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Abstract

We investigate how mass transports that optimize the inner product cost -considered by Y.
Brenier- propagate in time along a given Lagrangian. In the deterministic case, we consider
transports that maximize and minimize the following “ballistic” cost functional on phase space
M∗ ×M ,

bT (v, x) := inf{〈v, γ(0)〉+

∫ T

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M); γ(T ) = x},

where M = Rd, T > 0, and L : M ×M → R is a suitable Lagrangian. We also consider the
stochastic counterpart:

Bs
T (µ, ν) := inf

{
E
[
〈V,X0〉+

∫ T

0

L(t,X, β(t,X)) dt

]
;X ∈ A, V ∼ µ,XT ∼ ν

}
where A is the set of stochastic processes satisfying dX = βX(t,X) dt + dWt, for some drift
βX(t,X), and where Wt is σ(Xs : 0 ≤ s ≤ t)-Brownian motion. While inf-convolution allows us
to easily obtain Hopf-Lax formulas on Wasserstein space for cost minimizing transports, this is
not the case for total cost maximizing transports, which actually are sup-inf problems. However,
in the case where the Lagrangian L is jointly convex on phase space, Bolza-type dualities –well
known in the deterministic case but novel in the stochastic case–transform sup-inf problems to
sup-sup settings. Hopf-Lax formulas relate optimal ballistic transports to those associated with
dynamic fixed-end transports studied by Bernard-Buffoni and Fathi-Figalli in the deterministic
case, and by Mikami-Thieullen in the stochastic setting. We also write Eulerian formulations
and point to links with the theory of mean field games.

1 Introduction and main results

Given a cost functional c(y, x) on some product measure space X0×X1, and two probability measures
µ on X0 and ν on X1, we consider the problem of optimizing the total cost of transport plans and
its corresponding dual principle as formulated by Kantorovich

inf
{∫

X0×X1

c(y, x)) dπ;π ∈ K(µ, ν)
}

= sup
{∫

X1

ϕ1(x) dν(x)−
∫
X0

ϕ0(y) dµ(y); ϕ1, ϕ0 ∈ K(c)
}
,

∗This work is part of a Master’s thesis prepared by A. Barton under the supervision of N. Ghoussoub.
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where K(µ, ν) is the set of transport plans between µ and ν, that is the set of probability measures
π on X0 × X1 whose marginal on X0 (resp. on X1) is µ (resp., ν). On the other hand, K(c) is
the set of functions ϕ1 ∈ L1(X1, ν) and ϕ0 ∈ L1(X0, µ) such that ϕ1(x) − ϕ0(y) 6 c(y, x) for all
(y, x) ∈ X0 ×X1. The pairs of functions in K(c) can be assumed to satisfy

ϕ1(x) = inf
y∈X0

c(y, x) + ϕ0(y) and ϕ0(y) = sup
x∈X1

ϕ1(x)− c(y, x). (1)

They will be called admissible Kantorovich potentials, and for reasons that will become clear later,
we shall say that ϕ0 (resp., ϕ1) is an initial (resp., final) Kantorovich potential.
The original Monge problem dealt with the cost c(y, x) = |x− y| ([23], [26], [13], [31], [32]) and was
constrained to those probabilities in K(µ, ν) that are supported by graphs of measurable maps from
X to Y pushing µ onto ν. Brenier [8] considered the important quadratic case c(x, y) = |x − y|2.
This was followed by a large number of results addressing costs of the form f(x − y), where f is
either a convex or a concave function [18]. With a purpose of connecting mass transport with Mather
theory, Bernard and Buffoni [7] considered dynamic cost functions on a given compact manifold M ,
that deal with fixed end-points problems of the following type:

cT (y, x) := inf{
∫ T

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M); γ(0) = y, γ(T ) = x}, (2)

where [0, T ] is a fixed time interval, and L : TM → R ∪ {+∞} is a given Lagrangian that is convex
in the second variable of the tangent bundle TM . Fathi and Figalli [15] eventually dealt with the
case where M is a non-compact Finsler manifold. Note that standard cost functionals of the form
f(|x−y|), where f is convex, are particular cases of the dynamic formulation, since they correspond
to Lagrangians of the form L(t, x, p) = f(p).
We shall assume throughout that M = M∗ = Rd, while preserving –for pedagogical reasons– the
notational distinction between the state space and its dual. In this paper, we shall consider the
“ballistic cost function,” which is defined on phase space M∗ ×M by,

bT (v, x) := inf{〈v, γ(0)〉+

∫ T

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M); γ(T ) = x}, (3)

where M is a Banach space and M∗ is its dual. The associated transport problems will be

BT (µ0, νT ) := inf{
∫
M∗×M

bT (v, x) dπ; π ∈ K(µ0, νT )}, (4)

where µ0 (resp., νT ) is a given probability measure on M∗ (resp., M), and

BT (µ0, νT ) := sup{
∫
M∗×M

bT (v, x) dπ; π ∈ K(µ0, νT )}. (5)

Note that when T = 0, we have b0(x, v) = 〈v, x〉, which is exactly the case considered by Brenier
[8], that is

W (µ0, ν0) := inf{
∫
M∗×M

〈v, x〉 dπ; π ∈ K(µ0, ν0)}, (6)

and

W (µ0, ν0) := sup{
∫
M∗×M

〈v, x〉 dπ; π ∈ K(µ0, ν0)}, (7)

making (5) a suitable dynamic version of the Wasserstein distance.
We shall also consider stochastic versions of the above problems, namely the cost of transport
between two random variables Y and Z in L2(Ω,M) defined as

csT (Y,Z) = inf

{
E

[∫ T

0

L(t,X, β(t,X)) dt

]
;X ∈ A, X0 = Y,XT = Z a.s

}
, (8)
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as well as the ballistic cost of using an input V in L2(Ω,M∗) to get to the random state Z in
L2(Ω,M), namely

bsT (V,Z) = inf

{
E

[
〈V,X0〉+

∫ T

0

L(t,X, β(t,X)) dt

]
;X ∈ A, XT = Z a.s

}
, (9)

where A is the set of stochastic processes verifying the stochastic differential equation

dX = βX(t,X) dt+ dWt,

for some drift βX(t,X), where Wt is σ(Xs : 0 ≤ s ≤ t)-Brownian motion. The corresponding mass
transports are then

CsT (ν0, νT ) := inf {csT (Y,Z);Y ∼ ν0, Z ∼ νT } (10)

= inf

{
E

[∫ T

0

L(t,X, βX(t,X)) dt

]
;X ∈ A, X0 ∼ ν0, XT ∼ νT

}
, (11)

which was considered by Mikami and Thieullen [22], while

BsT (µ0, νT ) : = inf {bsT (V,Z);V ∼ µ0, Z ∼ νT } (12)

= inf

{
E

[
〈V,X0〉+

∫ T

0

L(t,X, β(t,X)) dt

]
;X ∈ A, V ∼ µ0, XT ∼ νT

}
, (13)

B
s

T (µ0, νT ) : = sup {bsT (V,Z);V ∼ µ0, Z ∼ νT } (14)

= sup
V∼µ0,Z∼νT

inf
X∈A,XT=Z

{
E

[
〈V,X0〉+

∫ T

0

L(t,X, β(t,X)) dt

]}
, (15)

that we shall consider in the sequel.
In Section 2, we shall prove the following interpolation formulae on Wasserstein space associated to
the deterministic minimization problem:

BT (µ0, νT ) = inf{W (µ0, ν) + CT (ν, νT ); ν ∈ P(M)}. (16)

The above formula can be seen as extensions of those by Hopf-Lax on state space to Wasserstein
space. Indeed, for any (initial) function g, the associated value function can be written as

ϕg(t, x) = inf{g(y) + ct(y, x); y ∈M}. (17)

In the case where the Lagrangian L(t, x, p) = L0(p) is only a function of p, and if H0 is the associated
Hamiltonian, then ct(y, x) = tL0( 1

t |x − y|) and (17) is nothing but the Hopf-Lax formula used to
generate solutions for corresponding Hamilton-Jacobi equations. When g is the linear functional
g(x) = 〈v, x〉, then bt(v, x) is itself a solution to the Hamilton-Jacobi equation, since

bt(v, x) = inf{〈v, y〉+ ct(y, x); y ∈M}. (18)

In other words, (16) can now be seen as extensions of (18) to the space of probability measures,
where the Wasserstein distance fill the role of the scalar product.
In order to establish duality formulas, we consider the following forward Hamilton-Jacobi equations:{

∂tϕ+H(x,∇xϕ) = 0 on [0, T ]×M,
ϕ(0, x) = f(x),

(19)
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and backward Hamilton-Jacobi equations:{
∂tϕ+H(x,∇xϕ) = 0 on [0, T ]×M,

ϕ(T, x) = f(x),
(20)

where the Hamiltonian on [0, T ] ×M ×M∗ is defined by H(t, x, q) = supp∈M{〈p, q〉 − L(t, x, p)}.
Unless specified otherwise, we shall consider “variational solutions” for (19) and (20), which are
formally given by the formulae

Φt
f,+

(x) := Φ
f,+

(t, x) = inf
{
f(γ(0)) +

∫ t

0

L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, T ),M); γ(t) = x
}
, (21)

Φt
f,−

(x) := Φ
f,−(t, x) = sup

{
f(γ(T ))−

∫ T

t

L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, T ),M); γ(t) = x
}
. (22)

Additional conditions on the Lagrangian are needed in order to verify if Φ
f,+

and Φ
f,− are anywhere

close to a classical solution. We shall then prove the following duality formulae:

BT (µ0, νT ) = sup

{∫
M

Φf∗ ,+(T, x) dνT (x) +

∫
M∗

f(v) dµ0(v); f concave in Lip(M∗)

}
(23)

= sup

{∫
M

g(x) dνT (x) +

∫
M∗

(Φ0
g,−)∗(v) dµ0(v); g in Lip(M)

}
, (24)

where h∗ is the concave Legendre transform of h, i.e., h∗(v) = inf{〈v, y〉 − h(y); y ∈M}.
As to the question of attainment, we use a result by Fathi-Figalli [15] to show that if L is a Tonelli
Lagrangian, and if µ0 is absolutely continuous with respect to Lebesgue measure, then there exists
a probability measure π0 on M∗ ×M , and a concave function k : M → R such that BT (µ0, νT ) =∫
M∗

bT (v, x)dπ0, and π0 is supported on the possibly set-valued map v → π∗ϕHT (∇k∗(v), v), with
π∗ : M ×M∗ → M being the canonical projection, and (x, v) → ϕHt (x, v) is the corresponding
Hamiltonian flow.
In Section 3, we prove an analogous Hopf-Lax formulae on Wasserstein space associated to the
stochastic minimization problem:

BsT (µ0, νT ) = inf{W (µ0, ν) + CsT (ν, νT ); ν ∈ P(M)}. (25)

As to the duality, there are two features that distinguish the deterministic case from the stochastic
case. For one, there is no Monge-Kantorovich duality for the latter since it doesn’t correspond to a
cost minimizing transport problem. Moreover, stochastic processes are not reversible as deterministic
paths and so we can only prove the following duality formula:

BsT (µ0, νT ) = sup

{∫
M

g(x) dνT (x) +

∫
M∗

(Ψ0
g,−)∗(v) dµ0(v); g in Lip(M)

}
, (26)

where this time Ψg,− is the solution to the backward Hamilton-Jacobi-Bellman equation (27).{
∂tψ + 1

2∆ψ +H(x,∇xψ) = 0 on [0, T ]×M,
ψ(T, x) = g(x),

(27)

whose formal variational solutions are given by the formula:

Ψg,−(t, x) = sup
X∈A

{
E

[
g(X(T ))−

∫ T

t

L(s,X(s), βX(s,X)) ds

∣∣∣∣∣X(t) = x

]}
. (28)

In order to deal with the maximization problems BT (µ0, νT ) and B
s

T (µ0, νT ), we need to use Bolza-
type duality to convert the sup-inf problem to a concave maximization problem. For that, we shall
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assume that the Lagrangian L is jointly convex in both variables. In Section 4, we then consider the
dual Lagrangian L̃ defined on M∗ ×M∗ by

L̃(t, v, q) := L∗(t, q, v) = sup{〈v, y〉+ 〈p, q〉 − L(t, y, p); (y, p) ∈M ×M},

and the corresponding fixed-end costs on M∗ ×M∗,

c̃T (u, v) := inf{
∫ T

0

L̃(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M∗); γ(0) = u, γ(T ) = v}, (29)

and its associated transport

C̃T (µ0, µT ) := inf{
∫
M∗×M∗

c̃T (x, y) dπ; π ∈ K(µ0, µT )}. (30)

We then recall the deterministic Bolza duality, and establish a new stochastic Bolza duality.
We use these results in Section 5, to establish the following results for BT (µ0, νT ).

BT (µ0, νT ) = sup{W (νT , µ)− C̃T (µ0, µ); µ ∈ P(M∗)}. (31)

and

BT (µ0, νT ) = inf

{∫
M

g(x) dνT (x) +

∫
M∗

Φ̃0
g∗,−(v) dµ0(v); g convex on M

}
, (32)

where g∗ is the convex Legendre transform of g, i.e., g∗(x) = sup{〈v, x〉 − g(v); v ∈M∗}, and Φ̃k,−
is a solution of the following dual backward Hamilton-Jacobi equation:{

∂tϕ−H(t,∇vϕ, v) = 0 on [0, T ]×M∗,
ϕ(T, v) = k(v),

(33)

whose variational solution is given by

Φ̃k,−(t, v) = sup
{
k(γ(T ))−

∫ t

0

L̃(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, T ),M∗); γ(0) = v
}
. (34)

In Section 6, we deal with the stochastic counterpart B
s

T (µ0, νT ) and prove the following

B
s

T (µ0, νT ) := sup

{
E

[
〈X,V (T )〉 −

∫ T

0

L̃(t, V, β(t, V )) dt

]
;V ∈ A, V0 ∼ µ0, X ∼ νT

}
(35)

and therefore
B
s

T (µ0, νT ) = sup{W (νT , µ)− C̃sT (µ0, µ); µ ∈ P(M∗)}, (36)

as well as the following duality formula:

B
s

T (µ0, µT ) = inf

{∫
M∗

g(x) dνT +

∫
M

Ψ̃0
g∗,−(v) dµ0; g convex in C∞db(M∗)

}
, (37)

where Ψ̃k solves the Hamilton-Jacobi-Bellman equation{
∂tψ + 1

2∆ψ −H(∇vψ, v) = 0 on [0, T ]×M∗,
ψ(T, v) = k(v),

(38)

whose formal variational solutions are given by the formula:

Ψ̃k,−(t, v) = sup
X∈A

{
E

[
k(X(T ))−

∫ T

t

L̃(s,X(s), βX(s,X)) ds

∣∣∣∣∣X(t) = v

]}
. (39)
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Finally, a few words about our notation: We shall denote by ∂g the subdifferential of a convex
function g, and by ∂̃h := −∂(−h) the superdifferential of a concave function h.
The set of probability measures on a Banach space X will be denoted P(X), while the subset of
those with finite first moment will be denoted

P1(X) := {ν ∈ P(X);

∫
X

|x| dν(x) <∞}.

P1(X) is clearly a subset of the Banach space of all finite measures with finite first moment, denoted
similarly M1(X) := {ν;

∫
X

1 + |x| dν(x) < ∞}, which is dual to the Banach space Lip(X) of all
bounded uniformly Lipschitz functions on X. For the stochastic part, we shall also need to work
with the space C∞db(X) := Lip(X) ∩ C∞(X).

Several of the above results appeared in the posted but non-published manuscripts [20], which
dealt with the deterministic case and [9], which addressed the stochastic case. We eventually elected
to combine them in a single publication so as to illustrate the obvious similarities, but also the subtle
differences between the two cases.

2 Minimizing the ballistic cost: Deterministic case

In this section we deal with the standard transportation problem associated to the cost bT (v, x). We
shall assume that the Lagrangian L satisfies the following:

(A0) The Lagrangian (t, x, v) 7→ L(t, x, v) is bounded below, and for all (t, x) ∈ [0, T ] ×M , v 7→
L(t, x, v) is convex and δ-coercive in the sense that there is a δ > 1 such that

lim
|v|→∞

L(t, x, v)

|v|δ
= +∞. (40)

Theorem 1 Assume that L satisfies (A0) and let µ0 (resp. νT ) be a probability measure on M∗

(resp., M) with finite first moment. Then, the following interpolation formula holds:

BT (µ0, νT ) = inf{W (µ0, ν) + CT (ν, νT ); ν ∈ P1(M)}. (41)

The infimum is attained at some probability measure ν0 on M , and the initial Kantorovich potential
for CT (ν0, νT ) is concave.

Proof: To prove the formula it suffices to note that

inf {W (µ0, ν) + CT (ν, νT ); ν ∈ P1(M)}

= inf
ν∈P1(M)

{∫
M∗×M

〈v, x〉 dπW (v, x) +

∫
M×M

cT (x, y) dπC(x, y);πW ∈ K(µ0, ν), πC ∈ K(ν, νT )

}
= inf
π∈P1(M∗×M×M)

{∫
M∗×M×M

〈v, x〉+ cT (x, y) dπ(v, x, y);π1 = µ0, π3 = νT }
}

≥ B(µ0, νT ).

For the reverse inequality, use your favourite selection theorem to find a measurable function yε :
M∗ ×M → M that satisfies 〈v, yε(v, x)〉 + c(yε(v, x), x) − ε < bT (v, x). Fixing π ∈ K(µ0, νT ) and
letting πε := (Id× Id× yε)#π ∈ P(M∗ ×M ×M)

B(µ0, νT ) =

∫
M∗×M

bT (v, x) dπ(v, x) ≥
∫
M∗×M×M

〈v, y〉+ cT (y, x) dπε(v, x, y)− ε.
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To show that the minimizer is achieved, we need to prove that CT satisfies a coercivity condition
on the space P1(M) of probabilities on M with finite first moments. For that, we show that for any
fixed νT ∈ P1(M) and any positive constant N > 0, the set of measures ν ∈ P1(M) satisfying

CT (ν, νT ) ≤ N
∫
M

|x| dν(x), (42)

is tight. Indeed, from (A0), there exists a constant K such that cT (x, y) > N
∣∣x−y
T

∣∣δ − K. We
concern ourselves with the cylinder set B := B(R, 0)c ×M . Let ν ∈ Tε,R := {ν; ν(B(R, 0)c) > ε}.
We shall assume, without loss of generality, that L and hence cT is non-negative, hence for any
optimal transport plan π ∈ K(ν, νT )

CT (ν, νT ) ≥ N
T δ

∫
B

||x| − |y||δ dπ(x, y)−Kε. (43)

We define π̂ := π|B to be the restriction of π to the set B, and transfer the problem to R+ by using
the push-forward π̄ := (|·| × |·|)#π̂ to obtain,∫

B

||x| − |y||δ dπ̂(x, y) =

∫
R+×R+

|x− y|δ dπ̄(x, y). (44)

We can obtain a lower estimate for this by minimizing over transportation measures sharing π̄’s
marginals (i.e., γ ∈ K(π̄1, π̄2)). This is a well known optimal transport problem, whose optimal plan
given by the monotone Hoeffding-Frechet mapping x 7→ Gν(G−1

νT (x)), where Gν(t) := inf{z ∈ R :
t ≥ ν({x ≤ z})} is the quantile function associated with the measure ν [6]. Thus the optimal plan
maps each quantile in one measure to the corresponding quantile in the other. Substituting this into
the integral and applying Jensen’s inequality:∫

R+×R+

|x− y|δ dπ̄(x, y) ≥
∫
R+×R+

|x− y|δ d
((
G|Y (0)| ×G|Y (T )|

)
#
λ[0,1]

)
(x, y)

≥

(∫
B(R,0)c

|x| dν(x)− b(νT )

)δ
,

(45)

where b(νT ) :=
∫
|x| dνT and R > b/ε. We thus want to find R such that

N

(∫
B(R,0)c

|x| dν(x)− b(νT )

)δ
−Kε

 > N

(∫
B(R,0)c

|x| dν(x) +R(1− ε)

)
≥ N

∫
|x| dν(x).

Letting Iν(R) :=
∫
B(R,0)c

|x| dν(x) (≥ Rε for ν ∈ Tε,R), we find the condition

α

T δ−1

((
Iν(R)1− 1

δ − b(νT )Iν(R)−
1
δ

)δ
− (UT )

Iν(R)

)
> N

(
1 +

R(1− ε)
Iν(R)

)
,

which by using the mentioned bound on Iν(R) is satisfied if R is large enough so that

α

T δ−1

((
(Rε)1− 1

δ − b(νT )(Rε)−
1
δ

)
− (UT )

Rε

)
>
N

ε
.

To show the minimizer is achieved, fix any ν0 in P1(M), and note that by coercivity the set of
probability measures ν such that

W (µ0, ν) + CT (ν, νT ) ≤ b(µ0)

∫
M

|x| dν + CT (ν, νT ) 6 b(µ0)

∫
M

|x| dν + CT (ν0, νT )

is tight.
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Remark 1 Note that (45) indicates that when ν1 ∈ P1(M) and ν0 ∈ P(M) \ P1(M), then
C(ν0, ν1) = C(ν1, ν0) =∞.

Theorem 2 Assume that L satisfies (A0) and let µ0 (resp. νT ) be a probability measure on M∗

(resp., M) with finite first moment.

1. If µ0 has compact support, then we have the following duality formula

BT (µ0, νT ) = sup

{∫
M

g(x) dνT (x) +

∫
M∗

(Φ0
g,−)∗(v) dµ0(v); g in Lip(M)

}
. (46)

2. If νT has compact support, then

BT (µ0, νT ) = sup

{∫
M

ΦTf∗,+(x) dνT (x) +

∫
M∗

f(v) dµ0(v); f concave in Lip(M∗)

}
. (47)

Proof: We shall need the following identifications of the Legendre transforms in the Banach space
M1(Rn) of measures ν on Rn such that

∫
Rn (1 + |x|) dν <∞ in duality with the space of Lipschitz

functions Lip(Rn).

Lemma 1 a) For µ0 ∈ P(Rn) with compact support, define Wµ0
:M1(Rn)→ R ∪ {∞} to be

Wµ0
(ν) :=

{
W (µ0, ν) ν ∈ P1(M)

+∞ otherwise.

Then, the convex Legendre transform of Wµ0
is given for f ∈ Lip(Rn) by W ∗µ0

(f) = −
∫
M
f∗ dµ0.

b) For ν0 ∈ P(Rn), define the function Cν0 :M1(Rn)→ R ∪ {∞} to be

Cν0(ν) :=

{
CT (ν0, ν) ν ∈ P1(Rn)

+∞ otherwise.
(48)

Then, the convex Legendre transform of Cν0 is given for f ∈ Lip(Rn) by C∗ν0(f) =
∫
M
ϕ
f,−(0, x) dν0(x),

where ϕ
f,− is the solution to the backward Hamilton-Jacobi equation (20) with final condition ϕ

f,−(T, x) =
f(x).

Proof: Both statements follow from Kantorovich duality. Indeed, both functions are convex and
weak∗-lower semi-continuous on M1(Rn). Since µ0 has compact support, Brenier’s duality yields

Wµ0
(ν) = sup

g∈Lip(M)

{∫
M

g dν +

∫
M∗

g∗ dµ0

}
.

We then have

W ∗µ0
(f) = sup

ν∈M1(M)

inf
g∈Lip(M)

{
∫
M

f dν −
∫
M

g dν −
∫
M∗

g∗ dµ0}. (49)

Note that the functional g 7→ −
∫
M∗

g∗ dµ =
∫
M∗

(−g)∗ dµ̂(v) (where dµ̂(v) := dµ(−v)) is convex
and lower semicontinuous, and we may therefore apply the Von Neuman minimax theorem as the
expression is linear in ν and convex in g. We obtain

W ∗µ0
(f) = inf

g∈Lip(M)
sup

ν∈M1(M)

{
∫
M

f dν −
∫
M

g dν −
∫
M∗

g∗ dµ0}. (50)

The infimum must occur at g = f since otherwise the sup in ν is +∞, resulting in statement a).
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The same proof applies to Cν0 , since in view of the duality formula of Bernard and Buffoni
[7][Proposition 21]:

Cν0(ν) = sup
g∈Lip(M)

{
∫
M

g dν −
∫
M

Φ0
g,−

dν0}. (51)

Note that this holds for all ν ∈M1(M), since if g solves HJ, then so does g + c for arbitrarily large
c. We may again apply the minimax theorem as the expression is linear in ν and convex in g. To
complete the proof of the theorem, we first note that Kantorovich duality yields that ν 7→ B(µ0, ν)
is weak∗-lower semi-continuous on P1(M) for all µ0 ∈ P1(M∗) and that (µ0, νT ) 7→ B(µ0, νT ) is
jointly convex. Let now Bµ0

(ν) := BT (µ0, ν) if ν ∈ P1(M) and +∞ otherwise. It follows that

Bµ0
(ν) = B∗∗µ0

(ν) := sup{
∫
Rn
f dν −B∗µ0

(f); f ∈ Lip(Rn)}. (52)

Now use the Hopf-Lax formula established above to write

B∗µ0
(f) := sup{

∫
M

f dν −Bµ0
(ν); ν ∈ P1(M)}

= sup{
∫
M

f dν −W (µ0, ν
′)− CT (ν′, ν); ν, ν′ ∈ P1(M)}

= sup{
∫
M

ΦT
f,−

dν′ −W (µ0, ν
′); ν′ ∈ P1(M)}

=−
∫
M

(ΦT
f,−

)∗ dµ0.

(53)

This completes the proof of the first duality formula.
The second follows in the same way by simply varying the initial measure as opposed to the final
measure in BT (µ, ν). The concavity of f follows from the Kantorovich dual condition (1) and the
linearity of bT in v.

We now consider the problem of attainment for BT (µ, ν). For that, we shall consider Tonelli
Lagrangians studied in the compact case by Bernard-Buffoni [7], and by Fathi-Figalli [15] in the case
of a Finsler manifold.

Definition 2 We shall say that L is a Tonelli Lagrangian on M ×M , if it is C2 and satisfies (A0)
with the additional requirement that the function v → L(x, v) is strictly convex on M .

We also recall the following [2, Definition 5.5.1, page 129]:

Definition 3 Say that f : M → R has an approximate differential at x ∈ M if there exists a
function h : M → R differentiable at x such that the set {f = h} has density 1 at x with respect to
the Lebesgue measure. In this case, the approximate value of f at x is defined as f̃(x) = h(x), and
the approximate differential of f at x is defined as d̃xf = dxh. It is not difficult to show that this
definition makes sense. In fact, both h(x), and dxh do not depend on the choice of h, provided x is
a density point of the set {f = h}.

If L is a Tonelli Lagrangian, the Hamiltonian H : M ×M∗ → R is then C1, and the Hamiltonian
vector field XH on M ×M∗ is then XH(x, v) = (∂H∂v (x, v),−∂H∂x (x, v)), and the associated system of
ODEs is given by 

ẋ =
∂H

∂v
(x, v)

v̇ = −∂H
∂x

(x, v).
(54)

The connection between minimizers γ : [a, b] → M of IL and solutions of (54) is as follows. If we
write x(t) = γ(t) and v(t) = ∂L

∂p (γ(t), γ̇(t)), then x(t) = γ(t) and v(t) are C1 with ẋ(t) = γ̇(t), and
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the Euler-Lagrange equation yields v̇(t) = ∂L
∂x (γ(t), γ̇(t)), from which follows that t 7→ (x(t), v(t))

satisfies (54). Note also that since L is a Tonelli Lagrangian, the Hamiltonian H is actually C2, and
the vector field XH is C1. It therefore defines a (partial) C1 flow ϕHt .

There is also a (partial) C1 flow ϕLt on M ×M∗ such that every speed curve of an L-minimizer is
a part of an orbit of ϕLt . This flow is called the Euler-Lagrange flow, is defined by ϕLt = L−1◦ϕHt ◦L,
where L : M ×M →M ×M∗, is the global Legendre transform (x, p) 7→ (x, ∂L∂p (x, p)). Note that L
is a homeomorphism on its image whenever L is a Tonelli Lagrangian.

Theorem 3 In addition to (A0), assume that L is a Tonelli Lagrangian and that µ0 is absolutely
continuous with respect to Lebesgue measure. Then, there exists a concave function k : M → R such
that

BT (µ0, νT ) =

∫
M∗

bT (v, ST ◦ ∇k∗(v))dµ0(v), (55)

where ST (y) = π∗ϕHT (y,∇k(y)), π∗ : M ×M∗ → M being the canonical projection, and ϕHt the
Hamiltonian flow associated to L. In other words, an optimal map for BT (µ0, νT ) is given by
v → π∗ϕHT (∇k∗(v), v).

Proof: Start again by the interpolation inequality, BT (µ0, νT ) = CT (ν0, νT ) + W (µ0, ν0) for some
probability measure ν0. By the above and Kantorovich duality, there exists a concave function
k : M → R and another function h : M → R such that (∇k∗)#µ0 = ν0,

W (µ0, ν0) =

∫
M

〈∇k∗(v), v〉dµ0(v),

and

CT (ν0, νT ) =

∫
M

h(x) dνT (x)−
∫
M

k(y) dν0(y).

Now use a result of Fathi-Figalli [15] to write CT (ν0, νT ) =
∫
M
cT (y, ST y)dν0(y), where ST (y) =

π∗ϕHT (y, d̃yk). Note that

BT (µ0, νT ) 6
∫
M∗

bT (v, ST ◦ ∇k∗(v))dµ0(v), (56)

since (∇k∗)#µ0 = ν0 and (ST )#ν0 = νT , and therefore (I × ST ◦ ∇k∗)#µ0 belongs to K(µ0, νT ).
On the other hand, since bT (v, x) 6 cT (∇k∗(v), x) + 〈∇k∗(v), v〉 for every v ∈M∗, we have

BT (µ0, νT ) 6
∫
M∗

bT (v, ST ◦ ∇k∗(v))dµ0(v)

6
∫
M∗
{cT (∇k∗(v), ST ◦ ∇k∗(v)) + 〈∇k∗(v), v〉} dµ0(v)

=

∫
M

cT (y, ST y)dν0(y) +

∫
M∗
〈∇k∗(v), v〉 dµ0(v)

= CT (ν0, νT ) +W (µ0, ν0)

= BT (µ0, νT ).

It follows that

BT (µ0, νT ) =

∫
M∗

bT (v, ST ◦ ∇k∗(v))dµ0(v) =

∫
M∗

bT (v, π∗ϕHT (∇k∗(v), d̃∇k∗(v)kdµ0(v).

Since k is concave, we have that d̃xk = ∇k(x), hence d̃∇k∗(v)k = ∇k ◦ ∇k∗(v) = v, which yields our
claim that BT (µ0, νT ) =

∫
M∗

bT (v, π∗ϕHT (∇k∗(v), v))dµ0(v).
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3 Minimizing the ballistic cost: Stochastic case

We now turn to the stochastic version of the minimizing cost. The methods of proof are generally
similar to those for the deterministic cost, however there are two complications: The first is that
stochastic mass transport does not fit in the framework of cost minimizing transports, hence the
Kantorovich duality is not readily available. The second is that stochastic processes are not reversible
and therefore there is only one direction to the transport, hence only one duality formula. In order
to deal with the first complication, we rely on the results of Mikami-Thieullen [22] and therefore use
the same assumptions that they imposed on the Lagrangian, namely

(A1) L(t, x, v) is continuous, convex in v, and uniformly bounded below by a convex function L(v)

that is 2-coercive in the sense that lim|v|→∞
L(v)

|v|2 > 0.

(A2) (t, x) 7→ log(1 + L(x, u)) is uniformly continuous in that

∆L(ε1, ε2) := sup
u∈M∗

{
1 + L(x, u)

1 + L(y, u)
− 1; |t− s| < ε1, |x− y| < ε2

}
ε1,ε2→0−→ 0.

(A3) The following boundedness conditions:

(i) supt,x L(t, x, 0) <∞.

(ii) |∇xL(t, x, v)| /(1 + L(t, x, v)) is bounded.

(iii) sup {|∇vL(t, x, u)| : |u| ≤ R} <∞ for all R.

We will use the notation X = (X0, βX , σX) to refer to an Itô process X(t) of the form:

X(t) = X0 +

∫ t

0

βX(s) ds+

∫ t

0

σX(s) dWs. (57)

We will use the notation AνTν0 to refer to the set of stochastic processes X = (X0, βX , Id) with
X(0) ∼ ν0 and X(T ) ∼ νT . Notably, (A1) implies that E [L(t,X(t), βX)] =∞ if βX(t) 6∈ L2(P).

Our main result for this section is the stochastic counterpart to Theorem 2:

Theorem 4 If L satisfies the assumptions (A1), (A2), and (A3), then

1. For any given probabilities µ0 ∈ P(M∗) and νT ∈ P(M), we have:

BsT (µ0, νT ) = inf{W (µ0, ν) + CsT (ν, νT ); ν ∈ P1(M)}. (58)

Furthermore, this infimum is attained whenever µ0 ∈ P1(M∗) and νT ∈ P1(M).

2. If νT ∈ P1(M) and µ0 ∈ P1(M∗) are such that B(µ0, νT ) < ∞, and if µ0 ∈ P1(M∗) has
compact support, then

BsT (µ0, νT ) = sup

{∫
M

f(x) dνT (x) +

∫
M∗

(Ψ0
f,−)∗(v) dµ0(v); f ∈ Lip(M)

}
, (59)

where Ψ
f,− is the solution to the Hamilton-Jacobi-Bellman equation

∂ψ

∂t
+

1

2
∆ψ(t, x) +H(t, x,∇ψ) = 0, ψ(T, x) =f(x). (HJB)
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Proof: 1) First, expand W (µ0, ν) and CT (ν, νT ) in the interpolation formula to obtain:

inf{W (µ0, ν) + CsT (ν, νT ); ν ∈ P1(M)}

= inf

{
E

[
〈V,X〉+

∫ T

0

L(t,X(t), βX(t)) dt

]
;V ∼ µ0, X ∼ ν,X(t) ∈ AνTν ; ν ∈ P1(M)

}
6 B(µ0, νT ).

To obtain the reverse inequality, let νn be a sequence of measures approximating the infimum in
(58). Then for each νn, there exists a stochastic process Zn ∈ AνTνn such that

E

[∫ T

0

L(t, Zn(t), βZn(Zn, t)) dt

]
< CsT (νn, νT ) + 1

n . (60)

Similarly, let dγnx (v)⊗ dνn(x) = dγn(v, x) be the disintegration of a measure γn such that∫
〈v, x〉 dγn(v, x) < W (µ0, νn) + 1

n ,

and define Un : M × Ω → M∗ to be a random variable such that Un[x] ∼ γnx for νn-a.a. x.
Thus (Un[Zn(0)], Zn(0)) ∼ γn and we have constructed a random variable that approximates the
interpolation, as

E

[
〈U [Zn(0)], Zn(0)〉+

∫ T

0

L(t, Zn(t), βZn(t)) dt

]
≤ inf{W (µ0, ν) + CsT (ν, νT ); ν ∈ P1(M)}+

3

n
.

(61)
To show that the infimum in ν is attained in the set P1(M), we need again to prove the following
coercivity property.
Claim: For any fixed νT ∈ P1(M), N ∈ R, the set of measures ν ∈ P1(M) satisfying C(ν, νT ) ≤
N
∫
|x| dν(x) is tight.

We will assume ν ∈ Tε,R := {ν ∈ P1(M) : ν(B(R, 0)c) > ε} for what follows. We leave R to
be defined later, but note that if we define the set ΩR := {|X(0)| > R}, then our assumption on ν
yields P(ΩR) > ε. By positivity of L, this allows us to say that A (X) ≥ A (1ΩRX) (henceforth we
define the process Y (t) := 1ΩRX(t)).
By (A1), we assume that there is a convex function L : M∗ → R and C > 0 such that for all

|u| > U , L(u)

|u|2 > C. Recall that L(|v|) is a lower bound on L(t, x, v). This imposes a lower bound on

the expected action of Y :

E

[∫ T

0

L(t, Y, βY (t, Y )) dt

]
≥E

[∫ T

0

L(|βY (t, Y )|) dt

]
(J)

≥ E [L(|V |)T ]

(A1)
> CTE

[
1|V |>U |V |

2
]
≥ CT

(
E
[
|V |2

]
− U2

)
,

(62)

where βY := 1ΩRβX is the drift associated with the process Y and V := (Y (T ) − Y (0))/T is its
time-average. Hence the expected action of the stochastic process X is bounded:

A (X) ≥A (Y ) > CTE

[∣∣∣∣Y (T )− Y (0)

T

∣∣∣∣2
]
− CU2T >

C

T
E
[
||Y (0)| − |Y (T )||2

]
− CU2T. (63)

This leaves us with the same formulation as in (43) of the deterministic coercivity result, the re-
mainder of the proof is identical, and the claim is proved.
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To show that a minimizing sequence νn is sequentially compact in the weak topology, we use the
fact that the set of measures ν such that C(ν, νT ) < N

∫
|y| dν(y) +B(µ0, νT ) + 1 is tight. If we let

N :=
∫
|x| dµ0(x), then the collection of measures such that

BsT (µ0, νT ) + 1 >C(ν, νT ) +W (µ0, ν)

>C(ν, νT )−
∫
|x| |y| dµ0(x) dν(y)

(F)
=C(ν, νT )−N

∫
|y| dν(y),

is tight, where (F) is an application of Fubini’s theorem. Thus, by Prokhorov’s theorem the mini-
mizing sequence of interpolating measures necessarily weakly converges to a minimizing measure.

Remark 2 a) The same reasoning as in Section 2 yields that C(ν0, ν1) = C(ν1, ν0) = ∞ for ν1 ∈
P1(M) and ν0 ∈ P(M)\P1(M). This implies that it suffices to take the infimum in (58) over P1(M).
b) The attainment of a minimizing interpolating measure ν0 is sufficient to show the existence of a
minimizing (V,X) for BsT (ν0, νT ) whenever the latter is finite. This is a consequence of the existence
of minimizers for both W (µ0, ν0) and CsT (ν0, νT ) [22, Proposition 2.1].

To establish the duality formula, we will proceed as in the the deterministic case and use the Legendre
dual of the optimal cost functional ν → CsT (ν0, ν), which was derived by Mikami and Thieullen [22].
Indeed, they show that if the Lagrangian satisfies (A1)-(A3), then

CsT (ν0, νT ) = sup

{∫
M

f dνT −
∫
M

Ψ0
f,− dν0; f ∈ C∞b

}
, (64)

where Ψf,− is the unique solution to the Hamilton-Jacobi-Bellman equation (27) that is given by:

Ψ
f,−(t, x) = sup

X∈A

{
E

[
f(X(T ))−

∫ T

t

L(s,X(s), βX(s,X)) ds

∣∣∣∣∣X(t) = x

]}
. (65)

Moreover, there exists an optimal process X with drift βX(t,X) = argminv{v ·∇ϕ(t, x)+L(t, x, v)}.
Furthermore, (µ, ν) 7→ CsT (µ, ν) is convex and lower semi-continuous under the weak∗-topology. It
follows that ν 7→ BsT (µ0, ν) is weak∗-lower semi-continuous on P1(M) for all µ0 ∈ P1(M∗), and that
(µ0, νT ) 7→ BsT (µ0, νT ) is jointly convex.

Remark 3 Note that integrating Ψ0
f,+ over dν0 yields the Legendre transform of νT 7→ C(ν0, νT )

for f ∈ C∞db.

For µ0 ∈ P1(M∗), define the function Bµ0
:M1(M)→ R ∪ {∞} to be

Bµ0
(ν) :=

{
B(µ0, ν) ν ∈ P1(M)

∞ otherwise.

Since Bµ0
is convex and weak∗-lower semi-continuous, we have

Bµ0
(ν) = B∗∗µ0

(ν) = sup
f∈Lip(M)

{∫
f dν −B∗µ0

(f)

}
. (66)
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We break this into two steps. First we show that when f ∈ C∞db the dual is appropriate:

B∗µ0
(f) := sup

νT∈P1(M)

{∫
f dνT −B(µ0, νT )

}
(58)
= sup

νT∈P1(M)
ν∈P1(M)

{∫
f dνT − C(ν, νT )−W (µ0, ν)

}
(67)

(65)
= sup

ν∈P1(M)

{∫
Ψ0
f,−

(x) dν(x)−W (µ0, ν)

}
= W ∗µ0

(Ψ0
f,−

) = −
∫

(Ψ0
f,−)∗ dµ0.

Thus, plugging this into our dual formula (66) and restricting our supremum to C∞db gives

Bµ0
(ν) = B∗∗µ0

(ν) ≥ sup
f∈C∞db

{∫
f dν +

∫
(Ψ0

f,−)∗ dµ0

}
.

To show the reverse inequality we will adapt the mollification argument used in [22, Proof of Theorem
2.1]. We assume our mollifier ηε(x) is such that η1(x) is a smooth function on [−1, 1]d that satisfies∫
η1(x) dx = 1 and

∫
xη1(x) dx = 0, then define ηε(x) = ε−dη1(x/ε). Then for Lipschitz f , fε := f∗ηε

is smooth with bounded derivatives. We can derive a bound on B∗µ∗ηε(f) by removing the supremum
in (67) and fixing a process X ∈ AνT :

E

[
fε(X(T ))−

∫ T

0

L(s,X(s), βX(s,X)) ds− 〈X(0), V 〉

]
(A2)

≤

E

[
f(X(T ) +Hε)−

∫ T

0

L(s,X(s) +Hε, βX(s,X))−∆L(0, ε)

1 + ∆L(0, ε)
ds− 〈X(0) +Hε, V +Hε〉+ |Hε|2

]
≤

D∗ε (f (1 + ∆L(0, ε)))

1 + ∆L(0, ε)
+ T

∆L(0, ε)

1 + ∆L(0, ε)
+ dε2,

where Dε(ν) := inf{(1 + ∆L(0, ε))W (µε, ν0) +C(ν0, ν); ν0}, Hε ∼ ηε is independent of X(·), V , thus
X(T ) + Hε ∼ d(ηε ∗ νT ). The third line arises by maximizing over processes (X(·) + Hε, V + Hε).
Note that ε 7→ Dε(ν) is lower semi-continuous for the same reason that ν 7→ Bµ(ν) is, and converges
to Bµ0

(ν) as ε→ 0.
Taking the supremum over X ∈ Aµ0

of the left side above, we can retrieve a bound on B∗µ0
(fε).

This bound allows us to say∫
fε dν −B∗µ(fε) ≥

∫
f dνε −

D∗ε (f (1 + ∆L(0, ε)))

1 + ∆L(0, ε)
− T ∆L(0, ε)

1 + ∆L(0, ε)
− dε2,

where we use ε-subscript to indicate convolution of a measure with ηε. Taking the supremum over
f ∈ Lip(M), we get the reverse inequality:

sup
f∈C∞db

{∫
f dν −B∗µ(f)

}
≥ Dε(νε)

1 + ∆L(0, ε)
− T ∆L(0, ε)

1 + ∆L(0, ε)
− dε2

ε↘0

≥ B(µ0, νT ),

In the following corollary, we will discuss results pertaining to solutions ψtn(x) := ψn(t, x) of the
Hamilton-Jacobi-Bellman equation for final conditions ψTn (x). In some sense∇ψ is more fundamental
than ψ, since our dual is invariant under ψ 7→ ψ + c. Thus when discussing the convergence of a
sequence of ψ, we refer to the convergence of their gradients. Notably the optimal gradient may not
be bounded or smooth, hence may not be achieved within the set C∞db. In the subsequent corollary,
we denote PX the measure on M × [0, T ] associated with the process X.
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Corollary 4 Suppose the assumptions on Theorem 4.2 are satisfied and that µ0 is absolutely con-
tinuous with respect to Lebesgue measure. Then (V,X(t)) minimizes B(µ0, νT ) if and only if it is a
solution to the stochastic differential equation

dX =∇pH(t,X,∇ψ(t,X)) dt+ dWt (68)

V =∇ψ̄(X(0)), (69)

where ∇ψn(t, x) → ∇ψ(t, x) PX-a.s. and ∇ψn(0, x) → ∇ψ̄(x) ν0-a.s. for some sequence ψn(t, x)
that solves (HJB) in such a way that ψTn := ψn(T, ·) and (ψ0

n)∗ := [ψn(0, ·)]∗ are maximixing
sequences for the dual problem (59). Furthermore ψ̄ is concave.

Proof: First note that there exists such an optimal pair (V,X), in view of Theorem 4.1. Moreover,
the pair is is optimal iff there exists a sequence of solutions ψn to HJB that is maximizing in (59)
such that

E

[∫ T

0

L(t,X, βX(t,X)) dt+ 〈X(0), V 〉

]
= lim
n→∞

E
[
ψTn (X(T )) + (ψ0

n)∗(V )
]
, (70)

which we can write as

lim
n→∞

E

ψTn (X(T ))− ψ0
n(X(0))︸ ︷︷ ︸

(a)

+ψ0
n(X(0))− (ψ0

n)∗∗(X(0))︸ ︷︷ ︸
(b)

+ (ψ0
n)∗∗(X(0)) + (ψ0

n)∗(V )︸ ︷︷ ︸
(c)

 , (71)

where f∗∗ is the concave hull of f . Applying Itô’s formula to the first two terms, with the knowledge
that they satisfy (HJB), we get

E
[
ψTn (X(T ))− ψ0

n(X(0))
]

= E

[∫ T

0

〈βX ,∇ψtn(X(t))〉 −H(t,X,∇ψtn(X(t))) dt

]
.

However, by the definition of the Hamiltonian, we have 〈v, b〉 −H(t, x, v) ≤ L(t, x, b), which mean
that (71) yield the following three inequalities:

〈βX ,∇ψtn(X(t))〉 −H(t,X,∇ψtn(X(t))) ≤L(t,X, βX(t,X)) (a)

ψ0
n(X(0))− (ψ0

n)∗∗(X(0)) ≤0 (b)

(ψ0
n)∗∗(X(0)) + (ψ0

n)∗(V ) ≤〈V,X(0)〉. (c)

In other words, (71) breaks the problem into a stochastic and a Wasserstein transport problem (in
the flavour of Theorem 4), along with a correction term to account for ψ0

n not being necessarily
concave. Adding (70) to the mix, allows us to obtain L1 convergence in the (a,b,c) inequalities,
hence a.s. convergence of a subsequence ψnk .
Note that the convergence in (b,c) means that ψ0

n converges ν0-a.s. to a concave function ψ such
that x 7→ ∇ψ is the optimal transport plan for W (ν0, µ0) [8].
To obtain the optimal control for the stochastic process, one needs the uniqueness of the point p
achieving equality in (a). This is a consequence of the strict convexity and coercivity of b 7→ L(t, x, b)
for all t, x. The differentiability of L further ensures this value is achieved by p = ∇vL(t, x, b). Hence
(a) holds iff

∇ψtn(Xt) −→ ∇vL(t,X, βX(t,X)) PX -a.s.

Since ψtn are deterministic functions, this demonstrates that Xt is a Markov process with drift βX
determined by the inverse transform: βX(t,X) = ∇pH(t,X,∇ψ(t,X)), i.e., (68).

Remark 4 It is not possible to conclude from the above work that ψ̄(x) = ψ(0, x) without a regularity
result on t 7→ ψ(t, x) for the optimal ψ. This is because ψ̄ is defined on a PX-null set.
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4 Deterministic and stochastic Bolza duality

For the rest of the paper, we shall assume that the Lagrangian L is independent of time, but that it is
convex, proper and lower semi-continuous in both variables. We then consider the dual Lagrangian
L̃ defined on M∗ ×M∗ by

L̃(v, q) := L∗(q, v) = sup{〈v, y〉+ 〈p, q〉 − L(y, p); (y, p) ∈M ×M},

the corresponding fixed-end costs on M∗ ×M∗,

c̃T (u, v) := inf{
∫ T

0

L̃(γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M∗); γ(0) = u, γ(T ) = v}, (72)

and its associated optimal transport

C̃T (µ0, µT ) := inf{
∫
M∗×M∗

c̃T (x, y) dπ; π ∈ K(µ0, µT )}. (73)

More specifcally, we shall assume the following conditions on L, which are weaker than (A1), (A2), (A3)
but for the crucial condition that L is convex in both variables.

(B1) L : M ×M → R ∪ {+∞} is convex, proper and lower semi-continuous in both variables.

(B2) The set F (x) := {p;L(x, p) < ∞} is non-empty for all x ∈ M , and for some % > 0, we have
dist(0, F (x)) 6 %(1 + |x|) for all x ∈M .

(B3) For all (x, p) ∈M×M , we have L(x, p) > θ(max{0, |p|−α|x|})−β|x|, where α, β are constants,
and θ is a coercive, proper, non-decreasing function on [0,∞).

These conditions on the Lagrangian make sure that the Hamiltonian H is finite, concave in x and
convex in q, hence locally Lipschitz. Moreover, we have

ψ(x)− (γ|x|+ δ)|q| 6 H(x, q) 6 ϕ(q) + (α|q|+ β)|x|for all x, q in M ×M∗, (74)

where α, β, γ, δ are constants, ϕ is finite and convex and ψ is finite and concave (see [29].
We note that under these conditions, the cost (x, y) → ct(x, y) is convex proper and lower semi-
continuous on M ×M . But the cost bT is nicer in many ways. For one, it is everywhere finite and
locally Lipschitz continuous on [0,∞) ×M ×M∗. However, the main addition in the case of joint
convexity for L is the following so-called Bolza duality that we briefly describe in the deterministic
case since it had been studied in-depth in various articles by T. Rockafellar [27] and co-authors
[28, 29]. The stochastic counterpart is more recent and has been established by Boroushaki and
Ghoussoub [9].
We consider the path space A2

M := A2
M [0, T ] = {u : [0, T ]→M ; u̇ ∈ L2

M} equipped with the norm

‖u‖A2
M

=

(
‖u(0)‖2M +

∫ T

0

‖u̇‖2dt

) 1
2

.

Let L be a convex Lagrangian on M ×M as above, ` be a proper convex lower semi-continuous
function on M ×M and consider the minimization problems,

(P) inf
{∫ T

0
L(γ(s), γ̇(s)) ds+ `(γ(0), γ(T )); γ ∈ C1([0, T ),M)

}
, (75)

and
(P̃) inf

{∫ T
0
L̃(γ(s), γ̇(s)) ds+ `∗(γ(0),−γ(T )); γ ∈ C1([0, T ),M)

}
. (76)
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Theorem 5 Assume L satisfies (B1), (B2) and (B3), and that ` is proper, lsc and convex.

1. If there exists ξ such that `(·, ξ) is finite, or there exists ξ′ such that `(ξ′, ·) is finite, then

inf(P) = − inf(P̃).

This value is not +∞, and if it is also not −∞, then there is an optimal arc v(t) ∈ A2[0, T ]
for (P̃).

2. A similar statement holds if we replace ` by ˜̀ in the above hypothesis and (P̃) by (P) in the
conclusion.

3. If both conditions are satisfied, then both (P̃) and (P) are attained respectively by optimal arcs
v(t), x(t) in A2[0, T ].

In this case, these arcs satisfy (v̇(t), v(t)) ∈ ∂L(x(t), ẋ(t)) for a.e. t, which can also be written in a
dual form (ẋ(t), x(t)) ∈ ∂L̃(v(t), v̇(t)) for a.e. t, or in a Hamiltonian form as

ẋ(t) ∈ ∂vH(x(t), v(t)) (77)

−v̇(t) ∈ ∂̃xH(x(t), v(t)), (78)

coupled with the boundary conditions

(v(0),−v(T )) ∈ ∂`(x(0), x(T )). (79)

See for example [27]. The above duality has several consequences.

Proposition 5 The value function Φg,+(x) = inf{g(y) + ct(y, x); y ∈M}, which is the variational
solution of the Hamilton-Jacobi equation (19) starting at g, can be expressed in terms of the b and
c̃ costs as follows:

1. If g is convex and lower semi-continuous, then Φg,+(t, x) = sup{bt(v, x) − g∗(v); v ∈ M∗} is
convex lower semi-continuous for every t ∈ [0,+∞).

2. The convex Legendre transform of Φg,+ is given by the formula

Φ̃g∗,+(t, w) = inf{g∗(v) + c̃t(v, w); v ∈M∗}.

3. For each t, the graph of the subgradient ∂Φg,+(t, ·), i..e., Γg(t) = {(x, v); v ∈ ∂Φg,+(t, x)} is a
globally Lipschitz manifold of dimension n in M ×M∗, which depends continuously on t.

4. If a Hamiltonian trajectory (x(t), v(t)) over [0, T ] starts with v(0) ∈ ∂g(x(0)), then v(t) ∈
∂Φg,+(t, x(t)) for all t ∈ [0, T ]. Moreover, this happens if and only if x(t) is optimal in the
minimization problem that defines Φg,+(t, x) and v(t) is optimal in the minimization problem

that defines Φ̃g∗,+(t, w).

Remark 5 The above shows that in the case when L is jointly convex, the corresponding forward
Hamilton-Jacobi equation has convex solutions whenever the initial state is convex, while the cor-
responding backward Hamilton-Jacobi equation has concave solutions if the final state is concave.
Unfortunately, we shall see that in the mass transport problems we are considering, one mostly
propagates concave (resp., concave) functions forward (resp., backward), hence losing their concav-
ity (resp., convexity).

This said, the cost functionals cT , c̃T , bT are all value functions Φg starting or ending with affine
function g. Indeed, bt(v, x) = Φg,+(t, x), when gv(y) = 〈v, y〉. In this case, g∗v(u) = 0 if u = v and
+∞ if u 6= v, which yields that the Legendre dual of x→ Φg,+(t, x) = bt(v, x) is w → c̃t(v, w). One
can also deduce the following.
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Proposition 6 Under assumptions (B1), (B2), (B3) on the Lagrangian L, the costs c and b have
the following properties:

1. For each t > 0, (x, y)→ ct(x, y) is convex proper and lower semi-continuous on M ×M .

2. For each t > 0, v → bt(v, x) is concave on M∗, while x→ bt(v, x) is convex on M . Moreover,
b is locally Lipschitz continuous on [0,∞)×M ×M∗.

3. The costs b, c and c̃ are dual to each other in the following sense:

• For any (v, x) ∈M∗ ×M , we have bt(v, x) = inf{〈v, y〉+ ct(y, x); y ∈M}.
• For any (y, x) ∈M ×M , we have ct(y, x) = sup{bt(v, x)− 〈v, y〉; v ∈M∗}.
• For any (v, x) ∈M∗ ×M , we have bt(v, x) = sup{〈w, x〉 − c̃t(v, w);w ∈M∗}.

4. The following properties are equivalent:

(a) (−v, w) ∈ ∂y,xcT (y, x);

(b) w ∈ ∂xbT (v, x) and y ∈ ∂̃vbT (v, x).

(c) There is a Hamiltonian trajectory (γ(t), η(t)) over [0, T ] starting at (y, v) and ending at
(x,w).

This leads us to the following standard condition in optimal transport theory.

Definition 7 A cost function c satisfies the twist condition if for each y ∈ M , we have x = x′

whenever the differentials ∂yc(y, x) and ∂yc(y, x
′) exist and are equal.

In view of the above proposition, cT satisfies the twist condition if there is at most one Hamiltonian
trajectory starting at a given initial state (v, y), while the cost bT satisfies the twist condition if for
any given states (v, w), there is at most one Hamiltonian trajectory starting at v and ending at w.

The stochastic Bolza duality and its applications

We now deal with the stochastic case. We define the Itô space IpM consisting of all M -valued
processes of the following form:

IpM =
{
X :ΩT →M ; X(t) = X0 +

∫ t

0

βX(s)ds+

∫ t

0

σX(s)dW (s),

for X0 ∈ L2(Ω,F0,P(; )M), βX ∈ Lp(ΩT ;M), σX ∈ L2(ΩT ;M)
}
,

(80)

where βX and σX are both progressively measurable and ΩT := Ω× [0, T ]. The cases of p = 1, 2,∞
will be of interest to us. We equip I2

M with the norm

‖X‖2I2M = E

(
‖X(0)‖2M +

∫ T

0

‖βX(t)‖2M dt+

∫ T

0

‖σX(t)‖2M dt

)
,

so that it becomes a Hilbert space. The dual space (I2
M )∗ can also be identified with L2(Ω;M) ×

L2(ΩT ;M)× L2(ΩT ;M). In other words, each q ∈ (I2
M )∗ can be represented by the triplet

q = (q0, q1(t), Q(t)) ∈ L2(Ω;M)× L2(ΩT ;M)× L2(ΩT ;M),

in such a way that the duality can be written as:

〈X, q〉I2M×(I2M )∗ = E
{
〈q0, X(0)〉M +

∫ T

0

〈q1(t), βX(t)〉M dt+
1

2

∫ T

0

〈Q(t), σX(t)〉M dt
}
. (81)

Similarly, the dual of I1
M can be identified with I∞M .

We shall use the following result recently established in [9].
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Theorem 6 (Boroushaki-Ghoussoub) Let (Ω,F ,Ft, P ) be a complete probability space with nor-
mal filtration, and let L(·, ·) and M be two jointly convex Lagrangians on M ×M , Assume ` is a
convex lsc function on M ×M . Consider the Lagrangian on I2

M × (I2
M )∗ defined by

L(X, p) = E
{∫ T

0

L(X(t)− p1(t),−βX(t)) dt+ `(X(0)− p0, X(T ))

+
1

2

∫ T

0

M(σX(t)− P (t),−σX(t)) dt
}
.

(82)

Its Legendre dual is then given for each q := (0, q1, Q) by

L∗(q, Y ) = E
{
`∗(−Y (0), Y (T )) +

∫ T

0

L∗(−βY (t), Y (t)− q1(t)) dt

+
1

2

∫ T

0

M∗(−σY (t), σY (t)−Q(t)) dt
}
.

Note that standard duality theory implies that in general

inf
X∈I2

{L(X, 0)} ≥ sup
Y ∈(I2)∗

{−L(0, Y )}. (83)

In our case we shall restrict ourselves to processes of fixed diffusion. This facilitates the proving of
a stochastic analog to Bolza duality:

Proposition 8 Assume L satisfies (A1) and (A2), and there exists (a.s.-)unique V0 ∈ L2(P) such
that `∗(V0, ·) <∞ and (a.s.)-unique σV ∈ L2(P× λ[0,T ]) such that M∗(σV , ·) <∞, then there is no
duality gap, ie.

inf
X∈I2

{L(X, 0)} = sup
Y ∈(I2)∗

{−L∗(0, Y )} (84)

Note that, unlike the deterministic case, there there is no backwards condition that works if there
is an VT ∈ L2(P) such that `∗(·, VT ) < ∞, this is because stochastic processes, in general, are
irreversible.
Proof: We begin with augmenting our space by considering βV ∈ L1(P × λ[0,T ])—we call this
augmented set I1. If we can show the duality gap is satisfied in I1, by our coercivity condition (A2)
we can then show that it must be satisfied in I2.
We proceed by a variational method outlined by Rockafellar [27]. First, we define

ϕ(q) := inf
Y ∈(I1)∗

{L∗(q, Y )}. (85)

As the infimum of a jointly convex function, ϕ itself is convex. The benefit of this definition is that

ϕ∗(X) = sup
q,v
{〈X, q〉 − L∗(q, v)} = L∗∗(X, 0) = L(X, 0). (86)

Hence, X minimizes L if and only if

X ∈ ∂ϕ(0) ⇐⇒ ϕ(0) + ϕ∗(X) = 0 ⇐⇒ L(X, 0) = − inf
Y ∈(I2)∗

{L∗(0, Y )}. (87)

In other words, there is no duality gap if and only if ∂ϕ(0) is non-empty. Note that this holds if there
is an open (relative to {q;ϕ(q) <∞}) neighbourhood N of the origin in I∞ such that L∗(q, Y ) <∞
for q ∈ N .
By our assumptions, we may fix Y0, σY to be the unique elements such that `(Y0, ·) < ∞ and
M∗(σY , ·) < ∞ (guaranteeing subdifferentiability in these variables), and let Y = (Y0, βY , σY ) be
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such that L∗(0, Y ) <∞. For a perturbation βV ∈ L∞(P× λ[0,T ]) with ‖βV ‖∞ < ε, note that (A2)
gives for all (t, u) ∈ [0, T ]×M∗,

L(t, Yt − βV , u) < (1 + ∆L(0, ε))L(t, Yt, u) + ∆L(0, ε), (88)

and

ϕ(V ) = inf
Y ∈I1M

L∗(V, Y )

≤E`∗(−Y0, YT ) + E
∫ T

0

L̃(t, Yt − βV (t), βY (t)) dt

≤E`∗(−Y0, YT ) + (1 + ∆L̃(0, ε))E
∫ T

0

L̃(t, Yt, βY (t)) dt+ T∆L̃(0, ε),

(89)

which is finite for ‖βV ‖∞ < ε sufficiently small by (A2). Hence ϕ is finite and continuous in a open
set of the origin (all relative to its domain), and duality is achieved on I1.

To show that this duality is achieved in I2, it suffices to remark that E
∫ T

0
L(t, Yt, βY ) ≥

E
∫
L(βY ) dt ≥ CE

∫
|βY |2 − B dt = ∞ for βY ∈ L1(P × λ[0,T ]) \ L2(P × λ[0,T ]) (where C,B are

fixed constants).

5 Maximizing the ballistic cost: Deterministic case

With Bolza duality in mind, we can now turn to the maximizing ballistic cost.

Theorem 7 Assume that L satisfies hypothesis (B1), (B2) and (B3), and let νT be a probability
measure with compact support on M , that is also absolutely continuous with respect to Lebesgue
measure. Then,

1. The following interpolation formula holds:

BT (µ0, νT ) = sup{W (νT , µ)− C̃T (µ0, µ); µ ∈ P(M∗)}. (90)

The supremum is attained at some probability measure µT on M∗, and the final Kantorovich
potential for C̃T (µ0, µT ) is convex.

2. We also have the following duality formulae:

BT (µ0, νT ) = inf

{∫
M

h(x) dνT (x) +

∫
M∗

Φ̃0
h∗,−(v) dµ0(v); h convex in Lip(M)

}
. (91)

and

BT (µ0, νT ) = inf

{∫
M

(Φ̃Tg,+)∗(x) dνT (x) +

∫
M∗

g(v) dµ0(v); g in Lip(M∗)

}
. (92)

3. There exists a convex function h : M∗ → R such that

BT (µ0, νT ) =

∫
M∗

bT (S
∗
T ◦ ∇h∗(x), x)dνT (x), (93)

where S∗T (v) = π∗ϕH∗T (v,∇h), and ϕH∗t the flow associated to the Hamiltonian H∗(v, x) =
−H(−x, v), whose Lagrangian is L∗(v, q) = L∗(−q, v). In other words, an optimal map for
BT (µ0, νT ) is given by the inverse of the map x→ π∗ϕH∗T (∇h∗(x), x).
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4. We also have

BT (µ0, νT ) =

∫
M∗

bT (v,∇h ◦ S̃Tv)dµ0(v), (94)

where S̃T (v) = π∗ϕH̃T (v, d̃vh0), and ϕH̃t being the Hamiltonian flow associated to L̃ (i.e.,
H̃(v, x) = −H(x, v), and h0 = Φ̃0

h∗,−.

h0 the solution h(0, v) of the backward Hamilton-Jacobi equation (33) with h(T, v) = h(v).

Proof: To show (90) and (91), first note that for any probability measure µ on M∗, we have

BT (µ0, νT ) >W (νT , µ)− C̃T (µ0, µ). (95)

Indeed, since νT is assumed to be absolutely continuous with respect to Lebesgue measure, Brenier’s
theorem yields a convex function h that is differentiable µT -almost everywhere on M such that
(∇h)#νT = µ, and W (νT , µ) =

∫
M
〈x,∇h(x)〉 dνT (x). Let π0 be an optimal transport plan for

C̃T (µ0, µ), that is π0 ∈ K(µ0, µ) such that C̃T (µ0, µ) =
∫
M∗×M∗ c̃T (v, w) dπ0(v, w). Let π̃0 := S#π0,

where S(v, w) = (v,∇h∗(w)), which is a transport plan in K(µ0, νT ). Since bT (v, y) > 〈∇h(x), y〉 −
c̃T (v,∇h(x)) for every (y, x, v) ∈M ×M ×M∗, we have

BT (µ0, νT ) >
∫
M∗×M

bT (v, x) dπ̃0(v, x)

>
∫
M∗×M

{〈∇h(x), x〉 − c̃T (v,∇h(x))}dπ̃0(v, x)

=

∫
M

〈x,∇h(x)〉 dνT (x)−
∫
M∗×M∗

c̃T (v, w)}dπ0(v, w)

= W (νT , µ)− C̃T (µ0, µ).

To prove the reverse inequality, we use standard Monge-Kantorovich theory to write

BT (µ0, νT ) = sup
{∫

M∗×M
bT (v, x) dπ(v, x); π ∈ K(µ0, νT )

}
= inf

{∫
M

h(x) dνT (x)−
∫
M∗

g(v) dµ0(v); h(x)− g(v) > bT (v, x)
}
,

where the infimum is taken over all admissible Kantorovich pairs (g, h) of functions, i.e. those
satisfying the relations

g(v) = inf
x∈M

h(x)− bT (v, x) and h(x) = sup
v∈M∗

bT (v, x)) + g(v)

Note that h is convex. Since the cost function bT is continuous, the supremum BT (µ0, νT ) is attained
at some probability measure π0 ∈ K(µ0, νT ). Moreover, the infimum in the dual problem is attained
at some pair (g, h) of admissible Kantorovich functions. It follows that π0 is supported on the set

O := {(v, x) ∈M∗ ×M ; bT (v, x) = h(x)− g(v)}.

We now exploit the convexity of h, and use the fact that for each (v, x) ∈ O, the function y →
h(y)− g(v)− bT (v, y) attains its minimum at x, which means that ∇h(x) ∈ ∂xbT (v, x). But since c̃T
is the Legendre transform of bT with respect to the x-variable, we then have

bT (v, x) + c̃T (v,∇h(x)) = 〈x,∇h(x)〉 on O. (96)
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Integrating with π0, we get since π0 ∈ K(µ0, νT ),∫
M∗×M

bT (v, x) dπ0 +

∫
M∗×M

c̃T (v,∇h(x))dπ0 =

∫
M

〈x,∇h(x)〉 dνT . (97)

Letting µT = ∇h#νT , we obtain that

BT (µ0, νT ) +

∫
M∗×M

c̃T (v,∇h(x))dπ0 = W (νT , µT ), (98)

where W (νT , µT ) = sup{
∫
M×M∗〈x, v〉 dπ; π ∈ K(νT , µT )}. Note that we have used here that h is

convex to deduce that W (νT , µT ) =
∫
M
〈x,∇h(x) dµT by the uniqueness in Brenier’s decomposition.

We now prove that ∫
M∗×M

c̃T (v,∇h(x))dπ0 = C̃T (µ0, µT ). (99)

Indeed, we have
∫
M∗×M c̃T (v,∇h(x))dπ0 > C̃T (µ0, µT ) since the measure π = S#π0, where S(v, x) =

(v,∇h(x)) has marginals µ0 and µT respectively. On the other hand, (98) yields∫
M∗×M

c̃T (v,∇h(x))dπ0 =

∫
M

〈x,∇h(x)〉 dνT (x)−
∫
M∗×M

bT (v, x) dπ0

=

∫
M

h∗(∇h(x))dνT (x) +

∫
M

h(x) dνT (x) +

∫
M∗

g(v) dµ0(v)−
∫
M

h(x) dνT (x)

=

∫
M∗

h∗(w)dµT (w) +

∫
M∗

g(v) dµ0(v).

Moreover, since h(x) − g(v) > b(v, x), we have h∗(w) + g(v) 6 c̃T (v, w). Indeed, since for any
(v, w) ∈M∗×M∗, we have c̃(t, v, w) = sup{〈w, x〉 − bt(v, x);x ∈M}, it follows that for any y ∈M ,

c̃T (v, w) > 〈w, y〉 − bt(v, y) > 〈w, y〉+ g(v)− h(y),

hence h∗(w) + g(v) 6 c̃T (v, w), which means that the couple (−g, h∗) is an admissible Kantorovich
pair for the cost c̃T . Hence,

C̃T (µ0, µT ) 6
∫
M∗×M

c̃T (v,∇h(x))dπ0

=

∫
M

h∗(w)dµT (w) +

∫
M∗

g(v) dµ0(v)

6 sup{
∫
M∗

ϕT (w) dµT (w)−
∫
M∗

ϕ0(v) dµ0(v); ϕT (w)− ϕ0(v) 6 c̃T (v, w)}

= C̃T (µ0, µT ).

It follows that BT (µ0, νT ) = W (νT , µT ) − C̃T (µ0, µT ). In other words, the supremum in (95) is
attained by the measure µT . Note that the final optimal Kantorovich potential for C̃T (µ0, µT ) is
h∗, hence is convex.
The first duality formula (92) follows since we have established that if (g, h) are an optimal pair of
Kantorovich functions for BT (µ0, νT ), then (g, h∗) are an optimal pair of Kantorovich functions for
C̃T (µ0, µT ). In other words, the initial Kantorovich function for BT (µ0, νT ) is g = Φ̃h∗,−(0, ·). This
proves formula (91).
To show (92), we can –now that the interpolation (90) is established–proceed as in Section 2, by
identifying the Legendre transform of the functionals ν →W (ν, νT ) and µ→ C̃T (µ, µT ).

To show part 3), we start with the interpolation inequality and write that

BT (µ0, νT ) = W (νT , µT )− C̃T (µ0, µT ),
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for some probability measure µT . The proof also shows that there exists a convex function h : M∗ →
R and another function k : M∗ → R such that (∇h)#µT = νT , W (νT , µT ) =

∫
M
〈∇h(v), v〉dµT (v).

and C̃T (µ0, µT ) =
∫
M∗

h(u) dµT (u)−
∫
M∗

k(v) dµ0(v). Now use the theorem of Fathi-Figalli to write

C̃T (µ0, µT ) =

∫
M∗

cT (v, S̃T v)dµ0(v), (100)

where S̃T (v) = π∗ϕH̃T (v, d̃vk). Note that

BT (µ0, νT ) >
∫
M∗

bT (v,∇h ◦ S̃T (v))dµ0(v), (101)

since (S̃T )#µ0 = µT and ∇h#µT = νT , and therefore (I ×∇h ◦ S̃T )#µ0 belongs to K(µ0, νT ).
On the other hand, since bT (u, x) > 〈∇h(v), x〉 − c̃T (u,∇h(v)) for every v ∈M∗, we have

BT (µ0, νT ) >
∫
M∗

bT (v,∇h ◦ S̃T (v))dµ0(v)

>
∫
M∗
{〈∇h ◦ S̃T (v), S̃T (v)〉 − c̃T (v, S̃T (v))} dµ0(v)

=

∫
M∗
〈∇h(v), v〉dµT (v)−

∫
M∗

c̃T (v, S̃T (v)) dµ0(v)

= W (νT , µT )− C̃T (µ0, µT )

= BT (µ0, νT ).

It follows that BT (µ0, νT ) =
∫
M∗

bT (v,∇h ◦ S̃T (v))dµ0(v).

To get (3), use the pushforward νT = (∇h ◦ S̃T )#µ0 to write the above in terms of the measure

νT , using the fact that (∇h)−1 = ∇h∗ and S̃−1
T = S∗T where S∗T (v) = π∗ϕH∗t (v, d̃vh) and ϕH∗t is the

Hamiltonian flow associated to the hamiltonian H∗(v, x) := −H(−x, v). This gives us

BT (µ0, νT ) =

∫
M∗

bT (S∗T ◦ ∇h∗(x), x)dνT (x) =

∫
M∗

bT (π∗ϕH∗t (∇h∗(x), d̃vh), x)dνT (x).

Since h is convex, we have that d̃xh = ∇h(x), hence d̃∇h∗(x)h = ∇h ◦ ∇h∗(x) = x, which yields our
claim that

BT (µ0, νT ) =

∫
M

bT (π∗ϕH̃T (∇h∗(x), x), x)dνT (x).

Remark 6 While the costs c and c̃T are themselves jointly convex in both variables, one cannot
deduce much in terms of the convexity or concavity of the corresponding Kantorovich potentials.
However, we note that the interpolation (41) of BT (µ0, νT ) selects a ν0 such that CT (ν0, νT ) has a
concave initial Kantorovich potential, while the interpolation (90) of BT (µ0, νT ) selects a µT such
that C̃T (µ0, µT ) has a convex final Kantorovich potential.

Furthermore, one wonders whether the formula

ct(y, x) = sup{bt(v, x)− 〈v, y〉; v ∈M∗}, (102)

also extends to Wasserstein space. We show it under the condition that the initial Kantorovich
potential of CT (ν0, νT ) is concave, and conjecture that it is also a necessary condition.

Theorem 8 Assume M = Rd and that L satisfies hypothesis (B1), (B2) and (B3). Assume ν0

and νT are probability measures on M such that ν0 is absolutely continuous with respect to Lebesgue
measure. If the initial Kantorovich potential of CT (ν0, νT ) is concave then the following holds:

CT (ν0, νT ) = sup{BT (µ, νT )−W (ν0, µ); µ ∈ P(M∗)}, (103)

and the supremum is attained.
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Proof: Again, it is easy to show that

CT (ν0, νT ) > sup{BT (µ, νT )−W (ν0, µ); µ ∈ P(M∗)}. (104)

To prove equality, we assume that the initial Kantorovich potential g is concave and write

CT (ν0, νT ) = inf{
∫
M×M

c(y, x) dπ(y, x); π ∈ K(ν0, νT )}

= sup{
∫
M

h(x) dνT (x)−
∫
M

g(y) dν0(y); h(x)− g(y) 6 cT (y, x)}.

Since the cost function cT is continuous, the infimum CT (ν0, νT ) is attained at some probability
measure π0 ∈ K(ν0, νT ). Moreover, the infimum in the dual problem is attained at some pair (g, h)
of admissible Kantorovich functions. It follows that π0 is supported on the set

O := {(y, x) ∈M ×M ; cT (y, x) = h(x)− g(y)}

Since g is concave, use the fact that for each (y, x) ∈ O, the function z → h(x) − g(z) − cT (z, x)
attains its maxmum at y, to deduce that −∇g(y) ∈ ∂ycT (y, x).
Since g concave and bt(v, x) = inf{〈v, z〉+ ct(z, x); z ∈M}, this means that for (y, x) ∈ O,

cT (y, x) = bT (∇g(y), x)− 〈∇g(y), y〉. (105)

Integrating with π0, we get since π0 ∈ K(ν0, νT ),∫
M×M

cT (y, x) dπ0 =

∫
M×M

bT (∇g(y), x) dπ0 −
∫
M

〈∇g(y), y〉 dν0. (106)

Letting µ0 = (∇g)#ν0, and since g is concave, we obtain that

CT (ν0, νT ) =

∫
M×M

bT (∇g(y), x) dπ0 −W (ν0, µ0). (107)

We now prove that ∫
M×M

bT (∇g(y), x) dπ0(y, x) = BT (µ0, νT ). (108)

Indeed, we have
∫
M×M bT (∇g(y), x) dπ0 > BT (µ0, νT ), since the measure π = S#π0 where S(y, x) =

(∇g(y), x) has µ0 and νT as marginals. On the other hand, (107) yields∫
M×M

bT (∇g(y), x) dπ0 =

∫
M×M

cT (y, x) dπ0 +

∫
M

〈y,∇g(y)〉 dν0(y)

=

∫
M

h(x) dνT (x)−
∫
M

g(y) dν0(y)−
∫
M

(−g)∗(−∇g(y))dν0(y) +

∫
M

g(y) dν0(y)

=

∫
M

h(x) dνT (x)−
∫
M∗

(−g)∗(−v)dµ0(v).

Moreover, since h(x) − g(y) 6 cT (y, x), it is easy to see that h(x) − (−g)∗(−v) 6 bT (v, x), that is
the couple ((−g)∗(−v), h(x)) is an admissible Kantorovich pair for the cost bT . It follows that

BT (µ0, νT ) 6
∫
M×M

bT (∇g(y), x) dπ0

=

∫
M

h(x) dνT (x)−
∫
M

(−g)∗(−v)dµ0(v)

6 sup{
∫
M

ϕT (x) dµT (x)−
∫
M∗

ϕ0(v) dµ0(v); ϕT (x)− ϕ0(v) 6 bT (v, x)}

= BT (µ0, νT ),
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and CT (ν0, νT ) = BT (µ0, νT )−W (ν0, µ0). In other words, the supremum in (103) is attained by the
measure µ0.

Corollary 9 Assume M = Rd and that L satisfies hypothesis (B1), (B2) and (B3). Assume ν0

and νT are probability measures on M such that ν0 is absolutely continuous with respect to Lebesgue
measure, and that the initial Kantorovich potential of CT (ν0, νT ) is concave. If bT satisfies the twist
condition, then there exists a map XT

0 : M∗ →M and a concave function g on M such that

CT (ν0, νT ) =

∫
M

cT (y,XT
0 ◦ ∇g(y))dν0(y). (109)

Proof: In this case, CT (ν0, νT ) = BT (µ0, νT )−W (ν0, µ0), for some probability measure µ0 on M∗.
Let g be the concave function on M such that (∇g)#ν0 = µ0 and W (ν0, µ0) =

∫
M
〈∇g(y), y〉dν0(y).

Since bT satisfies the twist condition, there exists a map XT
0 : M∗ → M such that (XT

0 )#µ0 = νT
and

BT (µ0, νT ) =

∫
M∗

bT (v,XT
0 v)dµ0(v). (110)

Note that the infimum CT (ν0, νT ) is attained at some probability measure π0 ∈ K(ν0, νT ) and that π0

is supported on a subset O of M ×M such that for (y, x) ∈ O, cT (y, x) = bT (∇g(y), x)−〈∇g(y), y〉.
Moreover, CT (ν0, νT ) =

∫
M×M bT (∇g(y), x) dπ0 −W (ν0, µ0), and∫

M×M
bT (∇g(y), x) dπ0 = BT (µ0, νT ) =

∫
M∗

bT (v,XT
0 v)dµ0(v) =

∫
M

bT (∇g(y), XT
0 ◦∇g(y))dν0(y).

Since bT satisfies the twist condition, it follows that for any (y, x) ∈ O, we have that x = XT
0 ◦∇g(y)

from which follows that CT (ν0, νT ) =
∫
M
cT (y,XT

0 ◦ ∇g(y))dν0(y).

Corollary 10 Consider the cost c1(y, x) = c(x−y), where c is a convex function on M and let ν0, ν1

be probability measures on M such that the initial Kantorovich potential associated to CT (ν0, νT ) is
concave. Then, there exist concave functions ϕ : M → R, ψ : M∗ → R and a probability measure µ0

on M∗ such that
(∇ψ ◦ ∇ϕ)#ν0 = ν1, (111)

and

C1(ν0, ν1)+

∫
M∗

c∗(v) dµ0(v) =

∫
M

c(∇ψ◦∇ϕ(y)−y)dν0(y) =

∫
M

〈∇ψ∗(y)−∇ϕ(y), y〉 dν0(y). (112)

Proof: The cost c(x− y) corresponds to c1(y, x), where the Lagrangian is L(x, v) = c(v), that is

c1(y, x) = inf{
∫ 1

0

c(γ̇(t)) dt; γ ∈ C1([0, 1),M); γ(0) = y, γ(1) = x} = c(x− y). (113)

It follows from (103) that there is a probability measure µ0 on M∗ such that C1(ν0, ν1) = B1(µ0, ν1)−
W (ν0, µ0). But in this case, b1(v, x) = inf{〈v, y〉+ c(x− y); y ∈M} = 〈v, x〉 − c∗(v), hence

C1(ν0, ν1) = B1(µ0, ν1)−W (ν0, µ0) = W (µ0, ν1)−
∫
M∗

c∗(v) dµ0(v)−W (ν0, µ0). (114)

In other words,
C1(ν0, ν1) +K = W 1(µ0, ν1)−W (ν0, µ0), (115)

where K is the constant
∫
M∗

c∗(v) dµ0(v).
Apply Brenier’s theorem twice to find concave functions ϕ : M → R and ψ : M∗ → R such that

(∇ϕ)#ν0 = µ0, (∇ψ)#µ0 = ν1 and

W (ν0, µ0) =
∫
M
〈y,∇ϕ(y)〉 dν0(y) and W (µ0, ν1) =

∫
M∗
〈v,∇ψ(v)〉 dµ0(v).
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It follows from the preceeding corollary that

C1(ν0, ν1) +K =

∫
M

c1(y,∇ψ ◦ ∇ϕ(y))dν0(y) =

∫
M

c(∇ψ ◦ ∇ϕ(y)− y)dν0(y).

Note also that

C1(ν0, ν1) +K =

∫
M

〈v,∇ψ(v) dµ0(v)−
∫
M

〈y,∇ϕ(y) dν0(y)

=

∫
M

〈∇ψ∗(y), y〉 dν0(y)−
∫
M

〈y,∇ϕ(y) dν0(y)

=

∫
M

〈∇ψ∗(y)−∇ϕ(y), y〉 dν0(y).

6 Maximizing the ballistic cost: Stochastic case

Define the transportation cost between two random variables V on M∗ and X on M by:

bsT (V, Y ) := inf{E

[
〈V,X(0)〉+

∫ T

0

L(t,Xt, βX(t)) dt

]
;X ∈ A, X(T ) = Y a.s.}, (116)

where A indicates Itô processes with Brownian diffusion. The minimizing ballistic cost considered
earlier is then

BsT (µ0, νT ) = inf{bsT (V, Y );V ∼ µ0, Y ∼ νT }, (117)

while the maximizing cost is defined as:

B
s

T (µ0, νT ) := sup{bsT (V, Y );V ∼ µ0, Y ∼ νT }. (118)

Theorem 9 Assume L is a Lagrangian on M ×M∗ such that L and its dual L̃ satisfies (A0)-(A3).

1. The following formula then holds:

B
s

T (µ0, νT ) := sup

{
E

[
〈X,V (T )〉 −

∫ T

0

L̃(t, V, βV (t, V )) dt

]
;V ∈ A, V0 ∼ µ0, X ∼ νT

}
.

(119)

2. The following duality holds:

B
s

T (µ0, νT ) = sup{W (µ, νT )− C̃sT (µ0, µ); µ ∈ P1(M∗)}, (120)

where C̃sT is the action corresponding to the Lagrangian L̃. Furthermore, if ν0 ∈ P1(M), and
µT ∈ P1(M∗) there exist an optimal interpolant µT in P1(M∗).

3. If µ0 ∈ P1(M∗), νT has compact support, and B(µ0, νT ) <∞, then

Bs(µ0, νT ) = inf

{∫
M

g dνT +

∫
M∗

Ψ̃0
g∗,− dµ0; g ∈ C∞db(M) and convex

}
, (121)

where Ψ̃g∗,− solves the Hamilton-Jacobi-Bellman equation on M∗

∂ψ

∂t
+

1

2
∆ψ −H(t,∇vψ, v) = 0 ψ(v, T ) = g∗(v). (HJB2)
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Proof: 1) For a fixed pair (V, Y ), we consider the Bolza energy L(V,Y ) –defined in (82)– associated
to L and the two Lagrangians ` and M defined as:

`(Y,U)(ω, y, z) :=

{
〈z, U(ω)〉 y = Y (ω)

∞ else
M(ξ, ζ) :=

{
−ζ − 1 ξ = 1

∞ else.
(122)

Note that the minimizing stochastic cost can be written as,

Bs(µ0, νT ) := inf{inf{L(V,Y )(X(t), 0);X ∈ I2};V ∼ µ0, Y ∼ νT } (123)

while the maximizing cost is

Bs(µ0, νT ) = sup{inf{L(V,Y )(X(t), 0);X ∈ I2};V ∼ µ0, Y ∼ νT }. (124)

Applying Bolza duality turns the infimum to a supremum:

Bs(µ0, νT ) = sup{sup{−L∗(V,Y )(0, U(t));U ∈ I2};V ∼ µ0, Y ∼ νT }, (125)

which results in (119).
2) The proof of the interpolation result can now follow closely the proof for the minimization problem.
3) We again try to identify the Legendre transforms of the functionals ν 7→ W (µ, ν) and µ →
C̃sT (µ0, µ). We obtain easily that

• If µ ∈ P1(M∗) has compact support, then for all f ∈ Lip(M), then

sup
ν∈P1(M)

{∫
M

f dν +W (µ, ν)

}
=

∫
M∗

(−f)∗ dµ.

• If g ∈ C∞db(M∗), then

sup
µ∈P1(M∗)

{∫
M∗

g dµ− C̃sT (µ0, µ)

}
=

∫
M∗

Ψ̃g,− dµ0.

Define Bµ0 : ν 7→ B(µ0, ν), and note that the interpolation formula (120) and a result of Mikima-

Thieullen [22] concerning C̃sT yields that Bµ0
is a concave function. Furthermore it is weak?-upper

semi-continuous on P1(M). Thus we have

Bµ0
(νT ) = −(−Bµ0

)∗∗(νT ) = inf
f∈Lip(M)

{
−
∫
M

f dνT + (−Bµ0
)∗(f)

}
. (126)

Investigating the dual, we find

(−Bµ0)∗(f) = sup
ν∈P1(M)

{∫
M

f dν +Bµ0(ν)

}
= sup
µ∈P1(M∗)
ν∈P1(M)

{∫
M

f dν +W (µ, ν)− C̃sT (µ0, µ)

}

= sup
µ∈P1(M∗)

{∫
M∗

(−f)∗ dµ− C̃sT (µ0, µ)

}
. (127)

Note that in the case where (−f)∗ ∈ C∞db, this is simply
∫
M∗

Ψ̃(−f)∗,− dµ0, yielding

Bν0(µT ) ≤ inf
(−f)∗∈C∞db

{
−
∫
M∗

f dµT +

∫
M∗

Ψ̃(−f)∗,− dµ0

}
.
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In either case, we can restrict our f to be concave by noting that if we fix g = (−f)∗, then the
set of corresponding {−f ; (−f)∗ = g} is minimized by the convex function g∗ = (−f)∗∗ ≤ −f [12,
Proposition 4.1]. Thus it suffices to consider f convex.

We now show that it is sufficient to consider this infimum over convex g ∈ C∞db by a similar
mollification argument to that used for B (note that the mollifying preserves convexity). Maintaining
the same assumptions and notation as in our earlier argument, we first note a useful application of
Jensen’s inequality to the legendre dual of a mollified function:

g∗ε (v) = sup
x
{〈v, x〉 − E [g(x+Hε)]}

(J)

≤ sup
x
{〈v, x〉 − g(x)} = g∗(v).

Mikami [22, Proof of Theorem 2.1] further shows that

(127) = C∗ν0(gε) ≤
C∗ν0∗ηε((1 + ∆L(0, ε))g)

1 + ∆L(0, ε)
+ T

∆L(0, ε)

1 + ∆L(0, ε)
.

Putting these together we get∫
g∗ε dµT + (−Bν0)∗(g∗ε ) dν0 ≤

∫
g∗ dµT +

C∗ν0∗ηε((1 + ∆L(0, ε))g)

1 + ∆L(0, ε)
+ T

∆L(0, ε)

1 + ∆L(0, ε)
.

And once we take the infimum over convex g ∈ Lip(M), we get

inf

{∫
g∗ dµT +

(
−Bν

)∗
(−g∗); g convex in C∞db

}
≤
−(−B)∗∗ν0∗ηε(µL,ε)

1 + ∆L(0, ε)
+ T

∆L(0, ε)

1 + ∆L(0, ε)
,

where dµL,ε(v) := dµT ((1 + ∆L(0, ε)) v). Taking ε↘ 0 dominates the right side by B(µ0, νT ) (where
we exploit the upper semi-continuity of B), completing the reverse inequality.

Corollary 11 (Optimal Processes for B) Suppose the assumptions on Theorem 9 are satisfied,
with µ0 absolutely continuous with respect to Lebesgue measure. Then, the pair (V,X) is optimal
for (118) if and only there is an Ito process V (t) that satisfy the backward Stochastic differential
equation,

dV =∇pH(t,∇ψ(t, V ), V ) dt+ dWt (128)

X =∇ψ̄(V (T )), (129)

where limn→∞ ψn(T, x) → ψ̄(x) νT -a.s. and limn→∞ ψn(t, x) = ψ(t, x) PV -a.s. for some sequence
ψn(t, x) that solves (HJB) in such a way that ψ0

n = ψn(0, ·) and ψTn = ψn(T, ·) are a minimizing
pair for the dual problem.

Proof: If (V,X) is optimal, then Theorem 9 means there exists a sequence of solutions ψn(t, v) to
(HJB) with convex final condition ψTn , such that

E

[
〈X,V (T )〉 −

∫ T

0

L̃(t, V, βV (t, V )) dt

]
= lim

n→∞
E
[(
ψTn
)∗

(X) + ψ0
n(V (0))

]
, (130)

which we write as

lim
n→∞

E
[(
ψTn
)∗

(X) + ψTn (V (T ))− ψTn (V (T )) + ψ0
n(V (0))

]
.

Applying Itô’s formula to the last two terms, with the knowledge that ψn satisfies (HJB) we get

E
[
−ψTn (V (T )) + ψ0

n(V (0))
]

= E

[∫ T

0

−〈βV ,∇ψtn(V (t))〉 −H(t,∇ψtn(V (t)), V (t)) dt

]
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However, by the definition of the Hamiltonian, we have −〈q, v〉 −H(t, x, v) ≥ −L̃(t, v, q), similarly
ψ∗(v)+ψ(x) ≥ 〈v, x〉. These inequalities allow us to separate the limit in (130) into two requirements:
(a) 〈βV ,∇ψtn(V (t))〉+H(t,∇ψtn(V (t)), V (t)) must converge to L̃(t, V, βV (t, V )) and
(b) ψTn (V (T )) +

(
ψTn
)∗

(X) must converge to 〈X,V (T )〉 in L1 hence a subsequence ψnk exists such
that this convergence is a.e.

The journey from (a) to (128) is as in Corollary 4. The only difference from the earlier corollary is
that we know that ψn must converge to a convex function, so (b) implies X = ∇ limn→∞ ψn(V (T )).

7 Final Remarks

The interpolation formula can be seen as a Hopf-Lax formula on Wasserstein space, since for a fixed
µ0 on M∗ (resp., fixed νT on M), then as a function of the terminal (resp., initial) measure, we have

Bµ0(t, ν) = inf{Uµ0(%)+Ct(%, ν); % ∈ P(M)} and BνT (t, µ) = inf{UνT (%)− C̃t(%, µ); % ∈ P(M∗)},
(131)

where
Uµ0(%) = W (µ0, %) and UνT (%) = W (νT , %).

The following Eulerian formulation illustrates best how Bµ0(t, ν) and BνT (t, µ) can be represented
as value functionals on Wasserstein space. Indeed, lift the Lagrangian L to the tangent bundle of
Wasserstein space via the formula

L(%, w); =
∫
M
L(x,w(x)) d%(x) and L̃(%, w); =

∫
M∗

L̃(x,w(x)) d%(x),

where % is any probability density on M (resp., M∗) and w is a vector field on M (resp., M∗).

Corollary 12 Assume L satisfies hypothesis (A0) and (A1), and let µ0 be a probability measure on
M∗ with compact support, then

Bµ0(T, ν) := BT (µ0, ν) = inf

{
Uµ0(%0) +

∫ T

0

L(%t, wt)dt; ∂t%+∇ · (%w) = 0, %T = ν

}
,(132)

The set of pairs (%, w) considered above are such that t→ %t ∈ P1(M) (resp., t→ wt(x) ∈ Lip(Rn))
are paths of Borel fields.

One can then ask whether these value functionals also satisfy a Hamilton-Jacobi equation on Wasser-
stein space such as {

∂tB +H(t, ν,∇νB(t, ν)) = 0,

B(0, ν) = W (µ0, ν).
(133)

Here the Hamiltonian is defined as

H(ν, ζ) = sup{
∫
〈ζ, ξ〉dν − L(ν, ξ); ξ ∈ T ∗ν (P(M))}.

We note that Ambrosio-Feng [3] have shown recently that –at least in the case where the Hamiltonian
is the square– value functionals on Wasserstein space yield a unique metric viscosity solution for
(133). As importantly, Gangbo-Sweich [19] have shown recently that under certain conditions, value
functionals yield solutions to the so-called Master equations of mean field games. We refer to their
paper for the relevant definitions.

Theorem 10 (Gangbo-Swiech) Assume U0 : P(M)→ R, and U0 : M × P(M)→ R are functionals
such that ∇xU0(x, µ) ≡ ∇µU0(µ)(x) for all x ∈M , µ ∈ P(M), and consider the value functional,

U(t, ν) = inf

{
U0(%0) +

∫ t

0

L(%, w)dt; ∂t%+∇ · (%w) = 0, %T = ν

}
.
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Then, there exists U : [0, T ]×M × P(M)→ R such that

∇xUt(x, ν) ≡ ∇νUt(ν)(x) for all x ∈M , ν ∈ P(M),

and U satisfies the Master equation below (134).

Applied to the value functional Bµ0(t, ν) := Bt(µ0, ν), this should then yield the existence, for any
probabilities µ0, νT , of a function β : [0, T ]×M × P(M)→ R such that

∇xβ(t, x, ν) ≡ ∇νBµ0(t, ν)(x) for all x ∈M , ν ∈ P(M),

and % ∈ AC2((0, T )× P(M)) such that
∂tβ +

∫
〈∇νβ(t, x, ν) · ∇H(x,∇xβ)〉 dν +H(x,∇xβ(t, x, ν)) = 0,

∂t%+∇(%∇H(x,∇xβ)) = 0,

β(0, ·, ·) = β0, %(T, ·) = νT ,

(134)

where β0(x, %) = ϕ%(x), where ϕ% is the convex function such that ∇ϕ% pushes µ0 into %.
We may furthermore derive a Eulerian formulation of the minimizing stochastic problem. Recall

that in Corollary 4 we showed that the optimal process for the minimizing stochastic cost is Marko-
vian. Hence its drift may be described by a vector field, allowing an Eulerian formulation of the
process:

Corollary 13 Assume L satisfies the assumptions (A0)-(A3), then

Bµ0(T, ν) : = BsT (µ0, ν)

= inf{Uµ0(%0) +

∫ T

0

L(t, %t, wt) dt; ∂t%+∇ · (w%) +
1

2
∆% = 0, %T = ν}. (135)

Proof: It can be seen by Itô’s formula that (%, w) is a solution (in the sense of distributions) to
∂t%+∇ · (w%) + 1

2∆% = 0 iff %t ∈ P(M) is the law of Xt where X solves

Xt = X0 +

∫ t

0

w(s,Xs) ds+Wt. (136)

Hence the above Eulerian formulation is equivalent to the stochastic process formulation in the case
where the optimal drift is described by a Borel vector field. Corollary 4 shows this is the case for
Bs. �

Finally, we mention that one would like to consider value functionals on Wasserstein space that
are more general than those starting with the Wasserstein distance. One can still obtain such
functionals via mass transport by considering more general ballistic costs of the form

bg(T, v, x) := inf

{
g(v, γ(0)) +

∫ T

0

L(γ(t), γ̇(t)) dt; γ ∈ C1([0, T ),M)

}
, (137)

where g : M∗ ×M → R is a suitable function.
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