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POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS

PARAMETRIC ROBIN PROBLEMS

NIKOLAOS S. PAPAGEORGIOU, VICENŢIU D. RĂDULESCU, AND DUŠAN D. REPOVŠ

Abstract. We study a parametric Robin problem driven by a nonlinear non-
homogeneous differential operator and with a superlinear Carathéodory re-
action term. We prove a bifurcation-type theorem for small values of the
parameter. Also, we show that as the parameter λ > 0 approaches zero we
can find positive solutions with arbitrarily big and arbitrarily small Sobolev
norm. Finally we show that for every admissible parameter value there is a
smallest positive solution u∗

λ of the problem and we investigate the properties
of the map λ 7→ u∗

λ.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we

study the following nonlinear, nonhomogeneous parametric Robin problem

(Pλ)







−div a(Du(z)) + ξ(z)u(z)p−1 = λf(z, u(z)) in Ω,
∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ > 0, 1 < p <∞ .







In this problem, the map a : RN → R
N is monotone continuous (hence maximal

monotone, too) and satisfies certain other regularity and growth conditions, listed in
hypothesesH(a) below. These conditions on a(·), are general enough to incorporate
in our framework many differential operators of interest such as the p-Laplacian
differential operator (1 < p < ∞) and the (p, q)-Laplacian differential operator
(1 < q < p < ∞). The differential operator in (Pλ) is not in general (p − 1)-
homogeneous and this is a source of technical difficulties in the analysis of problem
(Pλ). Also ξ ∈ L∞(Ω) and ξ > 0. In the reaction term (right-hand side of the
equation) λ > 0 is a parameter and f(z, x) is a Carathéodory function (that is, for
all x ∈ R, the mapping z 7→ f(z, x) is measurable and for almost all z ∈ Ω, the
mapping x 7→ f(z, x) is continuous) which exhibits (p − 1)-superlinear growth in
the x-variable near +∞, but without satisfying the usual for superlinear problems
Ambrosetti-Rabinowitz condition (AR condition for short). Instead we use a more
general condition, which permits the consideration of (p− 1)-superlinear functions
with “slower” growth near +∞ which fail to satisfy the AR-condition (see the
examples below). Also near 0+, the nonlinearity f(z, ·) has a concave term (that
is, a (p− 1)-sublinear term).
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In the boundary condition,
∂u

∂na
denotes the generalized normal derivative (the

conormal derivative) of u, defined by extension of

∂u

∂na
= (a(Du), n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω. This kind of directional derivative
on the boundary ∂Ω is dictated by the nonlinear Green’s identity (see Gasinski and
Papageorgiou [15, p. 210]) and is also used by Lieberman [23]. For the boundary
coefficient β(z), we assume that

β ∈ C0,α(∂Ω) for some α ∈ (0, 1), β(z) > 0 for all z ∈ ∂Ω.

We assume that

ξ 6= 0 or β 6= 0.

If β = 0, then we recover the Neumann problem.
Our aim in this paper is to study the precise dependence of the set of positive

solutions on the parameter λ > 0. In this direction, we prove a bifurcation-type
theorem for small values of the parameter, that is, we show that there exists a
critical parameter value λ∗ ∈ (0,+∞) such that

• for all λ ∈ (0, λ∗) problem (Pλ) admits at least two positive solutions;
• for λ = λ∗ problem (Pλ) has at least one positive solutions;
• for all λ > λ∗ problem (Pλ) has no positive solutions.

Moreover, we show that if λn → 0+, then we can find pairs {uλn
, ûλn

}n∈N of
positive solutions such that

||uλn
|| → 0 and ||ûλn

|| → +∞ as n→ ∞.

Here || · || denotes the norm of the Sobolev space W 1,p(Ω).
Finally if λ ∈ (0, λ∗), then we show that problem (Pλ) has a smallest positive

solution u∗λ and we investigate the monotonicity and continuity properties of the
map λ 7→ u∗λ.

Parametric problems with competing nonlinearities (“concave-convex” problems),
were first investigated by Ambrosetti, Brezis and Cerami [4] for semilinear Dirichlet
problems driven by the Laplacian (that is, p = 2) and with zero potential (that is,
ξ ≡ 0). Their work was extended to Dirichlet problems driven by the p-Laplacian
(1 < p < ∞) by Garcia Azorero, Manfredi and Peral Alonso [14], Guo and Zhang
[19], Hu and Papageorgiou [21]. All the aforementioned papers, consider “concave-
convex” reaction terms modelled after the function

λxq−1 + xr−1 for all x > 0, with q < p < r < p∗.

So, in their equations the concave and convex inputs in the reaction are decoupled
and the parameter λ > 0 multiplies only the concave term.

Closer to problem (Pλ) are the works of Gasinski and Papageorgiou [17], Pa-
pageorgiou and Rădulescu [32] and Aizicovici, Papageorgiou and Staicu [3]. Both
papers deal with equations driven by the p-Laplacian and have a reaction term
of the form λf(z, x) (as is the case here). In Gasinski and Papageorgiou [17] the
problem is Dirichlet and the authors prove bifurcation-type results for small and
big values of the parameter λ > 0. In Papageorgiou and Rădulescu [32] the problem
is Robin (with ξ ≡ 0, β 6= 0) and the authors prove a bifurcation-type result for
large values of the parameter. Finally, we mention also the related recent work of
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Papageorgiou and Smyrlis [39] who deal with singular Dirichlet problems and of
Papageorgiou and Rădulescu [33] dealing with p-Laplacian Robin problems with
competing nonlinearities.

We denote by || · ||p the usual Lp-norm in Lp(Ω) and by | · | the Euclidean norm

on R
N . Throughout this paper, the symbol

w
→ is used for the weak convergence.

2. Mathematical Background-Auxiliary Results

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). If ϕ ∈ C1(X,R), we say that ϕ satisfies the
“Cerami condition” (the “C-condition” for short), if the following property holds:

“Every sequence {un}n>1 ⊆ X such that {ϕ(un)}n>1 ⊆ R is bounded and

(1 + ||un||)ϕ
′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence”.

This compactness-type condition on the functional ϕ, leads to a deformation
theorem from which one can derive the minimax theory of the critical values of
ϕ. Central in that theory, is the well-known “mountain pass theorem” due to
Ambrosetti and Rabinowitz [5], stated here in a slightly more general form (see
Gasinski and Papageorgiou [15, p. 648]).

Theorem 1. Assume that X is a Banach space, ϕ ∈ C1(X,R) satisfies the C-
condition, u0, u1 ∈ X, ||u1 − u0|| > ρ > 0

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u− u0|| = ρ] = mρ

and c = inf
γ∈Γ

max
06t61

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then

c > mρ and c is a critical value of ϕ.

Remark 1. The result is in fact true more generally in Banach-Finsler manifolds.

By || · || we denote the norm of the Sobolev space W 1,p(Ω) defined by

||u|| = [||u||pp + ||Du||pp]
1/p for all u ∈ W 1,p(Ω).

In addition to the Sobolev space W 1,p(Ω) we will also use the Banach space
C1(Ω) and certain closed subspaces of it and the “boundary” Lebesgue spaces
Lq(∂Ω) (1 6 q 6 ∞). The space C1(Ω) is an ordered Banach space with positive
(order) cone given by

C+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.

The cone has a nonempty interior given by

D+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure we can define in the usual way the boundary Lebesgue spaces
Lq(∂Ω) (1 6 q 6 ∞). From the theory of Sobolev spaces, we know that there exists
a unique continuous linear map γ0 :W 1,p(Ω) → Lp(∂Ω) known as the “trace map”
such that

γ0(u) = u|∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω).

We know that

im γ0 =W
1

p′
,p
(∂Ω)

(

1

p
+

1

p′
= 1

)

and ker γ0 =W 1,p
0 (Ω).
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The trace map γ0 is compact into Lq(∂Ω) for all q ∈

[

1,
(N − 1)p

N − p

)

if N > p and

into Lq(∂Ω) for all q > 1 if p > N . In the sequel, for the sake of notational simplicity
we will drop the use of the map γ0. The restrictions of all Sobolev functions on ∂Ω
are understood in the sense of traces.

Let ϑ ∈ C1(0,+∞) with ϑ(t) > 0 for all t > 0 and assume that
(1)

0 < ĉ 6
ϑ′(t)t

ϑ(t)
6 c0 and c1t

p−1 6 ϑ(t) 6 c2(1 + tp−1) for all t > 0, some c1, c2 > 0.

Our hypotheses on the map a(·), are the following:

H(a) : a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+ as
t→ 0+ and

lim
t→0+

a′0(t)t

a0(t)
> −1;

(ii) there exists c3 > 0 such that

|∇a(y)| 6 c3
ϑ(|y|)

|y|
for all y ∈ R

N\{0};

(iii) (∇a(y)ξ, ξ)RN >
ϑ(|y|)

|y|
|ξ|2 for all y ∈ R

N\{0}, all ξ ∈ R
N ;

(iv) if G0(t) =

∫ t

0

a0(s)sds,

then there exist 1 < q < p < r0 < p∗ (recall that p∗ =
Np

N − p
if N > p and

p∗ = +∞ if N 6 p) such that

lim sup
t→0+

qG0(t)

tq
6 c∗, t 7→ G0(t

1/q) is convex

r0G0(t)− a0(t)t
2 > c̄tp, pG0(t)− a0(t)t

2 > −c̄0

for all t > 0 and some c̄, c̄0 > 0.

Remark 2. Hypotheses H(a)(i), (ii), (iii) are motivated by the nonlinear regularity
theory of Lieberman [24] and the nonlinear maximum principle of Pucci and Serrin
[41]. Hypothesis H(a)(iv) serves the particular needs of our problem, but it is
not restrictive and it is satisfied in many cases of interest as the examples below
illustrate. Similar conditions were also used in the recent works of the authors, see
Papageorgiou and Rădulescu [30, 34, 36].

Hypotheses H(a)(i), (ii), (iii) imply that G0(·) is strictly convex and strictly
increasing. We set G(y) = G0(|y|) for all y ∈ R

N . So, G(·) is convex, G(0) = 0 and

∇G(y) = G′
0(|y|)

y

|y|
= a0(|y|)y for all y ∈ R

N\{0}, ∇G(0) = 0.

Therefore G(·) is the primitive of a(·). From the convexity of G(·) and since
G(0) = 0, we have

(2) G(y) 6 (a(y), y)RN for all y ∈ R
N .



NONLINEAR NONHOMOGENEOUS PARAMETRIC ROBIN PROBLEMS 5

The next lemma summarizes the main properties of the map a(·), which we will
use in the sequel. These properties are straightforward consequences of properties
H(a)(i), (ii), (iii) and of (1).

Lemma 2. If hypotheses H(a)(i), (ii), (iii) hold, then

(a) y 7→ a(y) is continuous and strictly monotone (hence maximal monotone,
too);

(b) |a(y)| 6 c4(1 + |y|p−1) for all y ∈ R
N , some c4 > 0;

(c) (a(y), y)RN >
c1

p− 1
|y|p for all y ∈ R

N .

This lemma and (2) lead to the following growth estimates for the primitive G(·).

Corollary 3. If hypotheses H(a)(i), (ii), (iii) hold, then
c1

p(p− 1)
|y|p 6 G(y) 6

c5(1 + |y|p) for all y ∈ R
N , some c5 > 0.

The examples which follow confirm the generality of hypotheses H(a).

Example 1. The following maps satisfy hypotheses H(a) above

(a) a(y) = |y|p−2y with 1 < p <∞.
The corresponding differential operator is the p-Laplacian defined by

∆pu = div (|Du|p−2Du) for all u ∈W 1,p(Ω).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p <∞.
The corresponding differential operator is the (p, q)-Laplacian defined by

∆pu+∆qu for all u ∈ W 1,p(Ω).

Such operators arise in problems of mathematical physics, see Benci,
D’Avenia, Fortunato and Pisani [7] (quantum physics) and Cherfils and
Ilyasov [9] (plasma physics). Recently there have been some existence and
multiplicity results for such equations. We mention the papers of Aizicovici,
Papageorgiou and Staicu [1, 2], Cingolani and Degiovanni [10], Mugnai and
Papageorgiou [27], Papageorgiou and Rădulescu [29, 31, 37], Papageorgiou,
Rădulescu and Repovš [38], Papageorgiou and Winkert [40], Sun, Zhang
and Su [42].

(c) a(y) = (1 + |y|2)
p−2

2 y with 1 < p <∞.
The corresponding differential operator is the generalized p-mean curva-

ture differential operator defined by

div
(

(1 + |Du|2)
p−2

2 Du
)

for all u ∈W 1,p(Ω).

(d) a(y) = |y|p−2y +
|y|p−2y

1 + |y|p
with 1 < p <∞.

The corresponding differential operator is defined by

∆pu+ div

(

|Du|p−2Du

1 + |Du|p

)

for all u ∈W 1,p(Ω).

This operator arises in problems of plasticity (see Fuchs and Osmolovski
[13]).
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Let A :W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), h〉 =

∫

Ω

(a(Du), Dh)RNdz for all u, h ∈ W 1,p(Ω).

The next proposition is a particular case of a more general result due to Gasinski
and Papageorgiou [16].

Proposition 4. If hypotheses H(a)(i), (ii), (iii) hold, then the map A :W 1,p(Ω) →
W 1,p(Ω)∗ is continuous, monotone (hence maximal monotone too) and of type (S)+,
that is,

“un
w
→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 6 0 ⇒ un → u in W 1,p(Ω).”

We introduce the following conditions on the coefficient functions ξ(·) and β(·).

H(ξ) : ξ ∈ L∞(Ω), ξ(z) > 0 for almost all z ∈ Ω.

H(β) : β ∈ C0,α(∂Ω) with α ∈ (0, 1), β(z) > 0 for all z ∈ ∂Ω.

H0 : ξ 6= 0 or β 6= 0.

Lemma 5. If ξ̂ ∈ L∞(Ω), ξ̂(z) > 0 for almost all z ∈ Ω, ξ̂ 6= 0, then there exists
c6 > 0 such that

||Du||pp +

∫

Ω

ξ̂(z)|u|pdz > c6||u||
p for all u ∈W 1,p(Ω).

Proof. Let ψ :W 1,p(Ω) → R+ be the C1-functional defined by

ψ(u) = ||Du||pp +

∫

Ω

ξ̂(z)|u|pdz for all u ∈W 1,p(Ω).

Arguing by contradiction, suppose that the lemma is not true. Since ψ(·) is
p-homogeneous, we can find {un}n>1 ⊆W 1,p(Ω) such that

(3) ||un|| = 1 for all n ∈ N and ψ(un) → 0+ as n→ ∞ .

Since {un}n>1 ⊆W 1,p(Ω) is bounded, we may assume that

(4) un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω).

The functional ψ(·) is sequentially weakly lower semicontinuous. So, from (3)
and (4) we obtain

ψ(u) 6 0,

⇒ ||Du||pp 6 −

∫

Ω

ξ̂(z)|u|pdz 6 0,(5)

⇒ u = η ∈ R .

If η = 0, then from (4) we see that

||Dun||p → 0,

⇒ un → 0 in W 1,p(Ω),

a contradiction to the fact that ||un|| = 1 for all n ∈ N.
If η 6= 0, then from (5) we have

0 6 −|η|p
∫

Ω

ξ̂(z)dz < 0,

a contradiction.
This proves the lemma. �
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Lemma 6. If β̂ ∈ L∞(∂Ω), β̂(z) > 0 for σ-almost all z ∈ ∂Ω, β̂ 6= 0, then there
exists c7 > 0 such that

||Du||pp +

∫

∂Ω

β̂(z)|u|pdσ > c7||u||
p for all u ∈W 1,p(Ω).

Proof. Let ψ0 :W 1,p(Ω) → R+ be the C1-functional defined by

ψ0(u) = ||Du||pp +

∫

∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω).

We claim that we can find ĉ0 > 0 such that

(6) ||u||pp 6 ĉ0ψ0(u) for all u ∈ W 1,p(Ω).

Arguing by contradiction, suppose that (6) is not true. Then we can find
{un}n>1 ⊆W 1,p(Ω) such that

(7) ||un||
p
p > nψ0(un) for all n ∈ N .

Since ψ0 is p-homogeneous, we normalize in Lp(Ω) and have

ψ0(un) <
1

n
and ||un||p = 1 for all n ∈ N (see (7))

⇒ ψ0(un) → 0+ as n→ ∞ .(8)

From (8) it follows that

||Dun||p → 0 as n→ ∞,

⇒ {un}n>1 ⊆W 1,p(Ω) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

(9) un
w
→ u in W 1,p(Ω) and un → u in Lp(Ω) and in Lp(∂Ω).

From (8), (9) and the sequential weak lower semicontinuity of ψ0(·), we have

ψ0(u) 6 0,

⇒ ||Du||pp +

∫

∂Ω

β(z)|u|pdσ 6 0,(10)

⇒ u = η0 ∈ R .

If η0 = 0, then from (9) we have

un → 0 in Lp(Ω),

a contradiction with the fact that ||un||p = 1 for all n ∈ N.
If η0 6= 0, then from (10) we have

0 < |η0|
p

∫

∂Ω

β(z)dσ 6 0,

again a contradiction. Therefore (6) holds and from this it follows that we can find
c7 > 0 such that

c7||u||
p 6 ψ0(u) for all u ∈ W 1,p(Ω).

�

Next we prove a strong comparison result which will be useful in what follows.
This proposition was inspired by analogous comparison results for Dirichlet prob-
lems with the p-Laplacian as established by Guedda and Véron [18, Proposition
2.2] and Arcoya and Ruiz [6, Proposition 2.6].



8 N.S. PAPAGEORGIOU, V.D. RĂDULESCU, AND D.D. REPOVŠ

Proposition 7. Assume that hypotheses H(a)(i), (ii), (iii) hold, ξ̂ ∈ L∞(Ω), ξ̂(z) >
0 for almost all z ∈ Ω, h1, h2 ∈ L∞(Ω) such that

0 < c8 6 h2(z)− h1(z) for almost all z ∈ Ω

u, v ∈ C1(Ω)\{0} satisfy u 6 v and

−div a(Du(z)) + ξ̂(z)|u(z)|p−2u(z) = h1(z) for almost all z ∈ Ω,

−div a(Dv(z)) + ξ̂(z)|v(z)|p−2v(z) = h2(z) for almost all z ∈ Ω.

Then (v − u)(z) > 0 for all z ∈ Ω and if Σ0 = {z ∈ ∂Ω : u(z) = v(z)}, then

∂(v − u)

∂n

∣

∣

∣

∣

Σ0

< 0.

Proof. We have

−div (a(Dv(z))− a(Du(z)))

= h2(z)− h1(z)− ξ̂(z)(|v(z)|p−2v(z)− |u(z)|p−2u(z)) for almost all z ∈ Ω .(11)

Let a = (ak)
N
k=1 with ak : RN → R being the kth component function, k ∈

{1, . . . , N}. From the mean value theorem, we have

ak(y)− ak(y
′) =

N
∑

i=1

∫ 1

0

∂ak
∂yi

(y′ + t(y − y′))(yi − y′i)dt

for all y = (yi)
N
i=1 ∈ R

N , y′ = (y′i)
N
i=1 ∈ R

N and all k ∈ {1, . . . , N}.
Consider the following functions

c̃k,i(z) =

∫ 1

0

∂ak
∂yi

(Du(z) + t(Dv(z)−Du(z)))(Dv(z)−Du(z))dt

for all k ∈ {1, . . . , N}, all z ∈ Ω .

Then c̃k,i ∈ C(Ω) and using these functions we introduce the following linear
differential operator in divergence form

L(w) = −div

(

N
∑

i=1

c̃k,i(z)
∂w

∂zi

)

= −
N
∑

k,i=1

∂

∂zk
(c̃k,i(z)

∂w

∂zi
) for all w ∈ H1(Ω).

We set y = v − u ∈ C+\{0}. From (11) we have
(12)

L(y) = h2(z)− h1(z)− ξ̂(z)(|v(z)|p−2v(z)− |u(z)|p−2u(z)) for almost all z ∈ Ω .

Suppose that at z0 ∈ Ω, we have u(z0) = v(z0). Exploiting the uniform continu-

ity of the map x 7→ |x|p−2x and the fact that ξ̂ ∈ L∞(Ω), from (12) we see that for
δ > 0 sufficiently small we have

L(y) >
c8
2
> 0 for almost all z ∈ Bδ(z0).

Then invoking Harnack’s inequality (see Motreanu, Motreanu and Papageorgiou
[26, p. 212]) or alternatively using the tangency principle of Pucci and Serrin [41,
p. 35], we have

(v − u)(z) > 0 for all z ∈ Bδ(z0),

a contradiction since u(z0) = v(z0). Therefore, we must have that

(v − u)(z) > 0 for all z ∈ Ω.
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Next suppose that ẑ0 ∈ Σ0. Since ∂Ω is a C2-manifold, for ρ > 0 small there is
a ρ-ball Bρ such that

Bρ ⊆ Ω and ẑ0 ∈ ∂Ω ∩ ∂Bρ.

Choosing ρ > 0 small, from (12) and since u(ẑ0) = v(ẑ0) (recall that ẑ0 ∈ Σ0),
we see that L(·) is strictly elliptic. Then Hopf’s theorem (see Motreanu, Motreanu
and Papageorgiou [26, p. 217]) and Pucci and Serrin [41, p. 120], we have

∂y

∂n
(z0) =

∂(v − u)

∂n
(z0) < 0,

⇒
∂(v − u)

∂n

∣

∣

∣

∣

Σ0

< 0.

�

Remark 3. With Σ0 = {z ∈ ∂Ω : u(z) = v(z)}, we introduce the following Banach
spaces:

C1
∗(Ω) = {h ∈ C1(Ω) : h|Σ0

= 0},

W 1,p
∗ (Ω) = C1

∗ (Ω)
||·||

(recall that || · || is the norm of W 1,p(Ω)).

From Proposition 7 we have

∂(v − u)

∂n

∣

∣

∣

∣

Σ0

6 −η < 0.

Let U be a neighborhood of Σ0 in Ω such that

∂(v − u)

∂n

∣

∣

∣

∣

U

6 −
η

2
< 0.

Then we can find ǫ > 0 small such that

h ∈ C1
∗(Ω), ||h||C1(Ω) 6 ǫ ⇒

∂(v − (u+ h))

∂h
6 −

η

4
< 0(13)

and (v − (u0 + h))|Ω\U > η̂ > 0.(14)

From (13) we see that for ǫ > 0 small, we have

v(z)− (u+ h)(z) > 0 for all z ∈ U, all h ∈ C1
∗(Ω), ||h||C1(Ω) 6 ǫ .

Comparing this with (14), we see that

u+Bcǫ ∈ v − C∗
+(Σ0)

with Bcǫ being the ǫ-ball centered at zero in C1
∗ (Ω) and C

∗
+(Σ0) is the positive cone

of C1
∗ (Ω). This cone has a nonempty interior given by

intC∗
+(Σ0) = {h ∈ C∗

+ : h(z) > 0 for all z ∈ Ω,
∂h

∂n

∣

∣

∣

∣

Σ0

< 0}.

If Σ0 = ∅, then v − u ∈ D+.

The next result is an outgrowth of the nonlinear regularity theory of Lieberman
[24] and can be found in Papageorgiou and Rădulescu [28] (subcritical case) and in
Papageorgiou and Rădulescu [35] (critical case).
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So, let V and X be two Banach subspaces of C1(Ω) and W 1,p(Ω) respectively,
such that V is dense in X . Suppose that f0 : Ω×R → R is a Carathéodory function
such that

|f0(z, x)| 6 a0(z)(1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r 6 p∗. We set F0(z, x) =

∫ x

0

f0(z, s)ds and consider the

C1-functional ϕ0 :W 1,p(Ω) → R defined by

ϕ0(u) =

∫

Ω

G(Du)dz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

F0(z, u)dz for all u ∈ W 1,p(Ω).

Proposition 8. Assume that u0 ∈ W 1,p(Ω) is a local V -minimizer of ϕ0, that is,
there exists ρ0 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ V, ||h||C1(Ω) 6 ρ0.

Then u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 is also a local X-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) 6 ϕ0(u0 + h) for all h ∈ X, ||h|| 6 ρ1.

We conclude this section with some notation that we will use throughout this
work. For every x ∈ R, let x± = max{±x, 0}. Then for u ∈ W 1,p(Ω) we set
u±(·) = u(·)±. We know that

u = u+ − u−, |u| = u+ + u− and u+, u− ∈ W 1,p(Ω).

By | · |N we denote the Lebesgue measure on R
N . Finally, if X is a Banach space

and ϕ ∈ C1(X,R), then by Kϕ we denote the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

3. Bifurcation-Type Theorem

In this section, we prove a bifurcation type theorem for problem (Pλ) for small
values of the parameter λ > 0.

We introduce the following conditions on the reaction term f(z, x).

H(f) : f : Ω × R is a Carathéodory function such that for almost all z ∈ Ω,
f(z, 0) = 0, f(z, x) > 0 for all x > 0 and

(i) f(z, x) 6 a(z)(1 + xr−1) for almost all z ∈ Ω, all x > 0, with a ∈ L∞(Ω),
p < r < p∗;

(ii) if F (z, x) =

∫ x

0

f(z, s)ds, then lim
x→+∞

F (z, x)

xp
= +∞ uniformly for almost

all z ∈ Ω;
(iii) if e(z, x) = f(z, x)x− pF (z, x), then there exists d ∈ L1(Ω) such that

e(z, x) 6 e(z, y) + d(z) for almost all z ∈ Ω, all 0 6 x 6 y;

(iv) for every s > 0, we can find ηs > 0 such that

ηs 6 inf[f(z, x) : x > s] for almost all z ∈ Ω

and there exist δ0 > 0, η̂, η̂0 > 0 and τ ∈ (1, q) (see hypothesis H(a)(iv))
such that

η̂0x
τ−1

6 f(z, x) 6 η̂xτ−1 for almost all z ∈ Ω, all 0 6 x 6 δ0;
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(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω, the
function

x 7→ f(z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].

Remark 4. Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis, without any loss of generality, we may assume that
f(z, x) = 0 for almost all z ∈ Ω, all x 6 0. Hypotheses H(f)(ii), (iii) imply that

lim
x→+∞

f(z, x)

xp−1
= +∞ uniformly for almost all z ∈ Ω.

So, the reaction term f(z, ·) is (p − 1)-superlinear. However, we stress that we
do not use the usual for “superlinear” problems AR-condition. We recall that the
AR-condition (unilateral version since we deal only with the positive semiaxis) says
that there exist ϑ > p and M > 0 such that

(15a) 0 < ϑF (z, x) 6 f(z, x)x for almost all z ∈ Ω, all x >M,

(15b) 0 < ess inf
Ω
F (·,M) (see [5]).

Integrating (15a) and using (15b), we obtain the weaker condition

(16) c9x
ϑ 6 F (z, x) for almost all z ∈ Ω, all x >M, some c9 > 0.

Therefore the AR-condition implies that f(z, ·) has at least (ϑ − 1)-polynomial
growth near +∞. This excludes from consideration (p − 1)-superlinear nonlinear-
ities with “slower” growth near +∞ (see the examples below). For this reason in
this work we use the less restrictive hypothesis H(f)(iii). This is a quasimono-
tonicity condition on the function e(z, ·). This is a slightly more general version of
a condition used by Li and Yang [25]. If there exists M > 0 such that for almost

all z ∈ Ω the function x 7→
f(z, x)

xp−1
is nondecreasing on [M,+∞), then hypothesis

H(f)(iii) is satisfied (see Li and Yang [25]). Evidently this property is weaker than
condition (16).

Example 2. The following functions satisfy hypotheses H(f). For the sake of
simplicity we drop the z-dependence.

f1(x) =

{

xτ−1 if x ∈ [0, 1]
xr−1 if 1 6 x

with 1 < τ < q < p < r < p∗

f2(x) =

{

xτ−1 − xs−1 if x ∈ [0, 1]
xp−1 lnx if 1 6 x

with 1 < τ < p, s.

Note that f2(·) does not satisfy the AR-condition.

Hypotheses H(f)(i), (iv) imply that

(17) 0 6 f(z, x) 6 η̂xτ−1 + c10x
r−1 for almost all z ∈ Ω, all x > 0, some c10 > 0.

This growth estimate on f(z, ·) leads to the following auxiliary Robin problem:

(Auλ)







−div a(Du(z)) + ξ(z)u(z)p−1 = λ(η̂u(z)τ−1 + c10u(z)
r−1) in Ω,

∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ > 0.






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Proposition 9. If hypotheses H(a), H(ξ), H(β), H0 hold and 1 < τ < q < p < r <
p∗, then for λ > 0 small problem (Auλ) admits a positive solution ũλ ∈ D+.

Proof. For λ > 0, we consider the C1-functional ψλ : W 1,p(Ω) → R defined by

ψλ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −
λη̂

τ
||u+||ττ −

λc10
r

||u+||rr

for all u ∈W 1,p(Ω).

Claim 1. For every λ > 0 the functional ψλ satisfies the C-condition.

We consider a sequence {un}n>1 ⊆W 1,p(Ω) such that

|ψλ(un)| 6M1 for some M1 > 0, all n ∈ N,(18)

(1 + ||un||)ψ
′
λ(un) → 0 in W 1,p(Ω)∗ as n→ ∞ .(19)

From (19) we have
∣

∣

∣

∣

〈A(un), h〉+

∫

Ω

ξ(z)|un|
p−2unhdz +

∫

∂Ω

β(z)|un|
p−2unhdσ − λη̂

∫

Ω

(u+n )
τ−1hdz−

−λc10

∫

Ω

(u+n )
r−1hdz

∣

∣

∣

∣

6
ǫn||h||

1 + ||un||
(20)

for all h ∈W 1,p(Ω) as n→ ∞ .

In (20) we choose h = −u−n ∈W 1,p(Ω). Then
∫

Ω

(a(−Du−n ),−Du
−
n )RN dz +

∫

Ω

ξ(z)(u−n )
pdz +

∫

∂Ω

β(z)(u−n )
pdσ 6 ǫn for all n ∈ N,

⇒
c1

p− 1
||Du−n ||

p
p +

∫

Ω

ξ(z)(u−n )
pdz +

∫

∂Ω

β(z)(u−n )
pdσ 6 ǫn for all n ∈ N

(see Lemma 2),

⇒ c11||u
−
n ||

p
6 ǫn for some c11 > 0, all n ∈ N (see hypotheses H0 and Lemmata 5, 6)

⇒ u−n → 0 in W 1,p(Ω).(21)

We can always assume that r0 6 r < p∗ (see hypotheses H(a)(iv), H(f)(i)).
From (18) and (21), we have that

∫

Ω

rG(Du+n )dz +
r

p

∫

Ω

ξ(z)(u+n )
p +

r

p

∫

∂Ω

β(z)(u+n )
pdσ −

λη̂r

τ
||u+n ||

τ
τ − λc10||u

+
n ||

r
r 6M2(22)

for some M2 > 0, all n ∈ N .

In (20) we choose h = u+n ∈ W 1,p(Ω). Then

−

∫

Ω

(a(Du+n ), Du
+
n )RN dz −

∫

Ω

ξ(z)(u+n )
pdz −

∫

∂Ω

β(z)(u+n )
pdσ + λη̂||u+n ||

τ
τ +

λc10||u
+
n ||

r
r 6 ǫn for all n ∈ N .(23)

We add (22) and (23) and obtain
∫

Ω

[

rG(Du+n )− (a(Du+n ), Du
+
n )RN

]

dz +

(

r

p
− 1

)[
∫

Ω

ξ(z)(u+n )
pdz+

∫

∂Ω

β(z)(u+n )
pdσ

]

6M3(1 + λ||u+n ||
τ
τ ) for some M3 > 0, all n ∈ N

⇒ c12||u
+
n ||

p
6M3(1 + λ||u+n ||

τ ) for some c12 > 0, all n ∈ N(24)
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(see hypotheses H(a)(iv), H0, use Lemmata 5, 6 and recall that r > p).
Since τ < p, from (24) it follows that

{u+n }n>1 ⊆W 1,p(Ω) is bounded,

⇒ {un}n>1 ⊆W 1,p(Ω) is bounded (see (21)).

So, we may assume that

un
w
→ u in W 1,p(Ω) and un → u in Lr(Ω) and in Lp(∂Ω).(25)

In (20) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(25). Then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(Ω) (see (25) and Proposition 4).

Therefore for every λ > 0, ψλ satisfies the C-condition.
This proves Claim 1.

Claim 2. There exist ρ > 0 and λ0 > 0 such that for every λ ∈ (0, λ0) we have

inf[ψλ(u) : ||u|| = ρ] = mλ > 0 = ψλ(0).

For every u ∈ W 1,p(Ω) we have

ψλ(u) > c13||u||
p − λc14(||u||

τ + ||u||r) for some c13, c14 > 0

(see Corollary 3, hypothesis H0 and Lemmata 5, 6)

= [c13 − λc14(||u||
τ−p + ||u||r−p)]||u||p.(26)

Let ℑ(t) = tτ−p + tr−p, t > 0. Since τ < p < r, we have

ℑ(t) → +∞ as t→ 0+ and as t→ +∞ .

Therefore we can find t0 ∈ (0,+∞) such that

ℑ(t0) = inf
t>0

ℑ .

From (26) we see that

(27) ψλ(u) > [c13 − λc14ℑ||u||]||u||
p for all u ∈ W 1,p(Ω).

If ||u|| = t0, then we set λ0 =
c13

c14ℑ(t0)
> 0 and for all λ ∈ (0, λ0) from (27) we

see that

inf[ψλ(u) : ||u|| = ρ = t0] = mλ > 0 = ψλ(0).

This proves Claim 2.
Since r > p, if u ∈ D+, then

(28) ψλ(tu) → −∞ as t→ +∞ .

Claims 1 and 2 and (28) permit the use of Theorem 1 (the mountain pass theo-
rem). So, for every λ ∈ (0, λ0), we can find ũλ ∈ W 1,p(Ω) such that

(29) ũλ ∈ Kψλ
and mλ 6 ψλ(ũλ).
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From (29) and Claim 2 it follows that

ũλ 6= 0 and ψ′
λ(ũλ) = 0,

⇒ 〈A(ũλ), h〉+

∫

Ω

ξ(z)|ũλ|
p−2ũλhdz +

∫

∂Ω

β(z)|ũλ|
p−2ũλhdσ

= λη̂

∫

Ω

(ũ+λ )
τ−1hdz + λc10

∫

Ω

(ũ+λ )
r−1hdz for all h ∈W 1,p(Ω).(30)

In (30) we choose h = −ũ−λ ∈W 1,p(Ω). Then

c1
p− 1

||Dũ−λ ||
p
p +

∫

Ω

ξ(z)(ũ−λ )
pdz +

∫

∂Ω

β(z)(ũ−λ )
pdσ 6 0 (see Lemma 2)

⇒ c15||ũ
−
λ ||

p 6 0 for some c15 > 0 (see hypothesis H0 and Lemmata 5, 6)

⇒ ũλ > 0, ũλ 6= 0.

Then (30) becomes

〈A(ũλ), h〉+

∫

Ω

ξ(z)ũp−1
λ hdz +

∫

∂Ω

β(z)ũp−1
λ hdσ =

∫

Ω

[

λη̂ũτ−1
λ + λc10ũ

r−1
λ

]

hdz

for all h ∈W 1,p(Ω),

⇒ −div a(Dũλ(z)) + ξ(z)ũλ(z)
p−1 = λ

[

η̂ũλ(z)
τ−1 + c10ũλ(z)

r−1
]

for almost all z ∈ Ω,(31)

∂ũλ
∂na

+ β(z)ũp−1
λ = 0 on ∂Ω

(see Papageorgiou and Rădulescu [28])
From (31) and Hu and Papageorgiou [22] (subcritical case), Papageorgiou and

Rădulescu [35] (critical case), we have

ũλ ∈ L∞(Ω).

Then from Lieberman [24] we infer that

ũλ ∈ C+\{0}.

From (31) we have

div a(Dũλ(z)) 6 ||ξ||∞ũλ(z)
p−1 for almost all z ∈ Ω, (see hypotheses H(ξ)), H(β))

⇒ ũλ ∈ D+ (see Pucci and Serrin [41, pp. 111, 120]).

�

In fact we can show that for every λ ∈ (0, λ0), problem (Auλ) admits a smallest
positive solution.

Let S̃λ+ be the set of positive solutions of problem (Auλ). We have seen in
Proposition 9 and its proof that

∅ 6= S̃λ+ ⊆ D+ for all λ ∈ (0, λ0).

Moreover, as in Filippakis and Papageorgiou [12], we have that S̃λ+ is downward

directed (that is, if ũ1, ũ2 ∈ S̃λ+, then we can find ũ ∈ S̃λ+, such that ũ 6 ũ1 and
ũ 6 ũ2).

Proposition 10. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ (0, λ0),

then problem (Auλ) admits a smallest positive solution ũλ ∈ S̃λ+ ⊆ D+ (that is,

ũλ 6 u for all u ∈ S̃λ+).
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Proof. We consider the following Robin problem

(Auλ)
′







−div a(Du(z)) + ξ(z)u(z)p−1 = λη̂u(z)τ−1 in Ω,
∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ > 0.







Since τ < p, a straightforward application of the direct method of the calculus of
variations reveals that for every λ > 0, problem (Auλ)

′ admits a positive solution
uλ ∈ D+ (nonlinear regularity theory and the nonlinear maximum principle).

Claim 3. uλ ∈ D+ is the unique positive solution of problem (Auλ)
′.

Consider the integral functional j : L1(Ω) → R = R ∪ {+∞} defined by

j(u) =







∫

Ω

G(Du
1/q )dz +

1

p

∫

Ω

ξ(z)(u
p

q )dz +
1

p

∫

∂Ω

β(z)(u
p

q )dσ if u > 0, w
1
q ∈ W 1,p(Ω)

+∞ otherwise.

Let u1, u2 ∈ dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of the

functional j(·)) and set u = ((1 − t)u1 + tu2)
1/q with t ∈ [0, 1]. Using Lemma 1 of

Diaz and Saa [11] we have

(32) |Du(z)| 6
[

(1− t)|Du1(z)
1
q |q + t|Du2(z)

1
q |q
]

for almost all z ∈ Ω.

Then we have

G0(|Du(z)|) 6 G0

(

(1− t)|Du1(z)
1
q |q + t|Du2(z)

1
q |q
)

for almost all z ∈ Ω

(see (32) and recall that G0(·) is increasing)

6 (1 − t)G0(|Du1(z)
1
q |) + tG0(|Du2(z)|

1
q ) for almost all z ∈ Ω

(see hypothesis H(a)(iv)),

⇒ G(Du(z)) 6 (1 − t)G(Du1(z))
1
q + tG(Du2(z)

1
q ) for almost all z ∈ Ω,

⇒ j(·) is convex (recall that q < p and see hypotheses H(ξ), H(β)).

By Fatou’s lemma, we see that j(·) is also lower semicontinuous.
Let vλ ∈ W 1,p(Ω) be another positive solution of problem (Auλ)

′. Again we
have vλ ∈ D+. If h ∈ C1(Ω), then for t > 0 small we have

uqλ + th ∈ dom j and vqλ + th ∈ dom j.

Then we can easily show that j(·) is Gâteaux differentiable at uqλ and at vqλ in
the direction h. Moreover, via the chain rule and the nonlinear Green’s theorem
(see Gasinski and Papageorgiou [15, p. 210]), we have

j′(uqλ)(h) =
1

q

∫

Ω

−div a(Duλ) + ξ(z)up−1
λ

uq−1
λ

hdz

j′(vqλ)(h) =
1

q

∫

Ω

−div a(Dvλ) + ξ(z)vp−1
λ

vq−1
λ

hdz

for all h ∈ W 1,p(Ω).
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The convexity of j(·) implies the monotonicity of j′(·). So

0 6

∫

Ω

(

−div a(Duλ) + ξ(z)up−1
λ

uq−1
λ

−
−div a(Dvλ) + ξ(z)vp−1

λ

vq−1
λ

)

(uqλ − vqλ)dz

6 λη̂

∫

Ω

[

1

uτ−qλ

−
1

vτ−qλ

]

(uqλ − vqλ)dz (see problem (Auλ)
′),

⇒ uλ = vλ (since τ < q).

This proves Claim 3.

Claim 4. uλ 6 u for all u ∈ S̃λ+.

Let u ∈ S̃λ+. We introduce the following Carathéodory function

(33) kλ(z, x) =







0 if x < 0
λη̂xτ−1 if 0 6 x 6 u(z) for all (z, x) ∈ Ω× R

λη̂u(z)τ−1 if u(z) < x.

We setKλ(z, x) =

∫ x

0

kλ(z, s)ds and consider the C1−functional ψλ : W 1,p(Ω) →

R defined by

ψλ(y) =

∫

Ω

G(Dy)dz+
1

p

∫

Ω

ξ(z)|y|pdz+
1

p

∫

∂Ω

β(z)|y|pdσ−

∫

Ω

Kλ(z, y)dz for all y ∈W 1,p(Ω).

From (33), Lemma 2 and hypothesis H0 together with Lemmata 5 and 6, we

see that the functional ψλ is coercive. Also, the Sobolev embedding theorem and
the compactness of the trace map, imply that ψλ is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find u∗λ ∈ W 1,p(Ω) such
that

(34) ψλ(u
∗
λ) = inf

[

ψλ(u) : u ∈W 1,p(Ω)
]

.

Hypothesis H(a)(iv) and Corollary 3 imply that

(35) G(y) 6 c16(|y|
q + |y|p) for all y ∈ R

N , some c16 > 0.

Since τ < q < p, if v ∈ D+, then for t ∈ [0, 1] small (such that tv 6 u, recall that
u ∈ D+), we have

ψ(tv) 6 c16t
q(||Dv||qq + ||Dv||pp) +

tp

p

[
∫

Ω

ξ(z)vpdz +

∫

∂Ω

β(z)vpdσ

]

−
λη̂tτ

τ
||v||ττ < 0 (see (35))

⇒ ψλ(u
∗
λ) < 0 = ψλ(0) (see (34)),

⇒ u∗λ 6= 0.

From (34) we have

ψ
′

λ(u
∗
λ) = 0,

⇒ 〈A(u∗λ), h〉+

∫

Ω

ξ(z)|u∗λ|
p−2u∗λhdz +

∫

∂Ω

β(z)|u∗λ|
p−2u∗λhdσ =

∫

Ω

kλ(z, u
∗
λ)hdz(36)

for all h ∈W 1,p(Ω).
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In (36) we first choose −(u∗λ)
− ∈W 1,p(Ω). Then

c17||(u
∗
λ)

−||p 6 0 for some c17 > 0

(see (34), Lemma 2, hypothesis H0 and Lemmata 5, 6)

⇒ u∗λ > 0, u∗λ 6= 0.

Next, in (36) we choose h = (u∗λ − u)+ ∈ W 1,p(Ω). Then

〈

A(u∗λ), (u
∗
λ − u)+

〉

+

∫

Ω

ξ(z)(u∗λ)
p−1(u∗λ − u)+dz +

∫

∂Ω

β(z)(u∗λ)
p−1(u∗λ − u)+dσ

=

∫

Ω

λη̂uτ−1(u∗λ − u)+dz (see (33))

6

∫

Ω

[

λη̂uτ−1 + λc10u
r−1
]

(u∗λ − u)+dz

=
〈

A(u), (u∗λ − u)+
〉

+

∫

Ω

ξ(z)up−1(u∗λ − u)+dz +

∫

∂Ω

β(z)up−1(u∗λ − u)+dσ

(since u ∈ S̃λ+),

⇒ u∗λ 6 u.

So, we have proved that

u∗λ ∈ [0, u] = {y ∈W 1,p(Ω) : 0 6 y(z) 6 u(z) for almost all z ∈ Ω}, u∗λ 6= 0,

⇒ u∗λ is a positive solution of (Auλ)
′

⇒ u∗λ = uλ (see Claim 3)

⇒ uλ 6 u for all u ∈ S̃λ+.

This proves Claim 4.
Invoking Lemma 3.10 of Hu and Papageorgiou [20, p. 178], we can find a de-

creasing sequence {un}n>1 ⊆ S̃λ+ such that

inf S̃λ+ = inf
n>1

un.

Evidently {un}n>1 ⊆W 1,p(Ω) is bounded and so we may assume that

(37) un
w
→ ũ∗λ in W 1,p(Ω) and un → ũ∗λ in Lr(Ω) and in Lp(∂Ω).

In (36) we choose h = un − ũ∗λ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(37).

Then

lim
n→∞

〈A(un), un − ũ∗λ〉 = 0,

⇒ un → ũ∗λ in W 1,p(Ω) (see (37) and Proposition 4).(38)

So, if in (36) we pass to the limit as n→ ∞ and use (38), then
(39)

〈A(ũ∗λ), h〉+

∫

Ω

ξ(z)(ũ∗λ)
p−1hdz+

∫

∂Ω

β(z)(ũ∗λ)
p−1hdσ =

∫

Ω

[

λη̂(ũ∗λ)
τ−1 + λc10(ũ

∗
λ)
r−1
]

hdz

for all h ∈W 1,p(Ω).
Also, from Claim 4 we have

uλ 6 un for all n ∈ N,

⇒ uλ 6 ũ∗λ.(40)
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From (39) and (40) it follows that

ũ∗λ ∈ S̃λ+ and ũ∗λ = inf S̃λ+.

�

Let

L = {λ > 0 : problem (Pλ) admits a positive solution}.

Proposition 11. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold then L 6= ∅.

Proof. Let ũ∗λ ∈ S̃λ+ ⊆ D+ be the minimal positive solution of problem (Auλ)
(λ ∈ (0, λ0)), see Proposition 10.

We introduce the following truncation of the reaction term in problem (Pλ)

(41) γλ(z, x) =

{

λf(z, x) if x 6 ũ∗λ(z)
λf(z, ũ∗λ(z)) if ũ∗λ(z) < x.

This is a Carathéodory function. We set Γλ(z, x) =

∫ x

0

γλ(z, s)ds and consider

the C1−functional ϕ̂ :W 1,p(Ω) → R defined by

ϕ̂λ(u) =

∫

Ω

G(Du)dz+
1

p

∫

Ω

ξ(z)|u|pdz+
1

p

∫

∂Ω

β(z)|u|pdσ−

∫

Ω

Γλ(z, u)dz for all u ∈W 1,p(Ω).

From (41), Corollary 3, hypothesis H0 and Lemmata 5, 6, we see that ϕ̂λ(·)
is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find
uλ ∈W 1,p(Ω) such that

(42) ϕ̂λ(uλ) = inf
[

ϕ̂λ(u) : u ∈W 1,p(Ω)
]

.

Let δ0 > 0 be as postulated by hypothesis H(f)(iv). Given u ∈ D+, we can find
t ∈ (0, 1) small such that

(43) tu(z) ∈ (0, δ0] for all z ∈ Ω.

Then hypothesis H(f)(iv) implies that

(44) F (z, tu(z)) >
η̂0
τ
(tu(z))τ for almost all z ∈ Ω (see (43)).

We have

ϕ̂λ(tu) 6 c16t
q(||Du||qq + ||Du||pp) +

tp

p

∫

Ω

ξ(z)updz +
tp

p

∫

∂Ω

β(z)updσ

−
λη̂0
τ
tτ ||u||ττ

(see (35) and recall that t ∈ (0, 1))

6 c18t
q − λc19t

p for some c18, c19 > 0.(45)

Since τ < q < p, from (45) it follows that by choosing t ∈ (0, 1) even smaller if
necessary, we have

ϕ̂(tu) < 0,

⇒ ϕ̂λ(uλ) < 0 = ϕ̂λ(0) (see (42))

⇒ uλ 6= 0.

From (42) we have

ϕ̂′
λ(uλ) = 0,
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(46)

⇒ 〈A(uλ), h〉+

∫

Ω

ξ(z)|uλ|
p−2uλhdz +

∫

∂Ω

β(z)|uλ|
p−2uλhdσ =

∫

Ω

γλ(z, uλ)hdz

for all h ∈W 1,p(Ω).
In (46) we choose h = −u−λ ∈W 1,p(Ω). Then as before

c20||u
−
λ ||

p 6 0 for some c20 > 0,

⇒ uλ > 0, uλ 6= 0.

Also, in (46) we choose h = (uλ − ũ∗λ)
+ ∈ W 1,p(Ω). Then

〈

A(uλ), (uλ − ũ∗λ)
+
〉

+

∫

Ω

ξ(z)up−1
λ (uλ − ũ∗λ)

+dz +

∫

∂Ω

β(z)up−1
λ (uλ − ũ∗λ)

+dσ

=

∫

Ω

λf(z, ũ∗λ)(uλ − ũ∗λ)
+dz (see (41))

6

∫

Ω

λ
[

η̂(ũ∗λ)
τ−1 + c10(ũ

∗
λ)
r−1
]

(uλ − ũ∗λ)
+dz (see (17))

=
〈

A(ũ∗λ), (uλ − ũ∗λ)
+
〉

+

∫

Ω

ξ(z)(ũ∗λ)
p−1(uλ − ũ∗λ)

+dz +

∫

∂Ω

β(z)(ũ∗λ)
p−1(uλ − ũ∗λ)

+dσ (because ũ∗λ ∈ S̃λ+),

⇒ uλ 6 ũ∗λ.

So, we have proved that

uλ ∈ [0, ũ∗λ], uλ 6= 0,

⇒ uλ is a positive solution of problem (Pλ) (see (41)).

As before the nonlinear regularity theory implies that

uλ ∈ C+\{0}.

Let ρ = ||uλ||∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(v). Then

−div a(Duλ(z)) + (ξ(z) + ξ̂ρ)uλ(z)
p−1

> 0 for almost all z ∈ Ω

⇒ div a(Duλ(z)) 6
[

||ξ||∞ + ξ̂ρ

]

uλ(z)
p−1 for almost all z ∈ Ω (see hypothesis H(ξ)),

⇒ uλ ∈ D+ (see Pucci and Serrin [41, pp. 111, 120]).

Therefore we infer that

(0, λ0) ⊆ L, hence L 6= ∅.

�

Let Sλ+ be the set of positive solutions of problem (Pλ). A byproduct of the
proof of Proposition 11 is the following corollary.

Corollary 12. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then Sλ+ ⊆ D+.

The next proposition reveals a basic property of the set L of admissible parameter
values.

Proposition 13. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, λ ∈ L and α ∈
(0, λ), then α ∈ L.
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Proof. Since λ ∈ L, we can find uλ ∈ Sλ+ ⊆ D+ (see Corollary 12). We introduce
the Carathéodory function µα : Ω× R → R defined by

(47) µα(z, x) =

{

αf(z, x) if x 6 uλ(z)
αf(z, uλ(z)) if uλ(z) < x.

We setMα(z, x) =

∫ x

0

µα(z, s)ds and consider the C1−functional wα :W 1,p(Ω) →

R defined by

wα(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Mα(z, u)dz

for all u ∈W 1,p(Ω).
Clearly, wα(·) is coercive (see (47)) and sequentially weakly lower semicontinu-

ous. So, we can find uα ∈W 1,p(Ω) such that

(48) wα(uα) = inf[wα(u) : u ∈W 1,p(Ω)].

As before (see the proof of Proposition 10), using hypothesis H(f)(iv), we have

wα(uα) < 0 = wα(0),

⇒ uα 6= 0.

From (48), we have

w′
α(uα) = 0,

(49)

〈A(uα), h〉+

∫

Ω

ξ(z)|uα|
p−2uαhdz +

∫

∂Ω

β(z)|uα|
p−2uαhdσ =

∫

Ω

µα(z, uα)hdz

for all h ∈W 1,p(Ω).
In (49) we first choose h = −u−α ∈W 1,p(Ω). We obtain

0 6 uα, uα 6= 0.

Then we choose h = (uα − uλ)
+ ∈ W 1,p(Ω). We have

〈

A(uα), (uα − uλ)
+
〉

+

∫

Ω

ξ(z)up−1
α (uα − uλ)

+dz +

∫

∂Ω

β(z)up−1
α (uα − uλ)

+dσ

=

∫

Ω

αf(z, uλ)(uα − uλ)
+dz (see (47))

6

∫

Ω

λf(z, uλ)(uα − uλ)
+dz (since f > 0, α 6 λ)

= 〈A(uλ), (uα − uλ)
+〉+

∫

Ω

ξ(z)up−1
λ (uα − uλ)

+dz +

∫

∂Ω

β(z)up−1
λ (uα − uλ)

+dσ

(since uλ ∈ Sλ+)

⇒ uα 6 uλ.

So, we have proved that

uα ∈ [0, uλ], uα 6= 0,

⇒ uα ∈ Sα+ ⊆ D+ (see (47)) and so α ∈ L.

�

Remark 5. Proposition 13 implies that L is an interval
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Corollary 14. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, λ ∈ L, α ∈ (0, λ)

and uλ ∈ Sλ+ ⊆ D+, then we can find uα ∈ Sα+ such that

uλ − uα ∈ intC∗
+ (Σ0)

with Σ0 = {z ∈ ∂Ω : uλ(z) = uα(z)}.

Proof. From the proof of Proposition 13, we know that we can find uα ∈ Sα+ such
that

uλ − uα ∈ C+\{0}.

Let ρ = ||uλ||∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f)(v). Then
we have

−div a(Duα) + (ξ(z) + αξ̂ρ)u
p−1
α

= αf(z, uα) + αξ̂ρu
p−1
α

6 αf(z, uλ) + αξ̂ρu
p−1
λ (see hypothesis H(f)(v) and recall that uα 6 uλ)

= λf(z, uλ)− (λ− α)f(z, uλ) + αξ̂ρu
p−1
λ

6 λf(z, uλ)− (λ− α)ηs + αξ̂ρu
p−1
λ with s = min

Ω
uλ > 0

(see hypothesis H(f)(iv) and recall that uλ ∈ D+)

< −div a(Duλ) + αξ̂ρu
p−1
λ for almost all z ∈ Ω,

⇒ uλ − uα ∈ intC∗
+ (Σ0) with Σ0 = {z ∈ ∂Ω : uλ(z) = uα(z)} (see Proposition 7).

The proof is now complete. �

Now let λ∗ = supL.

Proposition 15. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then λ∗ < +∞.

Proof. Hypotheses H(f)(i), (iv) and H(ξ) imply that we can find λ > 0 big such
that

(50) λf(z, x)− ξ(z)xp−1 > xp−1 for almost all z ∈ Ω, all x > 0.

Let λ > λ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ+ ⊆ D+. So, we
have

mλ = min
Ω
uλ > 0.
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For δ > 0, we set mδ
λ = mλ + δ ∈ D+. Also for ρ = ||uλ||∞ let ξ̂ρ > 0 be as

postulated by hypothesis H(f)(v). Then

−div a(Dmδ
λ) + (ξ(z) + λξ̂ρ)(m

δ
λ)
p−1

6 (ξ(z) + λξ̂ρ)m
p−1
λ + χ(δ) with χ(δ) → 0+ as δ → 0+

6 ξ(z)mp−1
λ + (1 + λξ̂ρ)m

p−1
λ + χ(δ)

6 λf(z,mλ) + λξ̂ρm
p−1
λ + χ(δ) (see (50))

< λf(z,mλ)− (λ − λ)f(z, uλ) + λξ̂ρm
p−1
λ + χ(δ)

(since λ > λ, see hypothesis H(f)(iv))

6 λf(z,mλ) + λξ̂ρm
p−1
λ − (λ− λ)ηs + χ(δ) with s = mλ > 0

(see hypothesis H(f)(iv))

6 λf(z,mλ) + λξ̂ρmλ(ϑ)− ϑ for some ϑ > 0 and all δ > 0 small

6 λf(z, uλ) + λξ̂ρuλ − ϑ (see hypothesis H(f)(v))

< λf(z, uλ) + λξ̂ρuλ

= −div a(Duλ) + (ξ(z) + λξ̂ρ)u
p−1
λ for almost all z ∈ Ω (recall that uλ ∈ Sλ+).(51)

If β = 0 (Neumann problem), then by acting on (51) with (mδ
λ−uλ)

+ ∈ W 1,p(Ω)
we obtain

mδ
λ 6 uλ for δ > 0 small,

a contradiction to the definition of mλ.
If β 6= 0, then from the boundary condition we infer that Σ0 = {z ∈ ∂Ω : uλ(z) =

mλ} 6= ∂Ω. Then from (51) and Proposition 7 we have

uλ −mλ ∈ intC∗
+ (Σ0) ,

which again contradicts the definition of mλ.
So, it follows that λ /∈ L and we have λ∗ = supL 6 λ <∞. �

In what follows, for every λ > 0, ϕλ : W 1,p(Ω) → R is the C1−energy (Euler)
functional for problem (Pλ) defined by

ϕλ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ − λ

∫

Ω

F (z, u)dz

for all u ∈W 1,p(Ω).

Proposition 16. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then λ∗ ∈ L.

Proof. Let {λn}n>1 ⊆ L be an increasing sequence such that λn → λ−. We can

find un ∈ Sλn

+ (n ∈ N) such that

(52) ϕλn
(un) < 0 for all n ∈ N

(see the proof of Proposition 13).
Also, we have

(53) 〈A(un), h〉+

∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ = λn

∫

Ω

f(z, un)hdz

for all h ∈W 1,p(Ω), all n ∈ N.

Claim 5. {un}n>1 ⊆W 1,p(Ω) is bounded.
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Arguing by contradiction, suppose that the claim is not true. Then we may
assume that

||un|| → +∞ .

From (52) we have
(54)
∫

Ω

pG(Dun)dz+

∫

Ω

ξ(z)upndz+

∫

∂Ω

β(z)upndσ−λn

∫

Ω

pF (z, un)dz < 0 for all n ∈ N .

On the other hand, if in (53) we choose h = un ∈ W 1,p(Ω), then
(55)

−

∫

Ω

(a(Dun), Dun)RNdz−

∫

Ω

ξ(z)upndz−

∫

∂Ω

β(z)upndσ+λn

∫

Ω

f(z, un)undz = 0 .

We add (54), (55) and obtain
∫

Ω

[pG(Dun)− (a(Dun), Dun)RN ]dz + λn

∫

Ω

e(z, un)dz < 0 for all n ∈ N

⇒ λn

∫

Ω

e(z, un)dz 6 c21 for some c21 > 0, all n ∈ N.(56)

Let yn =
un

||un||
, n ∈ N. Then

||yn|| = 1, yn > 0 for all n ∈ N.

So, we may assume that

(57) yn
w
→ y in W 1,p(Ω) and yn → y in Lr(Ω) and in Lp(∂Ω), y > 0.

First assume that y 6= 0 and let E = {z ∈ Ω : y(z) 6= 0}. We have |E|N > 0 and
so

un(z) → +∞ for almost all z ∈ E.

Hypothesis H(f)(ii) implies that

(58)
F (z, un)

||un||p
=
F (z, un)

upn
ypn → +∞ for almost all z ∈ E.

From (58) and Fatou’s lemma (hypothesis H(f)(ii) permits its use), we have

(59)
1

||un||p

∫

E

F (z, un)dz → +∞.

Then
∫

Ω

F (z, un)

||un||p
dz =

∫

E

F (z, un)

||un||p
dz +

∫

Ω\E

F (z, un)

||un||p
dz

>

∫

E

F (z, un)

||un||p
dz for almost all n ∈ N (since F > 0)

⇒

∫

Ω

F (z, un)

||un||p
dz → +∞ as n→ ∞ (see (59)).(60)

Hypothesis H(f)(iii) implies that

0 6 e(z, x) + d(z) for almost all z ∈ Ω, all x > 0,

⇒ pF (z, x)− d(z) 6 f(z, x)x for almost all z ∈ Ω, all x > 0.(61)
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From (55), (61) and hypothesis H(a)(iv), we have

λn

∫

Ω

pF (z, un)dz 6

∫

Ω

pG(Dun)dz +

∫

Ω

ξ(z)upndz +

∫

∂Ω

β(z)upndσ + c22

for some c22 > 0, all n ∈ N,

⇒ λn

∫

Ω

pF (zun)

||un||p
dz 6

∫

Ω

pG(Dun)

||un||p
dz +

∫

Ω

ξ(z)ypndz +

∫

∂Ω

β(z)ypndσ +
c22

||un||p

6 pc5

(

1

||un||p
+ ||Dyn||

p
p

)

+

∫

Ω

ξ(z)ypndz +

∫

∂Ω

β(z)ypndσ

+
c22

||un||p

6 c23 for some c23 > 0, all n ∈ N.(62)

Comparing (60) and (62), we have a contradiction.
Next assume that y = 0. For µ > 0, we set

vn = (pµ)
1/pyn ∈ W 1,p(Ω) for all n ∈ N.

Note that

vn → 0 in Lr(Ω) (see (57) and recall that y = 0),(63)

⇒

∫

Ω

F (z, vn)dz → 0 (see hypothesis H(f)(i)).(64)

Since ||un|| → ∞, we can find n0 ∈ N such that

(65) (pµ)
1/p

1

||un||
6 1 for all n > n0.

Consider the C1−functional ψ̃λn
:W 1,p(Ω) → R defined by

ψ̃λn
(u) =

c1
p(p− 1)

||Du||pp +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ − λn

∫

Ω

F (z, u)dz

for all u ∈W 1,p(Ω).
Let tn ∈ [0, 1] be such that

(66) ψ̃λn
(tnun) = max

[

ψ̃λn
(tun) : 0 6 t 6 1

]

.

From (65) and (66) it follows that

ψ̃λn
(tnun) > ψ̃λn

(vn)

= µ

[

c1
p− 1

||Dyn||
p
p +

∫

Ω

ξ(z)ypndz +

∫

∂Ω

β(z)ypndσ

]

− λn

∫

Ω

F (z, vn)dz

> µc24 − λ∗
∫

Ω

F (z, vn)dz for some c24 > 0, all n ∈ N

(see hypothesis H0, Lemmata 5, 6 and recall that F > 0, λn 6 λ∗)

> µ
c24
2
> 0 for all n > n1 > n0 (see (64)).(67)

But µ > 0 is arbitrary. So, from (67) we infer that

(68) ψ̃λn
(tnun) → +∞ as n→ +∞ .

Note that

(69) ψ̃λn
(0) = 0 and ψ̃λn

(un) < 0 for all n ∈ N
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(see (52) and by Corollary 3, ψ̃λn
6 ϕλn

for all n ∈ N).
Then from (68) and (69) it follows that

(70) tn ∈ (0, 1) for all n > n2.

So, from (66) and (70) we have

d

dt
ψ̃λn

(tun)|t=tn = 0 for all n > n2,

⇒ 〈ψ̃′
λn

(tnun), tnun〉 = 0 for all n > n2 (by the chain rule)

⇒
c1

p− 1
||D(tnun)||

p
p +

∫

Ω

ξ(z)(tnun)
pdz +

∫

∂Ω

β(z)(tnun)
pdσ =

λn

∫

Ω

f(z, tnun)(tnun)dz for all n > n2,

⇒ pψ̃λn
(tnun) + λn

∫

Ω

pF (z, tnun)dz = λn

∫

Ω

f(z, tnun)(tnun)dz for all n > n2,

⇒ pψ̃λn
(tnun) 6 λn

∫

Ω

e(z, tnun)dz

6 λ∗
∫

Ω

e(z, tnun)dz (since λn 6 λ∗ for all n ∈ N and e > 0)

6 λ∗
∫

Ω

e(z, un)dz + λ∗||d||1 (see (70) and hypothesis H(f)(iii))

6M4 for some M4 > 0, all n > n2.(71)

Comparing (68) and (71) again we have a contradiction.
This proves the claim.
On account of Claim 5, we may assume that

(72) un
w
→ u∗ in W 1,p(Ω) and un → u∗ in Lr(Ω) and in Lp(∂Ω).

In (53) we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use
(72). We obtain

lim
n→∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω) (see Proposition 4).(73)

So, if in (53) we pass to the limit as n→ ∞ and use (73), then

〈A(u∗), h〉+

∫

Ω

ξ(z)(u∗)p−1hdz +

∫

∂Ω

β(z)(u∗)p−1hdσ = λ∗
∫

Ω

f(z, u∗)hdz

for all h ∈ W 1,p(Ω),

⇒ −div a(Du∗(z)) + ξ(z)u∗(z)p−1 = λ∗f(z, u∗(z)) for almost all z ∈ Ω,

∂u∗

∂na
+ β(z)(u∗)p−1 = 0 on ∂Ω (see Papageorgiou and Rădulescu [28]).(74)

We know that

uλ1
6 un for all n ∈ N

(see Claim 4 in the proof of Proposition 10 and use the fact that λ 7→ uλ is nonde-
creasing from (0,+∞) into C1(Ω)). Hence in the limit as n→ ∞, we obtain

uλ1
6 u∗,

⇒ u∗ ∈ Sλ
∗

+ (see (74)) and so λ∗ ∈ L.
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�

Proposition 17. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ (0, λ∗),
then problem (Pλ) has at least two positive solutions

vλ, ûλ ∈ D+ with ûλ − uλ ∈ C+\{0}.

Proof. From Proposition 16 we know that λ∗ ∈ L. So, we can find u∗ ∈ Sλ
∗

+ ⊆ D+.

Invoking Corollary 14, we can find uλ ∈ Sλ+ ⊆ D+ such that

(75) u∗ − uλ ∈ intC∗
+ (Σ0)

with Σ0 = {z ∈ ∂Ω : uλ(z) = u∗(z)}. Moreover, from the proof of Proposition 13
we know that uλ is a global minimizer of the functional wλ.

Using uλ ∈ Sλ+ ⊆ D+, we introduce the following truncation of the reaction term
in problem (Pλ):

(76) ϑλ(z, x) =

{

λf(z, uλ(z)) if x 6 uλ(z)
λf(z, x) if uλ(z) < x.

This is a Carathéodory function. We set Θλ(z, x) =

∫ x

0

ϑλ(z, s)ds and consider

the C1−functional ϕ̂λ :W 1,p(Ω) → R defined by

ϕ̂λ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Θλ(z, u)dz

for all u ∈W 1,p(Ω).
From (76) it is clear ϑλ(z, ·) has the same asymptotic behavior for x → +∞ as

f(z, ·). So, reasoning as in Claim 5 in the proof of Proposition 16, we show that

(77) ϕ̂λ satisfies the C-condition.

Claim 6. Kϕ̂λ
⊆ [uλ) ∩D+ = {u ∈ D+ : uλ(z) 6 u(z) for all z ∈ Ω}.

Let u ∈ Kϕ̂λ
. Then

(78) 〈A(u), h〉+

∫

Ω

ξ(z)|u|p−2uhdz +

∫

∂Ω

β(z)|u|p−2uhdσ =

∫

Ω

ϑλ(z, u)hdz

for all h ∈W 1,p(Ω).
In (78) we choose h = (uλ − u)+ ∈ W 1,p(Ω). Then

〈A(u), (uλ − u)+〉+

∫

Ω

ξ(z)|u|p−2u(uλ − u)+dz +

∫

∂Ω

β(z)|u|p−2u(uλ − u)+dσ

=

∫

Ω

λf(z, uλ)(uλ − u)+dz (see (76))

= 〈A(uλ), (uλ − u)+〉+

∫

Ω

ξ(z)up−1
λ (uλ − u)+dz +

∫

∂Ω

β(z)up−1
λ (uλ − u)+dσ

(since uλ ∈ Sλ+)

⇒ uλ 6 u.

As before, the nonlinear regularity theory implies that u ∈ D+.
This proves Claim 6.
Claim 6 allows us to assume that

(79) Kϕ̂λ
∩ [uλ, u

∗] = {uλ}.
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Indeed, otherwise we already have a second positive smooth (due to nonlinear
regularity) solution of problem (Pλ) which is bigger than uλ and so we are done.

We consider the following truncation of ϑλ(z, ·) :

(80) ϑ̃λ(z, x) =

{

ϑλ(z, x) if x 6 u∗(z)
ϑλ(z, u

∗(z)) if u∗(z) < x.

This is a Carathéodory function. We set Θ̃λ(z, x) =

∫ x

0

ϑ̃λ(z, s)ds and consider

the C1−functional ϕ̃λ :W 1,p(Ω) → R defined by

ϕ̃λ(u) =

∫

Ω

G(Du)dz +
1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

∫

Ω

Θ̃λ(z, u)dz

for all u ∈W 1,p(Ω).
Using (80) we easily show that

(81) Kϕ̃λ
⊆ [uλ, u

∗] ∩D+.

From (80) it is clear that ϕ̃λ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ũλ ∈ W 1,p(Ω) such that

ϕ̃λ(ũλ) = inf[ϕ̃λ(u) : u ∈W 1,p(Ω)],

⇒ ũλ ∈ Kϕ̃λ
⊆ [uλ, u

∗] ∩D+ (see (81)).(82)

From (76) and (80), we see that

ϕ̃′
λ|[0,u∗] = ϕ̂′

λ|[0,u∗],

⇒ ũλ ∈ Kϕ̂λ
(see (82)),

⇒ ũλ = uλ (see (79), (82)).

Then from (75) we infer that for Σ0 = {z ∈ ∂Ω : uλ(z) = u∗(z)} we have

uλ is a C1
∗(Ω)−minimizer of ϕ̂λ,

⇒ uλ is a W 1,p
∗ (Ω)−minimizer of ϕ̂λ (see Proposition 8).(83)

Without any loss of generality, we may assume that

(84) Kϕ̂λ
is finite.

Otherwise Claim 6 and (76) imply that we already have a whole sequence of
distinct smooth solutions of (Pλ) bigger than uλ and so we are done. Then (84)
implies that we can find ρ ∈ (0, 1) small such that

(85) ϕ̂λ(uλ) < inf
[

ϕ̂λ(uλ + h) : ||h|| 6 ρ, h ∈ W 1,p
∗ (Ω)

]

= m̂λ
ρ .

In addition, hypothesis H(f)(ii) implies that for all h ∈ intC∗
+ (Σ0), we have

(86) ϕ̂λ(uλ + th) → −∞ as t→ +∞ .

From (77), (85), (86) we see that we can apply Theorem 1 (the mountain pass
theorem) on the affine space (manifold) Y = uλ +W 1,p

∗ (Ω)) and find ûλ ∈ Y such
that

〈ϕ̂′
λ(ûλ), h〉 = 0 for all h ∈ W 1,p

∗ (Ω), m̂λ
ρ 6 ϕ̂λ(ûλ) (see (85)),(87)

⇒ uλ 6 ûλ (by choosing h = (uλ − ûλ)
+ ∈W 1,p

∗ (Ω)).
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Also, using the nonlinear Green’s identity on the space W 1,p
∗ (Ω) (see Casas and

Fernandez [8] and Kenmochi [23]) from (87) we infer that

ûλ ∈ D+ is a solution of (Pλ) (λ ∈ (0, λ∗)).

Moreover, from (85) we have

ûλ − uλ ∈ C+\{0}.

�

Summarizing the results of this section, we can formulate the following bifurcation-
type result.

Theorem 18. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold, then there exists
λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ D+ with ûλ − uλ ∈ C+\{0};

(b) for λ = λ∗ problem (Pλ) has at least one positive solution

u∗ ∈ D+;

(c) for λ > λ∗ problem (Pλ) has no positive solution.

4. Big, Small and Minimal Positive Solutions

In this section we show that as λ → 0+, we can produce positive solutions of
problem (Pλ) which have W 1,p(Ω)−norm which is arbitrarily big and arbitrarily
small. Moreover, we show that for every λ ∈ (0, λ∗), problem (Pλ) admits a smallest
positive solution u∗λ ∈ D+ and study the monotonicity and continuity properties of
the map λ 7→ u∗λ.

Theorem 19. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λn → 0+, then
we can find positive solutions

ûn = ûλn
∈ Sλn

+ ⊆ D+ and un = uλn
∈ Sλn

+ ⊆ D+ for all n ∈ N

such that ||ûn|| → +∞ and ||un|| → 0 as n→ ∞.

Proof. From (17) we have

(88) F (z, x) 6
η̂

τ
xτ +

c10
r
xr for almost all z ∈ Ω, all x > 0.

Then for all u ∈W 1,p(Ω) we have

ϕλn
(u) >

c1
p(p− 1)

||Dun||
p
p +

1

p

∫

Ω

ξ(z)|u|pdz +
1

p

∫

∂Ω

β(z)|u|pdσ −

λnη̂

τ
||u+||ττ −

λnc10
r

||u+||rr

(see Corollary 3 and (88))

> c25||u||
p − λnc26(||u||

τ + ||u||r) for some c25, c26 > 0, all n ∈ N(89)

(se hypothesis H0 and Lemmata 5, 6).

Let ||u|| = λ−αn with α > 0. We set

k(λn) = c25λ
−αp
n − c26(λ

1−ατ
n + λ1−αrn ), n ∈ N.
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We choose α ∈

(

0,
1

r − p

)

(recall that r > p). Then we have

−αp < 1− αr < 1− ατ (recall that τ < p < r).

So, we see that

(90) k(λn) → +∞ as n→ ∞ (recall that λn → 0+).

Then from (89) and (90), we infer that there exists n1 ∈ N such that

(91) ϕλn
(u) > k(λn) > 0 = ϕλn

(0) for all n > n1 and all ||u|| = λ−αn .

Hypothesis H(f)(ii) implies that if u ∈ D+, then

(92) ϕλn
(tu) → −∞ as t → +∞, for all n ∈ N.

Moreover, as in Claim 5 in the proof of Proposition 16, we can check that

(93) ϕλn
(·) satisfies the C-condition for all n ∈ N.

Then (91), (92), (93) permit the use of Theorem 1 (the mountain pass theorem).
So, we can find ûn ∈ W 1,p(Ω) such that

ûn ∈ Kϕλn
and k(λn) 6 ϕλ(ûn) 6 c27(1 + ||ûn||

r) for some c27 > 0, all n > n1

(see hyothesis H(f)(i)),

⇒ ûn ∈ Sλn

+ ⊆ D+ for all n ∈ N and ||ûn|| → ∞ (see (90)).

Next let ζ ∈

(

0,
1

p

)

and consider ||u|| = λζn. Then from (89) we have

ϕλn
(u) > c25λ

ζp
n − c26

(

λζτ+1
n + λζr+1

n

)

= λn
[

c25λ
ζp−1
n − c26

(

λζτn + λζrn
)]

.

Let k0(λn) = c25λ
ζp−1
n − c26

(

λζτn + λζrn
)

. Since ζp − 1 < 0 and λn → 0+, we
infer that

k0(λn) → +∞ as n→ +∞ .

So, we can find n2 ∈ N such that

(94) ϕλn
(u) > λnk0(λn) > 0 = ϕλn

(0) for all n > n2 and all ||u|| = λζn.

Let Bn = {u ∈ W 1,p(Ω) : ||u|| 6 λζn}, n ∈ N. Hypotheses H(a)(iv), H(f)(iv)
and since τ < q < p, imply that for every n ∈ N, every u ∈ D+ and for t ∈ (0, 1)
small, we have

(95) ϕλn
(tu) < 0, ||tu|| 6 λζn for all n ∈ N (see the proof of Proposition 11).

From (94) and (95), we see that

(96) 0 < inf
∂Bn

ϕλn
, and inf

Bn

ϕλn
< 0 for all n > n2.

Let c̄n = inf
∂Bn

ϕλn
− inf

Bn

ϕλn
> 0 for n > n2 (see (96)). Using the Ekeland

variational principle (see, for example, Gasinski and Papageorgiou [15, pp. 579]),

given ǫ ∈ (0, τn) (n > n2), we can find unǫ ∈ Bn =
{

u ∈W 1,p(Ω) : ||u|| < λζn
}

such
that

ϕλn
(unǫ ) 6 inf

Bn

ϕλn
+ ǫ(97)

ϕλn
(unǫ ) 6 ϕλn

(y) + ǫ||y − un|| for all y ∈ Bn, n > n2.(98)
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Given t ∈W 1,p(Ω), for t > 0 small we have

unǫ + th ∈ Bn.

So, if in (98) we choose y = unǫ + th, then

−ǫ||h|| 6 〈ϕ′
λn

(unǫ ), h〉 for all h ∈W 1,p(Ω),

⇒ ||ϕ′
λn

(unǫ )||∗ 6 ǫ for all n > n2.(99)

Let ǫm → 0+ and set unǫm = unm for all m ∈ N, n > n2. From (99) we have

(100) ϕ′
λn

(unm) → 0 in W 1,p(Ω)∗ as m→ ∞, n > n2.

But from (93) we know that ϕλn
(·) satisfies the C-condition. So, from (97) and

(100) if follows that at least for a subsequence, we have

(101) unm → uλn
= un in W 1,p(Ω) as m→ ∞ .

From (97) and (101), we infer that

ϕλn
(un) = inf

Bn

ϕλn
for all n > n2,

⇒ un ∈ Bn and so un ∈ Kϕλn
for all n > n2 (see (96)).

Therefore we have

un ∈ Sλ+ ⊆ D+ and ||un|| < λζn for all n > n2,

⇒ ||un|| → 0 as n→ ∞ (recall that λn → 0+).

�

For every λ ∈ (0, λ∗) we show that problem (Pλ) admits a minimal positive
solution u∗λ and determine the monotonicity and continuity properties of the map
λ 7→ u∗λ.

Theorem 20. If hypotheses H(a), H(ξ), H(β), H0, H(f) hold and λ ∈ (0, λ∗), then
problem (Pλ) has a smallest positive solution u∗λ ∈ Sλ+ ⊆ D+ and the map λ 7→ u∗λ
from (0, λ∗) into C1(Ω) is

• “strictly monotone”, in the sense that

ϑ < λ⇒ u∗λ − u∗ϑ ∈ intC∗
+ (Σ0)

with Σ0 = {z ∈ ∂Ω : u∗λ(z) = u∗ϑ(z)};

• “left continuous”, that is, if λn → λ− < λ∗, then uλn
→ uλ in C1(Ω).

Proof. From Lemma 3.10 of Hu and Papageorgiou [20, p. 178], we know that we

can find {un}n>1 ⊆ Sλ+ such that

inf Sλ+ = inf
n>1

un, un 6 ũλ for all n ∈ N (see the proof of Proposition 11)

Evidently, {un}n>1 ⊆W 1,p(Ω) is bounded and so we may assume that

(102) un
w
→ u∗λ in W 1,p(Ω) and un → u∗λ in Lr(Ω) and in Lp(∂Ω).

We have for all h ∈W 1,p(Ω)

(103) 〈A(un), h〉+

∫

Ω

ξ(z)up−1
n hdz +

∫

∂Ω

β(z)up−1
n hdσ = λ

∫

Ω

f(z, un)hdz .
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In (103) we choose h = un − u∗λ ∈ W 1,p(Ω). Passing to the limit as n→ ∞ and
using (102), we obtain

lim
n→∞

〈A(un), un − u∗λ〉 = 0

⇒ un → u∗λ in W 1,p(Ω) (see Proposition 4).(104)

Hence if in (103) we pass to the limit as n→ ∞ and use (104), then

〈A(u∗λ), h〉+

∫

Ω

ξ(z)(u∗λ)
p−1hdz+

∫

∂Ω

β(z)(u∗λ)
p−1hdσ = λ

∫

Ω

f(z, u∗λ)hdz for all h ∈W 1,p(Ω)

⇒ u∗λ is a nonnegative solution of (Pλ) (see Papageorgiou and Rădulescu [28]).
Hypotheses H(f)(i), (iv) imply that we can find c28 > 0 such that

(105) f(z, x) > η̂0x
τ−1 − c28x

r−1 for almost all z ∈ Ω, all x > 0.

We consider the following auxiliary Robin problem

(Auλ)
′′







−div a(Du(z)) + ξ(z)u(z)p−1 = λ(η̂0u(z)
τ−1 − c28u(z)

r−1) in Ω,
∂u

∂na
+ β(z)up−1 = 0 on ∂Ω, u > 0, λ > 0.







As in the proof pf Proposition 10 (there we had the auxiliary problem (Auλ)
′),

problem (Auλ)
′′

has a unique positive solution u∗λ ∈ D+ for all λ > 0 and

u∗λ 6 u for all u ∈ Sλ+ (see (105)).

So, we have

u∗λ 6 un for all n ∈ N,

⇒ u∗λ 6 u∗λ,

⇒ u∗λ ∈ S∗
λ and u∗λ = inf Sλ+.

From Corollary 14, we infer the strict monotonicity of the map λ 7→ u∗λ.
Finally, suppose that {λn, λ}n>1 ⊆ (0, λ∗) and λn → λ−. Then

u∗λn
6 ũλ∗ for all n ∈ N (see the proof of Proposition 11),

⇒ {u∗λn
}n>1 ⊆W 1,p(Ω) is bounded.

From Lieberman [24], we know that there exist α ∈ (0, 1) and M5 > 0 such that

un ∈ C1,α(Ω) and ||un||C1,α(Ω) 6M5 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) we have

(106) u∗λn
→ ũ∗λ in C1(Ω)

(here we have the original sequence since it is increasing).
Suppose that ũ∗λ 6= u∗λ. Then we can find z0 ∈ Ω such that

u∗λ(z0) < ũ∗λ(z0),

⇒ u∗λ(z0) < u∗λn
(z0) for all n > n0 (see (106)).

This contradicts the monotonicity of λ 7→ u∗λ. Therefore ũ∗λ = uλ and the map
λ 7→ u∗λ is left continuous. �
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Acknowledgments. This research was supported by the Slovenian Research
Agency grants P1-0292, J1-8131, J1-7025. V.D. Rădulescu acknowledges the sup-
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[28] N.S. Papageorgiou, V.D. Rădulescu, Multiple solutions with precise sign information for
nonlinear parametric Robin problems, J. Differential Equations 256 (2014), 393-430.
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(D.D. Repovš) Faculty of Education and Faculty of Mathematics and Physics, Uni-

versity of Ljubljana, SI-1000 Ljubljana, Slovenia

E-mail address: dusan.repovs@guest.ames.si


	1. Introduction
	2. Mathematical Background-Auxiliary Results
	3. Bifurcation-Type Theorem
	4. Big, Small and Minimal Positive Solutions
	References

