored whereas µ negative prevents the growth of
the species. Conversely, the term −n2 characterizes the death term because of some "logistic"
considerations, as for example the quantity of food.

The operator Lα generalizes the fractional Laplacian (−∆)α which models "homogeneous"
jumps : the individuals jump in every direction with the same frequency. Whereas the operator
Lα models "heterogeneous" jumps : the individuals prefer to jump in the direction where β is
high. Also, the frequency of jumps will depend on the position x of the individuals. Note that
for the 1 dimensional case, for a regular bounded function n, (1−α)Lα(n)(x) tends to −β(x)

4
n′′(x)

as α tends to 1− which corresponds to a heterogeneous local diffusion. Moreover, the function β

will affect the principal eigenvalue λ1 of Lα−µ(x)Id (and consequently the negativity of λ1 which
is a criterion for the existence of a positive bounded stationary state). However, the hypothesis
0 < b ≤ β ≤ B implies that the techniques used for the fractional Laplacian are robust and can
be extended to the case of the operator Lα.

Equation (1) was first introduced by Fisher in [15] (1937) and Kolmogorov, Petrovskii and
Piscunov in [18] (1938) in the particular case of a homogeneous environment (µ = 1) and a
standard diffusion (Lα = −∆) which corresponds to the case α = 1 and β = 1. In [1], Aronson
and Weinberger proved a first similar result to our result for the case introduced by Fisher and
Kolmogorov, Petrovskii and Piscunov. In this case, the propagation is with a constant speed
independently of the direction. In [17], Freidlin and Gärtner studied the question with a standard
Laplacian in a heterogeneous environment (µ periodic). Using a probabilistic approach, they
showed that the speed of the propagation is dependent on the chosen direction e ∈ Sd−1. But, the
speed c(e) in the direction e is constant. Other proofs of this result, using PDE tools, can be found
in [4] and [20]. In the case of the fractional Laplacian and a constant environment, Cabré and
Roquejoffre in [8] proved the front position is exponential in time (see also for instance [11] for some
heuristic and numerical works predicting such behavior and [19] for an alternative proof). Then in
[7], Cabré, Coulon and Roquejoffre investigate the speed of propagation in a periodic environment
modeled by equation (1) but considering the fractional Laplacian instead of the operator Lα. One
should underline the fact that in the fractional case, the speed of propagation does not depend
anymore on the direction. They proved that the speed of propagation is exponential in time with
a precise exponent depending on a periodic principal eigenvalue.

The objective of this work is to provide an alternative proof of this property using an asymptotic
approach known as "approximation of geometric optics". We will be interested in the longtime

behavior of the solution n. We demonstrate that in the set
{
(x, t) | |x| < e

|λ1|t
d+2α

}
, as t tends to

infinity, n converges to a stationary state n+ and outside of this domain n tends to zero. The
main idea in this approach is to perform a long time-long range rescaling to catch the effective
behavior of the solution (see for instance [16], [14] and [2] for the classical Laplacian case). This
paper is closely related to [19] where the authors Méléard and Mirrahimi have introduced such an
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"approximation" for a model with the fractional Laplacian and a simpler reaction term (n− n2).
A very recent work, [6], uses also the techniques introduced in [19] (as known as the introduction
of an adapting rescaling and the investigation of adapted sub and super solution) to investigate
an integro-differential homogeneous Fisher-KPP type equation: the operator Lα is replaced by
J ∗ n− n where the kernel J is fat tailed but does not have singularity at the origin.

This paper was initially written with a fractional Laplacian. At its completion, we became
aware of a preprint by Souganidis and Tarfulea [21] which proves a result quite close to ours in
the case of spatially periodic stable operators. Our proof is quite different since their approach is
more based on the theory of viscosity solutions. We have verified that our approach works for the
model treated in [21] with no additional idea. We present our result with the operator Lα given
by (2), where the proof for the fractional Laplacian applies almost word by word. In the course of
the paper, we explain the points of our proof that allow to reach the generality of [21].

1.3 The assumptions

For the initial data we will assume

n0 ∈ C∞
c (Rd,R+), n0 6≡ 0. (H1)

The function µ is a 1-periodic function, i.e.

∀k ∈ {1, ..., d} , µ(x1, ..., xk + 1, ..., xd) = µ(x1, ..., xd). (H2)

Under the assumptions on β, the operator Lα − µ(x)Id admits a principal eigenpair (φ1, λ1) by
the Krein-Rutman Theorem (see [5]) that is

{
Lαφ1(x)− µ(x)φ1(x) = λ1φ1(x), x ∈ R

d,

φ1 periodic, φ1 > 0, ‖φ1‖ = 1.
(3)

To assure the existence of a bounded, positive and periodic steady solution n+ for (1), we will
assume that the principal eigenvalue λ1 is negative :

λ1 < 0. (H3)

Note that such stationary solution is unique in the class of positive and periodic stationary solutions
(see [3]).

In section 4, we will study a more general equation :
{
∂tn(x, t) + Lα(n)(x, t) = F (x, n(x, t)), (x, t) ∈ R

d × [0,+∞)

n(x, 0) = n0(x) ∈ C∞
c (Rd,R+).

(4)

We make the following assumptions for F :




(i) ∀s ∈ R, x 7→ F (x, s) is periodic,

(ii) F (x, 0) = 0,

(iii) ∃c, C > 0 such that ∀(x, s) ∈ R
d × R, −c ≤ ∂s(

F (x, s)

s
) ≤ −C,

(iv) ∃M > 0, ∀(x, s) ∈ R
d × [M,+∞[, F (x, s) < 0.

(H4)

We will denote ∂s(F )(x, 0) by µ(x) and we still denote by (λ1, φ1) the principal eigenvalue and
eigenfunction of Lα − µ(x)Id. We also still suppose (H3) (i.e. λ1 is strictly negative).
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1.4 The main result and the method

We introduce the following rescaling

(x, t) 7−→

(
|x|

1
ε
x

|x|
,
t

ε

)
. (5)

We perform this rescaling because one expects that for t large enough, n is close to the station-

ary state n+ in the following set
{
(x, t) ∈ R

d × R
+ | |x| < e

|λ1|t

d+2α

}
and n is close to 0 in the set

{
(x, t) ∈ R

d × R
+ | |x| > e

|λ1|t
d+2α

}
. The change of variable (5) will therefore respect the geometries

of these sets. We then rescale the solution of (1) as follows

nε(x, t) = n(|x|
1
ε
x

|x|
,
t

ε
)

and a new steady state

n+,ε(x) = n+(|x|
1
ε
x

|x|
).

We prove:

Theorem 1. Assuming (H1), (H2) and (H3), let n be the solution of (1). Then
(i) nε → 0, locally uniformly in A =

{
(x, t) ∈ R

d × (0,∞)| |λ1| t < (d+ 2α) log |x|
}
,

(ii)
nε

n+,ε

→ 1, locally uniformly in B =
{
(x, t) ∈ R

d × (0,∞)| |λ1| t > (d+ 2α) log |x|
}
.

To provide the main idea to prove Theorem 1, we first explain the main element of the proof
in the case of constant environment which was introduced in [19].
A central argument to prove such result in the case of a constant environment, is that, using the
rescaling (5), as ε → 0, the term ((−∆)α(n)n−1) (|x|

1
ε
−1x, t

ε
) vanishes. More precisely, one can

provide a sub and a super-solution to the rescaled equation which are indeed a sub and a super-
solution to a perturbation of an ordinary differential equation derived from (1) by omitting the
term (−∆)α. They also have the property that when one applies the operator f 7→ (−∆)α(f)f−1

to such functions, the outcome is very small and of order O(ε2) as ε tends to 0.
In the case of periodic µ, we use the same idea. However, in this case, the sub and super-solutions
are multiplied by the principal eigenfunction and, the term (Lα(n)n−1) (|x|

1
ε
−1x, t

ε
) will not just

tend to 0 as in [19] but also compensate the periodic media. To prove the convergence of nε,
dealing with this periodic term, we use the method of perturbed test functions from the theory
of viscosity solutions and homogenization (introduced by Evans in [12] and [13]). Note that we
also generalize the arguments of [19] to deal with a more general integral term Lα while in [19],
only the case of the fractional Laplacian was considered. In the last part, we will also generalize
Theorem 1 to the case of Fisher-KPP reaction term:

Theorem 2. Assuming (H1), (H2), (H3) and (H4), let n be the solution of (4). Then
(i) nε → 0, locally uniformly in A =

{
(x, t) ∈ R

d × (0,∞)| |λ1| t < (d+ 2α) log |x|
}
,

(ii)
nε

n+,ε

→ 1, locally uniformly in B =
{
(x, t) ∈ R

d × (0,∞)| |λ1| t > (d+ 2α) log |x|
}
.

The proof of this Theorem follows from an adaptation of the proof of Theorem 1.
In section 2, we introduce preliminary results and technical tools. In section 3, after the

rescaling, we provide a sub and a super-solution and demonstrate Theorem 1. In section 4, we
provide the points of the proof of Theorem 2 that differ from the proof of Theorem 1.
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2 Preliminary results

We first state a classical result on the fractional heat kernel.

Proposition 1. [9] There exists a positive constant C larger than 1 such that the heat kernel
pα(x, y, t) associated to the operator ∂t + Lα verifies the following inequalities for t > 0 :

C−1 ×min(t−
d
2α ,

t

|x− y|d+2α
) ≤ pα(x, y, t) ≤ C ×min(t−

d
2α ,

t

|x− y|d+2α
). (6)

The proof of this proposition is given in [9].
Now we use this proposition to demonstrate that beginning with a positive compactly supported
initial data leads to a solution with algebraic tails.

Proposition 2. Assuming (H1), then there exists two constant cm and cM depending on n0, d, α
and µ such that :

cm

1 + |x|d+2α
≤ n(x, 1) ≤

cM

1 + |x|d+2α
.

Proof. First, we define M := max(maxn0,max |µ|), we easily note that the constant functions 0
and M are respectively sub and super-solution to our problem. Then, thanks to the comparison
principle (which is given in [8]), we have the following inequalities, for all (x, t) ∈ R

d × [0,+∞[:

0 ≤ n(x, t) ≤M.

Let n and n be the solutions of the two following systems :

{
∂tn + Lαn = −2Mn,

n(x, 0) = n0(x),
(7)

and {
∂tn + Lαn = max |µ| n,

n(x, 0) = n0(x).
(8)

Thanks to Proposition 1, we can solve (7) and find

n(x, t) = e−2Mt

∫

Rd

pα(x, y, t)n0(y)dy,

Thus for any t > 0, we obtain

e−2Mt

∫

supp(n0)

C−1 × n0(y)min(t−
d
2α ,

t

|x− y|d+2α
)dy ≤ n(x, t)

⇒ e−2M

∫

supp(n0)

C−1 × n0(y)min(1,
1

|x− y|d+2α
)dy ≤ n(x, 1).

Thanks to the dominated convergence theorem, we have:

(1 + |x|d+2α)× e−2M

∫

supp(n0)

C−1 × n0(y)min(1,
1

|x− y|d+2α
)dy −→

|x|→∞
e−2M

∫

supp(n0)

C−1 × n0(y)dy.

5



Therefore, we conclude by a compactness argument that for any x ∈ R
d:

e−2MC−1

(1 + |x|d+2α)
≤ n(x, 1), (9)

where the last C is a new constant depending only on n0. Moreover thanks to the comparison
principle, we have that for any t ≥ 0

n(x, t) ≤ n(x, t) ⇒
e−2MC−1

(1 + |x|d+2α)
≤ n(x, 1). (10)

In the same way, we can solve (8) and the solution is

n(x, t) = emax |µ|t

∫

Rd

n0(y)× pα(t, x, y)dy.

Using similar arguments, we get that for all x ∈ R
d,

n(x, 1) ≤ n(x, 1) ≤
Cemax |µ|t

(1 + |x|d+2α)
. (11)

By combining (10) and (11) together, we finally obtain

cm

1 + |x|d+2α
≤ n(x, 1) ≤

cM

1 + |x|d+2α
. (12)

We next provide a technical lemma which will be useful all along the article. The main ideas
of the proof of the lemma come from [19] by S. Méléard and S. Mirrahimi for Point (i) and [10]
by A.C. Coulon Chalmin for Point (ii). To this end, we first introduce the computation of Lα of
a product of functions:

Lα(fg)(x, t) = f(x, t)Lαg(x, t) + g(x, t)Lαf(x, t)− K̃(f, g)(x, t),

with,

K̃(f, g)(x, t) := C ′ PV

∫

Rd

(f(x, t)− f(x+ h, t))(g(x, t)− g(x+ h, t))

|h|d+2α
β(x,

h

|h|
)dy.

Lemma 1. Let γ be a positive constant such that

γ ∈

{
[0, 2α[ if α < 1

2

]2α− 1, 1[ if 1
2
≤ α < 1,

χ : R → R
d be a C1 periodic, strictly positive function and g(x) := 1

1+|x|d+2α . Then there exists a

positive constant C, which does not depend on x, such that, for all x ∈ R
d:

(i) for all a > 0,
|Lαg(ax)| ≤ a2αCg(ax),

(ii) for all a ∈]0, 1],

|K̃(g(a.), χ)(x)| ≤
Ca2α−γ

1 + (a|x|)d+2α
= Ca2α−γg(ax).
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The proof is given in Appendix A. Note that we will not use the assumption b ≤ β in the proof
of Lemma 1 (but only β ≤ B). The assumption b ≤ β is necessary to Proposition 1 and also to
ensure the existence and the positiveness of φ1.

Remark. If we want to reach the same level of generality as in [21], we just have to adapt the
previous Lemma to an operator Lα with a kernel β of the form β(x, y) where β is a 1-periodic with
respect to x, smooth function from R

d × R
d such that for all (x, y) ∈ R

d × R
d

β(x, y) = β(x,−y) and 0 < b ≤ β(x, y) ≤ B,

with b and B positive constants. The interested reader can verify that the proof of Lemma 1 is
robust enough and can easily be adapted to such kernels.

3 The proof of Theorem 1

In this section we will provide the proof of Theorem 1. Let us rewrite (1) with respect to the
rescaling given by (5)

ε∂t( n(|x|
1
ε
x

|x|
,
t

ε
) ) = −Lα(n)(|x|

1
ε
x

|x|
,
t

ε
) + n(|x|

1
ε
x

|x|
,
t

ε
)[µ(|x|

1
ε
x

|x|
)− n(|x|

1
ε
x

|x|
,
t

ε
)]. (13)

Notation. For any function v : Rd×R
+ → R and w : Rd → R we denote by vε and wε the rescaled

functions given by :

vε(x, t) := v(|x|
1
ε
x

|x|
,
t

ε
) and wε(x) = w(|x|

1
ε
−1x).

One can write the first term in the right hand side of (13) in term of nε in the following way.

Lα(n)(|x|
1
ε
−1x,

t

ε
) = −PV

∫

Rd

n(|x|
1
ε
−1x+ h, t

ε
)− n(|x|

1
ε
−1x, t

ε
)

|h|2α+d
× β(|x|

1
ε
−1x,

h

|h|
)dh

= −PV

∫

Rd

(
nε

(∣∣∣|x|
1
ε
−1x+ h

∣∣∣
ε (|x|

1
ε
−1x+ h)

||x|
1
ε
−1x+ h|

, t

)
− nε(x, t)

)
βε(x,

h
|h|
)dh

|h|2α+d
.

We can hence define:

Lα
ε (nε)(x, t) := Lα(n)(|x|

1
ε
x

|x|
,
t

ε
),

which allows us to write (13) as below:

ε∂tnε(x, t) = −Lα
ε nε(x, t) + nε(x, t)[µε(x)− nε(x, t)]. (14)

In the same way we define

K̃ε(nε, χε)(x, t) := K̃(n, χ)(|x|
1
ε
−1x,

t

ε
).

Moreover, according to the inequalities (12), we can consider n(x, 1) as our initial data instead of
n(x, 0). So we can replace the assumption (H1) by:

cm

1 + |x|d+2α
≤ n0(x) ≤

cM

1 + |x|d+2α
⇒

cm

1 + |x|
d+2α

ε

≤ n0,ε(x) ≤
cM

1 + |x|
d+2α

ε

. (H1’)

In the next subsection we are going to provide sub and super-solutions to (14) which will allow
us to demonstrate Theorem 1 in a second subsection.

7



3.1 Sub and super-solution to (14).

Theorem 3. We assume (H2) and (H3) and we choose positive constants Cm <
|λ1|

maxφ1
and CM >

|λ1|
minφ1

and δ such that

0 < δ ≤ min(
√
CM minφ1 − |λ1|,

√
|λ1| − Cmmaxφ1).

Then there exists a positive constant ε0 < δ such that for all ε ∈]0, ε0[ we have:
(i) fM

ε (t, x) = φ1,ε(x)×
CM

1+e−
t
ε (|λ1|+ε2)− δ

ε |x|
d+2α

ε

is a super-solution of (14),

(ii) fm
ε (x, t) = φ1,ε(x)×

Cme−
δ
ε

1+e−
t
ε (|λ1|−ε2)− δ

ε |x|
d+2α

ε

is a sub-solution of (14).

(iii) Moreover, if we assume (H1’) and Cm <
cm

max |φ1|
and CM >

cM

min |φ1|
where cm and cM are

given by (H1’) then for all (x, t) ∈ R
d × [0,+∞[,

φ1,ε(x)×
Cme

−δ
ε
−εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

≤ nε(x, t) ≤ φ1,ε(x)×
CMe

εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

. (15)

Proof. Since the proofs of (i) and (ii) follow from similar arguments, we will only provide the proof
of (i) and (iii).
Proof of (i). We define:

ψ(x, t) :=
CM

1 + e−t(|λ1|+ε2)− δ
ε |x|d+2α

. (16)

Then, noticing that φ1 is independent of t, we first bound ∂tψε from below,

∂tψε(x, t) =
CM

(|λ1|+ε2)
ε

e−t
(|λ1|+ε2)

ε
− δ

ε |x|
d+2α

ε

(1 + e−t
(|λ1|+ε2)

ε
− δ

ε |x|
d+2α

ε )2

=
ψε(x, t)

ε
[(|λ1|+ ε2)

e−t
(|λ1|+ε2)

ε
− δ

ε |x|
d+2α

ε

1 + e−t
|λ1|+ε2)

ε
− δ

ε |x|
d+2α

ε

]

≥
ψε(x, t)

ε
[|λ1|+ ε2 − ψε(x, t)φ1,ε(x)].

(17)

The last inequality is obtained from the definition of CM and ε. Actually, for such CM and ε, we
have, for any positive non-null constant A, the following relation:

A(|λ1|+ ε2)

1 + A
≥ |λ1|+ ε2 −

CM minφ1

1 + A
,

because,

|λ1|+ ε2 −
CM minφ1

1 + A
=

(1 + A)(|λ1|+ ε2)− CM minφ1

1 + A

=
A(|λ1|+ ε2)− (CM minφ1 − |λ1| − ε2)

1 + A

≤
A(|λ1|+ ε2)

1 + A
.
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We also compute Lα
ε (f

M
ε )(x, t) as a fractional Laplacian of a product of functions,

Lα
ε (f

M
ε )(x, t) = φ1,ε(x)L

α
εψε(x, t) + ψε(x, t)L

α
ε φ1,ε(x)− K̃ε(ψε, φ1,ε)(x, t) (18)

with K̃ given in section 2. Replacing this in equation (14) and using the two previous results (17)
and (18), we find:

ε∂tf
M
ε (x, t) + Lα

ε f
M
ε (x, t)− fM

ε (x, t)[µε(x)− fM
ε (x, t)]

≥ fM
ε (x, t)(|λ1|+ ε2 − fM

ε (x, t)) + φ1,ε(x)L
α
εψε(x, t) + ψε(x, t)L

α
ε φ1,ε(x)

− K̃ε(ψε, φ1,ε)(x, t)− µε(x)f
M
ε (x, t) + fM

ε (x, t)2

= ε2fM
ε (x, t) + φ1,ε(x)L

α
εψε(x, t)− K̃ε(ψε, φ1,ε)(x, t),

where we have used (3) and (H3) for the last equality.

In order to control Lα
εψε(x, t) and K̃ε(ψε, φ1,ε)(x, t), we are going to use Lemma 1. For, Lα

εψε(x, t),

noticing that ψε(x, t) = CMg(e
−t(|λ1|+ε2)−δ

ε(1+2α) |x|
1
ε
−1x), and thanks to the point (i) of Lemma 1, we

obtain:

−Ce−2α
t(|λ1|+ε2)+δ

ε ψε(t, x) ≤ Lα
εψε(t, x).

But, comparing the growths, there exists ε1 > 0 such that for ε < ε1 and for all t ≥ 0 :

CM × Ce
−2α

t(|λ1|+ε2)+δ

ε(d+2α) −
ε2

3
≤ 0,

hence:

−
ε2

3
ψε(x, t) ≤ Lα

εψε(x, t).

Now we deal with K̃ε(ψε, φ1,ε)(x, t) in a similar fashion. Thanks to Lemma 1 (ii), we find:

K̃ε(ψε, φ1,ε)(x, t) = K̃(ψ, φ1)(|x|
1
ε
x

|x|
,
t

ε
)

≤ Ce−
(2α−γ)[t(|λ1|+ε2)+δ]

ε ψ(|x|
1
ε
x

|x|
,
t

ε
)

= Ce−
(2α−γ)[t(|λ1|+ε2)+δ]

ε ψε(x, t).

Then, noticing that for any choice of α, 2α − γ is strictly positive, we deduce there exists ε2 > 0
such that for all ε < ε2:

Ce−(2α−γ)
t(|λ1|+ε2)+δ

ε −
ε2minφ1

3
≤ 0.

We deduce that

K̃ε(ψε, φ1,ε)(x, t) ≤
ε2

3
ψε(x, t)minφ1 ≤

ε2

3
ψε(x, t)φ1,ε(x).

We set :
ε0 = min(ε1, ε2).

9



Then, we conclude that for ε ≤ ε0, we have :

ε∂tf
M
ε (x, t) + Lα

ε f
M
ε (x, t)− fM

ε (x, t)[µε(x)− fM
ε (x, t)]

≥ ε2fM
ε (x, t) + φ1,ε(x)L

α
εψε(x, t)− K̃ε(ψ, φ1)(x, t)

≥ ε2fM
ε (x, t)−

ε2

3
φ1,ε(x)ψε(x, t)−

ε2

3
φ1,ε(x)ψε(x, t)

≥
ε2

3
fM
ε (x, t)

≥ 0.

Therefore fM
ε is a super-solution of (14) and this concludes the proof of the point (i).

Proof of (iii). From (H1’), since max |φ1|Cm < cm and cM < CM min |φ1|, we have:

fm
ε (x, 0) =

φ1,ε(x)× Cme
− δ

ε

1 + e−
δ
ε |x|

d+2α
ε

=
φ1,ε(x)× Cm

e
δ
ε + |x|

d+2α
ε

≤
cm

1 + |x|
d+2α

ε

≤ nε(x, 0) ≤ fM
ε (x, t).

Then, according to the comparison principle, we obtain:

φ1,ε(x)×
Cme

− δ
ε

1 + e−
t
ε
(|λ1|−ε2)− δ

ε |x|
d+2α

ε

≤ nε(x, t) ≤ φ1,ε(x)×
CM

1 + e−
t
ε
(|λ1|+ε2)− δ

ε |x|
d+2α

ε

,

and hence

φ1,ε(x)×
Cme

−δ
ε
−εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

≤ nε(x, t) ≤ φ1,ε(x)×
CMe

εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

. (15)

3.2 Convergence to the stationary state

Thanks to the inequalities (15), we can now prove Theorem 1. To prove this theorem, we are going
to follow the ideas of Méléard and Mirrahimi in [19].

Proof. First, we perform a Hopf-Cole transformation

uε(x, t) := ε lognε(x, t) and u+,ε(x) := ε logn+,ε(x). (19)

Taking the logarithm in (15) and multiplying by ε, we find :

− ε2t + ε logCmφ1,ε − ε log(1 + e−
|λ1|t+δ

ε |x|
d+2α

ε )− δ ≤ uε(x, t)

and uε(x, t) ≤ ε2t+ ε logCMφ1,ε − ε log(1 + e−
|λ1|t+δ

ε |x|
d+2α

ε ).

Define

u(x, t) = lim inf
ε→0

uε(x, t), u(x, t) = lim sup
ε→0

uε(x, t), for all (x, t) ∈ R
d × (0,+∞).

10



Letting ε→ 0, we obtain

min(0, |λ1| t+ δ − (d+ 2α) log |x|)− δ ≤ u(x, t) ≤ u(x, t) ≤ min(0, |λ1| t+ δ − (d+ 2α) log |x|).

We then let δ → 0 and we obtain

u(x, t) := u(x, t) = u(x, t) = min(0, |λ1| t− (d+ 2α) log |x|).

We deduce that uε converges locally uniformly in R
d × [0,+∞[ to u since the above limits are

locally uniform in ε.
Proof of (i). For any compact set K in A, there exists a positive constant a such that for all

(x0, t0) ∈ K, we have u(x0, t0) < −a. It is thus immediate from (19) that nε converges uniformly
to 0 in K ⊂ A. This concludes the proof of (i).

Proof of (ii). We divide (14) by nε and we obtain

∂tuε + Lα
ε nεn

−1
ε = µε − nε,

that we rewrite as below,

nε = n+,ε + (−∂tuε − Lα
εnεn

−1
ε + µε − n+,ε). (20)

Step 1:
nε(x0, t0)

n+,ε(x0)
≥ 1 + o(1) in every compact set of B.

Let K be a compact set of B and (x0, t0) ∈ K. We choose ν a positive constant small enough
such that for all (y, s) ∈ K,

(d+ 2α) log |y| < |λ1|s− 2ν and 2ν < |λ1|s. (21)

First, we define

ϕ(x, t) := min(0,−(d+ 2α) log |x|+ |λ1|t0 − ν)− (t− t0)
2.

It is easy to verify that u − ϕ achieves a local strict in t and a global in x minimum at (x0, t0).
Then, we define

ϕ
ε
(x, t) := −ε log(1 + e−

|λ1|t0−ν

ε |x|
d+2α

ε )− (t− t0)
2.

Thus, (ϕ
ε
)ε converges locally uniformly to ϕ. Moreover, since n+ is periodic and strictly positive,

we have that u+,ε converges to 0, hence uε − (ϕ
ε
+ u+,ε) −→

ε→0
u− ϕ locally uniformly. Thus, there

exists (xε, tε) ∈ R
d × [0,+∞[ such that (xε, tε) is a minimum point (local in t and global in x) of

(uε − ϕ
ε
− u+,ε) and (uε − ϕ

ε
− u+,ε)(xε, tε) → 0. Since (x0, t0) is a strict in t local minimum of

u− ϕ, one can choose tε such that tε → t0. We deduce that

∂tuε(xε, tε) = ∂tϕε
(xε, tε) = −2(tε − t0) = o(1). (22)

One should ensure that (xε)ε→0 have all their accumulation points in B(0, e
|λ1|t0−ν

d+2α ) as ε tends

to 0. This is the case because, at time t = t0, in B(0, e
|λ1|t0−ν

d+2α ), uε − ϕ
ε
− u+,ε tends to 0, whereas

in B(0, e
|λ1|t0−ν

d+2α )c, uε − ϕ
ε
− u+,ε tends to a strictly positive function.

11



We deduce that there exists ε1 > 0 such that for all ε < ε1 we have xε ∈ B(0, e
|λ1|t0−

ν
2

d+2α ).
Then we continue by proving (−Lα

ε (nε)n
−1
ε + µε − n+,ε)(xε, tε) ≥ o(1),

−Lα
ε (nε)n

−1
ε (xε, tε) =

∫

Rd

(e

uε

(

∣

∣

∣

∣

|xε|
1
ε−1

xε+h

∣

∣

∣

∣

ε−1
(|xε|

1
ε−1

xε+h),tε

)

−uε(xε,tε)

ε − 1)
βε(x,

h
|h|
)dh

|h|d+2α
.

From the definition of (xε, tε), we have for all y ∈ R
d :

(uε − ϕ
ε
− u+,ε)(xε, tε) ≤ (uε − ϕ

ε
− u+,ε)(y, tε),

and thus
(ϕ

ε
+ u+,ε)(y, tε)− (ϕ

ε
+ u+,ε)(xε, tε) ≤ uε(y, tε)− uε(xε, tε).

Therefore, from (19) we have

−Lα
ε (e

ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε, tε) ≤ −Lα
ε (nε)n

−1
ε (xε, tε).

Finally, using that n+,ε is solution of the stationary equation, we obtain

(−Lα
ε (nε)n

−1
ε + µε − n+,ε)(xε, tε) ≥ (−Lα

ε (e
ϕ
ε
ε n+,ε))(e

ϕ
ε
ε n+,ε)

−1 + µε − n+,ε)(xε, tε)

= (−Lα
ε (e

ϕ
ε
ε )(e−

ϕ
ε
ε )− Lα

ε (n+,ε)(n+,ε)
−1

+ K̃ε(e
ϕ
ε
ε , n+,ε)(e

ϕ
ε
ε n+,ε)

−1 + µε − n+,ε)(xε, tε)

=
(
−Lα

ε (e
ϕ
ε
ε )(e−

ϕ
ε
ε ) + K̃ε(e

ϕ
ε
ε , n+,ε)(e

ϕ
ε
ε n+,ε)

−1
)
(xε, tε).

In order to control the last two terms of the above inequality, we are going to use Lemma 1.

Note that, we have the following link between e
ϕ
ε
ε and g(x) = 1

1+|x|d+2α :

e
ϕ
ε
ε (x, t) =

e−
(t−t0)

2

ε

1 + e−
|λ1|t0−ν

ε |x|
d+2α

ε

= e
−(t−t0)

2

ε g(e−
|λ1|t0−ν

(d+2α)ε |x|
1
ε
−1x).

And so, we can deduce from Lemma 1 that:

o(1) = −Ce
−

2α(|λ1|t0−ν)
(d+2α)ε ≤ −Lα

ε (e
ϕ
ε
ε )(e−

ϕ
ε
ε )(xε, tε),

and,

o(1) = −C e−
(2α−γ)(|λ1|t0−ν)

ε n+,ε(xε, tε)
−1 ≤ K̃ε(e

ϕ
ε
ε , n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε, tε).

We deduce that:
o(1) ≤ (−Lα

ε (nε)n
−1
ε + µε − n+,ε)(xε, tε). (23)

Finally, combining the above inequality with (20) and (22), we obtain that

1 + o(1) ≤
nε(xε, tε)

n+,ε(xε)
.

Now, we want to bring back this inequality at the point (x0, t0). There are two cases:

12



Case 1: |xε| ≥ |x0|
Because of the definition of ϕ

ε
, we have :

ϕ
ε
(xε, tε) ≤ ϕ

ε
(x0, t0).

Since (xε, tε) is a minimum point of uε − (ϕ
ε
+ uε,+), we deduce that

uε(xε, tε)− u+,ε(xε) ≤ uε(x0, t0)− u+,ε(x0).

Thanks to (19), it follows that

1 + o(1) ≤
nε(xε, tε)

n+,ε(xε)
≤
nε(x0, t0)

n+,ε(x0)
.

Case 2: |xε| < |x0|
In this case, since (x0, t0) ∈ K and thanks to (21), we have that

−|λ1|t0 + ν + (d+ 2α) log(|xε|) ≤ −|λ1|t0 + ν + (d+ 2α) log(|x0|) ≤ −ν < 0,

and thus e
−|λ1|t0+ν+(d+2α) log(|xε|)

ε = o(1). We deduce that

e−
ϕ
ε
(xε,tε)

ε = e
(tε−t0)

2

ε (1 + e
−|λ1|t0+ν+(d+2α) log(|xε|)

ε ) ≥ 1.

Moreover, following similar computations, we obtain that e
ϕ
ε
(x0,t0)

ε = 1 + o(1). Hence, from the
definition of (xε, tε), we get

uε(xε, tε)− u+,ε(xε) + ϕ
ε
(x0, t0)− ϕ

ε
(xε, tε) ≤ uε(x0, t0)− u+,ε(x0).

Thanks to (19), we obtain that

1 + o(1) ≤
nε(xε, tε)

n+,ε(xε)
×
e

ϕ
ε
(x0,t0)

ε

e
ϕ
ε
(xε,tε)

ε

≤
nε(x0, t0)

n+,ε(x0)
.

So we have proved, in all cases

1 + o(1) ≤
nε(x0, t0)

n+,ε(x0)
.

Step 2:
nε(x0, t0)

n+,ε(x0)
≤ 1 + o(1) in every compact set of B.

This step is very similar to the first one.
We pick (x0, t0) ∈ B and let ν be a positive constant. As before, we define

ϕ(x, t) := min(0, |λ1|t0 + ν − (d+ 2α) log |x|) + (t− t0)
2.

It is easy to verify that u − ϕ achieves a local and strict in t and a global in x maximum at
(x0, t0). Then, defining

ϕε(x, t) := −ε log(1 + e−
|λ1|t0+ν

ε |x|
d+2α

ε ) + (t− t0)
2,

13



we have that (ϕε)ε converges locally uniformly to ϕ. Moreover,we know that u+,ε tends to 0 and so
uε − (ϕε + u+,ε) −→

ε→0
0 uniformly in B. Thus, there exists (xε, tε) ∈ R

d × [0,+∞[ such that (xε, tε)

is a maximum point, global in x and local in t, of (uε − ϕε − εu+,ε) and

(uε − ϕε − u+,ε)(xε, tε) → 0. (24)

Since (x0, t0) is a strict in t local maximum of u − ϕ, one can choose tε such that tε → t0. We
deduce that

∂tuε(xε, tε) = ∂tϕε(xε, tε) = 2(tε − t0) = o(1). (25)

One should ensure that (xε)ε→0 have all their accumulation points in B(0, e
|λ1|t0+

ν
4

d+2α ). This is the

case because for ε small enough, in B(0, e
|λ1|t0
d+2α ), uε−ϕε−u+,ε tends to 0 whereas in B(0, e

|λ1|t0+
ν
4

d+2α )c,
uε − ϕε − u+,ε is lower than a strictly negative function.
We deduce that there exists ε2 > 0 such that for all ε < ε2 we have

xε ∈ B(0, e
|λ1|t0+

ν
2

d+2α ). (26)

Then we continue by showing (−Lα
ε (nε)n

−1
ε + µε − n+,ε) ≤ o(1). With similar computations as

in step 1, we obtain :

(−Lα
ε (nε)n

−1
ε + µε − n+,ε)(xε, tε) ≤ (−Lα

ε (e
ϕε
ε )(e−

ϕε
ε ) + K̃ε(e

ϕε
ε , n+,ε)(e

ϕε
ε n+,ε)

−1)(xε, tε).

Since

e
ϕε
ε (x, t) =

e
(t−t0)

2

ε

1 + e−
|λ1|t0+ν

ε |x|
d+2α

ε

= e
(t−t0)

2

ε g(e
−

|λ1|t0+ν

ε(d+2α) |x|
1
ε
−1x),

we can deduce thanks to Lemma 1 that :

(−Lα
ε (e

ϕε
ε )(e−

ϕε
ε )(xε, tε) ≤ Ce

−
2α(|λ1|t0+ν)

(d+2α)ε = o(1),

and,

K̃ε(e
ϕε
ε , n+,ε)(e

ϕε
ε n+,ε)

−1(xε, tε) ≤ C e
−

(2α−γ)(|λ1|t0+ν)
ε(d+2α) n+,ε(xε, tε)

−1 = o(1).

Finally, combining the two previous inequalities and (25) in (20) we have obtained

nε(xε, tε)

n+,ε(xε)
≤ 1 + o(1).

Then, there are two cases to bring it back to the point (x0, t0):
Case 1: |xε| ≤ |x0| By definition of ϕε, we have:

ϕε(x0, t0) ≤ ϕε(xε, tε).

Since (xε, tε) is a maximum point of uε − (ϕε + uε,+), we deduce that

uε(x0, t0)− u+,ε(x0) ≤ uε(xε, tε)− u+,ε(xε).

Thanks to (19), it follows that,

nε(x0, t0)

n+,ε(x0)
≤
nε(xε, tε)

n+,ε(xε)
≤ 1 + o(1).
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Case 2: |xε| > |x0| Thanks to (26), there exists ε2 such that for all positive ε < ε2 there
holds

|xε| ≤ e
|λ1|t0+

ν
2

d+2α ⇒ −|λ1|t0 − ν + (d+ 2α) log |xε| < −
ν

2
.

And thus,

e−
ϕε(xε,tε)

ε = e
−(tε−t0)

2

ε (1 + e
−|λ1|t0−ν+(d+2α) log(|xε|)

ε ) ≤ 1 + e
−ν
2ε ≤ 1 + o(1).

Moreover, we know by definition that e
ϕε(x0,t0)

ε = 1 + o(1).
Furthermore, by definition of (xε, tε), we have

uε(x0, t0)− u+,ε(x0) ≤ uε(xε, tε)− u+,ε(xε) + ϕε(x0, t0)− ϕε(xε, tε),

Combining the above inequalities and thanks to (19) we obtain that

nε(x0, t0)

n+,ε(x0)
≤
nε(xε, tε)

n+,ε(xε)
×
e

ϕε(x0,t0)

ε

e
ϕε(xε,tε)

ε

≤ 1 + o(1).

So we have proved, in all cases
nε(x0, t0)

n+,ε(x0)
≤ 1 + o(1).

Passing up to the limit, we finally obtain the result of (ii).

4 Generalization to KPP type reaction terms

We can generalize our result to a model with a reaction term F (x, s) which verifies the Fisher KPP
assumptions given by (H4).

Example 1. Obviously we can take as before

F (x, s) = µ(x)s− s2.

Example 2. We can generalize it to the classical example:

F (x, s) = µ(x)s− ω(x)s2.

Where µ is a continuous periodic function, and ω is a continuous periodic strictly positive function.

Of course, we keep the main idea of the previous proof: the rescaling (5). So the equation (4)
becomes:

ε∂tnε(x, t) = −Lα
ε nε(x, t) + Fε(x, nε(x, t)). (27)

As before, according to the comparison principle, the point (ii) and (iii) of (H4) imply

µ(x)n− cn2 ≤ F (x, n) ≤ µ(x)n− Cn2. (28)

If we associate this result to (6), one can still obtain that the solution will have algebraic tails at
time t = 1 and hence one can replace the assumption (H1) by (H1’):

cm

1 + |x|
d+2α

ε

≤ n0,ε(x) ≤
cM

1 + |x|
d+2α

ε

. (H1’)

Therefore, we still have the same sub and super-solutions:
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Theorem 4. We assume (H2), (H3) and (H4) and if we choose Cm <
|λ1|

cmaxφ1
and CM >

|λ1|

C minφ1

where c and C are given by the assumptions (iii) of (H4) and a positive constant δ such that

0 < δ ≤ min(

√
CCM minφ1 − |λ1|,

√
|λ1| − cCmmaxφ1);

then there exists a positive constant ε0 < δ such that for all ε ∈]0, ε0[ we have:
(i) fM

ε (x, t) = φ1,ε(x)×
CM

1+e−
t
ε (|λ1|+ε2)− δ

ε |x|
d+2α

ε

is a super-solution of (27),

(ii) fm
ε (x, t) = φ1,ε(x)×

Cme−
δ
ε

1+e−
t
ε (|λ1|−ε2)− δ

ε |x|
d+2α

ε

is a sub-solution of (27).

(iii) Moreover, if we assume (H1’) and Cm <
cm

max |φ1|
and CM >

cM

min |φ1|
with cm and cM given

by (H1’) then for all (x, t) ∈ R
d × [0,+∞[,

φ1,ε(x)×
Cme

−δ
ε
−εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

≤ nε(x, t) ≤ φ1,ε(x)×
CMe

εt

1 + e−
|λ1|t+δ

ε |x|
d+2α

ε

. (29)

Proof. Here is the main step of the proof of the point (i). As in the proof of Theorem 3, we put:

fM
ε (t, x) = φ1,ε(x)× ψε(x, t),

where ψε is given by (16), but with a constant CM given in Theorem 4. Then, with similar
computations as before, we find:

∂tf
M
ε ≥

fM
ε

ε
(|λ1|+ ε2 − CfM

ε ).

Therefore, using (28) and Lemma 1, we get:

ε∂tf
M
ε (x, t) + Lα

ε f
M
ε (x, t)− Fε(x, fε(x, t))

≥ fM
ε (x, t)(|λ1|+ ε2 − CfM

ε (x, t)) + φ1,ε(x)L
α
εψε(x, t) + ψε(x, t)L

α
ε φ1,ε(x)

− K̃ε(ψ, φ1)(x, t)− µε(x)f
M
ε (x, t) + CfM

ε (x, t)2

≥ ε2fM
ε (x, t)−

ε2

3
fM
ε (x, t)−

ε2

3
fM
ε (x, t) + ψε(x, t) [L

α
ε φ1,ε(x)− (λ1 + µε(x))φ1,ε(x)]

≥ 0.

Thus, we have demonstrated the point (i). The proof of the point (ii) follows similar arguments.
We do not give the proof of the point (iii) because this is similar to the proof of (iii) of Theorem
3: the main argument is the comparison principle.

Thus, we can perform the Hopf-Cole transformation (19) and we obtain that uε converges
locally uniformly to:

u(x, t) = min(0, |λ1| t− (d+ 2α) log |x|).

Therefore the part (i) of Theorem 2 can be proved following similar arguments as in the proof of (i)
of Theorem 1. The proof of (ii) changes a little bit so we are going to provide the demonstration.
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Proof of (ii) of Theorem 2. Dividing by nε in (14), we obtain

∂tuε + Lα
ε nεn

−1
ε =

Fε(x, nε)

nε

. (30)

Step 1:
nε(x0, t0)

n+,ε(x0)
≥ 1 + o(1) in every compact set of B.

The main difference with the proof of Theorem 1 is that from (30), we do not obtain directly
nε(xε, tε)

n+,ε(xε)
≥ 1 + o(1) but we deduce

Fε(xε, n+,ε)

n+,ε

(xε, tε)−
Fε(xε, nε)

nε

(xε, tε) ≥ o(1).

Let K be a compact set of B and (x0, t0) ∈ K. We choose ν a positive constant small enough
such that for all (y, s) ∈ K,

(d+ 2α) log |y| < |λ1|s− 2ν and 2ν < |λ1|s. (31)

First, we define

ϕ(t, x) := min(0,−(d+ 2α) log |x|+ |λ1|t0 − ν)− (t− t0)
2.

It is easy to verify that u − ϕ achieves a local strict in t and a global in x minimum at (x0, t0).
Then, we define

ϕ
ε
(x, t) := −ε log(1 + e−

|λ1|t0−ν

ε |x|
d+2α

ε )− (t− t0)
2.

Thus, (ϕ
ε
)ε converges locally uniformly to ϕ. We know that u+,ε tends to 0 and so uε − (ϕ

ε
+

u+,ε) −→
ε→0

u − ϕ locally uniformly. Thus, there exists (xε, tε) ∈ B such that (xε, tε) is a minimum

point of (uε − ϕ
ε
− u+,ε) and (uε − ϕ

ε
− u+,ε)(xε, tε) → 0. Since (x0, t0) is a strict local minimum

of u− ϕ in t, we can choose tε such that tε → t0. Then

∂tuε(xε, tε) = ∂tϕε
(xε, tε) = −2(tε − t0) = o(1). (32)

With the same reasoning as in the proof of Theorem 1, we get that there exists ε1 > 0 such that

for ε < ε1, xε ∈ B(0, e
|λ1|t0−

ν
2

d+2α ).
Then we continue by proving

(−Lα
ε (nε)n

−1
ε +

Fε(x, nε)

nε

)(xε, tε) ≥ (
Fε(x, nε)

nε

−
F (xε, n+,ε)

n+,ε

)(xε, tε) + o(1).

We know that

−Lα
ε (nε)n

−1
ε (xε, tε) =

∫

Rd

(e

uε

(

∣

∣

∣

∣

|xε|
1
ε−1

xε+h

∣

∣

∣

∣

ε−1
(|xε|

1
ε−1

xε+h),tε

)

−uε(xε,tε)

ε − 1)
βε(xε,

h
|h|
)dh

|h|d+2α
.

Note that, from the definition of (xε, tε), we have for all y ∈ R
d :

(uε − ϕ
ε
− u+,ε)(xε, tε) ≤ (uε − ϕ

ε
− u+,ε)(y, tε),

and thus by (19)

−Lα
ε (e

ϕ
ε
ε n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε, tε) ≤ −Lα
ε (nε)n

−1
ε (xε, tε).

17



Finally, we obtain

(−Lα
ε (nε)n

−1
ε +

Fε(x, nε)

nε

)(xε, tε) ≥ (−Lα
ε (e

ϕ
ε
ε n+,ε))(e

ϕ
ε
ε n+,ε)

−1 +
Fε(x, nε)

nε

)(xε, tε)

≥ (−Lα
ε (e

ϕ
ε
ε )(e−

ϕ
ε
ε )−

Fε(x, n+,ε)

n+,ε

+ K̃ε(e
ϕ
ε
ε , n+,ε)(e

ϕ
ε
ε n+,ε)

−1 +
Fε(x, nε)

nε

)(xε, tε)

≥ (o(1) +
Fε(x, nε)

nε

−
Fε(x, n+,ε)

n+,ε

)(xε, tε).

(33)

We have to note that thanks to Lemma 1, in the last inequality, we have controlled the terms :

o(1) ≤ K̃ε(e
ϕ
ε
ε , n+,ε)(e

ϕ
ε
ε n+,ε)

−1(xε, tε) and o(1) ≤ −Lα
ε (e

ϕ
ε
ε )(e−

ϕ
ε
ε )(xε, tε).

Finally combining (32) and (33), we obtain

o(1) ≤
Fε(xε, n+,ε)

n+,ε

(xε, tε)−
Fε(xε, nε)

nε

(xε, tε). (34)

We are going to prove by contradiction that (34) implies o(1) + n+,ε(xε) ≤ nε(xε, tε). Let’s
suppose that there exists a subsequence (εk)k∈N and a positive constant C such that

nεk(xεk , tεk) + C < n+,εk(xεk).

Then thanks to the strict monotony of the function s 7→ F (x,s)
s

(assumption (iv) in (H4)) and the
mean value Theorem there exists a sequence yk such that

oεk(1) ≤
F (xεk , n+,εk)

n+,εk

(xεk , tεk)−
F (xεk , nεk)

nεk

(xεk , tεk)

= ∂s(
F (xεk , s)

s
)(yεk)(n+,εk − nεk)(xεk , tεk)

≤ −C × C.

This is a contradiction. Therefore, for ε small enough,

n+,ε(xε) + o(1) ≤ nε(xε, tε) ⇒ 1 + o(1) ≤
nε(xε, tε)

n+,ε(xε)
.

To bring back this inequality at the point (x0, t0), we use exactly the same arguments as for
the proof of Theorem 1 by considering a disjunction of cases |xε| < |x0| and |x0| < |xε|. We do not
provide the details of this disjunctions of cases since they are the same.
So we have proved, in all cases

1 + o(1) ≤
nε(x0, t0)

n+,ε(x0)
.

The second step can also be proved following similar arguments as in the previous step, thus
we do not provide the demonstration.

18



A The proof of Lemma 1

All along the appendix, we will denote by C positive constants that can change from line to line.

Proof of (i). We are going to follow the appendix A of [19].
Let δ < 1

2
be a positive constant. By a compactness argument, we only have to prove it for

|x| > 1. We compute

∣∣∣∣
Lα(g)(x)

g(x)

∣∣∣∣ =
∣∣∣∣∣

∫

Rd

(
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

)
β(x, h

|h|
)dh

|h|d+2α

∣∣∣∣∣

≤

∫

Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

+

∫

B(−x,δ|x|)\B(0,δ)

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

+

∫

B(0,δ)

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

= I1 + I2 + I3.

Let us begin by approximating I1.

I1 =

∫

Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

≤

∫

Rd\[B(−x,δ|x|)∪B(0,δ)]

∣∣∣∣
C

δd+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

≤
(C + 1)

δd+2α
B mes(Sd−1)

∫ +∞

δ

dh

|h|1+2α
=

C

δd+4α
.

For I2, we write:

I2 =

∫

B(−x,δ|x|)\B(0,δ)

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
β(x, h

|h|
)dh

|h|d+2α

≤ B

∫

B(−x,δ|x|)\B(0,δ)

∣∣∣∣
1 + |x|d+2α

1 + |x+ h|d+2α
− 1

∣∣∣∣
dh

|h|d+2α

≤ B

∫

B(−x,δ|x|)\B(0,δ)

∣∣|x|d+2α − |x+ h|d+2α
∣∣

1 + |x+ h|d+2α

dh

|h|d+2α

≤ B

∫

B(−x,δ|x|)\B(0,δ)

|x|d+2α + |x+ h|d+2α

1 + |x+ h|d+2α

dh

|h|d+2α

≤ B

∫

B(−x,δ|x|)\B(0,δ)

|x|d+2α + |δx|d+2α

1 + |x+ h|d+2α

dh

|h|d+2α

≤ C

∫

B(−x,δ|x|)\B(0,δ)

1

1 + |x+ h|d+2α

|x|d+2α

|h|d+2α
dh.
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But we know that h ∈ B(−x, δ|x|)\B(0, δ), using that δ < 1
2
< |x|, we deduce that

|x|(1− δ) ≤ |h| ≤ (1 + δ)|x| ⇒
∣∣∣
x

h

∣∣∣ ≤
∣∣∣∣

1

1− δ

∣∣∣∣ .

Thus, we deduce

I2 ≤
C

(1− δ)d+2α

∫

B(−x,δ|x|)\B(0,δ)

1

1 + |x+ h|d+2α
dh

≤
C

(1− δ)d+2α

∫ δ|x|

0

rd−1

1 + rd+2α
dr

≤
C

(1− δ)d+2α

∫ ∞

0

rd−1

1 + rd+2α
dr.

To control I3, we write I3 in the following form:

I3 = C

∣∣∣∣∣

∫

B(0,δ)

(
1 + |x|d+2α

1 + |x+ h|d+2α
+

1 + |x|d+2α

1 + |x− h|d+2α
− 2

)
β(x, h

|h|
)dh

|h|d+2α

∣∣∣∣∣ .

Next, we define

f(x, h) :=
1 + |x|d+2α

1 + |x+ h|d+2α
.

Since for all x ∈ R
d, the map that (h 7→ f(x, h)) is C1+2α, we know that I3 is well defined. Moreover

for every h ∈ B(0, δ)\ {0}, when the parameter |x| tends to ∞, we have that
(f(x,h)+f(x,−h)−2)β(x, h

|h|
)

|h|d+2α

tends to 0. So we deduce thanks to the dominated convergence Theorem, that (x 7→ I3(x))
tends to 0 when |x| tends to ∞. According to the continuity of the maps (x 7→ f(x, h)) and
(x 7→ β(x, θ)), we deduce that the map (x 7→ I3(x)) is continuous and so we conclude that I3 is
bounded independently of x. We refer to [19] for more details (see the Annex A1).
Combining the above inequalities, we obtain that there exists a constant C such that for all x ∈ R

d,

|Lαg(x)| ≤ Cg(x). (35)

Using the above inequality, we can conclude with a change of variable z = ay:

|Lαg(ax)| = |

∫

Rd

g(ax)− g(ax+ ay)

|y|d+2α
β(ax,

y

|y|
)dy|

= |

∫

Rd

g(ax)− g(ax+ z)

|a−1z|d+2α
a−dβ(ax,

a−1z

|a−1z|
)dz|

= a2α|Lα(g)(ax)|

≤ Ca2αg(ax).

Finally, we obtain
|Lαg(ax)| ≤ Ca2αg(ax).

Proof of (ii). Since all the functions involved in K̃ are differentiable, and thanks to the

dominated convergence theorem, we deduce that K̃ is continuous. We can note the following fact:

|∇g(x)| = O(|x|−(d+2α+1)) as |x| → +∞. (36)
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With the change of variable x̃ = ay, we find:

K̃(g(a.), χ)(x) = a2αC ′ PV

∫

Rd

(g(ax)− g(x̃))(χ(x)− χ(a−1x̃))

|ax− x̃|d+2α
β(x,

ax− x̃

|ax− x̃|
)dx̃. (37)

Since χ ∈ C1(Rd)∩L∞(Rd), β ∈ L∞(Rd ×Sd−1) and g ∈ C1(Rd)∩L∞(Rd) this integral converges
in R

d. For x ∈ R
d, we have to estimate

J(x) = a2αC ′ PV

∫

Rd

(g(x)− g(x̃))(χ(a−1x)− χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃

|x− x̃|
)dx̃

at point ax. We define for x ∈ R
d

J1(x) = a2αC ′ PV

∫

B(x,1)

(g(x)− g(x̃))(χ(a−1x)− χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃

|x− x̃|
)dx̃,

and J2(x) = a2αC ′ PV

∫

Rd\B(x,1)

(g(x)− g(x̃))(χ(a−1x)− χ(a−1x̃))

|x− x̃|d+2α
β(a−1x,

x− x̃

|x− x̃|
)dx̃,

so that J = J1 + J2. We split the proof in two parts: when |x| ≤M and when |x| > M with M a
positive constant arbitraly large.
For |x| ≤M , according to (37)

K̃(g(a·), χ)(x) = a2αJ(ax).

First we prove the existence of a constant C large enough such that

∀x ∈ B(0,M), |J(x)| ≤ Cg(x). (38)

Since |J | is continuous, we deduce that in B(0,M), |J | is bounded by a constant D. Thus, since
g si decreasing, if we take C larger than D × (1 +Md+2α), the assertions (38) holds true. Since
a < 1, we conclude that for all x ∈ B(0,M):

|K̃(g(a·), χ)(x)| = a2α|J(ax)| ≤ a2α
C

1 + |ax|d+2α
≤ a2α−γC

1 + |x|d+2α

1 + |ax|d+2α

1

1 + |x|d+2α
≤ a2α−γCg(x).

For |x| > M , we first study J1 and then J2.
Estimate of J1: From the formula (36), for |x| > M , since χ is C1(Rd) and periodic, and since
γ < 1 and 2α− γ is strictly positive, we have:

|J1(x)| ≤ CB

∫

B(x,1)

a2α−γ |x− x̃|γ

|x− x̃|d+2α
sup

z∈[x;x̃]

|∇g(z)||x− x̃|dx̃

≤ C
a2α−γ

|x|d+2α

∫

B(x,1)

1

|x− x̃|d+2α−γ−1
dx̃

≤
a2α−γD1

1 + |x|d+2α
.

Estimate of J2: Since χ is bounded and a < 1, we obtain:

|J2(x)| ≤ a2αCB

∫

|y|≥1

g(x)

|y|d+2α
dy + a2αCB

∫

|y|≥1

g(x+ y)

|y|d+2α
dy
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≤ a2αCBg(x) + a2αCB

∫

|y|≥
|x|
2

g(x+ y)

|y|d+2α
dy + a2αCB

∫

1≤|y|≤
|x|
2

g(x+ y)

|y|d+2α
dy

≤ a2α
CB

|x|d+2α
+ a2α

2d+2αCB

|x|d+2α

∫

Rd

g(y)dy + a2αCB

∫

1≤|y|≤ |x|
2

g(x
2
)

|y|d+2α
dy

≤ a2α
CB

|x|d+2α
+ a2α

2d+2αCB

|x|d+2α

∫

Rd

g(y)dy + a2αCB2d+2αg(x)

∫

|y|≥1

1

|y|d+2α
dy

≤ a2α−γ D2

1 + |x|d+2α
.

The third line is obtained noting that for |y| ≤ |x|
2

, we have |x|
2
≤ |x| − |y| ≤ |x+ y|.

Putting all together we find the existence of C such that (ii) holds.
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