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Abstract

We prove an analogue of the Ikehara theorem for positive non-increasing
functions convergent to zero, generalising the results postulated in Diek-
mann,Kaper (1978) [3] and Carr, Chmaj (2004) [1].
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1 Introduction
The Ikehara theorem and its extensions are the so-called complex Tauberian the-
orems, inspired, in particular, by the number theory, see e.g. the review [7]. The
following version of the Ikehara theorem can be found in [4, Subsection 2.5.7]:

Theorem 1. Let φ be a positive monotone increasing function, and let there
exist µ > 0, j > 0, such that∫ ∞

0

e−tzφ(t)dt =
F (z)

(z − µ)j
, Re z > µ, (1.1)

where F is holomorphic on {Re z ≥ µ}. Then, for some D > 0,

φ(t) ∼ D

Γ(j)
tj−1eµt, t→∞.

Alternatively, Theorem 1 may be formulated for the Stieltjes measure dφ(t)
instead of φ(t)dt obtaining similar asymptotic for φ (see e.g. Proposition 2.1
below).

In Theorem 1, φ increases to ∞. In [3, Lemma 6.1] (for j = 1) and in [1,
Proposition 2.3] (for j > 0), the similar results were stated for positive monotone
decreasing ϕ (cf., correspondingly, Propositions 2.4 and 2.2 below). The aim
of both generalizations was to find an a priori asymptotics for solutions to a
class of nonlinear integral equations. In [1], in particular, it was applied to the
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study of the uniqueness of traveling wave solutions to certain nonlocal reaction-
diffusion equations; see also e.g. [2, 8, 10, 11, 13]. Note also that then, the case
j = 2 corresponded to the traveling wave with the minimal speed.

In both papers [1,3] no proof was given, mentioning that it is supposed to be
analogous to the case of increasing φ without any further details. In Theorem 2
below, we prove an analogue of Theorem 1 for non-increasing function, and in
Proposition 2.2 we apply it to prove the mentioned result of [1]. We require,
however, an a priori regular decaying of ϕ, namely, we assume that there exists
ν > 0, such that ϕ(t)eνt is an increasing function. We require also the con-
vergence of

∫∞
0
eztdϕ(t) for 0 < Re z < µ instead of the weaker corresponding

assumption for
∫∞
0
eztϕ(t)dt.

Beside the aim to present a proof, the reason for the generalization we pro-
vide was to omit the requirement on the function F to be analytical on the
line {Re z = µ} keeping the general case j > 0. We were motivated by the
integro-differential equation we studied in [6] (which covers the equations con-
sidered in [1]), where the Laplace-type transform of the traveling wave with the
minimal speed (that requires, recall, j = 2) might be not analytical at z = µ.

Our result is based on a version of the Ikehara–Ingham theorem proposed
in [9], see Proposition 2.1 below. Using the latter result, we prove also in Propo-
sition 2.4 a generalization of [3, Lemma 6.1] (under the regularity assumptions
on ϕ mentioned above).

2 Main results
Let, for any D ⊂ C, H(D) be the class of all holomorphic functions on D.

Theorem 2. Let ϕ : R+ → R+ := [0,∞) be a non-increasing function such
that, for some µ > 0, ν > 0,

the function eνtϕ(t) is non-decreasing, (2.1)

and
∞∫
0

eztdϕ(t) <∞, 0 < Re z < µ. (2.2)

Let also the following assumptions hold.

1. There exist a constant j > 0 and complex-valued functions

H ∈ H(0 < Re z ≤ µ), F ∈ H(0 < Re z < µ) ∩ C(0 < Re z ≤ µ),

such that the following representation holds
∞∫
0

eztϕ(t)dt =
F (z)

(µ− z)j
+H(z), 0 < Re z < µ. (2.3)

2. For any T > 0,

lim
σ→0+

gj(σ) sup
|τ |≤T

∣∣F (µ− 2σ − iτ)− F (µ− σ − iτ)
∣∣ = 0, (2.4)
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where, for σ > 0,

gj(σ) :=


σj−1, 0 < j < 1,

log σ, j = 1,

1, j > 1.

(2.5)

Then ϕ has the following asymptotic

ϕ(t) ∼ F (µ)

Γ(j)
tj−1e−µt, t→∞. (2.6)

The proof of Theorem 2 is based on the following Tenenbaum’s result.

Proposition 2.1 (“Effective” Ikehara–Ingham Theorem, cf. [9, Theorem 7.5.11]).
Let α(t) be a non-decreasing function such that, for some fixed a > 0, the fol-
lowing integral converges:

∞∫
0

e−ztdα(t), Re z > a. (2.7)

Let also there exist constants D ≥ 0 and j > 0, such that for the functions

G(z) :=
1

a+ z

∞∫
0

e−(a+z)tdα(t)− D

zj
, Re z > 0, (2.8)

η(σ, T ) := σj−1
T∫
−T

∣∣G(2σ + iτ)−G(σ + iτ)
∣∣dτ, T > 0, (2.9)

one has that

lim
σ→0+

η(σ, T ) = 0, T > 0. (2.10)

Then

α(t) =

{
D

Γ(j)
+O

(
ρ(t)

)}
eattj−1, t ≥ 1, (2.11)

where

ρ(t) := inf
T≥32(a+1)

{
T−1 + η

(
t−1, T

)
+ (Tt)−j

}
. (2.12)

Proof of Theorem 2. We first express
∫∞
0
eλtϕ(t)dt in the form (2.7). Fix any

a > 0 such that µ+ a > ν. Then, by (2.1), the function

α(t) := e(µ+a)tϕ(t), t > 0, (2.13)

is increasing. Since ϕ is monotone, then, for any 0 < Re z < µ, one has

∞∫
0

e−(a+z)tdα(t) = (µ+ a)

∞∫
0

e(µ−z)tϕ(t)dt+

∞∫
0

e(µ−z)tdϕ(t), (2.14)
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where both integrals in the right hand side of (2.14) converge, for 0 < Re z < µ,
because of (2.2)–(2.3).

Then, by [12, Corollary II.1.1a], the integral in the left hand side of (2.14)
converges, for all Re z > 0. Therefore, by [12, Theorem II.2.3a], one gets another
representation for the latter integral, for Re z > 0:

∞∫
0

e−(a+z)tdα(t) = −ϕ(0) + (a+ z)

∞∫
0

e(µ−z)tϕ(t)dt. (2.15)

Let G be given by (2.8) with α(t) as above and D := F (µ). Combining
(2.15) with (2.3) (where we replace z by µ− z), we obtain, for 0 < Re z < µ,

G(z) =
F (µ− z)

zj
+K(z), (2.16)

K(z) := H(µ− z)− ϕ(0)

a+ z
− F (µ)

zj
. (2.17)

Check the condition (2.10); one can assume, clearly, that 0 < σ < µ
2 . Since

K ∈ H(0 < Re z < µ), one easily gets that

lim
σ→0+

σj−1
T∫
−T

∣∣G(2σ + iτ)−G(σ + iτ)
∣∣dτ

≤ lim
σ→0+

σj−1
T∫
−T

∣∣∣F (µ− 2σ − iτ)− F (µ)

(2σ + iτ)j
− F (µ− σ − iτ)− F (µ)

(σ + iτ)j

∣∣∣dτ
≤ lim
σ→0+

σj−1
T∫
−T

∣∣∣F (µ− 2σ − iτ)− F (µ− σ − iτ)

(σ + iτ)j

∣∣∣dτ
+ lim
σ→0+

σj−1
T∫
−T

∣∣F (µ− 2σ − iτ)− F (µ)
∣∣∣∣∣ 1

(2σ + iτ)j
− 1

(σ + iτ)j

∣∣∣dτ,
=: lim

σ→0+
Aj(σ) + lim

σ→0+
Bj(σ). (2.18)

Prove that both limits in (2.18) are equal to 0. For each j > 0, we define
the function

hj(σ) := σj−1
∫ T

−T

1

(σ2 + τ2)
j
2

dτ, σ > 0. (2.19)

We have then

Aj(σ) ≤ sup
|τ |≤T

∣∣F (µ− 2σ − iτ)− F (µ− σ − iτ)
∣∣ hj(σ). (2.20)

It is straighforward to check that

h1(σ) = 2 log

√
T 2 + σ2 + T

σ
∼ −2 log σ, σ → 0 + . (2.21)
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For j 6= 1, we make the substitution τ = σ tan t in (2.19), then

hj(σ) =

∫ arctan T
σ

− arctan T
σ

(cos t)j−2 dt. (2.22)

Therefore,

hj(σ) ≤ 2 arctan
T

σ
< π, σ > 0, j ≥ 2. (2.23)

Let now 0 < j < 2, j 6= 1. Then replacing t by π
2 − t in (2.22), we obtain

hj(σ) = 2

∫ π
2

π
2−arctan

T
σ

(sin t)j−2 dt ≤ 23−j
∫ π

2

π
2−arctan

T
σ

tj−2 dt, (2.24)

since sin t > t
2 , t ∈ (0, π2 ]. Therefore,

hj(σ) ≤ 23−j
∫ π

2

0

tj−2 dt =
24−2jπj−1

j − 1
, σ > 0, 1 < j < 2. (2.25)

Finally, for 0 < j < 1, we obtain from (2.24), that

hj(σ) ≤ 23−j

1− j

((π
2
− arctan

T

σ

)j−1
−
(π

2

)j−1)
(2.26)

Since arctanx+ arctan 1
x = π

2 , x > 0, we get

arctan
T

σ
=
π

2
− arctan

σ

T
∼ π

2
− σ

T
, σ → 0 + .

Therefore, (2.26) implies that

hj(σ) = O(σj−1), σ → 0+, 0 < j < 1. (2.27)

Combining (2.21), (2.23), (2.25), (2.27) with (2.5), we have that

hj(σ) = O(gj(σ)), σ → 0+, j > 0, (2.28)

that, together with (2.20) and (2.4), yield lim
σ→0+

Aj(σ) = 0.

Take now an arbitrary β ∈ (0, µ) and consider, for each T > 0, the set

Kβ,µ,T :=
{
z ∈ C

∣∣ β ≤ Re z ≤ µ, |Im z| ≤ T
}
. (2.29)

Let 0 < σ < µ2; since F ∈ C(K√σ,µ,T ), there exists C1 > 0 such that |F (z)| ≤
C1, z ∈ K√σ,µ,T . Therefore,

Bj(σ) ≤ σj−1 sup
|τ |≤
√
σ

∣∣F (µ− 2σ − iτ)− F (µ)
∣∣ ∫
|τ |≤
√
σ

∣∣∣ 1

(2σ + iτ)j
− 1

(σ + iτ)j

∣∣∣dτ
+ 2C1σ

j−1
∫

√
σ≤|τ |≤T

∣∣∣ 1

(2σ + iτ)j
− 1

(σ + iτ)j

∣∣∣dτ. (2.30)
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Next, since

j

∣∣∣∣ 1

(2σ + iτ)j
− 1

(σ + iτ)j

∣∣∣∣ =

∣∣∣∣∫ 2σ+iτ

σ+iτ

1

zj+1
dz

∣∣∣∣ =

∣∣∣∣∫ 1

0

σ(
(1 + t)σ + iτ

)j+1
dt

∣∣∣∣
≤
∫ 1

0

σ(
(1 + t)2σ2 + τ2

) j+1
2

dt ≤ σ(
σ2 + τ2

) j+1
2

,

we can continue (2.30) as follows, cf. (2.19),

jBj(σ) ≤ sup
|τ |≤
√
σ

∣∣F (µ− 2σ − iτ)− F (µ)
∣∣ hj+1(σ)

+ 4C1

∫
√
σ≤τ≤T

σj(
σ2 + τ2

) j+1
2

dτ. (2.31)

By (2.23) and (2.25), functions hj+1 are bounded on (0,∞) for all j > 0.
Next, since F is uniformly continuous on K√σ,µ,T , we have that, for any ε >
0 there exists δ > 0 such that f(µ, σ, τ) :=

∣∣F (µ − 2σ − iτ) − F (µ)
∣∣ < ε,

if only 4σ2 + τ2 < δ. Therefore, if σ > 0 is such that 4σ2 + σ < δ then
sup|τ |≤

√
σ f(µ, σ, τ) < ε hence

sup
|τ |≤
√
σ

∣∣F (µ− 2σ − iτ)− F (µ)
∣∣ hj+1(σ)→ 0, σ → 0 + . (2.32)

Finally, making again the substitution τ = σ tan t in the integral in (2.31), we
obtain that it is equal to

Ij :=

∫ arctan T
σ

arctan
√
σ
σ

(cos t)j−1 dt.

Similarly, to the above, for j ≥ 1,

Ij ≤ arctan
T

σ
− arctan

√
σ

σ
,

and, for 0 < j < 1,

Ij =

∫ π
2−arctan

√
σ
σ

π
2−arctan

T
σ

1

(sin t)1−j
dt ≤ 21−j

j

((π
2
−arctan

√
σ

σ

)j
−
(π

2
−arctan

T

σ

)j)
.

As a result, Ij → 0 as σ → 0+, that, together with (2.32) and (2.31), proves
that Bj(σ)→ 0, σ → 0+.

Combining this with Aj(σ) → 0, one gets (2.10) from (2.18); and we can
apply Proposition 2.1. Namely, by (2.11), there exist C > 0 and t0 ≥ 1, such
that

D

Γ(j)
eattj−1 ≤ ϕ(t)e(µ+a)t ≤

{
D

Γ(j)
+ Cρ(t)

}
eattj−1, t ≥ t0.

By (2.10) and (2.12), ρ(t)→ 0 as t→∞. Therefore,

ϕ(t)e(µ+a)t ∼ D

Γ(j)
eattj−1, t→∞,

that is equivalent to (2.6) and finishes the proof.
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The following simple Proposition show that if F in (2.3) is holomorphic on
the line {Re z = µ}, then (2.4) holds.

Proposition 2.2. Let ϕ : R+ → R+ be a non-increasing function such that,
for some µ > 0, ν > 0, (2.1)–(2.2) hold. Suppose also that there exist j > 0
and F,H ∈ A(0 < Re z ≤ µ), such that (2.3) holds. Then ϕ has the asymptotic
(2.6).

Proof. Take any β ∈ (0, µ) and T > 0. Let Kβ,µ,T be defined by (2.29). Since
F ∈ A(0 < Re z ≤ µ), then F ′ ∈ C(Kβ,µ,T ), and hence F ′ is bounded onKβ,µ,T .
Then one can apply a mean-value-type theorem for complex-valued functions,
see e.g. [5, Theorem 2.2], to get that, for some K > 0,

|F (µ− 2σ − iτ)− F (µ− σ − iτ)| ≤ K|σ|, 2σ < µ− β,

that yields (2.4) for all j > 0, cf. (2.5). Hence we can apply Theorem 2.

Remark 2.3. Note that, for F ∈ A(0 < Re z ≤ µ) in (2.3), the holomorphic
function H is redundant there, as we always can replace F (z) by a holomorphic
function F (z) + H(z)(µ − z)j . Therefore, Proposition 2.2 corresponds to [1,
Proposition 2.3].

Proposition 2.4. Let ϕ : R+ → R+ be a non-increasing function such that,
for some µ > 0, ν > 0, (2.1)–(2.2) hold. Suppose also that there exist j ≥ 1,
D > 0, and h : R→ R such that

H(z) :=

∫ ∞
0

eztϕ(t)dt− D

(µ− z)j
→ h

(
Im z

)
, Re z → µ−, (2.33)

uniformly (in Im z) on compact subsets of R. Then the following asymptotic
holds,

ϕ(t) ∼ D

Γ(j)
tj−1e−µt, t→∞. (2.34)

Proof. Let a > max{0, ν − µ} and α(t) be given by (2.13). Let G be given
by (2.8). Similarly to the proof of Theorem 2, we will get from (2.15) and
(2.33), that

G(z) = H(µ− z)− ϕ(0)

a+ z
, 0 < Re z < µ.

Next, (2.33) implies (2.10). Hence, by Lemma 2.1, (2.34) holds that fulfilled the
proof.

Note that the result in [3, Lemma 6.1] corresponds to j = 1 in Proposi-
tion 2.4.

Remark 2.5. It is worth noting that, for the case j > 1, we have, by (2.9), that if
G is bounded, then (2.10) holds. Therefore, in this case, it is enough to assume
that H in (2.33) is bounded to conclude (2.34).
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