
ar
X

iv
:1

80
4.

10
38

6v
2 

 [
m

at
h.

A
P]

  2
5 

N
ov

 2
01

8

Trudinger-Moser inequalities on a closed Riemannian surface with

the action of a finite isometric group
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Abstract

Let (Σ, g) be a closed Riemannian surface, W1,2(Σ, g) be the usual Sobolev space, G be a finite iso-

metric group acting on (Σ, g), and HG be the function space including all functions u ∈ W1,2(Σ, g)

with
∫
Σ

udvg = 0 and u(σ(x)) = u(x) for all σ ∈ G and all x ∈ Σ. Denote the number of distinct

points of the set {σ(x) : σ ∈ G} by I(x) and ℓ = minx∈Σ I(x). Let λG
1

be the first eigenvalue of the

Laplace-Beltrami operator on the space HG. Using blow-up analysis, we prove that if α < λG
1

and β ≤ 4πℓ, then there holds

sup
u∈HG ,

∫
Σ
|∇gu|2dvg−α

∫
Σ

u2dvg≤1

∫

Σ

eβu2

dvg < ∞;

if α < λG
1

and β > 4πℓ, or α ≥ λG
1

and β > 0, then the above supremum is infinity; if α < λG
1

and β ≤ 4πℓ, then the above supremum can be attained. Moreover, similar inequalities involving

higher order eigenvalues are obtained. Our results partially improve original inequalities of J.

Moser [17], L. Fontana [9] and W. Chen [4].
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1. Introduction

Let Ω ⊂ Rn be a smooth bounded domain, W1,n
0

(Ω) be the usual Sobolev space, and ωn−1 be

the area of the unit sphere in Rn. It was proved by Moser [17] that for any α ≤ αn = nω1/(n−1)

n−1
,

there holds

sup
u∈W1,n

0
(Ω),

∫
Ω
|∇u|ndx≤1

∫

Ω

eα|u|
n/(n−1)

dx < ∞. (1)

Moreover, αn is the best constant in the sense that if α > αn, the integrals in the above inequality

are still finite, but the supremum is infinity. Such kind of inequalities are known as Trudinger-

Moser inequalities in literature. Earlier contributions are due to Yudovich [34], Pohozaev [21],

Peetre [20] and Trudinger [24]. Let λ1(Ω) be the first eigenvalue of the Laplace operator with
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respect to the Dirichlet boundary condition. Adimurthi-Druet [1] proved that for any α < λ1(Ω),

there holds

sup
u∈W1,2

0
(Ω),

∫
Ω
|∇u|2dx≤1

∫

Ω

e4πu2(1+α‖u‖2
2
)dx < ∞; (2)

moreover, if α ≥ λ1(Ω), then the above supremum is infinity, where ‖u‖2
2
=

∫
Ω

u2dx. The

inequality (2) is stronger than (1) and was extended by the second named author [26] to the higher

dimensional case. Later, Tintarev [23] proved among other results that for any α < λ1(BR(0)),

there holds

sup
u∈W1,2

0
(Ω),

∫
Ω
|∇u|2dx−α

∫
Ω

u2dx≤1

∫

Ω

e4πu2

dx < ∞, (3)

where BR(0) denotes the ball centered at 0 with radius R and its measure is equal to that ofΩ. As

one expected, λ1(BR(0)) can be replaced by λ1(Ω), which is a consequence of ([28], Theorem 1).

One can ask whether the supremum in (1) can be attained or not. Existence of extremal

functions was proved first by Carleson-Chang [3] in the case that Ω is the unit ball, then by

Struwe [22] in the case that Ω is close to a ball in the sense of measure, later by Flucher [8]

when Ω is a planar domain, and finally by Lin [13] when Ω is a domain in Rn. In [25], the

second named author claimed that the supremum in (2) can be attained for all 0 ≤ α < λ1(Ω).

We remark that there is a mistake during that test function computation ([25], page 338, line

8). In fact, in two dimensions, extremal function for (2) exists only for sufficiently small α, see

for example [27]. Concerning extremal functions for inequalities of the type (2), we refer the

reader to [14, 15, 6, 29, 30, 10, 35, 32, 33, 19]. As a comparison, it was proved in [28] that the

supremum in (3) can be attained for all α < λ1(Ω). It is remarkable that (3) is stronger than (2),

however, there is no relation on existence of extremal functions between (2) and (3).

Let (S2, g0) be the 2-dimensional sphere x2
1
+ x2

2
+ x2

3
= 1 with the metric g0 = dx2

1
+dx2

2
+dx2

3

and the corresponding volume element dvg0
. According to Moser [17], one can find a constant C

such that for all functions u with
∫
S2 |∇g0

u|2dvg0
≤ 1 and

∫
S2 udvg0

= 0,

∫

S2

e4πu2

dvg0
≤ C. (4)

Concerning all even functions u, it was indicated by Moser [18] that the best constant α2 = 4π
would double. Namely, there exists a constant C such that for all functions u satisfying u(−x) =

u(x), ∀x ∈ S2,
∫
S2 |∇g0

u|2dvg0
≤ 1, and

∫
S2 udvg0

= 0, there holds

∫

S2

e8πu2

dvg0
≤ C. (5)

Later, by using an isoperimetric inequality on closed Riemannian surfaces with conical singular-

ities, Chen [4] proved a Trudinger-Moser inequality for a class of “symmetric” functions, which

particularly generalized (4) and (5).

Let (M, g) be a closed n-dimensional Riemannian manifold. Among other results, it was

proved by Fontana [9] that there exists a constant C, depending only on (M, g), such that if

u ∈ W1,n(M, g) satisfies
∫

M
|∇gu|ndvg ≤ 1 and

∫
M

udvg = 0, then

∫

M

eαn |u|n/(n−1)

dvg ≤ C. (6)
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The existence of extremal functions for (6) was obtained by Li [11, 12]. Precisely, there exists

some u0 ∈ W1,n(M) ∩ C1(M) with
∫

M
|∇gu0|ndvg = 1 and

∫
M

u0dvg = 0 such that

∫

M

eαn |u0 |n/(n−1)

dvg = sup
u∈W1,n(M),

∫
M
|∇gu|ndvg≤1,

∫
M

udvg=0

∫

M

eαn |u|n/(n−1)

dvg. (7)

Obviously (7) implies (6). In [27], the inequality (2) was generalized to a closed Riemannian

surface version, namely for any α with 0 ≤ α < λ1(Σ) = inf‖u‖2=1,
∫
Σ

udvg=0 ‖∇gu‖2
2
,

sup
u∈W1,2(Σ,g),

∫
Σ
|∇gu|2dvg≤1,

∫
Σ

udvg=0

∫

Σ

e4πu2(1+α‖u‖2
2
)dvg < ∞; (8)

moreover, the supremum in (8) can be attained for sufficiently small α. However, in a recent

work [28], an analog of (3) was also established on a closed Riemannian surface, say for any

α < λ1(Σ),

sup
u∈W1,2(Σ,g),

∫
Σ
|∇gu|2dvg−α

∫
Σ

u2dvg≤1

∫

Σ

e4πu2

dvg < ∞. (9)

Moreover, the above supremum can be attained for any α < λ1(Σ). Further, this kind of inequal-

ities involving higher order eigenvalues of the Laplace-Beltrami operator has been studied.

In this paper, our aim is to establish Trudinger-Moser inequalities for “symmetric” functions

and prove the existence of their extremal functions on a closed Riemannian surface with the

action of a finite isometric group. They can be viewed as a “combination” of (5) and (9). We

believe that such inequalities would play an important role in the study of prescribing Gaus-

sian curvature problem and mean field equations. Before ending this introduction, we mention

Mancini-Martinazzi [16], who studied the classical Trudinger-Moser inequality by estimating

the energy of extremals for subcritical functionals.

2. Notations and main results

Let (Σ, g) be a closed Riemannian surface and G = {σ1, · · · , σN } be an isometric group acting

on it, where N is some positive integer. By definition, G is a group and each σi : Σ → Σ is an

isometric map, particularly σ∗
i
gx = gσi(x) for all x ∈ Σ. Let u : Σ → R be a measurable function,

we say that u ∈ IG if u is G-invariant, namely u(σi(x)) = u(x) for any 1 ≤ i ≤ N and almost

every x ∈ Σ. We denote W1,2(Σ, g) the closure of C∞(Σ) under the norm

‖u‖W1,2(Σ,g) =

(∫

Σ

(
|∇gu|2 + u2

)
dvg

)1/2

,

where ∇g and dvg stand for the gradient operator and the Riemannian volume element respec-

tively. Define a Hilbert space

HG =

{
u ∈ W1,2(Σ, g) ∩IG :

∫

Σ

udvg = 0

}
(10)

with an inner product

〈u, v〉HG
=

∫

Σ

〈∇gu,∇gv〉dvg,

3



where 〈∇gu,∇gv〉 stands for the Riemannian inner product of ∇gu and ∇gv. Let ∆g = −divg∇g be

the Laplace-Beltrami operator, and

λG
1 = inf

u∈HG , u.0

∫
Σ
|∇gu|2dvg∫
Σ

u2dvg

(11)

be the first eigenvalue of ∆g on the space HG. For any x ∈ Σ, we set I(x) = ♯G(x), where ♯A
stands for the number of all distinct points in the set A, and G(x) = {σ1(x), · · · , σN(x)}. Let

ℓ = min
x∈Σ

I(x). (12)

Clearly we have 1 ≤ ℓ ≤ N since 1 ≤ I(x) ≤ N for all x ∈ Σ. As one will see, the best constant in

the Trudinger-Moser inequality for “symmetric” functions would be 4πℓ. Precisely we state the

following theorem.

Theorem 1. Let (Σ, g) be a closed Riemannian surface and G = {σ1, · · · , σN } be an isometric

group acting on it. Assume HG, λG

1
and ℓ are defined by (10), (11) and (12) respectively. Then

we have the following assertions:

(i) For any α < λG

1
and β ≤ 4πℓ, there holds

sup
u∈HG,

∫
Σ
|∇gu|2dvg−α

∫
Σ

u2dvg≤1

∫

Σ

eβu2

dvg < ∞; (13)

(ii) If α < λG

1
and β > 4πℓ, or α ≥ λG

1
and β > 0, then the supremum in (13) is infinity;

(iii) If α < λG

1
and β ≤ 4πℓ, then the supremum in (13) can be attained by some function

u0 ∈HG ∩C1(Σ, g) with
∫
Σ
|∇gu0|2dvg − α

∫
Σ

u2
0
dvg = 1.

As in [28], we may consider the effect of higher order eigenvalues on the Trudinger-Moser

inequality. For this purpose, we define the first eigenfunction space with respect to λG
1

by

EλG
1
=

{
u ∈HG : ∆gu = λG

1 u
}
.

By an induction, the j-th ( j ≥ 2) eigenvalue and eigenfunction space will be defined as

λG
j = inf

u∈HG , u∈E⊥j−1
, u.0

∫
Σ
|∇gu|2dvg∫
Σ

u2dvg

(14)

and

EλG
j
=

{
u ∈ E⊥j−1 : ∆gu = λG

j u
}

respectively, where E j−1 = EλG
1
⊕ · · · ⊕ EλG

j−1
and

E⊥j−1 =

{
u ∈HG :

∫

Σ

uvdvg = 0, ∀v ∈ E j−1

}
. (15)

Then higher order eigenvalues of ∆g affect the Trudinger-Moser inequality in the following way:
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Theorem 2. Let (Σ, g) be a closed Riemannian surface and G = {σ1, · · · , σN } be an isometric

group acting on it. Assume HG, ℓ, λG

j
and E⊥

j−1
are defined by (10), (12), (14) and (15) respec-

tively, j ≥ 2.

(i) For any α < λG

j
and β ≤ 4πℓ, there holds

sup
u∈E⊥

j−1
,
∫
Σ
|∇gu|2dvg−α

∫
Σ

u2dvg≤1

∫

Σ

eβu2

dvg < ∞; (16)

(ii) If α < λG

j
and β > 4πℓ, or α ≥ λG

j
and β > 0, then the supremum in (16) is infinity;

(iii) For any α < λG

j
and β ≤ 4πℓ, the supremum in (16) can be attained by some function

u0 ∈ E⊥
j−1
∩ C1(Σ, g) with

∫
Σ
|∇gu0|2dvg − α

∫
Σ

u2
0
dvg = 1.

Let us give several examples for the finite isometric group G acting on a closed Riemannian

surface (Σ, g). (a) If G = {Id}, where Id denotes the identity map, then G is a trivial isometric

group action, and Theorems 1 and 2 are reduced to ([28], Theorems 3 and 4). (b) Let (S2, g0)

be the standard 2-sphere given as in the introduction, and G = {Id, σ0}, where σ0(x) = −x for

any x ∈ S2. Then we have ♯G(x) = ♯{x,−x} = 2 for any x ∈ S2, and thus ℓ = 2. Hence

Moser’s inequality (5) for even functions is a special case of our theorems. (c) If G has a fixed

point, namely there exists some point p ∈ Σ such that σ(p) = p for all σ ∈ G, then we have

ℓ = ♯G(p) = 1, and whence both of the best constants in (13) and (16) are 4π.

From now on, to simplify notations, we write

‖u‖1,α =
(∫

Σ

|∇gu|2dvg − α
∫

Σ

u2dvg

)1/2

, (17)

provided that the right hand side of the above equality makes sense, say, if α < λG
1

and u ∈ HG,

then ‖u‖1,α is well defined. For the proof of Theorems 1 and 2, we follow the lines of [28]

and thereby follow closely [11]. Pioneer works are due to Carleson-Chang [3], Ding-Jost-Li-

Wang [7], and Adimurthi-Struwe [2]. Since both of them are similar, we only give the outline

of the proof of Theorem 1. Firstly, we prove that the best constant in (13) is 4πℓ, which is

based on Moser’s original inequality and test function computations; Secondly, a direct method

of variation shows that every subcritical Trudinger-Moser functional has a maximizer, namely

for any ǫ > 0, there exists some uǫ ∈HG with ‖uǫ‖1,α = 1 satisfying

∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg = sup

u∈HG , ‖u‖1,α≤1

∫

Σ

e(4πℓ−ǫ)u2

dvg,

where α < λG
1

and ‖u‖1,α is defined as in (17); Thirdly, we use blow-up analysis to show that if

supx∈Σ |uǫ | → ∞ as ǫ → 0, then

sup
u∈HG , ‖u‖1,α≤1

∫

Σ

e4πℓu2

dvg ≤ Volg(Σ) + πℓe1+4πℓAx0 ,

where Ax0
is a constant related to certain Green function (see (60) below); Finally, we construct

a sequence of functions φǫ ∈HG with ‖φǫ‖1,α ≤ 1 such that

∫

Σ

e4πℓφ2
ǫ dvg > Volg(Σ) + πℓe1+4πℓAx0 ,

5



provided that ǫ > 0 is chosen sufficiently small. Combining the above two estimates, we get a

contradiction, which implies that uǫ must be uniformly bounded. Then applying elliptic estimates

to the equation of uǫ , we get a desired extremal function.

In the remaining part of this paper, we shall prove Theorems 1 and 2. Throughout this paper,

we do not distinguish sequence and subsequence. Moreover we often denote various constants

by the same C, but the dependence of C will be given only if necessary. Also we use symbols

|O(Rǫ)| ≤ CRǫ, oǫ(1)→ 0 as ǫ → 0, oδ(1)→ 0 as δ→ 0, and so on.

3. Proof of Theorem 1

In this section, we shall prove Theorem 1. In the first subsection, we show that the best

constant in (13) is equal to 4πℓ. The essential tools we use are subcritical Trudinger-Moser

inequality and Moser’s sequence of functions. Also we prove (ii) of Theorem 1. In the second

subsection, we consider the existence of maximizers for subcritical Trudinger-Moser functionals

and study their energy concentration phenomenon. In the third subsection, assuming blow-up

occurs, we derive an upper bound of the supremum in (13), which obviously leads to (i) of

Theorem 1. In the final subsection, we construct a sequence of test functions to show that the

upper bound we obtained in the third subsection is not really an upper bound. Therefore blow-up

can not occur and elliptic estimates lead to existence of extremal function. This concludes (iii)

of Theorem 1.

3.1. The best constant

In view of (11), one can see that λG
1
> 0 by using a direct method of variation. For any fixed

α < λG
1

, if u ∈HG satisfies ‖u‖1,α ≤ 1, then ‖∇gu‖2
2
≤ λG

1
/(λG

1
− α). By Fontana’s inequality (6),

there exists a positive constant β0 depending only on λG
1

and α such that

sup
u∈HG , ‖u‖1,α≤1

∫

Σ

eβ0u2

dvg < ∞.

Now we define

β∗ = sup

β : sup
u∈HG , ‖u‖1,α≤1

∫

Σ

eβu2

dvg < ∞
 . (18)

Lemma 3. Let ℓ and β∗ be defined as in (12) and (18) respectively. Then β∗ = 4πℓ.

Proof. We divide the proof into two steps.

Step 1. There holds β∗ ≤ 4πℓ.
In view of (12), there exists some point x0 ∈ Σ satisfying ℓ = ♯G(x0) = ♯ {σ1(x0), · · · , σN(x0)}.

Without loss of generality, we assume that σ1 = Id is the identity map, and that G(x0) =

{σi(x0)}ℓ
i=1

. Take

r0 =
1

4
min

1≤i< j≤ℓ
dg(σi(x0), σ j(x0)),

where dg(σi(x0), σ j(x0)) denotes the Riemannian distance between σi(x0) and σ j(x0). Since

every σi : Σ→ Σ is an isometric map, we can see that for all 0 < r ≤ r0,

Br(σi(x0)) = σi(Br(x0)), 1 ≤ i ≤ ℓ, (19)

where Br(x) stands for the geodesic ball centered at x ∈ Σ with radius r.

6



Fixing p ∈ Σ, k ∈ N and 0 < r ≤ r0, we take a sequence of Moser functions by

Mp,k = Mp,k(x, r) =



log k when ρ ≤ rk−1/4

4 log r
ρ

when rk−1/4 < ρ ≤ r

0 when ρ > r,

(20)

where ρ denotes the Riemannian distance between x and p. Define

M̃k = M̃k(x, r) =


Mσi(x0),k(x, r), x ∈ Br0

(σi(x0)), 1 ≤ i ≤ ℓ

0, x ∈ Σ \ ∪ℓ
i=1

Br0
(σi(x0))

(21)

If x ∈ Br0
(σi(x0)) for some i, then it follows from (19) that for any j = 1, · · · ,N, σ j(x) ∈

Br(σ j(σi(x0))) and dg(σ j(x), σ j(σi(x0))) = dg(x, σi(x0)). In view of (20) and (21), one can easily

check that

M̃k(σ j(x), r) = M̃k(x, r), ∀x ∈ Br0
(σi(x0)), 1 ≤ i ≤ ℓ, 1 ≤ j ≤ N. (22)

If x ∈ Σ \ ∪ℓ
i=1

Br0
(σi(x0)), then σ j(x) ∈ Σ \ ∪ℓ

i=1
Br0

(σi(x0)), and thus M̃k(σ j(x), r) = 0 for

j = 1, · · · ,N. This together with (22) leads to

M̃k(σ j(x), r) = M̃k(x, r), ∀x ∈ Σ, 1 ≤ j ≤ N. (23)

A straightforward calculation shows

∫

Σ

|∇gM̃k |2dvg = (1 + O(r))8πℓ log k, (24)

∫

Σ

M̃m
k dvg = O(1), m = 1, 2. (25)

Denote M̃k =
1

Volg(Σ)

∫
Σ

M̃kdvg and define

M∗k = M∗k (x, r) =
M̃k(x, r) − M̃k

‖M̃k − M̃k‖1,α
.

In view of (23), we have M∗
k
∈HG. Note that ‖M∗

k
‖1,α = 1. By (24) and (25),

‖M̃k − M̃k‖1,α = (1 + O(r))8πℓ log k + O(1).

Hence we have for any β1 > 4πℓ,

∫

Br0
(x0)

eβ1 M∗
k

2

dvg ≥
∫

B
rk−1/4 (x0)

e
β1

(log k+O(1))2

(1+O(r))8πℓ log k+O(1) dvg

= e
β1(1+ok (1)) log k

(1+O(r))8πℓ πr2k−1/2(1 + ok(1)).

Choosing r > 0 sufficiently small and then passing to the limit k → ∞ in the above estimate, we

conclude ∫

Br0
(x0)

eβ1 M∗
k

2

dvg → ∞ as k → ∞.

7



Therefore β∗ ≤ 4πℓ.

Step 2. There holds β∗ ≥ 4πℓ.
Suppose β∗ < 4πℓ. Then for any k ∈ N, there is a uk ∈HG with ‖uk‖1,α ≤ 1 such that

∫

Σ

e(β∗+k−1)u2
k dvg → ∞ as k → ∞. (26)

Since α < λG
1

, we can see that uk is bounded in W1,2(Σ, g). Up to a subsequence, we can assume

that uk converges to some function u0 weakly in W1,2(Σ, g), strongly in Lq(Σ, g), ∀q > 1, and for

almost every x ∈ Σ. Clearly u0 ∈HG and ‖u0‖1,α ≤ 1. We now claim that u0 ≡ 0. For otherwise,

we have

‖uk − u0‖21,α ≤ 1 − ‖u0‖21,α + ok(1) ≤ 1 −
1

2
‖u0‖21,α < 1 (27)

for sufficiently large k. Given any ǫ > 0. We calculate

∫

Σ

e(β∗+k−1)u2
k dvg ≤

∫

Σ

e(β∗+k−1)(1+ǫ)(uk−u0)2+Cu2
0 dvg

≤ C

(∫

Σ

e(β∗+k−1)(1+2ǫ)(uk−u0)2

dvg

) 1+ǫ
1+2ǫ

, (28)

where C is a constant depending only on u0, β∗ and ǫ. In view of (27), one can find a small ǫ > 0

and a large integer k0 such that when k ≥ k0, there holds

(β∗ + k−1)(1 + 2ǫ)‖uk − u0‖21,α ≤ β
∗
(
1 − 8−1‖u0‖21,α

)
.

This together with (28) leads to ∫

Σ

e(β∗+k−1)u2
k dvg ≤ C,

contradicting (26). This confirms our claim u0 ≡ 0.

For any fixed x ∈ Σ, we let I = I(x) = ♯G(x). Without loss of generality, we assume that

σ1 = Id and that G(x) = {σ1(x), · · · , σI(x)}. There exists sufficiently small r1 > 0 such that

∩I
i=1

Br1
(σi(x)) = ∅. Since σi’s are all isometric maps, if 0 < r ≤ r1, then we have

∫

Br(σi(x))

|∇guk|2dvg =

∫

Br(x)

|∇guk|2dvg, ∀1 ≤ i ≤ I.

Noting that I ≥ ℓ, ‖uk‖1,α ≤ 1 and u0 ≡ 0, we have for 0 < r ≤ r1,

∫

Br(x)

|∇guk |2dvg ≤
1

ℓ
+ ok(1). (29)

Let ζ ∈ C1
0
(Br(x)), 0 ≤ ζ ≤ 1, ζ ≡ 1 on Br/2(x) and |∇gζ | ≤ 2

r
. This together with (29) and u0 ≡ 0

implies that ζuk ∈ W1,2
0

(Br(x)) and

∫

Br(x)

|∇g(ζuk)|2dvg ≤
1

ℓ
+ ok(1). (30)

8



Take a normal coordinate system (Br(x), exp−1
x ; {y}), where y = (y1, y2) ∈ Br(0) ⊂ R2, and

expx : Br(0) → Br(x) denotes the exponential map. Let ψk(y) = (ζuk)(expx(y)), y ∈ Br(0). In

view of (30), one easily gets
∫

Br(0)

|∇R2ψk(y)|2dy = (1 + O(r))

∫

Br(x)

|∇g(ζuk)|2dvg

≤ (1 + O(r))

(
1

ℓ
+ ok(1)

)
, (31)

where ∇R2 denotes the usual gradient operator in R2. Also there holds ψk ∈ W
1,2
0

(Br(0)) since

ζuk ∈ W
1,2
0

(Br(x)). Hence, if K ∈ N is chosen sufficiently large and r > 0 is chosen sufficiently

small, it then follows from (31) and Moser’s inequality (1) that
∫

Br/2(x)

e(β∗+k−1)u2
k dvg ≤

∫

Br(x)

e(β∗+k−1)(ζuk)2

dvg

= (1 + O(r))

∫

Br(0)

e(β∗+k−1)ψ2
k dy

≤ C (32)

for some constant C and all k ≥ K. Since (Σ, g) is compact, there exists some constant C such

that for all k ≥ K, ∫

Σ

e(β∗+k−1)u2
k dvg ≤ C.

This contradicts (26) again. Hence β∗ ≥ 4πℓ.
We finish the proof of the lemma by combining Steps 1 and 2. �

We now clarify the proof of (ii) of Theorem 1, which is partially implied by Lemma 3.

Proof of (ii) of Theorem 1. If α < λG
1

and β > 4πℓ, then Step 1 of the proof of Lemma 3

gives the desired result. In the following, we assume α ≥ λG
1

and β > 0. By a direct method of

variation, one can find a function u0 . 0 satisfying u0 ∈HG ∩C1(Σ) and
∫

Σ

|∇gu0|2dvg = λ
G
1

∫

Σ

u2
0dvg.

For any t ∈ R, we have tu0 ∈HG and
∫

Σ

|∇g(tu0)|2dvg − α
∫

Σ

(tu0)2dvg ≤ 0.

Moreover, there holds ∫

Σ

eβ(tu0)2

dvg → ∞ as t → ∞.

Again this gives the desired result. �

3.2. Maximizers for subcritical functionals

Let α < λG
1

. As in ([28], page 3183), by Lemma 3 and a direct method of variation, we can

prove that for any 0 < ǫ < 4πℓ, there exists some uǫ ∈HG with ‖uǫ‖1,α = 1 such that
∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg = sup

u∈HG , ‖u‖1,α≤1

∫

Σ

e(4πℓ−ǫ)u2

dvg. (33)
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The Euler-Lagrange equation for the maximizer uǫ reads



∆guǫ − αuǫ =
1
λǫ

uǫe
(4πℓ−ǫ)u2

ǫ − µǫ
λǫ

uǫ ∈HG, ‖uǫ‖1,α = 1

λǫ =
∫
Σ

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg

µǫ =
1

Volg(Σ)

∫
Σ

uǫe
(4πℓ−ǫ)u2

ǫ dvg.

(34)

Regularity theory implies that uǫ ∈ C1(Σ, g). Using an argument of ([28], page 3184), one has

lim inf
ǫ→0

λǫ > 0, |µǫ |/λǫ ≤ C. (35)

By (33), one can easily see that

lim
ǫ→0

∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg = sup

u∈HG , ‖u‖1,α≤1

∫

Σ

e4πℓu2

dvg. (36)

Note that we do not assume the supremum on the right hand side of (36) is finite. If |uǫ | ≤ C, in

view of (35), applying elliptic estimates to (34), we obtain uǫ → u∗ in C1(Σ, g), which implies

that u∗ ∈ HG and ‖u∗‖1,α = 1. In view of (36), we know that u∗ is a desired extremal function.

From now on, we assume cǫ = maxΣ |uǫ | → +∞ as ǫ → 0. Noting that −uǫ also satisfies (33) and

(34), we may assume with no loss of generality that

cǫ = max
Σ
|uǫ | = max

Σ
uǫ = uǫ(xǫ)→ +∞ (37)

and that

xǫ → x0 ∈ Σ as ǫ → 0. (38)

To proceed, we need the following energy concentration phenomenon of uǫ .

Lemma 4. Under the assumptions (37) and (38), we have

(i) uǫ converges to 0 weakly in W1,2(Σ, g), strongly in L2(Σ, g), and almost everywhere in Σ;

(ii) I(x0) = ♯G(x0) = ℓ;
(iii) lim

r→0
lim
ǫ→0

∫
Br(x0)
|∇guǫ |2dvg = 1/ℓ.

Proof. (i) Since α < λG
1

and ‖uǫ‖1,α = 1, uǫ is bounded in W1,2(Σ, g). Hence we may assume

uǫ converges to u0 weakly in W1,2(Σ, g), strongly in L2(Σ, g), and almost everywhere in Σ. If

u0 . 0, then

‖uǫ − u0‖21,α = 1 − ‖u0‖21,α + oǫ(1) ≤ 1 −
1

2
‖u0‖21,α,

provided that ǫ is sufficiently small. It follows from Lemma 3 that e(4πℓ−ǫ)u2
ǫ is bounded in Lq(Σ, g)

for some q > 1. Then applying elliptic estimates to (34), we have that ‖uǫ‖L∞(Σ) ≤ C, which

contradicts (37). Therefore u0 ≡ 0.

(ii) Since ℓ = minx∈Σ I(x), we have I(x0) ≥ ℓ. Suppose I = I(x0) > ℓ. Using the same

argument as we derived (29), we have

∫

Br(x0)

|∇guǫ |2dvg ≤
1

I
+ oǫ(1), (39)
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provided that r > 0 is chosen sufficiently small. Similar to (32), it follows from (39) and Moser’s

inequality (1) that ∫

Br/2(x0)

e4πℓpu2
ǫ dvg ≤ C

for some sufficiently small r > 0 and some p > 1, where C is a constant depending only on r,

p, I and ℓ. Applying elliptic estimates to (34), we have that uǫ is uniformly bounded in Br/4(x0).

This contradicts (37). Therefore I(x0) = ℓ.
(iii) By (ii), there exists some r0 > 0 such that ‖∇guǫ‖2L2(Br0

(x0))
≤ 1

ℓ + oǫ(1). It follows that

lim
r→0

lim
ǫ→0

∫

Br(x0)

|∇guǫ |2dvg ≤
1

ℓ
. (40)

We claim that the equality of (40) holds. For otherwise, there exist two positive constants ν and

r1 with 0 < r1 < r0 such that ∫

Br1
(x0)

|∇guǫ |2dvg <
1

ℓ
− ν.

Similarly as we did in the proof of (ii), we have that e(4πℓ−ǫ)u2
ǫ is bounded in Lq(Br1/2(x0)) for

some q > 1. Then applying elliptic estimates to (34), we obtain that uǫ is uniformly bounded in

Br1/4(x0), which contradicts (37). This concludes our claim and (iii) holds. �

3.3. Blow-up analysis

Set

rǫ =

√
λǫ

cǫ
e−(2πℓ−ǫ/2)c2

ǫ . (41)

For any 0 < a < 4πℓ, by Lemma 3, the Hölder inequality and (i) of Lemma 4, one has

λǫ =

∫

Σ

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg = eac2

ǫ

∫

Σ

u2
ǫe

(4πℓ−ǫ−a)u2
ǫ dvg ≤ eac2

ǫ oǫ(1).

It then follows that

r2
ǫ c2

ǫe
(4πℓ−ǫ−a)c2

ǫ = oǫ(1). (42)

In particular, rǫ → 0 as ǫ → 0. Let 0 < δ < 1
2
ig(Σ) be fixed, where ig(Σ) is the injectivity radius of

(Σ, g). For y ∈ Bδr−1
ǫ

(0) ⊂ R
2, we define ψǫ (y) = c−1

ǫ uǫ(expxǫ
(rǫy)), ϕǫ (y) = cǫ(uǫ(expxǫ

(rǫy))− cǫ)

and gǫ(y) = (exp∗xǫ g)(rǫy), where Bδr−1
ǫ

(0) is the Euclidean ball of radius δr−1
ǫ centered at 0, and

expxǫ
is the exponential map at xǫ . Note that gǫ converges to g0 in C2

loc
(R2) as ǫ → 0, where g0

denotes the standard Euclidean metric. By (34), we have on Bδr−1
ǫ

(0),

∆gǫψǫ (y) = αr2
ǫψǫ(y) + c−2

ǫ ψǫ (y)e(4πℓ−ǫ)(u2
ǫ (expxǫ

(rǫy))−c2
ǫ ) − r2

ǫ c−1
ǫ

µǫ

λǫ
(43)

∆gǫϕǫ (y) = αr2
ǫ c2

ǫψǫ(y) + ψǫ (y)e(4πℓ−ǫ)(u2
ǫ (expxǫ

(rǫy))−c2
ǫ ) − r2

ǫ cǫ
µǫ

λǫ
. (44)

In view of (42), applying elliptic estimates to (43) and (44) respectively, we have

ψǫ → 1 in C1
loc(R2), (45)

and

ϕǫ → ϕ in C1
loc(R2), (46)
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where ϕ satisfies 

−∆R2ϕ = e8πℓϕ in R2

ϕ(0) = 0 = sup
R2 ϕ

∫
R2 e8πℓϕ(y)dy < ∞.

By a result of Chen-Li [5], we have

ϕ(y) = − 1

4πℓ
log(1 + πℓ|y|2),

which leads to ∫

R2

e8πℓϕ(y)dy =
1

ℓ
. (47)

By (41), (45) and (46), there holds for any R > 0,
∫

BR(0)

e4πℓϕ(y)dy = lim
ǫ→0

∫

BR(0)

e(4πℓ−ǫ)(u2
ǫ (expxǫ

(rǫy))−c2
ǫ )dy

= lim
ǫ→0

c2
ǫ

λǫ

∫

BRrǫ (xǫ )

e(4πℓ−ǫ)u2
ǫ dvg

= lim
ǫ→0

1

λǫ

∫

BRrǫ (xǫ )

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg.

This together with (47) gives

lim
R→∞

lim
ǫ→0

1

λǫ

∫

BRrǫ (xǫ )

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg =

1

ℓ
. (48)

By (ii) of Lemma 4 and (38), one has for all sufficiently small ǫ > 0,

∩ℓi=1 BRrǫ (σi(xǫ)) = ∅. (49)

Noting that uǫ ∈HG, we have
∫

BRrǫ (σi(xǫ ))

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg =

∫

BRrǫ (xǫ )

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg, 1 ≤ i ≤ ℓ.

This together with (48) and (49) leads to

lim
R→∞

lim
ǫ→0

1

λǫ

∫

BRrǫ (σi(xǫ ))

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg =

1

ℓ
, 1 ≤ i ≤ ℓ. (50)

By definition of λǫ in (34), we conclude from (50) that

lim
R→∞

lim
ǫ→0

1

λǫ

∫

Σ\∪ℓ
i=1

BRrǫ (σi(xǫ ))

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg = 0. (51)

Similar to [11, 1], ∀0 < β < 1, we let uǫ, β = min{uǫ , βcǫ}.

Lemma 5. ∀ 0 < β < 1, there holds

lim
ǫ→0

∫

Σ

|∇guǫ, β|2dvg = β.
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Proof. Multiplying (34) by uǫ, β, we have
∫

Σ

|∇guǫ, β|2dvg =

∫

Σ

∇guǫ, β∇uǫdvg

=
1

λǫ

∫

Σ

uǫ, βuǫe
(4πℓ−ǫ)u2

ǫ dvg + α

∫

Σ

uǫ, βuǫdvg −
µǫ

λǫ

∫

Σ

uǫ, βdvg

=
1

λǫ

ℓ∑

i=1

∫

BRrǫ (σi(xǫ ))

uǫ, βuǫe
(4πℓ−ǫ)u2

ǫ dvg

+
1

λǫ

∫

Σ\∪ℓ
i=1

BRrǫ (σi(xǫ ))

uǫ, βuǫe
(4πℓ−ǫ)u2

ǫ dvg + oǫ(1). (52)

Note that 0 ≤ uǫ, βuǫ ≤ u2
ǫ on Σ, and uǫ, β = β(1 + oǫ(1))uǫ on BRrǫ (σi(xǫ)) for 1 ≤ i ≤ ℓ. In view

of (48), (51) and (52), letting ǫ → 0 first and then R→ ∞, we conclude the lemma. �

Lemma 6. There holds lim infǫ→0 λǫ/c
2
ǫ > 0.

Proof. Let 0 < β < 1. In view of Lemma 5, we have by using the Hölder inequality
∫

uǫ≤βcǫ

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg ≤

∫

Σ

u2
ǫe

(4πℓ−ǫ)u2
ǫ, βdvg = oǫ(1).

Similarly

λǫ

c2
ǫ

≥ β2

∫

uǫ>βcǫ

e(4πℓ−ǫ)u2
ǫ dvg + oǫ(1)

≥ β2

(∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg −

∫

Σ

e(4πℓ−ǫ)u2
ǫ, βdvg

)
+ oǫ(1)

= β2

∫

Σ

(e(4πℓ−ǫ)u2
ǫ − 1)dvg + oǫ(1). (53)

This together with (36) ends the proof of the lemma. �

Lemma 7. For any 1 < q < 2, we have cǫuǫ converges to G weakly in W1,q(Σ, g), strongly in

L2q/(2−q)(Σ), and almost everywhere in Σ, where G is a Green function satisfying


∆gG − αG = 1
ℓ

∑ℓ
i=1 δσi(x0) − 1

Volg(Σ)∫
Σ

Gdvg = 0

G(σi(x)) = G(x), x ∈ Σ \ {σ j(x0)}ℓ
j=1
, 1 ≤ i ≤ ℓ.

(54)

Proof. By (34),

∆g(cǫuǫ) − α(cǫuǫ) = hǫ =
1

λǫ
cǫuǫe

(4πℓ−ǫ)u2
ǫ − cǫµǫ

λǫ
. (55)

It follows from Lemmas 5 and 6 that for any 0 < β < 1,
∫

Σ

cǫ

λǫ
|uǫ |e(4πℓ−ǫ)u2

ǫ dvg =
cǫ

λǫ

∫

uǫ≤βcǫ

|uǫ |e(4πℓ−ǫ)u2
ǫ dvg +

cǫ

λǫ

∫

uǫ>βcǫ

uǫe
(4πℓ−ǫ)u2

ǫ dvg

≤ cǫ

λǫ

∫

Σ

|uǫ |e(4πℓ−ǫ)u2
ǫ, βdvg +

1

β

≤ 1

β
+ oǫ(1),
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and that

cǫ |µǫ |
λǫ

≤ 1

Volg(Σ)

cǫ

λǫ

∫

uǫ≤βcǫ

|uǫ |e(4πℓ−ǫ)u2
ǫ dvg +

1

Volg(Σ)

cǫ

λǫ

∫

uǫ>βcǫ

uǫe
(4πℓ−ǫ)u2

ǫ dvg

≤ 1

Volg(Σ)

1

β
+ oǫ(1).

Hence hǫ is bounded in L1(Σ, g). Then by ([31], Lemma 2.11), we have cǫuǫ is bounded in

W1,q(Σ, g) for any 1 < q < 2. Up to a subsequence, for any 1 < q < 2 and 1 < s ≤ 2q/(2 − q),

cǫuǫ converges to G weakly in W1,q(Σ), strongly in Ls(Σ, g), and almost everywhere in Σ.

We calculate ∫

uǫ≤βcǫ

cǫ

λǫ
uǫe

(4πℓ−ǫ)u2
ǫ dvg = oǫ(1), (56)

∫

{uǫ>βcǫ }\∪ℓi=1
BRrǫ (σi(xǫ ))

cǫ

λǫ
uǫe

(4πℓ−ǫ)u2
ǫ dvg ≤

1

β

1

λǫ

∫

Σ\∪ℓ
i=1

BRrǫ (σi(xǫ ))

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg = o(1), (57)

∫

BRrǫ (σi(xǫ ))

cǫ

λǫ
uǫe

(4πℓ−ǫ)u2
ǫ dvg =

1 + oǫ(1)

λǫ

∫

BRrǫ (σi(xǫ ))

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg =

1

ℓ
+ o(1), 1 ≤ i ≤ ℓ, (58)

where o(1) → 0 as ǫ → 0 first and then R → ∞. Integrating the equation (55), we have by

combining (56)-(58),

cǫµǫ

λǫ
Volg(Σ) =

∫

Σ

cǫ

λǫ
uǫe

(4πℓ−ǫ)u2
ǫ dvg = 1 + oǫ(1).

In view of (56)-(58) again, testing the equation (55) by φ ∈ C2(Σ) and passing to the limit ǫ → 0,

we have ∫

Σ

G∆gφdvg − α
∫

Σ

Gφdvg =
1

ℓ

ℓ∑

i=1

φ(σi(x0)) − 1

Volg(Σ)

∫

Σ

φdvg.

Since cǫuǫ ∈ HG, we have
∫
Σ

Gdvg = 0 and G(σi(x)) = G(x) for all x ∈ Σ \ {σ1(x0), · · · , σℓ(x0)}
and all 1 ≤ i ≤ ℓ. �

Let

ψ(x) = G(x) +
1

2πℓ

ℓ∑

i=1

log dg(σi(x0), x).

It follows from (54) that the distributional Laplacian of ψ belongs to Ls(Σ, g) for some s > 2.

Then we have by elliptic estimates that ψ ∈ C1(Σ, g). Let r0 =
1
4

min1≤i< j≤ℓ dg(σi(x0), σ j(x0)).

For x ∈ Br0
(x0), the Green function G can be decomposed as

G(x) = − 1

2πℓ
log dg(x, x0) + Ax0

+ ψ̃(x), (59)

where ψ̃ ∈ C1(Br0
(x0)), ψ̃(x0) = 0 and

Ax0
= lim

x→x0

(
G(x) +

1

2πℓ
log dg(x, x0)

)
= lim

x→x0

ψ(x) − 1

2πℓ

ℓ∑

i=2

log dg(σi(x0), x)

 . (60)
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By (54), we have

∫

Σ\∪ℓ
i=1

Bδ(σi(x0))

|∇gG|2dvg = α

∫

Σ\∪ℓ
i=1

Bδ(σi(x0))

G2dvg −
∫

∪ℓ
i=1
∂Bδ(σi(x0))

G
∂G

∂ν
dσ

− 1

Volg(Σ)

∫

Σ\∪ℓ
i=1

Bδ(σi(x0))

Gdvg

= − 1

2πℓ
log δ + Ax0

+ α

∫

Σ

G2dvg + oδ(1).

Hence
∫

Σ\∪ℓ
i=1

Bδ(σi(x0))

|∇guǫ |2dvg =
1

c2
ǫ

(
−

1

2πℓ
log δ + Ax0

+ α

∫

Σ

G2dvg + oδ(1) + oǫ(1)

)
.

It follows that
∫

∪ℓ
i=1

Bδ(σi(x0))

|∇guǫ |2dvg = 1 + α

∫

Σ

u2
ǫdvg −

∫

Σ\∪ℓ
i=1

Bδ(σi(x0))

|∇guǫ |2dvg

= 1 − 1

c2
ǫ

(
− 1

2πℓ
log δ + Ax0

+ oδ(1) + oǫ(1)

)
.

Let sǫ = sup∂Bδ(x0) uǫ and ũǫ = (uǫ − sǫ )
+. Then ũǫ ∈ W1,2

0
(Bδ(x0)), and satisfies

∫

∪ℓ
i=1

Bδ(σi(x0))

|∇gũǫ |2dvg ≤ τǫ = 1 − 1

c2
ǫ

(
− 1

2πℓ
log δ + Ax0

+ oδ(1) + oǫ(1)

)

Now we choose an isothermal coordinate system (U, φ; {x1, x2}) near x0 such that B2δ(x0) ⊂
U, φ(x0) = 0, and the metric g = eh(dx12

+ dx22
) for some function h ∈ C1(φ(U)) with h(0) = 0.

Clearly, for any δ > 0, there exists some c(δ) > 0 with c(δ)→ 0 as δ→ 0 such that
√

g ≤ 1+c(δ)

and φ(Bδ(p)) ⊂ Bδ(1+c(δ))(0) ⊂ R
2. Noting that ũǫ = 0 outside Bδ(p) for sufficiently small δ, we

have
∫

Bδ(1+c(δ))(0)

|∇R2 (̃uǫ ◦ φ−1)|2dx =

∫

φ−1(Bδ(1+c(δ))(0))

|∇gũǫ |2dvg =

∫

Bδ(x0)

|∇gũǫ |dvg ≤
τǫ

ℓ
.

This together with a result of Carleson-Chang [3] leads to

lim sup
ǫ→0

∫

Bδ(p)

(e4πℓũ2
ǫ /τǫ − 1)dvg ≤ lim sup

ǫ→0

(1 + c(δ))

∫

Bδ(1+c(δ))(0)

(e4πℓ(̃uǫ◦φ−1)2/τǫ − 1)dx

≤ πδ2(1 + c(δ))3e. (61)

Note that |uǫ | ≤ cǫ and uǫ/cǫ = 1 + oǫ(1) on the geodesic ball BRrǫ (xǫ) ⊂ Σ. We estimate on

BRrǫ (xǫ),

(4πℓ − ǫ)u2
ǫ ≤ 4πℓ(̃uǫ + sǫ )

2

≤ 4πℓũ2
ǫ + 8πℓsǫ ũǫ + oǫ(1)

≤ 4πℓũ2
ǫ − 4 log δ + 8πℓAx0

+ o(1)

≤ 4πℓũ2
ǫ/τǫ − 2 log δ + 4πℓAx0

+ o(1).
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Therefore
∫

BRrǫ (xǫ )

e(4πℓ−ǫ)u2
ǫ dvg ≤ δ−2e4πℓAx0

+o(1)

∫

BRrǫ (xǫ )

e4πℓũ2
ǫ /τǫdvg

= δ−2e4πℓAx0
+o(1)

∫

BRrǫ (xǫ )

(e4πℓũ2
ǫ /τǫ − 1)dvg + o(1)

≤ δ−2e4πℓAx0
+o(1)

∫

Bδ(x0)

(e4πℓũ2
ǫ /τǫ − 1)dvg + o(1), (62)

where o(1) → 0 as ǫ → 0 first and then δ → 0. Combining (61) with (62), letting ǫ → 0 first,

and then letting δ→ 0, we conclude

lim sup
ǫ→0

∫

BRrǫ (xǫ )

e(4πℓ−ǫ)u2
ǫ dvg ≤ πe1+4πℓAx0 .

Therefore

lim sup
ǫ→0

∫

∪ℓ
i=1

BRrǫ (σi(xǫ ))

e(4πℓ−ǫ)u2
ǫ dvg ≤ πℓe1+4πℓAx0 . (63)

Proposition 8. Under the assumptions (37) and (38), there holds

sup
u∈HG , ‖u‖1,α≤1

∫

Σ

e4πℓu2

dvg = lim
ǫ→0

∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg ≤ Volg(Σ) + πℓe1+4πℓAx0 .

Proof. We calculate

∫

BRrǫ (xǫ )

e(4πℓ−ǫ)u2
ǫ dvg = (1 + oǫ(1))

∫

BR(0)

e(4πℓ−ǫ)u2
ǫ (expxǫ

(rǫy))r2
ǫ dy

= (1 + oǫ(1))
λǫ

c2
ǫ

(∫

BR(0)

e8πℓϕ(y)dy + oǫ(1)

)
.

In view of (47) and (63),

lim
R→∞

lim
ǫ→0

∫

BRrǫ (xǫ )

e(4πℓ−ǫ)u2
ǫ dvg =

1

ℓ
lim
ǫ→0

λǫ

c2
ǫ

.

Hence

lim
R→∞

lim
ǫ→0

∫

∪ℓ
i=1

BRrǫ (σi(xǫ ))

e(4πℓ−ǫ)u2
ǫ dvg = lim

ǫ→0

λǫ

c2
ǫ

. (64)

By (53), we have

lim
ǫ→0

∫

Σ

(e(4πℓ−ǫ)u2
ǫ − 1)dvg ≤

1

β2
lim
ǫ→0

λǫ

c2
ǫ

, ∀0 < β < 1.

Letting β→ 1, we obtain

lim
ǫ→0

∫

Σ

(e(4πℓ−ǫ)u2
ǫ − 1)dvg ≤ lim

ǫ→0

λǫ

c2
ǫ

.

This together with (63) and (64) completes the proof of the proposition. �
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3.4. Test function computation

In this subsection, we shall complete the proof of (iii) of Theorem 1. Let α < λG
1

be fixed

and ℓ be an integer defined as in (12). In particular, we shall construct a function sequence φǫ
satisfying φǫ ∈HG, ∫

Σ

|∇gφǫ |2dvg − α
∫

Σ

φ2
ǫdvg = 1 (65)

and ∫

Σ

e4πℓφ2
ǫ dvg > volg(Σ) + πℓe1+4πℓAx0 (66)

for sufficiently small ǫ > 0, where x0 and Ax0
are defined as in (38) and (60) respectively. If there

exists such a sequence φǫ , then we have by Proposition 8 that cǫ must be bounded. Applying

elliptic estimates to (34), we conclude the existence of the desired extremal function.

To do this, we define a sequence of functions by

bǫ(x) =


c +

− 1
4πℓ log(1+πℓ r2

ǫ2
)+B

c
, x ∈ BRǫ(x0)

G−ζψ̃
c
, x ∈ B2Rǫ(x0) \ BRǫ(x0),

(67)

where ψ̃ is defined as in (59), ζ ∈ C∞
0

(B2Rǫ(x0)) satisfies that ζ ≡ 1 on BRǫ(x0) and ‖∇gζ‖L∞ =
O(1/(Rǫ)), r = r(x) = distg(x, x0), R = − log ǫ, B and c are constants depending only on ǫ to be

determined later. Define another sequence of functions

ηǫ (x) =



bǫ (x), x ∈ B2Rǫ(x0)

bǫ (σ
−1
i

(x)), x ∈ B2Rǫ(σi(x0)), 2 ≤ i ≤ ℓ
G
c
, x ∈ Σ \ ∪ℓ

i=1
B2Rǫ(σi(x0)).

(68)

Noting that G(σi(x)) = G(x) for all x ∈ Σ \ {σ1(x0), · · · , σℓ(x0)}, one can easily check that

ηǫ (σi(x)) = ηǫ (x), ∀x ∈ Σ, ∀1 ≤ i ≤ ℓ. (69)

In view of (67) and (68), in order to ensure that ηǫ ∈ W1,2(Σ, g), we set

c +
1

c

(
− 1

4πℓ
log(1 + πℓR2) + B

)
=

1

c

(
− 1

2πℓ
log(Rǫ) + Ax0

)
,

which gives

2πℓc2 = − log ǫ − 2πℓB + 2πℓAx0
+

1

2
log(πℓ) + O(

1

R2
). (70)

Noting that
∫
Σ

Gdvg = 0, we have
∫

Σ\∪ℓ
i=1

BRǫ (σi(x0))

|∇gG|2dvg =

∫

Σ\∪ℓ
i=1

BRǫ (σi(x0))

G∆gGdvg −
∫

∪ℓ
i=1
∂BRǫ (σi(x0))

G
∂G

∂ν
dσ

= α

∫

Σ\∪ℓ
i=1

BRǫ (σi(x0))

G2dvg −
1

Volg(Σ)

∫

Σ\∪ℓ
i=1

BRǫ (σi(x0))

Gdvg

−
ℓ∑

i=1

∫

∂BRǫ (σi(x0))

G
∂G

∂ν
dσ

= − 1

2πℓ
log(Rǫ) + α

∫

Σ

G2dvg + Ax0
+ O(Rǫ log(Rǫ)). (71)
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Since ψ̃ ∈ C1(Σ, g) and ψ̃(x0) = 0, we have
∫

B2Rǫ (x0)\BRǫ (x0)

|∇gζ |2ψ̃2dvg = O((Rǫ)2), (72)

∫

B2Rǫ (x0)\BRǫ (x0)

∇gG∇gζψ̃dvg = O(Rǫ), (73)

∫

BRǫ (x0)

|∇gηǫ |2dvg =
1

ℓ2c2

(
1

2π
log R +

log(πℓ)

4π
− 1

4π
+ O(

1

R2
)

)
. (74)

Combining (71)-(74) and noting that
∫

∪ℓ
i=1

BRǫ (σi(x0))

|∇gηǫ |2dvg = ℓ

∫

BRǫ (x0)

|∇gηǫ |2dvg,

we obtain
∫

Σ

|∇gηǫ |2dvg =
1

4πℓc2

(
2 log

1

ǫ
+ log(πℓ) − 1 + 4πℓAx0

+ 4πℓα

∫

Σ

G2dvg

+O(
1

R2
) + O(Rǫ log(Rǫ))

)
. (75)

Observing

∫

Σ

ηǫdvg =
1

c


∫

Σ\∪ℓ
i=1

B2Rǫ(σi(x0))

Gdvg + O(Rǫ log(Rǫ))



=
1

c

−
∫

∪ℓ
i=1

B2Rǫ (σi(x0))

Gdvg + O(Rǫ log(Rǫ))



=
1

c
O(Rǫ log(Rǫ)), (76)

we have

ηǫ =
1

Volg(Σ)

∫

Σ

ηǫdvg =
1

c
O(Rǫ log(Rǫ)). (77)

Hence
∫

Σ

(ηǫ − ηǫ)2dvg =

∫

Σ

η2
ǫdvg − 2ηǫ

∫

Σ

ηǫdvg + η
2
ǫVolg(Σ)

=
1

c2

(∫

Σ

G2dvg + O(Rǫ log(Rǫ))

)
.

This together with (75) yields

‖ηǫ − ηǫ‖21,α =

∫

Σ

|∇gηǫ |2dvg − α
∫

Σ

(ηǫ − ηǫ )2dvg

=
1

4πℓc2

(
2 log

1

ǫ
+ log(πℓ) − 1 + 4πℓAx0

+ O(
1

R2
) + O(Rǫ log(Rǫ))

)
. (78)

Now we choose B in (70) such that

‖ηǫ − ηǫ‖1,α = 1. (79)
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Combining (78) and (79), we have

c2 = − log ǫ

2πℓ
+

log(πℓ)

4πℓ
− 1

4πℓ
+ Ax0

+ O(
1

R2
) + O(Rǫ log(Rǫ)). (80)

It then follows from (70) and (80) that

B =
1

4πℓ
+ O(

1

R2
) + O(Rǫ log(Rǫ)). (81)

Let

φǫ = ηǫ − ηǫ . (82)

In view of (69), (82) and the fact that ηǫ ∈ W1,2(Σ, g), we have φǫ ∈HG. Moreover, the equality

(79) is exactly ‖φǫ‖1,α = 1, and thus (65). A straightforward calculation shows on BRǫ(x0),

4πℓφ2
ǫ ≥ 4πℓc2 − 2 log(1 + πℓ

r2

ǫ2
) + 8πℓB + O(Rǫ log(Rǫ)).

This together with (80) and (81) yields
∫

BRǫ (x0)

e4πℓφ2
ǫ dvg ≥ πe1+4πℓAx0 + O(

1

(log ǫ)2
),

which immediately leads to
∫

∪ℓ
i=1

BRǫ (σi(x0))

e4πℓφ2
ǫ dvg ≥ πℓe1+4πℓAx0 + O(

1

(log ǫ)2
). (83)

Now we shall calculate the integral
∫
Σ\∪ℓ

i=1
B2Rǫ (σi(x0))

e4πℓφ2
ǫ dvg. By our choices of R = − log ǫ and

c2 = O(log ǫ) (see (80)), one can easily see that

Rǫ log(Rǫ) = o(
1

c2
). (84)

Recalling the representation of the Green function G, namely (59), one has

∫

∪ℓ
i=1

B2Rǫ (σi(x0))

G2dvg =

ℓ∑

i=1

∫

B2Rǫ (σi(x0))

G2dvg

= O((Rǫ)2(log(Rǫ))2).

This together with (84) gives
∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

G2dvg =

∫

Σ

G2dvg −
∫

∪ℓ
i=1

B2Rǫ (σi(x0))

G2dvg

= ‖G‖22 + o(
1

c2
). (85)

Moreover, in view of (76), (77), (82) and (84), there holds
∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

φ2
ǫdvg =

∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

η2
ǫdvg + o(

1

c2
)

=

∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

G2

c2
dvg + o(

1

c2
). (86)
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Obviously it follows from R = − log ǫ and (80) that

∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

dvg = volg(Σ) + o(
1

c2
). (87)

Combining (85)-(87) and using the inequality et ≥ 1 + t for t ≥ 0, we obtain

∫

Σ\∪ℓ
i=1

BRǫ (σi(x0))

e4πℓφ2
ǫ dvg ≥

∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

(
1 + 4πℓφ2

ǫ

)
dvg

≥ volg(Σ) + 4πℓ
‖G‖2

2

c2
+ o(

1

c2
). (88)

Noting that O( 1
(log ǫ)2 ) = o( 1

c2 ) and combining (83) and (88), we conclude (66) for sufficiently

small ǫ > 0. This completes the proof of Theorem 1. �

4. Proof of Theorem 2

In this section, we shall prove Theorem 2. Since the proof is very similar to that of Theorem

1, we only give its outline.

Let j ≥ 2, λG
j

and E⊥
j−1

be defined as in (14) and (15) respectively. For α < λG
j
, we define

β∗j = sup

β : sup
u∈E⊥

j−1
, ‖u‖1,α≤1

∫

Σ

eβu2

dvg < ∞
 . (89)

Comparing (18) with (89), similar to Lemma 3, we have β∗
j
= 4πℓ, where ℓ is defined as in (12).

We now prove (ii) of Theorem 2. If α ≥ λG
j

and β > 0, we take u j ∈ HG ∩ C1(Σ, g) satisfies

∆gu j = λ
G
j
u j and u j . 0. It follows that

∫

Σ

|∇g(tu j)|2dvg − α
∫

Σ

(tu j)
2dvg ≤ 0, ∀t ∈ R (90)

and that ∫

Σ

eβ(tu j)
2

dvg → ∞ as t→ ∞. (91)

Then (90) and (91) imply that the supremum in (16) is infinity.

If α < λG
j

and β > 4πℓ, then we shall prove that the supremum in (16) is infinity. To do this,

we let {ei}
m j−1

i=1
⊂HG ∩C1(Σ, g) be an orthonormal basis of E j−1 = EλG

1
⊕ · · · ⊕ EλG

j−1
with respect

to the inner product on L2(Σ, g), namely, E j−1 = span{e1, · · · , em j−1
} and

(ei, ek) =

∫

Σ

eiekdvg = δik =


1, i = k

0, i , k

for all i, k = 1, · · · ,m j−1. Let M̃k be defined as in (21). Set

Qk = M̃k −
1

Volg(Σ)

∫

Σ

M̃kdvg −
m j−1∑

i=1

(M̃k, ei)ei.
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Then Qk ∈ E⊥
j−1

. By a straightforward calculation, ‖Qk‖21,α = (1 + O(r))8πℓ log k + O(1). Denote

Q∗
k
= Qk/‖Qk‖1,α. It follows that for any fixed β > 4πℓ,

∫

Σ

eβQ∗
k

2

dvg ≥
∫

B
rk−1/4 (x0)

e
β(log k+O(1))2

(1+O(r))8πℓ log k+O(1) dvg

= e
β(1+ok (1)) log k

(1+O(r))8πℓ πr2k−1/2(1 + ok(1)).

Choosing r > 0 sufficiently small and then passing to the limit k → ∞ in the above estimate, we

conclude ∫

Σ

eβQ∗
k

2

dvg → ∞ as k → ∞.

Hence the supremum in (16) is infinity.

In the following, we sketch the proof of (i) and (iii) of Theorem 2.

Let α < λG
j
. By a direct method of variation, one can see that for any 0 < ǫ < 4πℓ, there

exists some uǫ ∈ E⊥
j−1

with ‖uǫ‖1,α = 1 such that

∫

Σ

e(4πℓ−ǫ)u2
ǫ dvg = sup

u∈E⊥
j−1
,‖u‖1,α≤1

∫

Σ

e(4πℓ−ǫ)u2

dvg.

Clearly uǫ satisfies the Euler-Lagrange equation



∆guǫ − αuǫ =
1
λǫ

uǫe
(4πℓ−ǫ)u2

ǫ − µǫ
λǫ
−

∑m j−1

k=1
γkek

uǫ ∈ E⊥
j−1
, ‖uǫ‖1,α = 1

λǫ =
∫
Σ

u2
ǫe

(4πℓ−ǫ)u2
ǫ dvg

µǫ =
1

Volg(Σ)

∫
Σ

uǫe
(4πℓ−ǫ)u2

ǫ dvg

γk =
∫
Σ

1
λǫ

ekuǫe
(4πℓ−ǫ)u2

ǫ dvg.

(92)

Without loss of generality, we assume cǫ = uǫ(xǫ) = supΣ |uǫ | → +∞ and xǫ → x0 as ǫ → 0. Let

rǫ be the blow-up scale defined as in (41) and ϕǫ(y) = cǫ(uǫ(expxǫ
(rǫy)) − cǫ) for y ∈ Bδr−1

ǫ
(0),

where 0 < δ < 1
2
ig(Σ). As before, we can derive

ϕǫ(y)→ ϕ(y) = −
1

4πℓ
log(1 + πℓ|y|2) in C1

loc(R2).

Moreover, we can prove that ∀1 < q < 2, cǫuǫ converges to a Green function G weakly in

W1,q(Σ, g), strongly in L
2q

2−q (Σ, g), and almost everywhere in Σ. In this case, G satisfies



∆gG − αG = 1
ℓ

∑ℓ
i=1 δσi(x0) − 1

Volg(Σ)
−

∑m j−1

j=1
ek(x0)ek

∫
Σ

Gφdvg = 0, ∀φ ∈ E j−1

G(σ(x)) = G(x), ∀x ∈ Σ \G(x0), ∀σ ∈ G.

(93)

Similarly, G has a decomposition (59) near x0 and Ax0
is defined as in (60). Analogous to

Proposition 8, we arrive at

sup
u∈E⊥

j−1
, ‖u‖1,α≤1

∫

Σ

e4πℓu2

dvg ≤ Volg(Σ) + πℓe1+4πℓAx0 . (94)

21



This particularly leads to (i) of Theorem 2.

Finally we construct a sequence of functions to show that the estimate (94) is not true. This

implies that blow-up can not occur and elliptic estimates on (92) give a desired extremal function.

To do this, we let ηǫ , φǫ be defined respectively as in (68) and (82) satisfying ηǫ ∈ W1,2(Σ, g) and

‖φǫ‖1,α = 1. Note that the constants c and B in definitions of ηǫ and φǫ are given by (80) and (81)

respectively. It then follows that

∫

Σ

e4πℓφ2
ǫ dvg ≥ Volg(Σ) + πℓe1+4πℓAx0 +

4πℓ‖G‖2
L2(Σ,g)

− log ǫ
+ o(

1

− log ǫ
). (95)

Let

φ̃ǫ = φǫ −
m j−1∑

i=1

(φǫ , ei)ei. (96)

Obviously φ̃ǫ ∈ E⊥
j−1

. Since G satisfies (93) and

∫

Σ

Geidvg = lim
ǫ→0

∫

Σ

cǫuǫeidvg = 0, ∀1 ≤ i ≤ m j−1,

we calculate

(φǫ , ei) =

∫

∪ℓ
i=1

B2Rǫ (σi(x0))

(ηǫ − ηǫ )eidvg +

∫

Σ\∪ℓ
i=1

B2Rǫ (σi(x0))

(
G

c
− ηǫ

)
eidvg = o(

1

log2 ǫ
).

This together with (96) leads to

φ̃ǫ = φǫ + o(
1

log2 ǫ
), ‖φ̃ǫ‖21,α = 1 + o(

1

log2 ǫ
). (97)

It follows from (95) and (97) that

∫

Σ

e
4πℓ

φ̃2
ǫ

‖φ̃ǫ ‖21,α dvg =

∫

Σ

e
4πℓφ2

ǫ+o( 1
− log ǫ )

dvg

≥
(
1 + o(

1

− log ǫ
)

) Volg(Σ) + πℓe1+4πℓAx0 +
4πℓ‖G‖2

L2(Σ,g)

c2
+ o(

1

c2
)



≥ Volg(Σ) + πℓe1+4πℓAx0 +
4πℓ‖G‖2

L2(Σ,g)

− log ǫ
+ o(

1

− log ǫ
),

which implies that (94) does not hold. This completes the proof of (iii) of Theorem 2.
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