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POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS
PARAMETRIC ROBIN PROBLEMS

NIKOLAOS S. PAPAGEORGIOU, VICENTIU D. RADULESCU, AND DUSAN D. REPOVS

ABSTRACT. We study a parametric Robin problem driven by a nonlinear non-
homogeneous differential operator and with a superlinear Carathéodory re-
action term. We prove a bifurcation-type theorem for small values of the
parameter. Also, we show that as the parameter A > 0 approaches zero we
can find positive solutions with arbitrarily big and arbitrarily small Sobolev
norm. Finally we show that for every admissible parameter value there is a
smallest positive solution u} of the problem and we investigate the properties
of the map A — uj.

1. INTRODUCTION

Let Q C RY be a bounded domain with a C*-boundary 9. In this paper, we
study the following nonlinear, nonhomogeneous parametric Robin problem

—diva(Du(z)) + £(2)u(2)PF = Af(z,u(2)) in Q,
(Py) du
on,

+B()uP P =00n 0N, u>0, A>0, 1 <p<oco.

In this problem, the map a : RY — RY is monotone continuous (hence maximal
monotone, too) and satisfies certain other regularity and growth conditions, listed in
hypotheses H(a) below. These conditions on a(-), are general enough to incorporate
in our framework many differential operators of interest such as the p-Laplacian
differential operator (1 < p < oo) and the (p,q)-Laplacian differential operator
(1 < ¢ < p < o). The differential operator in (P is not in general (p — 1)-
homogeneous and this is a source of technical difficulties in the analysis of problem
[@). Also & € L>(Q) and £ > 0. In the reaction term (right-hand side of the
equation) A > 0 is a parameter and f(z,z) is a Carathéodory function (that is, for
all z € R, the mapping z — f(z,z) is measurable and for almost all z € Q, the
mapping = — f(z,z) is continuous) which exhibits (p — 1)-superlinear growth in
the z-variable near +oo, but without satisfying the usual for superlinear problems
Ambrosetti-Rabinowitz condition (AR condition for short). Instead we use a more
general condition, which permits the consideration of (p — 1)-superlinear functions
with “slower” growth near +oc which fail to satisfy the AR-condition (see the
examples below). Also near 07, the nonlinearity f(z,-) has a concave term (that
is, a (p — 1)-sublinear term).
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ou
on,
conormal derivative) of u, defined by extension of

ou

on,
with n(-) being the outward unit normal on 9. This kind of directional derivative
on the boundary 02 is dictated by the nonlinear Green’s identity (see Gasinski and

Papageorgiou [15 p. 210]) and is also used by Lieberman [23]. For the boundary
coefficient 3(z), we assume that

B € C%*(9Q) for some a € (0,1), B(z) = 0 for all z € 9Q.

In the boundary condition, denotes the generalized normal derivative (the

= (a(Du),n)g~ for all u € C*(Q),

We assume that

EF#0or #0.

If B =0, then we recover the Neumann problem.

Our aim in this paper is to study the precise dependence of the set of positive
solutions on the parameter A > 0. In this direction, we prove a bifurcation-type
theorem for small values of the parameter, that is, we show that there exists a
critical parameter value \* € (0, +00) such that

e for all A € (0, \") problem (P)) admits at least two positive solutions;
e for A\ = \* problem (Py)) has at least one positive solutions;
e for all A > \* problem ([P,) has no positive solutions.

Moreover, we show that if A, — 0T, then we can find pairs {uy,, @, }nen of
positive solutions such that

[[ux, || = 0 and ||@y, || = +o0 as n — oo.

Here || - || denotes the norm of the Sobolev space W17 ().

Finally if A € (0,\*), then we show that problem (P,]) has a smallest positive
solution uy and we investigate the monotonicity and continuity properties of the
map A — uy.

Parametric problems with competing nonlinearities ( “concave-convex” problems),
were first investigated by Ambrosetti, Brezis and Cerami [4] for semilinear Dirichlet
problems driven by the Laplacian (that is, p = 2) and with zero potential (that is,
¢ =0). Their work was extended to Dirichlet problems driven by the p-Laplacian
(1 < p < 00) by Garcia Azorero, Manfredi and Peral Alonso [I4], Guo and Zhang
[19], Hu and Papageorgiou [21I]. All the aforementioned papers, consider “concave-
convex” reaction terms modelled after the function

Azt 42" for all z > 0, with g <p <r < p*.

So, in their equations the concave and convex inputs in the reaction are decoupled
and the parameter A > 0 multiplies only the concave term.

Closer to problem (Py]) are the works of Gasinski and Papageorgiou [17], Pa-
pageorgiou and Radulescu [32] and Aizicovici, Papageorgiou and Staicu [3]. Both
papers deal with equations driven by the p-Laplacian and have a reaction term
of the form Af(z,z) (as is the case here). In Gasinski and Papageorgiou [17] the
problem is Dirichlet and the authors prove bifurcation-type results for small and
big values of the parameter A > 0. In Papageorgiou and Radulescu [32] the problem
is Robin (with £ = 0,8 # 0) and the authors prove a bifurcation-type result for
large values of the parameter. Finally, we mention also the related recent work of



NONLINEAR NONHOMOGENEOUS PARAMETRIC ROBIN PROBLEMS 3

Papageorgiou and Smyrlis [39] who deal with singular Dirichlet problems and of
Papageorgiou and Radulescu [33] dealing with p-Laplacian Robin problems with
competing nonlinearities.

We denote by || - ||, the usual LP-norm in LP(€2) and by | - | the Euclidean norm

on RY. Throughout this paper, the symbol = is used for the weak convergence.

2. MATHEMATICAL BACKGROUND-AUXILIARY RESULTS

Let X be a Banach space and X* its topological dual. By (-,-) we denote the
duality brackets for the pair (X*, X). If ¢ € C*(X,R), we say that ¢ satisfies the
“Cerami condition” (the “C-condition” for short), if the following property holds:

“Every sequence {uy,},>1 € X such that {¢(un)}n>1 C R is bounded and
(1 + [|Jun|)¢' (un) — 0 in X* as n — oo,
admits a strongly convergent subsequence”.
This compactness-type condition on the functional ¢, leads to a deformation
theorem from which one can derive the minimax theory of the critical values of
. Central in that theory, is the well-known “mountain pass theorem” due to

Ambrosetti and Rabinowitz [5], stated here in a slightly more general form (see
Gasinski and Papageorgiou [15 p. 648]).

Theorem 1. Assume that X is a Banach space, p € C'(X,R) satisfies the C-
condition, ug,u1 € X, ||ug —ug|| > p >0

max{p(uo), p(u1)} < inflp(u) : [lu—uol| = p] = m,
and ¢ = érelf max p(y(t)) with T = {y € C([0,1], X) : v(0) = ug,y(1) = u1}. Then

I o<i<1
c = my, and c is a critical value of ¢.

Remark 1. The result is in fact true more generally in Banach-Finsler manifolds.
By || - || we denote the norm of the Sobolev space W' () defined by
llull = [llullf + [|Dul p]/? for all u € WHP(2).

In addition to the Sobolev space W'?(Q2) we will also use the Banach space
Cl(ﬁ) and certain closed subspaces of it and the “boundary” Lebesgue spaces
L%(09Q) (1 < g < o0). The space C*(Q) is an ordered Banach space with positive
(order) cone given by

Cr={ueC'Q):u(z)>0forall z € Q}.
The cone has a nonempty interior given by
D, ={ueC'Q):u(z) >0 for all z € Q}.

On 99 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-).
Using this measure we can define in the usual way the boundary Lebesgue spaces
LY(99Q) (1 £ ¢ < 00). From the theory of Sobolev spaces, we know that there exists
a unique continuous linear map o : WP () — LP(9Q) known as the “trace map”
such that

Yo(u) = ulaq for all u € WHP(Q) N C(Q).

We know that
im~yy = Wﬁ’p(aﬂ) <1 + L
p p

/

= 1) and keryo = W, P(Q).
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N -1
The trace map o is compact into L4(9Q) for all g € [1, (NJ) if N > pand
-P

into LI(9Q) for all ¢ > 1if p > N. In the sequel, for the sake of notational simplicity
we will drop the use of the map ~y. The restrictions of all Sobolev functions on 92
are understood in the sense of traces.

Let ¥ € C*(0,+00) with ¥(t) > 0 for all t > 0 and assume that

W ¥ (E)t
0<e< 9

< cp and 1?71 < O(t) < ep(1 4+ P71 for all t > 0, some ¢p,co > 0.

Our hypotheses on the map a(-), are the following:
H(a) : a(y) = ao(|y|)y for all y € RY with ag(t) > 0 for all ¢ > 0 and

(i) ag € C'(0,00), t = ag(t)t is strictly increasing on (0, +00), ag(t)t — 07 as
t — 0" and
ag (1)t

t—0t ap (t)

(ii) there exists c3 > 0 such that

Vo)l < 2

(i) (Va(y)é, &)y > ?'y||) |€]2 for all y € RV\{0}, all € € RY;

> —1;

for all y € RM\{0};

(iv) if Go(t) :/0 ap(s)sds,

then there exist 1 < ¢ < p < 19 < p* (recall that p* = if N > p and

p* = +oo if N < p) such that
qGo(t)
q

lim sup
t—0+

r0Go(t) — ao(t)t? = &P, pGo(t) — ao(t)t* > —co

< ¢t Go(tY7) is convex

for all ¢ > 0 and some ¢, ¢y > 0.

Remark 2. Hypotheses H(a)(i), (i%), (i9t1) are motivated by the nonlinear regularity
theory of Lieberman [24] and the nonlinear maximum principle of Pucci and Serrin
[1]. Hypothesis H(a)(iv) serves the particular needs of our problem, but it is
not restrictive and it is satisfied in many cases of interest as the examples below
illustrate. Similar conditions were also used in the recent works of the authors, see

Papageorgiou and Radulescu [30], 34 [36] .

Hypotheses H(a)(i), (i), (i4¢) imply that Go(-) is strictly convex and strictly
increasing. We set G(y) = Go(ly|) for all y € RY. So, G(-) is convex, G(0) = 0 and

VG(y) = Gg<|y|>%

Therefore G(-) is the primitive of a(-). From the convexity of G(-) and since
G(0) = 0, we have

(2) G(y) < (a(y), y)sw for all y € RV

= ao(ly|)y for all y € RN\{0}, VG(0) =
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The next lemma summarizes the main properties of the map a(-), which we will
use in the sequel. These properties are straightforward consequences of properties

H(a)(i), (i), (#i1) and of ().
Lemma 2. If hypotheses H(a)(3), (i), (#i1) hold, then
(a) y +— a(y) is continuous and strictly monotone (hence mazimal monotone,

too);
(b) la(y)| < ca(L+[y[P~) for all y € RY, some ¢4 > 0;

¢
(c) (a(y) y)r~ > pTlllylp for all y € RY.
This lemma and (2]) lead to the following growth estimates for the primitive G(-).

Corollary 3. If hypotheses H(a)(i), (i), (¢ii) hold, then lyl? < G(y) <

C1
p(p—1)
cs(1+ |y[P) for ally € RN, some c5 > 0.

The examples which follow confirm the generality of hypotheses H(a).

Example 1. The following maps satisfy hypotheses H(a) above

(a) a(y) = |y[P~%y with 1 < p < co.
The corresponding differential operator is the p-Laplacian defined by

Apu = div (|DuP~2Du) for all u € W(Q).

(b) a(y) = [yIP" %y + |y|*™2y with 1 < ¢ < p < 0.
The corresponding differential operator is the (p, q)-Laplacian defined by

Apu+ Agu for all w € WHP(Q).

Such operators arise in problems of mathematical physics, see Benci,
D’Avenia, Fortunato and Pisani [7] (quantum physics) and Cherfils and
Tlyasov [9] (plasma physics). Recently there have been some existence and
multiplicity results for such equations. We mention the papers of Aizicovici,
Papageorgiou and Staicu [1 2], Cingolani and Degiovanni [10], Mugnai and
Papageorgiou [27], Papageorgiou and Radulescu |29 Bl B7], Papageorgiou,
Radulescu and Repovs [38], Papageorgiou and Winkert [40], Sun, Zhang
and Su [42].

(c) aly) =01+ |y|2)¥y with 1 < p < 0.

The corresponding differential operator is the generalized p-mean curva-

ture differential operator defined by

div ((1 + |Du|2)pTﬁDu) for all uw € WHP(Q).

p—2
d) aly) = ly|P %y + "y with 1 < p < co.
(d) aly) =lyI" "y + 7 B p

The corresponding differential operator is defined by

|Du|P~2Du
1+ |Dulp

Apu + div ( ) for all w € WHP(Q).

This operator arises in problems of plasticity (see Fuchs and Osmolovski

[13]).



6 N.S. PAPAGEORGIOU, V.D. RADULESCU, AND D.D. REPOVS

Let A: WP (Q) — WHP(Q)* be the nonlinear map defined by

(A(u), h) = /Q (a(Du), Dh)gndz for all u,h € WHP(Q).

The next proposition is a particular case of a more general result due to Gasinski
and Papageorgiou [16].

Proposition 4. If hypotheses H(a)(i), (ii), (i3i) hold, then the map A : WhP(Q) —
WhP(Q)* is continuous, monotone (hence mazimal monotone too) and of type (S) 4,
that is,

“Up > u in WHP(Q) and limsup (A(up), un — u) <0 = u, — u in WHP(Q).”

n—oo

We introduce the following conditions on the coefficient functions &(-) and S(:).

H():£€ L>®(Q), £(2) = 0 for almost all z € Q.

H(B): B € C%(09) with a € (0,1), B(z) > 0 for all z € 9.

Hy:&#0or g#0.
Lemma 5. If £ € L¥(Q),£(2) = 0 for almost all z € Q,€ # 0, then there exists
cg > 0 such that

|| Dul[P —|—/ £(2)|ulPdz > cg||ul|P for all u e WHP(Q).
Q
Proof. Let ¢ : WHP(Q) — Ry be the C*-functional defined by
¥(u) = || Dul +/ £(2)|ufPdz for all u € WHP(€).
Q

Arguing by contradiction, suppose that the lemma is not true. Since (-) is
p-homogeneous, we can find {u,},>1 € WP(Q) such that
(3) [[un]| =1 for all n € N and ¥(u,,) — 07 as n — oo.

Since {un}n>1 € WHP() is bounded, we may assume that
(4) Up = u in WHP(Q) and u,, — u in LP(Q).

The functional (+) is sequentially weakly lower semicontinuous. So, from (3]
and (@) we obtain

¥(u) <0,
o) = |IDulfy < - [ @iz <o,
Q
= u=n€ckR.
If n = 0, then from (@) we see that

[ Dun|[p = 0,
= u, — 0in WP(Q),
a contradiction to the fact that ||u,|| =1 for all n € N.

If n # 0, then from (@) we have

o<—mw/éum2<m
Q

a contradiction.
This proves the lemma. 1
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Lemma 6. If § € L“(@Q),B(z) > 0 for o-almost all z € o0, B £ 0, then there
exists ¢z > 0 such that

[[Dul [P + /69 B(z)|u|pdo > cr||ul|? for all u € WHP(Q).
Proof. Let vy : WHP(Q) — Ry be the C'-functional defined by
Yo(u) = ||Dul|? +/ B(2)|ulPdo for all u e WHP(Q).
We claim that we can find ég >8g such that

(6) |[ul|P < éotbo(u) for all u € WHP(Q).

Arguing by contradiction, suppose that (@) is not true. Then we can find
{tn}n>1 € WHP(Q) such that

(7) [[unl) > ntpo(un) for all n € N.

Since g is p-homogeneous, we normalize in LP(Q) and have

1
o (un) < - and [|uy ||, =1 for all n € N (see (7))

(8) = Yo(u,) = 0" asn — o0o.
From () it follows that
[|Duy||p — 0 as n — oo,
= {un}tns1 € WHP(Q) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

9) Up = win WHP(Q) and u,, — v in LP(Q) and in LP(09).
From (8), [@) and the sequential weak lower semicontinuity of ¢g(-), we have
Yo(u) <0,
(10) = I+ [ B <o

= u=1)c R.
If 9o = 0, then from (@) we have
up — 0in LP(92),

a contradiction with the fact that ||u,||, =1 for all n € N.
If g # 0, then from (I0) we have

0 < [nol? / B(z)do <0,
o0

again a contradiction. Therefore (@) holds and from this it follows that we can find
c7 > 0 such that
crl[ul|P < 4po(u) for all u € WHP(Q).
O

Next we prove a strong comparison result which will be useful in what follows.
This proposition was inspired by analogous comparison results for Dirichlet prob-
lems with the p-Laplacian as established by Guedda and Véron [I8, Proposition
2.2] and Arcoya and Ruiz [6l Proposition 2.6].



8 N.S. PAPAGEORGIOU, V.D. RADULESCU, AND D.D. REPOVS

Proposition 7. Assume that hypotheses H(a)(i), (i), (iii) hold, £ € L®(Q), £(z) >
0 for almost all z € Q, hy,he € L=(Q) such that

0 < g < ha(z) — hi(z) for almost all z €
u,v € CH(Q)\{0} satisfy u < v and
—diva(Du(z)) + £(2)|u(2)|P"2u(z) = hy(2) for almost all z € 9,
—diva(Dv(2)) + £(2)|v(2)[P2v(z) = ha(2) for almost all z € Q.
Then (v —wu)(z) >0 for all z € Q and if g = {z € 0N : u(z) = v(2)}, then

(v —u)

on < 0.

P
Proof. We have
—div (a(Dv(z)) — CLA(DU(Z)))
(1) = ha(2) = () = € PEIP20(e) = [u(z)P2u(2) for almost all = € 2.

Let a = (ag)h_; with ax : RY — R being the kth component function, k €
{1,...,N}. From the mean value theorem, we have

ak( —ak Z a k

forally = (y;)N, € RY, ¢/ = (y)N, € RN and all k € {1,...,N}.
Consider the following functions
1
Cri(z) = gak (Du(z) + t(Dv(z) — Du(2)))(Dv(z) — Du(z))dt
0o 9Yi

forall ke {1,...,N}, all z € Q.

(i — yi)dt

Then ¢&,; € C(Q) and using these functions we introduce the following linear
differential operator in divergence form

L(w :—dw(Zc;“ ) 28 (Cr,i(z 8 )foralleH(Q)
2k

We set y = v —u € C:\{0}. From () we have
(12)
L(y) = ha(z) — hi(2) — é(z)(|v(z)|p721)(z) — u(2)|P"2u(z)) for almost all z € Q.
Suppose that at zg € Q, we have u(z9) = v(zp). Exploiting the uniform continu-

ity of the map x — |x[P~2z and the fact that £ € L>(Q), from (IZ) we see that for
0 > 0 sufficiently small we have

L(y) > %8 > 0 for almost all z € Bs(z0).

Then invoking Harnack’s inequality (see Motreanu, Motreanu and Papageorgiou
[26, p. 212]) or alternatively using the tangency principle of Pucci and Serrin [41]
p. 35], we have

(v —u)(z) > 0 for all z € Bs(z),

a contradiction since u(zg) = v(zp). Therefore, we must have that

(v—u)(z) >0 for all z € €.
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Next suppose that 2y € 3. Since 9 is a C%-manifold, for p > 0 small there is
a p-ball B, such that

B, CQand 2o € 90N IB,.
Choosing p > 0 small, from ([I2]) and since u(Z9) = v(Zp) (recall that 2y € o),

we see that L(-) is strictly elliptic. Then Hopf’s theorem (see Motreanu, Motreanu
and Papageorgiou [26, p. 217]) and Pucci and Serrin [41] p. 120], we have

Ay ~ 0(v—u)
an () =~ 5, (20) <0,
v-—wl _

on o

O

Remark 3. With o = {z € 0Q : u(z) = v(2)}, we introduce the following Banach
spaces:

Ci(Q) = {he C'(Q): s, =0},
I

WhP(Q) = CLQ)  (recall that || - || is the norm of W'(Q)).

From Proposition [ we have

on g,
Let U be a neighborhood of Xq in Q such that
(v —
=l 1y,
on |y 2
Then we can find € > 0 small such that
— (v —(u+h)) n
(13) h e Ci(Q), ||h||cl(ﬁ) e = —an < 1 <0
(14) and (v — (ug + h))lg\y =1 > 0.

From (13) we see that for € > 0 small, we have
v(z) = (u+h)(2) 20 for all z € U, allh € CHQ), ||hllgrm < e
Comparing this with (14), we see that
u+ B e v—CY(X0)
with B being the e-ball centered at zero in CL(Q) and C%.(Xo) 4s the positive cone

of CL(Q)). This cone has a nonempty interior given by

h
int C7 (o) = {h € CF : h(z) >0 for all z € Q, % < 0}.
o

If 39 =0, thenv—u € Dy.

The next result is an outgrowth of the nonlinear regularity theory of Lieberman
[24] and can be found in Papageorgiou and Radulescu [28] (subcritical case) and in
Papageorgiou and Radulescu [35] (critical case).
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So, let V and X be two Banach subspaces of C*(Q) and W ?(Q) respectively,
such that V is dense in X. Suppose that fy: @ xR — R is a Carathéodory function
such that

|fo(z,z)| < ap(z)(1+ |z|"!) for almost all z € Q, all z € R,

with ap € L>®(Q),1 < r < p*. We set Fy(z,x) = / fo(z,s)ds and consider the
0
C'-functional g : W'P(Q) — R defined by

= l p _ 1,p
o (u) /QG(Du)dz + 5 /89 B(2)|u|Pdo /QFo(z,u)dz for all u € WHP(Q).

Proposition 8. Assume that ug € W"P(Q) is a local V-minimizer of o, that is,
there exists po > 0 such that

o(uo) < @oluo +h) for all h € V, ||h]|o1q) < po-

Then ug € CH*(Q) for some o € (0,1) and ug is also a local X -minimizer of o,
that s, there exists p1 > 0 such that

wo(uo) < po(uo +h) for all h € X, |[h]] < p1.

We conclude this section with some notation that we will use throughout this
work. For every x € R, let ¥ = max{#z,0}. Then for u € W'P(Q) we set
ut(:) = u(-)*. We know that

uw=u"—u",|ul =u" +u and uT,u” € WHP(Q).

By |- |n we denote the Lebesgue measure on RY. Finally, if X is a Banach space

and ¢ € C'(X,R), then by K, we denote the critical set of ¢, that is,

K,={ueX:¢(u)=0}

3. BIFURCATION-TYPE THEOREM

In this section, we prove a bifurcation type theorem for problem (P for small
values of the parameter A > 0.

We introduce the following conditions on the reaction term f(z,x).

H(f): f: QxR is a Carathéodory function such that for almost all z € €,
f(2,0) =0, f(z,z) >0 for all z > 0 and

(i) f(z,7) < a(z)(1+ 2" for almost all z € Q, all z > 0, with a € L>(Q),

p<r<ph
s ¢ . F(z2) .
(ii) if F(z,2) = f(z,s)ds, then hrf ——— = +oo uniformly for almost
z—4o00 I
all z €

(iil) if e(z,x) = f(z,2)x — pF(z,x), then there exists d € L'(Q) such that
e(z,2) <e(z,y)+d(z2) for almost all z € Q, all 0 < z < y;
(iv) for every s > 0, we can find 1, > 0 such that
ns < inf[f(z,2) : @ > s] for almost all z € Q

and there exist oo > 0, 7, 7o > 0 and 7 € (1,¢) (see hypothesis H(a)(iv))
such that

fox” ' < f(z,x) <z for almost all z € Q, all 0 < = < do;



NONLINEAR NONHOMOGENEOUS PARAMETRIC ROBIN PROBLEMS 11

(v) for every p > 0, there exists ép > 0 such that for almost all z € Q, the
function
x> f(z,2) + EpaP

is nondecreasing on [0, p].

Remark 4. Since we are looking for positive solutions and the above hypotheses
concern the positive semiazis, without any loss of generality, we may assume that
f(z,2) =0 for almost all z € Q, all x < 0. Hypotheses H(f)(ii), (iii) imply that

lim f(z.2)

400 gP—1

= +o0 uniformly for almost all z € €.

So, the reaction term f(z,-) is (p — 1)-superlinear. However, we stress that we
do not use the usual for “superlinear” problems AR-condition. We recall that the
AR-condition (unilateral version since we deal only with the positive semiazis) says
that there exist 9 > p and M > 0 such that

(15a) 0 <VF(z,2) < f(z,2)x for almost all z € Q, all x > M,

(15b) 0 < ess igf F(-,M) (see [A]).

Integrating [I5a) and using (I5L), we obtain the weaker condition
(16) cor” < F(z,x) for almost all z € Q, all x > M, some cg > 0.

Therefore the AR-condition implies that f(z,-) has at least (9 — 1)-polynomial
growth near +o0o. This excludes from consideration (p — 1)-superlinear nonlinear-
ities with “slower” growth near +oo (see the examples below). For this reason in
this work we use the less restrictive hypothesis H(f)(iii). This is a quasimono-
tonicity condition on the function e(z,-). This is a slightly more general version of
a condition used by Li and Yang [25]. If there exists M > 0 such that for almost
[z 2)

all z € Q the function x — P

x
H(f)(ii7) is satisfied (see Li and Yang [25]). Evidently this property is weaker than
condition (I0).

Example 2. The following functions satisfy hypotheses H(f). For the sake of
simplicity we drop the z-dependence.

is nondecreasing on [M,+00), then hypothesis

T—1 -
J oz if x € 10,1] ) X
f1($)—{xr1 1<z withl < T<qg<p<r<p
T—1 s—1 .
J oz —x if x €0,1]
fQ(x)_{ 2 linz ifl<x

Note that fa(+) does not satisfy the AR-condition.

with 1 < 17 < p, s.

Hypotheses H(f)(4), (iv) imply that
(17) 0 < f(z,2) < AHa" ' + crox”" ! for almost all z € Q, all 2 > 0, some ¢ > 0.
This growth estimate on f(z,-) leads to the following auxiliary Robin problem:
—diva(Du(2)) + &(2)u(2)PF = AHu(2)" ! + crou(2)"™) in Q,

v 58: +B(z)uP " =000 90, u >0, A > 0.
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Proposition 9. If hypotheses H(a), H(§), H(B), Hy hold and 1 < T <g<p<r<
p*, then for X > 0 small problem admits a positive solution uy € D .

Proof. For A > 0, we consider the C'*-functional ¢y : W'?(Q) — R defined by

A7) A
irtw) = [ 60wz + 1 [ eGras+1 [ solulrao - Lt - 220t
Q

for all u € WHP(Q).
Claim 1. For every A > 0 the functional 1y satisfies the C-condition.
We consider a sequence {uy,}n>1 C Wl’p(Q) such that
(18) [t (un)| < My for some My >0, all n € N,
(19) (14 [[un| YA (urn) — 0 in WHP(Q)* as n — oco.
From ([I3) we have

Q

alIh]
20 —)\010/ " 1hdz ’ -
(20) ) T4 Tt

for all h € WHP(Q) as n — oo.
In @0) we choose h = —u,, € W"P(Q). Then

/( (=Du,, ), —Du,, )gndz + {( ) (u, )Pdz + B(2)(u,, )Pdo < €, for all n € N,

o0

(A(un), b)Y + [ €(2)|un|P~?unhdz + B(2) |un|P?uphdo — )\ﬁ/ ()" hdz—
Q o0

/5 Pdz + B(2)(u,, )Pdo < €, for alln € N
X9)
(see Lemma 2D,
= c11||u, ||P < €, for some ¢17 > 0, all n € N (see hypotheses Hyp and Lemmata [5] [6])
= {21} 0 in WP (Q).

We can always assume that 7o < r < p* (see hypotheses H(a)(iv), H(f)(7)).
From (IX) and (2II), we have that

Anr

[ raemayas = [ ety + 3 [ a) e = 2l = Aewlull <

oQ
for some Ms > 0, all n € N.

In @0) we choose h = u,” € WP(Q). Then

—/(G(DUI),DUI)RWZ - / E(2)(ug)Pdz — | B(2)(uyy)Pdo + Nilluy |7 +
Q o9
(23) Aerol|luf ||l < e, for all n € N.
We add (22)) and ([23) and obtain
/ [rG(Du;}) — (a(Dw)), Duf)gn | dz + (5 — 1) [ £(2)(uh)Pdz+
Q Q

ﬁ(z)(u;'{)pda} < M3(1 4+ NJut||T) for some M3 >0, alln € N
o9

(243 ciaf|uf || < M3(1 + M|u)||7) for some cj5 >0, alln € N

Mo
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(see hypotheses H(a)(iv), Hyp, use Lemmata [B [6l and recall that r > p).
Since 7 < p, from (24) it follows that

{uf }ns1 € WHP(Q) is bounded,
= {untns1 € WHP(Q) is bounded (see (ZI))).

So, we may assume that
(25) Up = w in WHP(Q) and u,, — w in L"(Q) and in LP(9).

In @0) we choose h = u,, —u € WHP(Q), pass to the limit as n — oo and use

@5). Then
lim (A(up),un, —u) =0,

n—oo

= u, — uin WHP(Q) (see 25 and Proposition M.

Therefore for every A > 0, ¥, satisfies the C-condition.
This proves Claim [

Claim 2. There exist p > 0 and \g > 0 such that for every A € (0, \g) we have
inf[yx(u) : [[ul| = p] = mx >0 =x(0).
For every u € W?(Q) we have

a(u) = esllullP = Aera(||ul]” + ||u]|") for some ¢13,c14 > 0
(see Corollary Bl hypothesis Hy and Lemmata [5] [G])
(26) = [e1s — Acaa(([u][77F 4 [|u| )] |ul .

Let $(t) =¢""P+¢""P, ¢t > 0. Since 7 < p < r, we have
J(t) = +ooast — 07 and as t — +oo.
Therefore we can find ¢y € (0, +00) such that
o _if Gk
S(ty) = %I>1£\S.

From (26) we see that

(27) Ua(u) = [c13 — AeraS|ul[]||u]|P for all u € WHP(Q).
If ||u|| = to, then we set A\g = f\i > 0 and for all A € (0, A\g) from [27) we
614J(t0)
see that

inf[yx(u) « [|ul| = p = to] = mx > 0 =1x(0).

This proves Claim
Since r > p, if u € D4, then

(28) Pa(tu) = —o0 as t = +00.

Claims [ and 2l and (28) permit the use of Theorem [Il (the mountain pass theo-
rem). So, for every A € (0, \), we can find @y € WP(Q) such that

(29) uy € Kﬂ,)\ and m)y < 1/))\(’[7,)\).
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From (2Z9) and Claim it follows that
iy # 0 and ¥} (@x) =0,
= (A(ly), h) +/ £(2)|unP2urhdz +/ B(2)|ax [P % urhdo
o
(30) = /\n/( D thdz + Acm/(ﬁj)r—lhdz for all h € WHP(Q).
Q Q

In @B0) we choose h = —i, € W'(Q2). Then

iy | /Qf(Z)(ﬂ,()sz + aﬂﬂ(z)(a;)pdcf <0 (sce Lemma )
= ci5]|ay [P <0 for some c¢15 > 0 (see hypothesis Hy and Lemmata [5], [)
= a)\ > 07 a)\ 7é 0.
Then ([B0) becomes

/ (=)l "hdz + / B(2)a " hdo = / ML+ Aerod ] hdz
o0 Q
for all h € Wh?(

= —dBla(Duy(z )) +E(2)axn(z)P = A [ﬁfu(z)Tﬁl + clofu(z)rfl} for almost all z € €,
8’[1,)\
on,

(see Papageorgiou and Radulescu [28])

From (BI]) and Hu and Papageorgiou [22] (subcritical case), Papageorgiou and
Rédulescu [35] (critical case), we have

uy € L™ (Q)
Then from Lieberman [24] we infer that
iy € C4\{0}.

(2)ay " =0 on 9O

From (BII) we have

div a(Diix(2)) < ||€]]eotin(2)P~* for almost all z € Q, (see hypotheses H(£)), H(B))
= ay € D4 (see Pucci and Serrin [41], pp. 111, 120)).

O

In fact we can show that for every A € (0, \o), problem ([Au,)) admits a smallest
positive solution.

Let S2 be the set of positive solutions of problem (Awy). We have seen in
Proposition [0 and its proof that

0 # S} C Dy for all A € (0, \o).

Moreover, as in Filippakis and Papageorgiou [12], we have that S'i is downward
directed (that is, if 41,2 € S’j\r, then we can find u € 5';\“ such that u < u; and
< Uz).

Proposition 10. If hypotheses H(a), H(&), H(B), Ho, H(f) hold and X € (0, \o),
then problem (@) admits a smallest positive solution uy € S”\ C D (that is,
Uy < uforalluES ).



NONLINEAR NONHOMOGENEOUS PARAMETRIC ROBIN PROBLEMS 15

Proof. We consider the following Robin problem

—diva(D (2)) + €(2)u(2)P~ = Mju(2)" ! in Q,

i
(Auy) +B(2)uP "t =00n0Q, u >0, A>0.

8na

Since 7 < p, a straightforward application of the direct method of the calculus of
variations reveals that for every A > 0, problem admits a positive solution
uy € Dy (nonlinear regularity theory and the nonlinear maximum principle).

Claim 3. @y € Dy is the unique positive solution of problem .

Consider the integral functional j : L'(Q) — R = RU {400} defined by

j(u) = G( u/q dz + = /§ (u?)dz + = /B Yut)do ifu >0, wi €
+oo

otherwise.

Let uy,us € domj = {u € L'(Q) : j(u) < +oo} (the effective domain of the
functional j(-)) and set u = ((1 — ¢)uy + tuz)l/q with ¢ € [0,1]. Using Lemma 1 of
Diaz and Saa [11] we have

(32) \Du(z)| < [(1 — #)|Dur(2)7 |7 + t|Dus(2) ¥ |q} for almost all z € Q.

Then we have

Go(IDu(z))) < Go (1= 1) Dur(2)7[% + t| Dua(2)7|7) for almost all 2 € 0
(see (32) and recall that Go(+) is increasing)
< (1 =t)Go(|Duy (= ) )+ tG0(|DuQ(z)|%) for almost all z € Q
(see hypothesis H(a)(iv)),
(1 —t)G(Duy(2))7 + tG(Dua(z)7) for almost all z € Q,
(recall that ¢ < p and see hypotheses H(§), H(5)).

= G(Du(z)) <

= j(-) is convex

By Fatou’s lemma, we see that j(-) is also lower semicontinuous.
Let Ty € W'P(Q) be another positive solution of problem Again we
have Ty € Dy. If h € C*(Q), then for ¢ > 0 small we have

u§ +th € dom j and 74 + th € dom j.

Then we can easily show that j(-) is Gateaux differentiable at @} and at 7} in
the direction h. Moreover, via the chain rule and the nonlinear Green’s theorem
(see Gasinski and Papageorgiou [15], p. 210]), we have

i u —p—1
I e e

q uy

J @) = l/ﬂ—diva(Dv_Aq)j_g( e .

q U\
for all h € WhP(Q).

whe(Q)
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The convexity of j(-) implies the monotonicity of 5'(-). So

. _ —p—1 . — —p—1
0 < / —lea(DUA):lF &(z)ul _ —div a(DvA)7—1|— E(z)08 (@ —o0)ds
Q uf 7
1 1
< )\ﬁ/ l_Tq - _Tq] (@ —v¢)dz (see problem [(Auy)),
o |, vy
=T, = T, (since T < q).

This proves Claim
Claim 4. @) < u for allu € S3.

Let u € S j\r We introduce the following Carathéodory function

0 ifx <0
(33)  ka(z,z) =< Mja" ! if0<x<u(z) forall (z,2) e 2 xR
Muu(2)"ifu(z) < .
We set Kx(z,x) = / Ex(z, s)ds and consider the C'' —functional 1, : W'P(Q) —
0
R defined by

¥y (y) z/QG(Dy)dZ—I—%/Q§(2)|y|pdz+% /89 ﬁ(z)|y|pda—/Q Kx(z,y)dz for ally € Wl’p(Q).

From (B3], Lemma [ and hypothesis Hy together with Lemmata Bl and 6] we
see that the functional 1, is coercive. Also, the Sobolev embedding theorem and
the compactness of the trace map, imply that 1, is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find @5 € W'?(Q) such
that

(34) (@) =inf [y (u) 1 u € Wl’p(Q)] .
Hypothesis H(a)(iv) and Corollary B imply that
(35) G(y) < ci6(|y|? + |y[P) for all y € RN some ¢4 > 0.

Since 7 < ¢ < p, if v € Dy, then for ¢ € [0,1] small (such that tv < u, recall that
u € Dy), we have

() < (1Dl + 100l + 2 | [ erras+ [ steyuran]
p Q [2}9)

it

o7 < 0 (see ()
= T@) <0 =7,(0) (see @D),
= @ #0.
From (34 we have
(@) =0,
3) (A@)0) + [ COmPmihds+ [ S P aihds = [ k(s
Q [219] Q

for all h € WhP(Q).



NONLINEAR NONHOMOGENEOUS PARAMETRIC ROBIN PROBLEMS 17

In ([B8) we first choose —(u})~ € W'*(Q). Then
ci7]|(@3)7||P < 0 for some ¢17 > 0
(see (B4), Lemma 2] hypothesis Hy and Lemmata [5], [6])
= @) = 0,1\ #0.
Next, in (B8) we choose h = (T} —u)* € WHP(Q). Then
(A@), (T3 —u) /f PHEL —w)Tde + [ B(2) (@) (@) — u)Tdo

[5}9)

- /Aﬁu“l(ﬂj — )tz (see B3))
Q

< / [Mu™ " + Aerou” ] (W — u)Tdz
Q

= (Afw), @ - u)*) + / S (@ —u)tde 4 [ B (@ — u)tdo
Q o0

(since u € S?),
= Uy <u
So, we have proved that
s € [0,u] = {y € WP(Q) : 0 < y(2) < u(z) for almost all z € Q}, w5} # 0,
= T} is a positive solution of [(Auy)]]
= T} =T, (see Claim B
= ﬂ,\guforalluegj\r.

This proves Claim [
Invoking Lemma 3.10 of Hu and Papageorgiou [20, p. 178], we can find a de-
creasing sequence {up }n>1 C Si such that
inf gi = inf wu,.

n>

Evidently {u,}n>1 € W'P(Q) is bounded and so we may assume that

(37) Up = @5 in WHP(Q) and w,, — @} in L"(2) and in LP(99).

In (B8) we choose h = u,, — @} € WHP(Q), pass to the limit as n — co and use
BD).

Then

lim (A(uy),u, —ay) =0,

n—r00
(38) = u, — @} in WHP(Q) (see B7) and Proposition H).
So if in (B6) we pass to the limit as n — oo and use (B8], then

/5 P hdz+ [ B(2)(@5)P 1hd0_/ﬂ[Aﬁ(ﬂK)T_l'i‘)\ClO(ﬂi)r_l} hdz

2Q
for all h € WhP(Q).
Also, from Claim [ we have
for all n € N,
(40) = T
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From (39) and ({0 it follows that

@} € S} and @}, = inf S}

Let
L ={\>0: problem ([P admits a positive solution}.

Proposition 11. If hypotheses H(a), H(¢), H(B), Ho, H(f) hold then L # .

Proof. Let @}, € S} C Dy be the minimal positive solution of problem
(A € (0,)\)), see Proposition [I0
We introduce the following truncation of the reaction term in problem ([Py))

] M(zx) if x < a3(2)
(41) (2 2) —{ Mz, a5(2) if ﬂf\(z))\< z.

This is a Carathéodory function. We set T'y(z,2) = / Ya(z, s)ds and consider
0
the C'—functional ¢ : WP(Q2) — R defined by

oa(u) = G(Du)dz—i—l/ f(z)|u|pdz+l/ ﬁ(z)|u|pdo—/ Tx(z,u)dz for allu € WHP(Q).
Q P Ja P Joo Q

From (#I)), Corollary Bl hypothesis Hy and Lemmata Bl 6l we see that ¢y (+)
is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find
uy € WHP(Q) such that

(42) @a(un) = inf [@a(u) s uw € WHP(Q)] .

Let dp > 0 be as postulated by hypothesis H(f)(iv). Given u € D, we can find
t € (0,1) small such that

(43) tu(z) € (0, 3] for all z € Q.
Then hypothesis H(f)(iv) implies that

(44) F(z,tu(z)) > @(tu(z))T for almost all z € Q (see @3J)).
T
We have
124 tP
@a(tu) <Cletq(llDU||Z+||DU||§)+—/€(Z)upd2 + — | Bl)uldo
P Ja b Joa
Y-
- =l
-

(see (B3) and recall that ¢t € (0,1))
(45K c15t? — Acygt? for some c1g, c19 > 0.

Since 7 < ¢ < p, from [{H) it follows that by choosing ¢ € (0, 1) even smaller if
necessary, we have

P(tu) <0,
= @a(ur) <0=9x(0) (see @2)
= U) 75 0.

From ([@2) we have
~t

<P)\(u>\) =Y
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(46)
= (A(uy), h / £(2)|ur|P2urhdz +/ B(2)|ux|P2urhdo = / Ya(z, ux)hdz
for all h € WhP(Q).
In ({T) we choose h = —u, € W'P(Q2). Then as before
cool|uy [P < 0 for some co9 > 0,
= wuy = 0,uy #0.
Also, in [G) we choose h = (uy —@})" € WHP(Q). Then

(A(uy), (ux —a3)™ / £ ux —a3)Tdz + | Blz)ud (uy —a})Tdo
o0

/Q)\f(z,ﬂi)(u,\ —a})Tdz (see ({I)
< [ AT+ eaol@) ] (o = )" (see (@)

(A@3), (ux —a3)") + 5 E(2)(@R)P (un — a3) " dz +

, B(2)(@3)P~ uy — @3) T do (because @} € S7),
= Uy < ﬁ;

So, we have proved that
uy € [0,a3], ux #0,
= wy is a positive solution of problem (Py) (see ().
As before the nonlinear regularity theory implies that
uy € C\{0}.

Let p = ||ux]|oo and let €, > 0 be as postulated by hypothesis H(f)(v). Then

—diva(Dux(2)) + (£(2) + &,)ua(z)P~1 = 0 for almost all z € Q
= diva(Dux(z)) < [||§||OO + ép} ux(2)P~! for almost all z € Q (see hypothesis H(¢)),
= wuy € D (see Pucci and Serrin [41], pp. 111, 120]).
Therefore we infer that

(0,A0) C L, hence L # {.
(]

Let S’i be the set of positive solutions of problem ([Py). A byproduct of the
proof of Proposition [[1]is the following corollary.

Corollary 12. If hypotheses H(a), H(E), H(B), Ho, H(f) hold, then S’i CD,.

The next proposition reveals a basic property of the set £ of admissible parameter
values.

Proposition 13. If hypotheses H(a), H(&), H(B), Ho, H(f) hold, A € L and . €
(0,A), then o € L.
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Proof. Since A € £, we can find uy € S} C D, (see Corollary [Z). We introduce
the Carathéodory function p, : 2 X R — R defined by

| af(z2) if 2 <wup(2)
(47) Na(zax) - { Ozf(Z,UA(Z)) if u)\(z) <.
We set My (z,2) = / tia(2, 8)ds and consider the C* —functional w,, : WP (Q) —
0
R defined by

we(u) = /QG(Du)dz + % Q§(z)|u|pdz + % /asz B(z)|ulPdo — ., My (z,u)dz

for all u € WHP(Q).
Clearly, w,(+) is coercive (see [AT))) and sequentially weakly lower semicontinu-
ous. So, we can find u, € W?(Q) such that

(48) Wo (Ue) = inf[we (u) : u € WHP(Q)).
As before (see the proof of Proposition [I0]), using hypothesis H(f)(iv), we have
Wa(Ua) < 0 =wa(0),
= uq # 0.

From (@S], we have
wl, (ug) =0,
(49)

<A(ua),h>+/Q§(z)|ua|p_2uahdz+/(mﬁ(z)|ua|p_2uahdo:/Qua(z,ua)hdz

for all h € WHP(Q).
In @) we first choose h = —u, € WP (2). We obtain
0 < Uq, uq #0.
Then we choose h = (uq —uy)™ € WHP(Q). We have

(Al (s = u) )+ [ €2 o =) e+ [ B = wa) do
Q o

/Qaf(z,u,\)(ua —uy))Tdz (see [D))

N

/ A (z,ux) (U — ux)Tdz (since f > 0,a < )
Q

= (Auy), (ug —un)™) + §(2)u§_1(ua —uy))Tdz + ﬁ(z)uf\_l(ua —uy) " do
Q a0

(since uy € S})
= Uy < U
So, we have proved that
Uy € [0,uyr], ua #0,
= Uq €87 C Dy (see (D) and so o € L.

Remark 5. Proposition [I3 implies that L is an interval
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Corollary 14. If hypotheses H(a), H(§), H(B), Ho, H(f) hold, A € L, o € (0, \)
and uy € Si C Dy, then we can find uo € S such that

ux — Uq € int C7F (Xo)

with Xg = {2z € 00 : ux(2) = ua(2)}.

Proof. From the proof of Proposition [[3] we know that we can find u, € S¢ such
that

uy — uq € C4\{0}.

Let p = |[ux|lo and let €, > 0 be as postulated by hypothesis H(f)(v). Then
we have

—diva(Du,) + (£(2) + O‘ép)“’g !
af(z,uq) + Oéépupfl

< af(z,un) + a{,,u)\ (see hypothesis H(f)(v) and recall that u, < uy)
= M@Eun) - A=—a)f(zu) + aSpUA '
< M(zun) — (A —a)ns + aéul " with s = minuy > 0
Q
(see hypothesis H(f)(iv) and recall that uy € D)
< —diva(Duy) + af,uf " for almost all z € Q,

= ux — Uy € int CF (o) with X = {z € 909 : ur(2) = ua(2)} (see Proposition ).

The proof is now complete. 0

Now let A* = sup L.
Proposition 15. If hypotheses H(a), H(§), H(B), Ho, H(f) hold, then \* < +o0.

Proof. Hypotheses H(f)(i), (iv) and H () imply that we can find A > 0 big such
that

(50) A (z,2) — £(2)aP~ = 2P~ for almost all z € Q,all = > 0.

Let A > X and suppose that A € £. Then we can find uy € Sj\r C D4. So, we
have

my = minuy > 0.
Q
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For § > 0, we set m§ = my +d € Dy. Also for p = ||u||so let £, > 0 be as
postulated by hypothesis H(f)(v). Then

—diva(Dm}) + (£(2) + A,)(m3)P

< (€(2) + AE)mE ! 4 x(8) with x(6) — 0T as § — 0F

< E@mET (L Ag)mE T+ x(9)

< M (zma) + Ml 4 x(8) (see (ED)

< M(zma) = (A =N f(z,u0) + AgmE T+ x(6)
(since A > A, see hypothesis H(f)(iv))

< M (zma) + AmE T — (A= X + x(8) with s = my > 0
(see hypothesis H(f)(iv))

< Mf(z,my) 4 A,ma (W) — 9 for some 9 > 0 and all § > 0 small

< M (z,un) + Ayun — 9 (see hypothesis H(f)(v))

< M (2,un) + A pun

(51  —diva(Duy) + (&(2) + A,)ul " for almost all z € Q (recall that uy € S7).

If 8 = 0 (Neumann problem), then by acting on (1)) with (m3 —ux)™ € W'P(Q)
we obtain
m‘s)\ < uy, for 6 > 0 small,

a contradiction to the definition of m.
If 8 # 0, then from the boundary condition we infer that Xo = {z € 9Q : ux(z) =
my} # 0Q. Then from (&Il) and Proposition [7 we have

ux —my € int C7 (Xo) ,

which again contradicts the definition of my. _
So, it follows that A ¢ £ and we have A* = sup £ < \ < . O

In what follows, for every A\ > 0, @y : W'P(Q) — R is the C' —energy (Euler)
functional for problem (Py)) defined by

1 1
cp,\(u)—/QG(Du)dz—i—E/Qﬁ(z)|u|pdz+5/@96(2)|u|”d0—)\/ﬂF(z,u)dz
for all u € WHP(Q).

Proposition 16. If hypotheses H(a), H(§), H(B), Ho, H(f) hold, then \* € L.

Proof. Let {A\}n>1 € £ be an increasing sequence such that A, — A~. We can
find u,, € S3" (n € N) such that

(52) ©x, (up) <0 forallm e N

(see the proof of Proposition [I3]).
Also, we have

(53) (A(up), h) + /Q E(2)ub™ hdz + - B(z)ub™ hdo = \, /Q f(z,up)hdz

for all h € WHP(Q), all n € N.
Claim 5. {u}n>1 € W'P(Q) is bounded.
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Arguing by contradiction, suppose that the claim is not true. Then we may
assume that

From (52 we have
(54)
/ pG(Dun)dz+/ Eubdz+ [ B(z)ubdo—\, / pF(z,up)dz < 0for alln € N.
Q Q o9 Q
On the other hand, if in (53] we choose h = u,, € WP(12), then
(55)

- / (a(Duy), Duy)pndz — | &(z)ubdz — (z)ubdo+ N, | f(z,up)udz=0.
Q Q o9 Q

We add (54)), (55) and obtain

/[pG(Dun) — (a(Duy,), Duy,)pn]dz + )\n/ e(z,up)dz <0 for allm € N
Q Q

(56)= )\n/ e(z,upn)dz < co1 for some co; >0, all n € N.
Q

Let y, = n € N. Then

Uy,
Tl
[lynll =1, yn = 0 for all n € N.
So, we may assume that
(57) Yn =y in WHP(Q) and y,, — y in L"(Q) and in LP(99Q), y = 0.
First assume that y # 0 and let E = {z € Q : y(2) # 0}. We have |E|y > 0 and

S0
Uun(z) = +oo for almost all z € E.
Hypothesis H(f)(i7) implies that
F(z, un F(z, uy,
(58) (2, tn) = (zpu )yﬁ — +oo for almost all z € E.
[|unll? un
From (B8) and Fatou’s lemma (hypothesis H(f)(ii) permits its use), we have
1
(59) —/ F(z,u,)dz — 400.
lunll? JE
Then
F(Z’u")dz _ / F(Z’u")dz—i—/ F(Z’un)dz
o lunll? g |luallP oe ||ualP
F(z,up) .
> ———=dz for almost all n € N (since F' > 0)
B llun|lP
F(z,un
(®0) ﬁdz — 400 as n— oo (see (BI).
Q |lun

Hypothesis H(f)(iii) implies that
0 < e(z,z) +d(z) for almost all z € Q, all z > 0,
(61) = pF(z,z) —d(2) < f(z,z)x for almost all z € Q, all z > 0.
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From (B8, @) and hypothesis H(a)(iv), we have

M [ PPz < [ pGDuds + [ ndz+ [ peundo e
Q Q Q o0

for some coy > 0, alln € N,

pF(zuy,) /pG(Dun) C22
= )\n/ ——dz < ——dz + f(z)yﬁdz—i— ﬁ( )yb
o |lualP o lunllP || nl[P
< w0 (fogp *”Dy””p) | d”/ Al
Lo
[[n |[P
(62) < o3 for some co3 > 0, all n € N.

Comparing (60) and (G2]), we have a contradiction.
Next assume that y = 0. For p > 0, we set

Un = (pu)l/”yn e WhP(Q) for all n € N.

Note that
(63) vp, — 0in L"(2) (see (@) and recall that y = 0),
(64) = F(z,vy,)dz — 0 (see hypothesis H(f)(i)).

Q
Since ||uy|| — oo, we can find ng € N such that

(65) (p,u) Tonl || < 1 for all n > no.

Consider the C*—functional ¥y, : WP(€) — R defined by
) o 1 1
() = — || Dulfp + L / cuPde+ L [ B uldo - A, / F(z u)de
p(p - 1) P P Ja P Joq

Q
for all u € WHP(Q).
Let ¢, € [0, 1] be such that

(66) z/NJ,\n (tnu,) = max w,\n (tun) : 0<t < 1] )
From (68) and (G6) it follows that
1;)% (tnun) P> "ZJ)\” (Un)

= 9 [pc_ll ||§+/Q§(z)y,’;dz+ aﬂﬁ(z)yﬁda} —)\n/QF(Z,vn)dz

> oy — /\*/ F(z,v,)dz for some coq >0, alln € N
Q

(see hypothesis Hy, Lemmata Bl 6l and recall that F' > 0, A, < \*)

(67) > u% >0 for all n = ny = ng (see (64)).
But 4 > 0 is arbitrary. So, from (G7) we infer that
(68) U, (tntin) — 400 as n — 400

Note that

(69) ¥, (0) =0 and by, (u,) < 0 for all n € N
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(see (52) and by Corollary Bl ¢, < ¢, for all n € N).
Then from (68]) and (@9) it follows that

(70) tn € (0,1) for all n > no.
So, from (G0 and ([Z0) we have
d -
wan (tun)|i=¢, = 0 for all n > no,

= (@[N/An (tntn), thuy) = 0 for all n > ng (by the chain rule)

D (tnwn)|[h + /Q £(2)(thun)Pdz + - B(z)(tpun)Pdo =

C1
p—1

A | (2, thun)(thuy,)dz for all n > no,
Q
= p1/~)>\n (tpun) + A\ / pF(z, thu,)dz = /\n/ f(z, thun) (thuy)dz for all n > na,
Q Q

= p1/~1An (tnun) < >\n/ e(z, thuy)dz
Q

< )\*/ e(z, tpuy)dz (since A, < A" for all n € N and e > 0)
Q

< )\*/ e(z,un)dz + X*||d||1 (see () and hypothesis H(f)(iii))
Q
(71) < My for some My > 0, all n > no.

Comparing (68) and (7)) again we have a contradiction.

This proves the claim.

On account of Claim [l we may assume that
(72) Uy = u* in WHP(Q) and u,, — u* in L"(Q) and in LP(09Q).

In (B3) we choose h = u, — u* € WHP(Q), pass to the limit as n — oo and use
([@2)). We obtain

lim (A(up), uy, — u*) =0,

n—roo
(73) = wu, — u* in W'P(Q) (see Proposition M.
So, if in (B3) we pass to the limit as n — oo and use (73), then

(A(u*),h) + A E(2)(u*)Pthdz + (2)(u*)P~ hdo = \* A f(z,u")hdz

o9
for all h € WhP(Q),

= —diva(Du*(2)) + £(2)u*(2)P~! = \* f(z,u*(2)) for almost all z € €,

ou*

ong

We know that

(74) + B(2)(u*)P~! = 0 on 9Q (see Papageorgiou and Radulescu [28]).

Uy, < Uy foralln e N

(see Claim M in the proof of Proposition [0 and use the fact that A — @y is nonde-
creasing from (0, +00) into C*(Q)). Hence in the limit as n — oo, we obtain

ﬂ)\l < U*a
= u'e Sj\r* (see (([4) and so \* € L.
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O

Proposition 17. If hypotheses H(a), H(&), H(B), Ho, H(f) hold and X € (0,\"),
then problem (Py]) has at least two positive solutions

’U)\,ﬁ)\ S D+ with Gy — uy € C+\{O}

Proof. From Proposition [[6 we know that A* € £. So, we can find u* € S_’i\: CDy.
Invoking Corollary [[4] we can find uy € S j\r C D, such that

(75) u* —uy € int C7} (Xo)

with Xo = {z € 09 : ux(z) = u*(2)}. Moreover, from the proof of Proposition [I3]
we know that w) is a global minimizer of the functional wy.
Using uy € S j\r C D, we introduce the following truncation of the reaction term

in problem ([Py]):

" wen = {HEHT RIS

This is a Carathéodory function. We set ©,(z,z) = / 9(z, s)ds and consider
0
the C' —functional py : W'*(Q) — R defined by

7 = uz1 zu”z1 z2)|ulPdo — z,u)dz
o) = [ @i+ [ etz [ plirar— [ oxwd

for all u € WHP(Q).
From ([Z6) it is clear ¥)(z, ) has the same asymptotic behavior for z — +oco as
f(z,-). So, reasoning as in Claim [Bl in the proof of Proposition [[6] we show that

(77) ¢ satisfies the C-condition.
Claim 6. Kz, C [uy) N Dy = {u € Dy :uy(z) < u(z) for all z € Q}.
Let u € K4,. Then
(78)  (A(u),h) —I—/ £(2)|ulP~2uhdz +/ B(2)|ulP~2uhdo = / Ia(z,u)hdz
Q o9 Q

for all h € WhP(Q).
In (T8) we choose h = (uy —u)* € W'P(Q). Then

(A(u), (ux —u) ™) + /Qé(Z)IUIp_QU(UA —u)tdz + /6Q B(2)|ulP~?u(ux —u)*do

/Q)\f(z,uA)(uA —u)tdz (see (T6)

= (A(uy), (uy —u)*) + /Q {(z)uf\*l(u,\ —u)tdz + ” ﬁ(z)uifl(u,\ —u)Tdo

(since uy € S})
= u) < U.

As before, the nonlinear regularity theory implies that u € D .
This proves Claim
Claim [@] allows us to assume that

(79) K, Nurw’] = {un).
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Indeed, otherwise we already have a second positive smooth (due to nonlinear
regularity) solution of problem ([Py]) which is bigger than u, and so we are done.
We consider the following truncation of ¥(z,-) :

= | Ua(z,x) if o <u*(z

(80) Ua(z ) = { Ia(z,u*(2)) ifu'(z) <.

This is a Carathéodory function. We set (:),\(z, x) = / 15,\(2, s)ds and consider

0
the C' —functional Py : W'*(Q) — R defined by
1 1 -
oa(u) = / G(Du)dz + - / &(2)|u|Pdz + —/ B(2)|ulPde — / O (z,u)dz
Q pJa b Joa Q

for all uw € WHP(Q).

Using (B0) we easily show that
(81) K@A - [u)\,u*] ND,.

From (BQ) it is clear that @y is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find @y € W'P() such that

@al@in) = inf[@a(u) 1 u € WHP(Q)],
(82) = ax € Kg, Cux,u"]NDy (see (B)).
From (70) and (B0), we see that
~/ W
<P)\|[O,u*] = @A“O,u*]a
= uy € Ky, (see (82),
= ) = uy (see ([T, (2)).
Then from (75]) we infer that for ¥o = {z € 00 : ux(z) = u*(2)} we have
uy is a CH(Q) — minimizer of By,
(83) = uy is a WP(Q) — minimizer of ¢, (see Proposition H).
Without any loss of generality, we may assume that
(84) K, is finite.

Otherwise Claim [ and (@) imply that we already have a whole sequence of
distinct smooth solutions of (Py]) bigger than uy and so we are done. Then (&)
implies that we can find p € (0,1) small such that

(85) Ga(ux) < inf [Pr(ur+ h) < [|h]]| < p,h € WHP(Q)] =) .
In addition, hypothesis H(f)(ii) implies that for all i € int C} (o), we have
(86) Oaluy +th) = —occ as t — +00.

From (T7), (83), [B4) we see that we can apply Theorem [II (the mountain pass
theorem) on the affine space (manifold) Y = uy + W.?(Q2)) and find 4y € Y such
that

(87) (P\(@2), h) = 0 for all h € WHP(Q), ) < @l (see (BF)),
= wuy < 0y (by choosing h = (uy — ay)" € WHP(Q)).
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Also, using the nonlinear Green’s identity on the space W} (Q) (see Casas and
Fernandez [8] and Kenmochi [23]) from (87) we infer that

@) € Dy is a solution of (By) (X € (0,\%)).
Moreover, from (88) we have
ay —uy € CL\{0}.
O

Summarizing the results of this section, we can formulate the following bifurcation-
type result.

Theorem 18. If hypotheses H(a), H(&), H(B), Ho, H(f) hold, then there exists
A* > 0 such that

(a) for all A € (0,\") problem (Py]) has at least two positive solutions
uy, Uy € Dy with 4y —uy € CL\{0};
(b) for A = X\* problem (P]) has at least one positive solution
u* € Dy;

(c) for X > X" problem (Pyl) has no positive solution.

4. BiG, SMALL AND MINIMAL POSITIVE SOLUTIONS

In this section we show that as A — 01, we can produce positive solutions of
problem (Py) which have W'?(Q)—norm which is arbitrarily big and arbitrarily
small. Moreover, we show that for every A € (0, \*), problem (P]) admits a smallest
positive solution u} € D4 and study the monotonicity and continuity properties of
the map A — u}.

Theorem 19. If hypotheses H(a), H(&), H(B), Hy, H(f) hold and X\, — 0T, then

we can find positive solutions
Up, = Un, ES_),‘_” C Dy and un = uy, ES_),‘_” C Dy forallm e N
such that ||ty || — 400 and ||uy|] — 0 as n — co.

Proof. From (I7)) we have

(88) F(z,x) < Dy + 2927 for almost all z € Q, allz > 0.
T r
Then for all u € WP(Q) we have
C1 1 1
or, (u) = ————||Du, p—|——/§z updz—l——/ B(2)|u|Pdo —
(u) p(p—l)” Il o /s (2)]ul o Lo (2)|ul
>\n7¢] T >\nclO r
— Il = ==l
(see Corollary Bl and (89)
(89) > cosllullP — Ancas(J|ul|” + ||u]]") for some co5,co6 > 0, alln € N

(se hypothesis Hy and Lemmata [l [6]).
Let ||ul| = A, with a > 0. We set
k(/\n) e CQ5>\;ap — 626(/\}1_0”— + /\}L—ar), n € N.
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1
We choose o € (O, —) (recall that r > p). Then we have
r—p

—ap <1l—ar<1—ar (recall that 7 <p <r).
So, we see that
(90) k(M) — +00 as n — oo (recall that A, — 07).
Then from (89)) and ([@Q), we infer that there exists ny € N such that
(91) o, (u) = k(A,) > 0=y, (0) for all n > ny and all |ul| = A\, *.
Hypothesis H(f)(i7) implies that if w € D4, then
(92) o, (tu) = —oco as t — 400, for all m € N.
Moreover, as in Claim [] in the proof of Proposition [ we can check that
(93) @, (+) satisfies the C-condition for all n € N.

Then (@), [@2), @3) permit the use of Theorem [ (the mountain pass theorem).
So, we can find 4, € W'P(Q) such that

U € Ky, and k(An) < @a(tn) < car(1 + [[,]]") for some ca7 > 0, all n > ny
(see hyothesis H(f)(i)),
= Uy € Sj\r" C Dy for all n € N and |G, — oo (see (@0)).

1
Next let ¢ € (O, —) and consider ||u|| = X$,. Then from (89) we have
p

P, (1) = cos AP — cas (AT + A
=\, [025/\21)71 — C26 ()\%T + /\%T)} .
Let ko(\,) = 025)\,?7_1 — Co6 (Aff + )\ff). Since (p —1 < 0 and \, — 0T, we
infer that
ko(An) — +o0 as n — +00.
So, we can find ny € N such that

(94) o, (u) = Ako(An) > 0=y, (0) for all n > ny and all [Jul| = XS,.

Let B, = {u € W"P(Q) : |[u|| < AS}, n € N. Hypotheses H(a)(iv), H(f)(iv)
and since 7 < ¢ < p, imply that for every n € N, every v € Dy and for ¢t € (0,1)
small, we have

(95) o, (tu) <0, [Jtu]| < XS, for all n € N (see the proof of Proposition M.
From ([@4) and ([@5), we see that

(96) 0< airfl;f ©x,, and inf gy < 0 for all n > ns.

n

Let ¢, = E,%f ©x, —infpy, > 0 for n > ng (see ([@G)). Using the Ekeland

variational principle (see, for example, Gasinski and Papageorgiou [I5, pp. 579]),
given € € (0,7,) (n = n2), we can find ul’ € B, = {u € W"P(Q) : [|u|| < A} such
that

(97) ox, (ud) < infepy, +e
B

(98) ox, () <o, (y) +elly —unll for all y € By, n > no.
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Given t € WP(Q), for t > 0 small we have
ul +th € B,,.
So, if in ([@8) we choose y = u.* 4 th, then
el < (h, (um), ) for all b € W),
(99) = ||<p’)\n (ul)|]« < € for all n > na.
Let €, — 0" and set u =ul, for all m € N,n > ny. From (@9) we have
(100) o (um) — 0in WHP(Q)* as m — oo, n > no.

But from (@3) we know that ¢y, (-) satisfies the C-condition. So, from (@) and
([I00) if follows that at least for a subsequence, we have

(101) ul = uy, = u, in WHP(Q) as m — 0.
From (@1) and (I0T), we infer that

o, (un) = 1inf @y, for all n = na,
B

n

= u, € B, and so u, € K, foralln > ny (see (@4)).
Therefore we have
u, € 87 C Dy and [Juy|| < XS, for all n > no,
= |Jun|| = 0 as n — oo (recall that A, — 07).
(]

For every A € (0,\*) we show that problem (Py) admits a minimal positive
solution w3} and determine the monotonicity and continuity properties of the map
A= uy.

Theorem 20. If hypotheses H(a), H(&), H(B), Ho, H(f) hold and A € (0, \*), then
problem (Py) has a smallest positive solution u} € Si C Dy and the map A — u}
from (0, \*) into C*(Q) is
o “strictly monotone”, in the sense that
U< A= u) —uy €int C7 (o)
with Yo = {z € 00 : ui(2) = uy(2)};

o “left continuous”, that is, if \n — A\~ < \*, then uy, — uy in C*(Q).

Proof. From Lemma 3.10 of Hu and Papageorgiou [20, p. 178], we know that we
can find {un}n>1 C Si such that

inf Si = ir;f Up, Up < Uy for all n € N (see the proof of Proposition [TTI)

n=1
Evidently, {u,}n>1 € W'P(Q) is bounded and so we may assume that
(102) Up — u} in WHP(Q) and w,, — u} in L"(R2) and in LP(99).
We have for all h € WhP(Q)

(103)  (A(uy),h) —i—/ﬂ§(2)uﬁ_lhdz+ - B(z)ub~ hdo = )\/Qf(z,un)hdz.
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In ([I03) we choose h = u, —u} € WP (Q). Passing to the limit as n — oo and
using ([I02), we obtain

Jim (Aup), un = u3) =0

(104) = u, — u} in WHP(Q) (see Proposition M.
Hence if in (I03) we pass to the limit as n — oo and use (I04]), then
(A(uy), h>+/ ) ()P thdz+ | B(2)(ul)P hdo = )\/ f(z,u})hdz for all h € WHP(Q)
Q I9) Q
= u} is a nonnegative solution of (Py]) (see Papageorgiou and Radulescu [28]).
Hypotheses H(f)(i), (iv) imply that we can find cog > 0 such that
(105) f(z,2) = fox™ ' — cogz™ ! for almost all z € Q, all z > 0.
We consider the following auxiliary Robin problem
—diva(Du(z)) + £(2)u(2)P ™1 = MAou(2)" ! — cogu(2)" 1) in Q,

W) 4 2 g = 0on 00, w0, 4> 0.

As in the proof pf Proposition [I0 (there we had the auxiliary problem ,
problem has a unique positive solution @} € D, for all A > 0 and

wy < u for all u € S (see (0T)).

So, we have

Sk
Uy

—%
= Uy

< u, for all n € N,
<uj,
= u} € S} and u} = inf S7.
From Corollary [[4] we infer the strict monotonicity of the map A — u3.
Finally, suppose that {A,, A}n>1 C (0,A") and A, = A™. Then

uy, <y~ for all n € N (see the proof of Proposition [IT)),
= {u}, tn>1 C WhP(Q) is bounded.

From Lieberman [24], we know that there exist o € (0,1) and M5 > 0 such that
u, € CH*(Q) and [unllcr.e@) < Ms for all n € N.
Exploiting the compact embedding of C**(Q) into C*(Q) we have
(106) uy — )} in C1(Q)
(here we have the original sequence since it is increasing).
Suppose that @} # uy. Then we can find zp € Q such that
ux(20) < @ (20),

= u)(20) <u}, (20) for all n > ng (see (10G)).

This contradicts the monotonicity of A — u}. Therefore @} = uy and the map
A= uy is left continuous. O
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