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Abstract

We prove an analogue of the Ikehara theorem for positive non-increasing
functions convergent to zero, generalising the results postulated in Diek-
mann, Kaper (1978) [3] and Carr, Chmaj (2004) [1].
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1 Introduction

The Tkehara theorem and its extensions are the so-called complex Tauberian the-
orems, inspired, in particular, by the number theory, see e.g. the review [7]. The
following version of the Ikehara theorem can be found in [4, Subsection 2.5.7]:

Theorem 1. Let ¢ be a positive monotone increasing function, and let there
exist >0, j > 0, such that

> —tz _ F(Z) ez
/Oe Glt)dt = e Rez >, (1.1)

where F is holomorphic on {Rez > p}. Then, for some D > 0,

= pi—1opt
T (j)t e, 1t — oo.

Alternatively, Theorem 1 may be formulated for the Stieltjes measure de(t)
instead of ¢(t)dt obtaining similar asymptotic for ¢ (see e.g. Proposition 2.1
below).

In Theorem 1, ¢ increases to co. In [3, Lemma 6.1] (for j = 1) and in [1,
Proposition 2.3] (for j > 0), the similar results were stated for positive monotone
decreasing ¢ (cf., correspondingly, Propositions 2.4 and 2.2 below). The aim
of both generalizations was to find an a priori asymptotics for solutions to a
class of nonlinear integral equations. In [1], in particular, it was applied to the
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study of the uniqueness of traveling wave solutions to certain nonlocal reaction-
diffusion equations; see also e.g. [2,8,10,11,13]. Note also that then, the case
j = 2 corresponded to the traveling wave with the minimal speed.

In both papers [1,3] no proof was given, mentioning that it is supposed to be
analogous to the case of increasing ¢ without any further details. In Theorem 2
below, we prove an analogue of Theorem 1 for non-increasing function, and in
Proposition 2.2 we apply it to prove the mentioned result of [1]. We require,
however, an a priori regular decaying of ¢, namely, we assume that there exists
v > 0, such that ¢(t)e”* is an increasing function. We require also the con-
vergence of [;° e**dyp(t) for 0 < Rez < p instead of the weaker corresponding
assumption for [ e**o(t)dt.

Beside the aim to present a proof, the reason for the generalization we pro-
vide was to omit the requirement on the function F' to be analytical on the
line {Rez = u} keeping the general case j > 0. We were motivated by the
integro-differential equation we studied in [6] (which covers the equations con-
sidered in [1]), where the Laplace-type transform of the traveling wave with the
minimal speed (that requires, recall, j = 2) might be not analytical at z = pu.

Our result is based on a version of the Ikehara—Ingham theorem proposed
in [9], see Proposition 2.1 below. Using the latter result, we prove also in Propo-
sition 2.4 a generalization of [3, Lemma 6.1] (under the regularity assumptions
on ¢ mentioned above).

2 Main results

Let, for any D C C, H(D) be the class of all holomorphic functions on D.

Theorem 2. Let ¢ : Ry — Ry := [0,00) be a non-increasing function such
that, for some p >0, v > 0,

the function e”'o(t) is non-decreasing, (2.1)
and
o0
/e”dgp(t) <oo, 0<Rez<p. (2.2)

0
Let also the following assumptions hold.
1. There exist a constant j > 0 and complex-valued functions

H e H(0<Rez < p), FeHO<Rez<p)NCO < Rez < p),

such that the following representation holds

O/eZt<p(t)dt = (/f—(z))ﬂ + H(z), 0<Rez<p. (2.3)

2. For any T > 0,

lim g;(0) sup |F(p—20 —it) — F(p— o —it)| =0, (2.4)
70t Irl<T



where, for o >0,
gj(o) :==qlogo, j=1, (2.5)

Then ¢ has the following asymptotic

o(t) ~ wtjle”t, t — oo. (2.6)

The proof of Theorem 2 is based on the following Tenenbaum’s result.

Proposition 2.1 (“Effective” Ikehara—Ingham Theorem, cf. [9, Theorem 7.5.11]).
Let a(t) be a non-decreasing function such that, for some fized a > 0, the fol-
lowing integral converges:

/e_”da(t), Rez > a. (2.7)
0

Let also there exist constants D > 0 and j > 0, such that for the functions

17 D
_ —(at2)t _D
G(2) : a—f—z/e do(t) L Rez >0, (2.8)
0
T
n(o,T) :=o’71 /‘G(QO’ +it) — G(o +ir)|dr, T >0, (2.9)
S
one has that
lim 5o, 7) =0, T>0. (2.10)
Then
at) = {D + O(p(t))} e > 1 (2.11)
) e
where
t):= inf Tt L T) +(Tt) 7 §. 2.12
plt) =t {77 40 T) 4 (T (2.12)

Proof of Theorem 2. We first express [ e*(t)dt in the form (2.7). Fix any
a > 0 such that g+ a > v. Then, by (2.1), the function

aft) == e Dpt), >0, (2.13)

is increasing. Since ¢ is monotone, then, for any 0 < Rez < u, one has

o0 o} o0

/ e T da(t) = (u+ a) / = (t)dt + / (1), (2.14)

0 0 0



where both integrals in the right hand side of (2.14) converge, for 0 < Re z < p,
because of (2.2)—(2.3).

Then, by [12, Corollary II.1.1a], the integral in the left hand side of (2.14)
converges, for all Re z > 0. Therefore, by [12, Theorem I1.2.3a], one gets another
representation for the latter integral, for Re z > 0:

o0 o0
/ e @At o(t) = — / elh=2)ty (2.15)
0 0

Let G be given by (2.8) with «(t) as above and D := F(u). Combining
(2.15) with (2.3) (where we replace z by i — z), we obtain, for 0 < Rez < u,

Glz) = W +K(2), (2.16)
K(z):= H(u—z)—%—@. (2.17)

Check the condition (2.10); one can assume, clearly, that 0 < o < &. Since
K € H(0 < Rez < ), one easily gets that

lim o771 /|G(20+iT>—G(O’+iT)‘dT

/‘ (u—20—ir) = F(p) Flp—o—ir) = Fp))
(20 + i) (o +ir)d

< lim o/~ 1/‘ (p=20—im) - F,(H_U_ZT)‘LZT
(o +it)d

1
li It | F(p — 20 — - — ,
+agg+0 /’ o —i7) u)”(20+i7)3 (o +ir)d T
=: lim A;(o)+ lim B,(0). (2.18)

oc—0+ o—0+
Prove that both limits in (2.18) are equal to 0. For each j > 0, we define
the function
, T 1
hj(o) == a]_l/ ———dr, o> 0. (2.19)
-1 (024 172)2
We have then

Aj(o) < |s|u<pT|F(,u —20 —it) — F(p—o —ir)| hj(0). (2.20)

It is straighforward to check that

VT? 24T
hi(o) = 210g$ ~ —2logo, o—0+. (2.21)
g



For j # 1, we make the substitution 7 = o tant in (2.19), then

arctan L
hi(o) = / (cost)I 2 dt. (2.22)
—arctan L
Therefore,
T .
hj(o) < 2arctan — <, c>0,j5>2. (2.23)
o

Let now 0 < j <2, j # 1. Then replacing ¢ by § — ¢ in (2.22), we obtain

™
2

hi(o) =2 / (sint)?=2dt < 2377 / 772 dt, (2.24)

™
2

w
3

—arctan % 5 —arctan %
since sint > £, ¢ € (0, 5]. Therefore,

94—2j rj—1

hj(a)§23*3/ 972 dt = , 0>0 1<j<2 (2.25)
0

j—1

Finally, for 0 < j < 1, we obtain from (2.24), that

hj(o) < 123_; <(72T — arctan g)Fl - (g)y1> (2.26)

Since arctanx + arctan% =73, 1 >0, we get

t K fan o ~ = — 7 -0+
arctan — = — —arctan — ~ — — —, o .
o 2 T 2 T

Therefore, (2.26) implies that
hij(o) =0(""), =0+, 0<j<1. (2.27)
Combining (2.21), (2.23), (2.25), (2.27) with (2.5), we have that
hj(o) = O(g,(0)), o—0+, >0, (2.28)
that, together with (2.20) and (2.4), yield Uli)r{)lJr Aj(o) =0.
Take now an arbitrary 8 € (0, 1) and consider, for each T' > 0, the set
Kgur ={z€C|B<Rez<yp, [Imz| <T}. (2.29)

Let 0 < o < p?; since F € C(K sz, 1), there exists C; > 0 such that [F(z)| <
C1, z € K /5, 7. Therefore,

, 1 1
Bi(0) < o9 Flu—20 —ir)— F ‘ - |a
i(7) £ 07 sup [P = 20 =im) = PG| | lerm - weplt
. BEVC
420,091 / ( L1 (dT (2.30)
(20 +i1)  (o+iT)i 1 '
Va<irl<T



Next, since

. 1 1 20+iT 1 1 o
(20 +ir)! (o +iT)! otir A o ((1+t)o+ir)
1
< / d o dt < A
0 ((1+t)20'2+7'2) 2 (0_2+T2) 2
we can continue (2.30) as follows, cf. (2.19),
jBj(o) < sup |F(p—20 —it) — F(p)| hjt1(o)
IT|<Ve
ol
+4C, / —dr. (2.31)
JElr<T (0-2+T2) 2

By (2.23) and (2.25), functions hj;q are bounded on (0,00) for all j > 0.
Next, since F' is uniformly continuous on K 5 , 7, we have that, for any € >
0 there exists 6 > 0 such that f(u,0,7) = |F(p — 20 —it) — F(p)| < e,
if only 402 + 72 < 6. Therefore, if o > 0 is such that 402 + o < § then
sup|,|<./z f (1, 0, 7) < € hence

sup |F(p—20 —it) — F(p)| hjz1(o) =0, o —0+. (2.32)
Irl<ve

Finally, making again the substitution 7 = o tant in the integral in (2.31), we
obtain that it is equal to

N

rctan X2
-

arctan £ )
I; = / (cost)I 1 dt.
al

Similarly, to the above, for j > 1,
T o
I; < arctan — — arctan £7
o o

and, for 0 < j < 1,

™ __

arctan %2 1—j5 1 1
2 - 1 21-j J TN\J
I; :/ - - dt < — (I—arctanﬁ) —(z—arctan—) .
x (sint)t=J J 2 o 2 o

5 —arctan z
o

As a result, I; — 0 as ¢ — 0+, that, together with (2.32) and (2.31), proves
that Bj(o) = 0, 0 — 0+.

Combining this with A;(c) — 0, one gets (2.10) from (2.18); and we can
apply Proposition 2.1. Namely, by (2.11), there exist C > 0 and ¢, > 1, such
that

D . D -~
— el < te<“+a>t<{.+c t}eattﬂ Lt >+t

By (2.10) and (2.12), p(t) — 0 as ¢ — oo. Therefore,

ottt o —_eatpi=l o,

I'(j)
that is equivalent to (2.6) and finishes the proof. O



The following simple Proposition show that if ' in (2.3) is holomorphic on
the line {Re z = p}, then (2.4) holds.

Proposition 2.2. Let ¢ : Ry — Ry be a non-increasing function such that,
for some > 0, v > 0, (2.1)~(2.2) hold. Suppose also that there exist j > 0
and F,H € A(0 < Rez < ), such that (2.3) holds. Then ¢ has the asymptotic
(2.6).

Proof. Take any € (0,p) and T > 0. Let K, r be defined by (2.29). Since
F e A0 <Rez < p), then F’ € C(Kg,,,r), and hence F’ is bounded on Kg ;, 7.
Then one can apply a mean-value-type theorem for complex-valued functions,
see e.g. [5, Theorem 2.2], to get that, for some K > 0,

F(u—20—i7)— F(u—0 —ir)| < Klo|,  20<p— 5,
that yields (2.4) for all j > 0, cf. (2.5). Hence we can apply Theorem 2. O

Remark 2.3. Note that, for F € A(0 < Rez < p) in (2.3), the holomorphic
function H is redundant there, as we always can replace F(z) by a holomorphic

function F(z) + H(z)(u — 2z)?. Therefore, Proposition 2.2 corresponds to [1,
Proposition 2.3].

Proposition 2.4. Let ¢ : Ry — Ry be a non-increasing function such that,
for some p > 0, v > 0, (2.1)~(2.2) hold. Suppose also that there exist j > 1,
D >0, and h : R — R such that

> zt _ D
H(z) .:/O e o(t)dt T >

3 — h(Imz), Rez— p—, (2.33)

uniformly (in ITmz) on compact subsets of R. Then the following asymptotic
holds,

D .
t) ~ ——tI e ™Mt 0. 2.34
0~ 703 (230
Proof. Let a > max{0,v — u} and a(t) be given by (2.13). Let G be given

by (2.8). Similarly to the proof of Theorem 2, we will get from (2.15) and
(2.33), that

S

G(z)=H(p—2)— ;p(f)z’ 0 <Rez < p.

Next, (2.33) implies (2.10). Hence, by Lemma 2.1, (2.34) holds that fulfilled the
proof. O

Note that the result in [3, Lemma 6.1] corresponds to j = 1 in Proposi-
tion 2.4.

Remark 2.5. Tt is worth noting that, for the case j > 1, we have, by (2.9), that if
G is bounded, then (2.10) holds. Therefore, in this case, it is enough to assume
that H in (2.33) is bounded to conclude (2.34).
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