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Abstract

Let (%, g) be a closed Riemannian surface, W2z, g) be the usual Sobolev space, G be a finite iso-
metric group acting on (X, g), and .7 be the function space including all functions u € W'-2(Z, g)
with fz udv, = 0 and u(o(x)) = u(x) for all o € G and all x € X. Denote the number of distinct
points of the set {o(x) : o € G} by I(x) and € = min,cz I(x). Let /l? be the first eigenvalue of the
Laplace-Beltrami operator on the space 7. Using blow-up analysis, we prove that if @ < /l?
and 8 < 4x(, then there holds

2
sup f P dvy < 05
ue A, [, IVouPdve—a [ utdve<1 JE

if @ < A% and B > 4nt, or @ > A% and B > 0, then the above supremum is infinity; if @ < A%
and 8 < 4r¢, then the above supremum can be attained. Moreover, similar inequalities involving
higher order eigenvalues are obtained. Our results partially improve original inequalities of J.
Moser [Iﬂ], L. Fontana [IQ] and W. Chen [@].
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1. Introduction

Let Q c R” be a smooth bounded domain, Wé’"(Q) be the usual Sobolev space, and w,_; be
the area of the unit sphere in R”. It was proved by Moser [Iﬁ] that for any @ < @, = na):l/_ (]" -,
there holds

n/(n—1)
sup f eV gy < 0. (1)
ueW,™(Q), [, IVul'dx<1 <2

Moreover, @, is the best constant in the sense that if @ > «,,, the integrals in the above inequality
are still finite, but the supremum is infinity. Such kind of inequalities are known as Trudinger-
Moser inequalities in literature. Earlier contributions are due to Yudovich [@], Pohozaev [|%|],
Peetre [@] and Trudinger [Iﬂ]. Let 1;(Q) be the first eigenvalue of the Laplace operator with
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respect to the Dirichlet boundary condition. Adimurthi-Druet [|I|] proved that for any a < 1;(Q),
there holds

2 2
sup f etme el gy < co; (2)
ueW, > (Q), [, IVuPdx<1 <2

moreover, if @« > 4;(Q), then the above supremum is infinity, where ||u||§ = 'Q u*dx. The
inequality @) is stronger than () and was extended by the second named author [26] to the higher
dimensional case. Later, Tintarev [Iﬂ] proved among other results that for any @ < 4;(Bg(0)),
there holds

sup f e dx < 0o, 3)

ueW, > (Q), [, IVuPdx-a [, utdx<1

where Bz(0) denotes the ball centered at 0 with radius R and its measure is equal to that of Q. As
one expected, 1;(Bg(0)) can be replaced by 1;(Q), which is a consequence of ([@], Theorem 1).

One can ask whether the supremum in () can be attained or not. Existence of extremal
functions was proved first by Carleson-Chang [@] in the case that Q is the unit ball, then b
Struwe [Iﬂ] in the case that Q is close to a ball in the sense of measure, later by Flucher dﬁ],
when Q is a planar domain, and finally by Lin [IE] when Q is a domain in R". In [IE], the
second named author claimed that the supremum in (@) can be attained for all 0 < @ < 1;(Q).
We remark that there is a mistake during that test function computation ([Iﬁ], page 338, line
8). In fact, 1n two dimensions, extremal function for (@) exists only for sufficiently small @, see
for example Concerning extremal functions for inequalities of the type @), we refer the
reader to [@ . I . @ ﬁ . @ @ .] As a comparison, it was proved in [Iﬁ] that the
supremum in (3) can be attained for all @ < 4;(Q). It is remarkable that (@) is stronger than (@),
however, there is no relation on existence of extremal functions between @) and ().

Let (S?, go) be the 2-dimensional sphere xl + x2 + x3 = | with the metric gy = dx1 + dx2 + dx3
and the corresponding volume element dvg,. According to Moser [Iﬁ] one can find a constant C
such that for all functions u with sz Vg, ul*dvg, < 1 and sz udvg, =0,

fs 2 ¢ dv,, < C. )

Concerning all even functions u, it was indicated by Moser [@] that the best constant a, = 4n
would double. Namely, there exists a constant C such that for all functions u satisfying u(—x) =
u(x),¥x € S%, [, [Vg,ulPdvg, < 1, and [, udvg, = 0, there holds

f My, < C. )
s2

Later, by using an isoperimetric inequality on closed Riemannian surfaces with conical singular-
ities, Chen [@] proved a Trudinger-Moser inequality for a class of “symmetric” functions, which
particularly generalized @) and (@).

Let (M, g) be a closed n-dimensional Riemannian manifold. Among other results, it was
proved by Fontana [IQ that there exists a constant C, depending only on (4, g), such that if
u € W(M, g) satisfies || |Voul"dvy < 1and [ udv, =0, then

f "y, < C. 6)
M
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The existence of extremal functions for (@) was obtained by Li , ]. Precisely, there exists
some ug € W"(M) N C'(M) with [ |Vuol"dv, = 1 and [, uodv, = 0 such that

@, n/(n—1) _ @, |yl =1
f el gy, = sup f ey, @)
M ueW' (M), [\, IVeul'dve<1, [, udvy=0 <M

Obviously (@) implies (@). In [Iﬂ], the inequality (@) was generalized to a closed Riemannian
surface version, namely for any @ with 0 < a < 41(X) = inf,,_, . udvy=0 ||Vgu||§,
2=1, J; udv,

Aru® (1+a|ul2 .
sup fe (I+al Hz)dvg < 00; ()
uEW'»Z(Z,g),L |Vgu|2dvg£1,fz udvy=0 JvZ

moreover, the supremum in (8] can be attained for sufficiently small «. However, in a recent
work [@], an analog of (3) was also established on a closed Riemannian surface, say for any
a < A1(Z),

4mu®
sup fe dv, < 00, 9)
LtEW'~2(2‘.,g),fz \Vgu\zdvg—wfx uldvg<1 JE

Moreover, the above supremum can be attained for any @ < A;(X). Further, this kind of inequal-
ities involving higher order eigenvalues of the Laplace-Beltrami operator has been studied.

In this paper, our aim is to establish Trudinger-Moser inequalities for “symmetric” functions
and prove the existence of their extremal functions on a closed Riemannian surface with the
action of a finite isometric group. They can be viewed as a “combination” of (3) and [@). We
believe that such inequalities would play an important role in the study of prescribing Gaus-
sian curvature problem and mean field equations. Before ending this introduction, we mention
Mancini-Martinazzi [@], who studied the classical Trudinger-Moser inequality by estimating
the energy of extremals for subcritical functionals.

2. Notations and main results

Let (Z, g) be a closed Riemannian surface and G = {0, - - - , o} be an isometric group acting
on it, where N is some positive integer. By definition, G is a group and each 0; : £ — X is an
isometric map, particularly o7 g, = go,() for all x € X. Letu : ¥ — R be a measurable function,
we say that u € g if u is G-invariant, namely u(o;(x)) = u(x) for any 1 < i < N and almost
every x € X. We denote W2z, g) the closure of C*(X) under the norm

12
2 2
”u“W]-z(Z,g) = (f (lVgu| +u )dVg) s
z

where V, and dv, stand for the gradient operator and the Riemannian volume element respec-
tively. Define a Hilbert space

M = {u e WH(E,9)N S fudvg = O} (10)
b

with an inner product

(U, V), = f(Vgu, Vovdvg,
p)
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where (V,u, V,v) stands for the Riemannian inner product of V,u and V,v. Let A, = —div,V, be
the Laplace-Beltrami operator, and

fz IV ul*dv,

/lG —
L ue G, uz0 f uzdv
B ) g

1D

be the first eigenvalue of A, on the space .#g. For any x € X, we set I(x) = §G(x), where A

stands for the number of all distinct points in the set A, and G(x) = {0 (x), - -+ , on(x)}. Let
¢ = min I(x). (12)
X€X

Clearly we have 1 < ¢ < N since 1 < I(x) < N for all x € Z. As one will see, the best constant in
the Trudinger-Moser inequality for “symmetric” functions would be 4rr¢. Precisely we state the
following theorem.

Theorem 1. Let (Z, g) be a closed Riemannian surface and G = {0y, --- ,0n} be an isometric
group acting on it. Assume g, /l? and € are defined by (I0), (I1) and (I2) respectively. Then
we have the following assertions:

(i) For any a < /l? and B < 4n!l, there holds

sup feﬁ“zdvg < o0; (13)
b

ueAs, £ [Vouldvy—a fz wdvy<l1

(ii) If @ < A% and B > 4, or @ > A6 and B > 0, then the supremum in (I3) is infinity;
@ii) If @ < /l? and B < 4nl, then the supremum in (L3) can be attained by some function
uy € A N CYE, g) with fx IVguolzdvg - afz uédvg =1.

As in [@], we may consider the effect of higher order eigenvalues on the Trudinger-Moser
inequality. For this purpose, we define the first eigenfunction space with respect to /l? by

E/]? ={u€<%”(;:Agu=/l?u}.

By an induction, the j-th (j > 2) eigenvalue and eigenfunction space will be defined as

IV ul*dv
A= inf b WsuPdv, (14)

J uE.ﬁﬁ;,ueE}_l,uEO L uzdvg
and

. _ G

Eaf = {u € Ej_l D Agu = /lj u}

respectively, where Ej | = Ej¢ & ---® Ejc and
¢
Ejil ={u€%:fuvdvg=0, VveEj_l}. (15)
b

Then higher order eigenvalues of A, affect the Trudinger-Moser inequality in the following way:



Theorem 2. Let (Z, g) be a closed Riemannian surface and G = {0y, --- ,0N} be an isometric
group acting on it. Assume g, ¢, /15.; and E | are defined by (L), [12), (I and (I3 respec-
tively, j > 2.

(i) For any a < /IJG and B < 4n!l, there holds

sup feﬁ”zdvg < o0; (16)
b

ueE/*_l R f): IVgulzdvg—(tfz w?dvy<1

(i) If @ < /15.; and B > 4nl, or a > /qu and B > 0, then the supremum in ([0) is infiniry;
(iit) For any a < /15.; and B < 4rnl, the supremum in (I6) can be attained by some function
uo € Ex, N C'(Z, g) with | \VeuolPdvy — o [ uddv, = 1.

Let us give several examples for the finite isometric group G acting on a closed Riemannian
surface (%, g). (a) If G = {Id}, where Id denotes the identity map, then G is a trivial isometric
group action, and Theorems [I] and 2] are reduced to ([Iﬁ], Theorems 3 and 4). (b) Let (S?, 20)
be the standard 2-sphere given as in the introduction, and G = {Id, o}, where o(x) = —x for
any x € S?>. Then we have §G(x) = #{x,—x} = 2 for any x € S?, and thus £ = 2. Hence
Moser’s inequality (@) for even functions is a special case of our theorems. (c) If G has a fixed
point, namely there exists some point p € X such that o(p) = p for all o € G, then we have
¢ = #G(p) = 1, and whence both of the best constants in (I3) and (I6) are 4.

From now on, to simplify notations, we write

1/2
ull.o = ( f IV uldv, — f uzdvg) , (17)
) )

provided that the right hand side of the above equality makes sense, say, if @ < /lG and u € A,
then |lull;, is well defined. For the proof of Theorems [l and 2 we follow the lines of [Iﬁ]
and thereby follow closely [Iﬂ Pioneer works are due to Carleson-Chang [@ ], Ding-Jost-Li-
Wang [ﬁ], and Adimurthi-Struwe [ﬁ]. Since both of them are similar, we only give the outline
of the proof of Theorem [Il Firstly, we prove that the best constant in (I3) is 4, which is
based on Moser’s original inequality and test function computations; Secondly, a direct method
of variation shows that every subcritical Trudinger-Moser functional has a maximizer, namely
for any € > 0, there exists some u, € G with |jucll;, = 1 satisfying

—e)u? —enr?
fe(élﬂ'[ e)uEdVg — sup fe(4n€ e dvg
5 ue G, llulli o<1 JE

where a < /l? and ||ul|; » is defined as in (I7); Thirdly, we use blow-up analysis to show that if
SUP ez || = o0 as € — 0, then

2
sup f e dv, < Voly(Z) + mle A
e, Nl o <1

where A, is a constant related to certain Green function (see (60) below); Finally, we construct
a sequence of functions ¢, € G with |[¢¢|l; o < 1 such that

f e dv, > Voly(E) + mle! ™,
z
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provided that € > 0 is chosen sufficiently small. Combining the above two estimates, we get a
contradiction, which implies that . must be uniformly bounded. Then applying elliptic estimates
to the equation of u., we get a desired extremal function.

In the remaining part of this paper, we shall prove Theorems[Iland 2l Throughout this paper,
we do not distinguish sequence and subsequence. Moreover we often denote various constants
by the same C, but the dependence of C will be given only if necessary. Also we use symbols
|O(Re)| < CRe, 0.(1) > 0ase — 0, 05(1) > 0as § — 0, and so on.

3. Proof of Theorem[Il

In this section, we shall prove Theorem [Il In the first subsection, we show that the best
constant in (I3) is equal to 47f. The essential tools we use are subcritical Trudinger-Moser
inequality and Moser’s sequence of functions. Also we prove (ii) of Theorem[Il In the second
subsection, we consider the existence of maximizers for subcritical Trudinger-Moser functionals
and study their energy concentration phenomenon. In the third subsection, assuming blow-up
occurs, we derive an upper bound of the supremum in (I3), which obviously leads to (i) of
Theorem[Il In the final subsection, we construct a sequence of test functions to show that the
upper bound we obtained in the third subsection is not really an upper bound. Therefore blow-up
can not occur and elliptic estimates lead to existence of extremal function. This concludes (iii)
of Theorem[}

3.1. The best constant

In view of (1)), one can see that /lG > 0 by using a direct method of variation. For any fixed
a < A8, if u € A satisfies |lull; o < 1, then ||Vqull3 < A/(A¢ - @). By Fontana’s inequality (6),

there ex1sts a positive constant Sy depending only on /lG and « such that

sup feﬁo“zdvg < oo,
)

ue g, |lull o<1

B =supiB sup feﬁ“ dvg < 0 (18)
ME% [leelly o <1

Lemma 3. Let £ and B* be defined as in (I2) and (I8) respectively. Then 3* = 4nt.

Now we define

Proof. We divide the proof into two steps.

Step 1. There holds B* < 4n(.

In view of (I2), there exists some point xy € X satisfying £ = #G(xo) = #{o1(x0), -+ , on(x0)}.
Without loss of generality, we assume that oy = Id is the identity map, and that G(xp) =
{O'i(xO)}f:] . Take

1
=7 1gun< dy(oi(x0), 0 j(x0)),
where d,(0(x0), 0 j(xp)) denotes the Riemannian distance between o;(xo) and o ;(xp). Since
every o; : £ — X is an isometric map, we can see that for all 0 < r < ry,

B, (0i(x0)) = 0i(B(x0)), 1 <i<¢, (19)

where B,(x) stands for the geodesic ball centered at x € £ with radius r.
6



Fixing p € X, k e Nand 0 < r < 7y, we take a sequence of Moser functions by

logk  when p<rk'/*
My = Mpi(x,r) =3 4logt when rk™'* <p<r (20)
0 when p>r,
where p denotes the Riemannian distance between x and p. Define
—_ —_ Mo'i(xo),k(-x7 I"), X € Bro(o-i(xo))v 1 <i< t
My = Mi(x,r) = @n
0, x €T\ UL, B,y (0i(x0)
If x € B, (ci(x)) for some i, then it follows from (I9) that for any j = 1,---,N, oj(x) €

B,(0 j(0i(x0))) and dg (0 j(x), 0 j(07i(x0))) = d(x, 07i(xp)). In view of (20) and 1), one can easily
check that _ _
M (o j(x),r) = Mi(x,1), ¥Vx € By (0i(x0)), 1 <i<{, 1<j<N. (22)

If x e X\ Uf:IB,O(O'i(xO)), then oj(x) € X\ Uf:]B,O(O'i(xO)), and thus Mk(O'j(x),r) = 0 for
j=1,---, N. This together with (22)) leads to

Mi(j(x),r) = My(x,r), Yx€Z, 1< j<N. (23)

A straightforward calculation shows

f IV, M;[*dv, = (1 + O(r))8rllogk, (24)
z
fﬂ;"dvg =0(1), m=1,2. (25)
z
Denote ﬁk = ﬁ fz Mydv, and define
M, r) = M
M = M:(x,r) = —i(x’ r)t £
(|My — Ml o

In view of (Z3), we have M; € ;. Note that || M|l = 1. By (24) and (23),
My — Myl = (1 + O(r)8rllogk + O(1).
Hence we have for any 81 > 4n¢,

*2
PN dy,

By (x0)

\%

(logk+0(1))%
eﬁl {T+0(r)8rlTogk+0(T) dvg
B, -1/4(x0)

B (1+ox (1)) logk _
= e oot arrk V2 (1 + ox(1)).

Choosing r > 0 sufficiently small and then passing to the limit k¥ — oo in the above estimate, we
conclude

*2
S M dvy — 00 as k — oco.
B,y (x0)
7



Therefore 8 < 4nl.

Step 2. There holds B* > 4n(.
Suppose 8 < 4x{. Then for any k € N, there is a uy € ¢ with ||ug|l;» < 1 such that

fe(ﬂ*Jrk_l)”idvg — o0 as k — oo. (26)
s

Since a < /lf’, we can see that 1 is bounded in W'-2(Z, g). Up to a subsequence, we can assume
that u; converges to some function o weakly in W2z, g), strongly in L9(Z, g), Vg > 1, and for
almost every x € X. Clearly up € ¢ and |lug||;o < 1. We now claim that uy = 0. For otherwise,
we have

1
e = wollf o < 1 = llolly, + 0(1) < 1= Slluollf , < 1 27)
for sufficiently large k. Given any € > 0. We calculate

fe(ﬁ*+k’l)uzdvg < fe(ﬁ*+k’l)(1+E)(uk—u0)z+Cu5dVg
> >

l+e

— 2 TZs
C(f e(ﬂ +k™1Y(1+2€)(uy—to) dvg) , (28)
z

A

IA

where C is a constant depending only on ug, 8* and €. In view of (27), one can find a small € > 0
and a large integer ko such that when k > ko, there holds

B+ k(A + 20w — uoll}, <B° (1 - 871”“0”%41)‘

This together with (28)) leads to
fe(ﬁwkfl)ufdvg < C,
b3

contradicting (26). This confirms our claim ug = 0.

For any fixed x € X, we let I = I(x) = §G(x). Without loss of generality, we assume that
o1 = Id and that G(x) = {o1(x),---,0(x)}. There exists sufficiently small r; > 0 such that
ﬂleBrl (0i(x)) = @. Since o;’s are all isometric maps, if 0 < r < ry, then we have

f IV *dv, = f \Vourl*dv,, V1<i<I
B (07i(x)) B(x)

Noting that I > ¢, ||lu|l; o < 1 and up = 0, we have for 0 < r < ry,
2 1
[Vourl“dv, < = + or(1). (29)
B,() 4

Let/ € Cé(B,(x)), 0<¢<I1,{=1onB,,x) and |V, < % This together with (29) and ug = 0
implies that u; € Wy (B,(x)) and

1
f IV (Cup)Pdvy < 7t or(1). (30)
B, (x)

8



Take a normal coordinate system (Br(x),exp;';{y}), where y O1,y) € B(0) C R2, and
exp, : B,(0) — B,(x) denotes the exponential map. Let Y4 (y) = ({ux)(exp,(y)), y € B,(0). In
view of (BQ), one easily gets

f IVeey()|*dy

(

a+mmf IV o(Luo)lPdvg
B,(x)

IA

(1 +0(r))(% +0k(1)), 3D

where Vg denotes the usual gradient operator in R?. Also there holds ¢y € Wé‘z(IB%r(O)) since
lug € Wé‘z(B,(x)). Hence, if K € N is chosen sufficiently large and r > 0 is chosen sufficiently
small, it then follows from (ZI]) and Moser’s inequality (I) that

f B gy < f oA g,
By B

avory [ o gy
B(0)

< C (32)

for some constant C and all k > K. Since (Z, g) is compact, there exists some constant C such

that forall k > K,
fﬁwwmsc
)

This contradicts (26) again. Hence 8* > 4x(.
We finish the proof of the lemma by combining Steps 1 and 2. (]

We now clarify the proof of (ii) of Theorem[Il which is partially implied by Lemmal[3l

Proof of (ii) of Theorem[ll If a < /lf’ and B > 4n(, then Step 1 of the proof of Lemma[3]
gives the desired result. In the following, we assume « > /l? and 8 > 0. By a direct method of
variation, one can find a function ug % 0 satisfying uy € %G N C'(X) and

f IV uolPdvg = A f ubdv,.
z z

For any ¢ € R, we have tuy € J; and

f IV, (tug)Pdv, — f (tug)*dv, < 0.
z z

Moreover, there holds
feﬁ(”“’)zdvg — o0 as t— oo.
b

Again this gives the desired result. t

3.2. Maximizers for subcritical functionals
Leta < /1?. As in ([Iﬁ], page 3183), by Lemma[3 and a direct method of variation, we can
prove that for any 0 < € < 4x{, there exists some u, € J7G with ||uc||; o = 1 such that

fe(éwff)“fdvg = sup fe(“"‘)*f)”zdvg. (33)
b b

ue g, ulli o <1



The Euler-Lagrange equation for the maximizer u, reads

1 dnl—e? _ W
Zuee(” e)uE_Te

€

Agute — que =
Ue € %, ”ueul,a =1

(34)
Ae= [ u2e =9 gy,

— 1 (4n€—e)u§
He = Yo, fz Uce dvy.

Regularity theory implies that u. € C'(Z, g). Using an argument of ([@], page 3184), one has

lim ién“/lE >0, |uel/de <C. (35)
By (@3), one can easily see that
lim e(4”[_€)“zdvg = sup f 64”[“2dvg. (36)
0 Js ue A, lull o<1 J=

Note that we do not assume the supremum on the right hand side of (36) is finite. If |uc| < C, in
view of (33), applying elliptic estimates to (34), we obtain u. — u* in C'(Z, g), which implies
that u* € 5 and ||u*||;, = 1. In view of (B6), we know that u* is a desired extremal function.
From now on, we assume ¢, = maxy |ue| — +oo as € — 0. Noting that —u, also satisfies (33 and
(B4), we may assume with no loss of generality that

Ce = max |ue| = max ue = Ue(xe) = 400 (37)

and that
Xe > x0€X as €—0. (38)

To proceed, we need the following energy concentration phenomenon of ..

Lemma 4. Under the assumptions (37) and (38), we have
(i) ue converges to O weakly in W2z, 8), strongly in L2(Z, 8), and almost everywhere in X;
(i) I(x0) = #G(x0) = ¢;
e 5 _
(iid) lim lim me) IVouelPdv, = 1/¢.
Proof. (i) Since a < /l? and |[ull1 o = 1, uc is bounded in W2z, g). Hence we may assume
ue converges to ug weakly in W'2(Z, g), strongly in L*(Z, g), and almost everywhere in X. If
ug # 0, then

2

1
2 2
llee — uolly , = 1 = lluolly , + 0e(1) < 1 - Elluolll,a,

provided that € is sufficiently small. It follows from Lemma[3lthat e“rl=9u¢ i hounded in LY Z, 9
for some ¢ > 1. Then applying elliptic estimates to (34), we have that ||u||;~x < C, which
contradicts (37). Therefore uy = 0.

(if) Since ¢ = minyes I(x), we have I(xg) > {. Suppose I = I(xg) > {. Using the same
argument as we derived (29), we have

1
f IVoucldv, < ~ + 0c(1), (39)
B,(x0) 0 1



provided that > 0 is chosen sufficiently small. Similar to (32), it follows from (39) and Moser’s

inequality () that
f e‘wﬁuzdvg <C
Byja(x0)

for some sufficiently small r > 0 and some p > 1, where C is a constant depending only on r,
p, I and €. Applying elliptic estimates to (34)), we have that u, is uniformly bounded in B,/4(xo).
This contradicts (3Z). Therefore I(xp) = £.

(iii) By (ii), there exists some ryp > 0 such that IIVguflliz(Bro(xO)) < % + 0¢(1). It follows that
lim lim IV ucl*d ] (40)
r—0e—0 B.(xo) gue Vg - f

We claim that the equality of Q) holds. For otherwise, there exist two positive constants v and
r1 with 0 < r; < ry such that
1
f IVguelzdvg <—=-=W
By (x0) 4

Similarly as we did in the proof of (ii), we have that ¢“*™~9% is bounded in L(B,, »(xo)) for
some g > 1. Then applying elliptic estimates to (34), we obtain that u, is uniformly bounded in
B, /4(x0), which contradicts (37). This concludes our claim and (iii) holds. O

3.3. Blow-up analysis

Set
r. = \//l_se—(an—s/Z)cz‘ (41)
Ce
For any 0 < a < 4n¢, by Lemma[3 the Holder inequality and (i) of Lemmall one has
Ae = fuze(“"f*f)”zdvg = fuze(“"f*“a)ugdvg < e“Cog(1).
) )

It then follows that .

22D = o (1), (42)

In particular, re - Oase — 0. Let0 <6 < %ig(E) be fixed, where i, () is the injectivity radius of
(X,8). Forye B&r;‘ ) c Rz, we define Y (y) = CZ]He(eXPxE(”ey)), @e(y) = Ce(ue(expxg(rey)) —Ce)
and g.(y) = (expjce 2)(rey), where IB%MI (0) is the Euclidean ball of radius 6r€‘1 centered at 0, and
exp,, is the exponential map at x.. Note that g. converges to go in Clz0 C(Rz) as € — 0, where g
denotes the standard Euclidean metric. By (34), we have on B;,-1(0),

— —€)(u? ))—c? -
Be e) = ar2ipey) + ¢ e EeR o i b (43)
€
— 12 V)— 2 H
D pely) = @rZcure(y) + ()T NEP D e B (44)
€

In view of (@2)), applying elliptic estimates to (@3)) and (@) respectively, we have
Ye— 1 in C (R, (45)

and
@ — ¢ in CL.(R?), (46)
11



where ¢ satisfies
~Apep = e¥% in R?

©(0) = 0 = supg: ¢
f]RZ e8”€¢(y)dy < 00,
By a result of Chen-Li [E], we have
1
o(y) = ey log(1 + nllyl*),

which leads to

: 1
f S0 dy = —. (47)
]RZ [
By 1), (@3) and @6, there holds for any R > 0,
f e4n€tp(y)dy = lim e(471€—e)(u§(expxE (rgy))—cg)dy
Br(0) €20 JBr(0)
2
C 2
= lim-= f elrt=ene dv,
=0 Ae J By, (x0)

2
= ]1m—f ue =gy,
€0 /15 Brgr(xe)

This together with {7) gives

1 1
lim lim — f uie(“"g_f)"zdvg = -, (48)
R—00 €50 Ae Brre(xe) 4

By (ii) of Lemma[and (38)), one has for all sufficiently small € > 0,
izt Brr (0i(x0) = 2. (49)

Noting that u. € 77, we have

2 2 X
f ule =gy, = f ute =gy, 1<i<t.
Bpre(0i(xe)) Bpre(xe)

This together with (@8] and (@9) leads to

1 1
lim lim — f W2y, =~ 1<i<Ut. (50)
R0 eo0 e Sy, (01000 4
By definition of A, in (34), we conclude from (30Q) that
1
lim lim — f w2 gy, = 0., 51
R0 =0 de J5\ut By (oi(x)

Similar to [1L1,[1], v0 < 8 < 1, we let u, 5 = minfu,, Be.).
Lemma 5. VO < 8 < 1, there holds

lim f IVt gl*dvy = .
e—0 b3
12



Proof. Multiplying (34) by u. g, we have

f Ve pl*dvy = f Vite gVuedv,
z z

1
= —fueyﬁufe(“”‘)’f)”zdvg+a/fu€,ﬁu€dvg—'lﬁfueyﬁdvg
Ae Js z Ae Js

t
1 2
_ (4rl—e)u;
= — E Ue gllc€ <dv
Ae fB “fTe ¢

i=1 Rre (i (Xe))

1 >
+— Ue puee ™M dv, + 0.(1). (52)
Ae I5\UL By (1(x0))

Note that 0 < u, gue < uf on X, and uc g = B(1 + 0(1))ue on By, (oi(xe)) for 1 <i < L. In view
of (@8), (31 and (32, letting € — O first and then R — oo, we conclude the lemma. O

Lemma 6. There holds liminf._y A./c2 > 0.

Proof. Let 0 < 8 < 1. In view of Lemma[3 we have by using the Holder inequality

2 e
f uze(4ﬂ€—e)u5dvg < fuze@nf E)u5=5dvg = 0.(1).
u.<Pce

>
Similarly
/lf 2 (4nl—eu?
- =z B e cdvg + 0.(1)
Ce ue>pce
> g ( f pldnt—en dvy — f pArt=en dvg) +0(1)
s s
= B f (eWrnt-omue _ Ddvg + 0(1). (53)
>
This together with (36) ends the proof of the lemma. O

Lemma 7. For any 1 < q < 2, we have ccu. converges to G weakly in W"4(Z, g), strongly in
12412=9(3), and almost everywhere in X, where G is a Green function satisfying

AG —aG = § 50 6oy — Voll(z)
f.Gdvy =0 G
G(oi(x) = G(x), x € T\ {orj(xo)f_,, 1 i< L

J=r

Proof" By @)7
1 c
Ag(ceue) — aceue) = he = /l—ceuee‘4”€‘f)“§ - % (55)
€ €
It follows from Lemmas[3and[@] that for any 0 < 8 < 1,
C 2 C C 2
f _€|u6|e(47r[—e)uE dvg — /l_f |M€|e(4n€—s)u§dvg + re uEe(4”[_€)“f dvg
L e € Juc<pe. € Juc>pe.
Ce (4nl—eyu? 1
< — | ude cbdve + —
Ac fx ‘ ‘B
1
< B + 0.(1),

13



and that

1 P 1
Celﬂel < 5 & f |u€|€(4ﬂ€—e)uE dVg + 5 E f uee(47r€—€)uzdvg
/le Vo g( ) /lE u.<Pce Vo g( ) /ls u>Pce

1
LS oc(1).

Hence A, is bounded in L'(Z, g). Then by ([|3__1|], Lemma 2.11), we have c.u. is bounded in
Wh4(E, g) for any 1 < ¢ < 2. Up to a subsequence, forany 1 < ¢ < 2and 1 < s < 2¢/(2 - q),
ceue converges to G weakly in W4(X), strongly in L*(Z, g), and almost everywhere in X.

We calculate

C
f fu€e<4”f—f>"5dvg = 0.(1), (56)
ue<Pce ‘€
Ce  Unl-end 11 2 (4nl-end
—uce “dvg < =— uze “dve = o(1), (57)
u>Be\UL, By (03(x0)) Ae B Ae I\ By (oi(x)
C > 1+ o0.(1 1
f —u Mgy, = I+odD) w2 dy, = — 4 o(1), 1 i< €, (58)
Brr (0ri(x0)) e Ae Br (i(x0)) 4

where 0(1) — 0 as € — 0 first and then R — oo. Integrating the equation (33), we have by

combining (36)-(GY),

Cslufvolg(z) — f&ufe(‘lﬂf—f)ufdvg =1+ 05(1)-
/15 z /16

In view of (36)-(58) again, testing the equation (33) by ¢ € C*(Z) and passing to the limit € — 0,
we have

1< 1
fz GAgpdvy — fz Godvy = 5 ; B(0oi(x0)) — oD fz ddv,.

Since ccu. € G, we have fx Gdv, = 0 and G(oi(x)) = G(x) forall x € X\ {o1(xp), - -+ , oe(x0)}
andall 1 <i<<{. O

Let
1<
WD) =G+ 5 Z] 10g dy(cri(x0), ).
It follows from (34) that the distributional Laplacian of ¢ belongs to L°(Z, g) for some s > 2.

Then we have by elliptic estimates that y € C Iz, g). Letry = %minlgk i<t dg(Ti(X0), T j(X0)).
For x € B,,(xo), the Green function G can be decomposed as

1 —
G(x) = o logd,(x, xo) + Ay, + Y(x), (59)

where ¢ € C'(B,,(x0)), ¥(xo) = 0 and

¢
. 1 . 1
Ay = xh_glo G(x) + . log d,(x, xo)) = )}LTEO {lﬂ(x) = 37 ; logdy(oi(x0), x)|.  (60)

14



By (34), we have

G
f IV, G dv,
E\UL, B5(ci(x0))

o f GRdv, - f G——de
E\UL, B5(c(x0)) UL_10B5(0i(x0)) dv
1
Volg(X) Js\ue, By(oixo)

Gdv,

1
= —2—M710g5+AxO+QLG2dvg+05(1).

Hence

1
f Wby = (__ logd + Ay +a f Gdvy + 0s(1) + oe<1)).
E\UL, B5(ci(x0)) ce 2l s

It follows that
1 +a/fu dv, — f [V, uEI dv,
S\UL, Bs(oi(x0))

f |Vgu5|2dvg
UL, Bs(ori(x0))
- ( Gy logd + Ay, +o0s(1) + 05(1))

€

Let se = supyp, () Ue and ue = (ue — 5¢)*. Then u, € Wé’z(B(;(xo)), and satisfies

_ 1 1
f Vel dvy <te =1 - — (—— logd + A, +o0s(1) + 05(1))
UL, Ba(@i(x0) cz\ 2nl

Now we choose an isothermal coordinate system (U, ¢; {x!, ¥%}) near xo such that Bys(xg) C
U, ¢(xo) = 0, and the metric g = e”(dxl2 + dxzz) for some function i € C'(¢(U)) with h(0) = 0
Clearly, for any 6 > 0, there exists some c(6) > 0 with ¢(6) — 0 as § — 0 such that /g < 1+¢(5)
and ¢(Bs(p)) C Bs(i+es)(0) C R2. Noting that u. = 0 outside Bs(p) for sufficiently small 6, we
have

_ — —_ T
f |Vg:(te 0 ¢~ )Pdx = f IV ticl*dv, = f |V tteldv, < 7‘.
Bis(1+¢5)(0) ¢~ Bo1+¢((0)) Bs(xo)

This together with a result of Carleson-Chang [@] leads to

lim sup f (€ — 1)dv, < Tlimsup (1 + c(6)) (¥t 1T _ 1)y
e—0 Bs(p) e—0 Bs(1+¢( (0)
< 7641 + c(8))’e. (61)

Note that |uc| < c. and uc./cc = 1 + 0(1) on the geodesic ball B, (x.) C . We estimate on
BRrE(xe),

(4nl —eu? < Anl(u. + sc)*
< 4775[2 + 8nlscue + 0(1)
< Anlu? - 4logd + 8nlA,, + o(1)
< 4nli?/te —21og s + 4nlA,, + o(1).

15



Therefore

f e(4ﬂ€—e)u§ dVg < 5—2€4ﬂ€Am +o(1) f e4ﬂ€ﬁ;’ /devg
By (xe) B (xe)
— 6—Ze4n€AxO+o(l)f (e4rrlﬁ§/n ~ Ddvg + o(1)
Brgr(xe)
< § M Ay oD) f (&I — 1), + (1), (62)
Bs(xo)

where o(1) — 0 as € — 0 first and then 6 — 0. Combining (&I) with @2), letting € — 0 first,
and then letting 6 — 0, we conclude

e—0

. _ 2
lim sup f W gy, < el A
Bpre(xe)

Therefore

e—0

lim sup f e(4”€")”zdvg < ;e v (63)
U, Brre (07i(x0))
Proposition 8. Under the assumptions (31) and BB]), there holds

2 . _ 2
sup f M dv, = lim | e dy, < Voly(Z) + mle A,
ue A lul o<1 JE =0 Js

Proof. We calculate

f e(47r[—e)uz dVg _ ( 1+ Oe( 1 )) e(4n€—e)uf (expy, (rgy))rz dy
Brre(xe) Br(0)

Ae ‘
(1+o0.(1)= ( f S0 dy + 0. (1)].
Ce \JBx(0)

€

In view of (@7) and (&3),
. . 2 1. A
lim lim elnt-one dvg = — lim —;
R0 20 Iy, (0 te0c
Hence B
lim lim TN Gy, = lim =5 (64)
R—0 €0 U{:I Breo (01(x)) e—0 Ccg
By (33), we have
: (4nl—eu? 1 : /16
lim | (e f—l)dvgg—zhm—z, VO <pB< 1.
-0 Js P* =0 c;

Letting 8 — 1, we obtain

. 2 oA
lim | (¥ — Ddv, < lim —;
=0 cg

>0 Js
This together with (G3)) and (&4) completes the proof of the proposition. O
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3.4. Test function computation

In this subsection, we shall complete the proof of (iii) of Theorem[Il Let @ < /l? be fixed
and ¢ be an integer defined as in (I2). In particular, we shall construct a function sequence ¢,
satisfying ¢, € 7,

f IVepel?dv, — a f ¢ldv, = 1 (65)
z z
and
f e dy, > voly(S) + mle A (66)
z

for sufficiently small € > 0, where xo and A, are defined as in (38) and (60) respectively. If there
exists such a sequence ¢, then we have by Proposition [§] that ¢, must be bounded. Applying
elliptic estimates to (34), we conclude the existence of the desired extremal function.

To do this, we define a sequence of functions by
— L log(1+7£2)+B

c+ M, x € Bre(xo)

Pe(x) = ‘ (67)

G X € Bage(x0) \ Bre(x0),

c

where ¢ is defined as in (39), ¢ € C (Bagre(xp)) satisfies that ¢ = 1 on Bge(xo) and ||V (]|~ =
O(1/(Re)), r = r(x) = disty(x, xp), R = —loge, B and ¢ are constants depending only on € to be
determined later. Define another sequence of functions

be(x), X € Boge(xo)
ne(x) = be(07'(x)), x € Bage(0i(x0)), 2 < i<l (68)
g, x € 2\ U Bage(0mi(x0)).
Noting that G(oi(x)) = G(x) for all x € £\ {o71(xp), - - - , 0¢(x0)}, one can easily check that
Ne(oi(x)) = ne(x), YxeXZ, V1 <i<{. (69)

In view of (67) and (G8), in order to ensure that . € W'*(Z, g), we set

11 , 11
c+ ; (—mlOg(] + R )+ B) = Z (_Z_MIOg(Re) +AX0)7

which gives

1 1
2nlc? = —log € — 2nlB + 2mlA,, + 5 log(n0) + (4. (70)
Noting that fz Gdv, = 0, we have
oG
f IV,GPdv, = f GAGdv, — f G—do
S\UL Bre(o(x0)) S\UL, Bre(@i(x0)) U Br(oixo) OV

2
a Gdv, - Gdv,
fx\ulem(ai(xo)) Volg(Z) Js\ut Bee(@itxo))

¢
_Zf Ga—GdO'
i=1 v OBre(ci(x0)) av

1
= ——log(Re) + f G*dv, + A,, + O(Relog(Re)).  (71)
2rl 17 b}



Since ¢ € C'(Z, g) and Y(xg) = 0, we have

f Vol Pydv, = O((Re)), (72)
Bare(x0)\Bre(xo)
f VGVg@//dvg O(Re), (73)
Bare(x0)\Bre(xo)
1 1 log(nt) 1 1
V. nfdv, = — | —logR - — —)]. 74
F e e e ) B
Combining (ZI)-(Z4) and noting that
| v, =¢ [ Vo,
UL, Bre(Ti(x0)) Bge(xo)
we obtain
1 1
legnflzdvg = m(Zlog; +log(7r€)—1+4ﬂ€AxO+4n€aLG2dvg
+0(—) + O(Re log(Re))) (75)
Observing
1
fnedvg = —(f deg+0(Relog(Re)))
z € \JL\UL Bare(oi(x0))
1
= —(—f deg+O(Relog(Re)))
¢ UL, Bage(0i(x0))
1
= —O(Relog(Re)), (76)
C
we have |
7. = «dv, = —O(Relog(Re)). 77
Ne Volg(z)fz" vg = —O(Relog(Re)) )
Hence

f (e — v,
)

This together with (73)) yields

f dvg 2n fr]edvg + 77€V01 (03]
)

12 ( f GPdv, + O(Relog(Re)))

c

e -7, = f IV e, - f (e — 7. dlvg

yoe (2 log = +log(nl) ~ 1 + 4mlAy, + 0(—) + O(Re log(Re))) (78)

Now we choose B in (ZQ) such that

e = nelli.a = 1. (79)
18



Combining (Z8) and (79), we have

loge log(rf) 1 1
2 _
iy + A, + O(ﬁ) + O(Relog(Re)). (80)

It then follows from (ZQ) and (80) that

B = 4%15 + O(%) + O(Relog(Re)). 81
Let
be = 1Ne = T (82)
In view of (&9), (82) and the fact that . € W'*(Z, g), we have ¢, € J#;. Moreover, the equality
(@9 is exactly ||¢cll1.« = 1, and thus (&3). A straightforward calculation shows on Bge(xo),

2
Aneg? > Antc® — 2log(1 + n/—z) + 87¢B + O(Relog(Re)).
€

This together with (8Q) and (1) yields

Al p? 1+4nlA,,
e dv, > me o + O( ),
fBRAxo) ¢ (log e)*
which immediately leads to
f v, > e A 4 O( 5). (83)
UL Bre(eri(x0)) (loge)
Now we shall calculate the integral fz\uf:.BzRe(rf,-(xo)) e4n€¢?dvg. By our choices of R = —loge and
c? = O(log €) (see ([80)), one can easily see that
1
Relog(Re) = o(—). (84)
c

Recalling the representation of the Green function G, namely (39), one has

{
f G*dv,
UL, Bare(0ri(x0))

> f G2dv,
i=1 v Bare(ci(x0))

= O((Re)*(log(Re))?).
This together with (84) gives
f Gdv, = szdvg—f G*dv,
E\UL Bage(0i(x0)) z UL Bare(i(x0))
1
= ||G||§+o<;). (85)

Moreover, in view of (Z6), (Z7), (82) and (84), there holds

1
2 2
f Pldv, f Nedvg + o(=)
E\UL, Boge(0i(x0)) Z\UL, Barel(@i(%0)) ¢

G? 1
L —dvg + 0(;). (86)

, 2
9\uf:, Bae(oi(x0)) €



Obviously it follows from R = —log € and (8Q) that

1
f dvg = volg(Z) + o(—). 87)
I\UL, Bare(0i(x0)) c

Combining (83)-(87) and using the inequality e’ > 1 + ¢ for ¢ > 0, we obtain

f e4”€¢§dvg > f (1 + 477&;53) dvg
E\UL, Bre(oi(x0)) E\UL, Baoge(0i(x0))
IG5 1
> vol(Z) + 47r€— +o(), (88)
c
Noting that O(-—— 10 5) = 0( >) and combining (83) and (88), we conclude (6) for sufficiently
small € > 0. ThlS completes the proof of Theorem[Il O

4. Proof of Theorem 2]

In this section, we shall prove Theorem[2] Since the proof is very similar to that of Theorem
[ we only give its outline.

Letj > 2, /1?’ and Ej_l be defined as in (I4) and (I3) respectively. For a < /l?, we define

B =sup{fp sup feﬁ“ dvg < (89)
uEE ol o <1

Comparing (I8) with (89), similar to Lemmal[3] we have B; = 4nl, where { is defined as in @@.
We now prove (i) of Theorem[2l If o > /l?’ and 8 > 0, we take u; € G N Cl(Z, g) satisfies
Aguj = AGujand u; % 0. It follows that

f IV (tu))*dv, — f (tuj’dvy <0, VteR (90)
z z

and that
feﬁ(”‘f)zdvg — 00 as - oo 91)
)

Then (@0) and @T)) imply that the supremum in (I6) is infinity.
Ifa< /lj.; and 8 > 4n(, then we shall prove that the supremum in (L)) is infinity. To do this,
we let {e[}:i/]" cHNC\(E, g) be an orthonormal basis of E;_; = E,if S E/](_;I with respect
- ol
to the inner product on L2z, g), namely, E;_; = span{ey, - - ,emH} and

1, i=k
(ei,er) = feiekdvg =0 =
b 0, i#k

foralli,k=1,---,mj_. Let M, be defined as in ). Set

mj

1 — .
=My - ——— Mdv, — My, e)e;.
Ok k Volg(E)L dvg ;( &> €i)e
20



Then Qy, € Ej{l. By a straightforward calculation, IIQkII%’a = (1 + O(r))8rllogk + O(1). Denote
05 = Oi/IQklh - It follows that for any fixed 8 > 4n¢,

0:2 Bllogk+0(1))*
eﬁ k dVg e T+0(M)8rlTogk+O(T) dvg
z B, ~1/4(x0)

B +op (1) logk
= e w1tk V2 (1 + on(1)).

Choosing r > 0 sufficiently small and then passing to the limit £ — co in the above estimate, we

conclude

\

feﬁgzzdvg — oo as k— oo
p>

Hence the supremum in (T) is infinity.

In the following, we sketch the proof of (i) and (iii) of Theorem[2l
Let o < /1?. By a direct method of variation, one can see that for any 0 < € < 4n{, there
exists some u, € Ej{l with [|uc|l1,o = 1 such that

— el )2
f e(4ﬂ€ eu; dvg — sup f e(47r€ €)u dVg.
z ueE, | llulli o<1 JE

Clearly u, satisfies the Euler-Lagrange equation

Ague — aue = ,TIEM&MM*SWE - If - Z:Z_]] YViek

e € EL | Mluellg = 1

e = [ uZe v, (92)

R (4nl—eyu
He = i, fzuee dvg

— 1 Anl—e)u?
Vi = fz Zekufe( ) <dvq.

Without loss of generality, we assume ¢, = ue(x,) = sups |ue] — +oo and x, — xp as € — 0. Let
re be the blow-up scale defined as in @I and ¢(y) = cc(uc(exp, (rey)) — ce) for y € Bys,1(0),
where 0 < 6 < %ig(Z). As before, we can derive

1 .
@) = ¢(y) = —— log(1 + mlly[*) in C} (R
4l

Moreover, we can prove that V1 < g < 2, ccue converges to a Green function G weakly in

wha(z, g), strongly in L;qu (Z, g), and almost everywhere in Z. In this case, G satisfies
AG —aG = 31, 6,x) ~ @ - X en(xo)er
JGedv, =0, Vo e E;y (93)
G(o(x)) = G(x), Yx € £\ G(xg), Yo € G.

Similarly, G has a decomposition (39) near xo and A,, is defined as in (60). Analogous to
Proposition[§] we arrive at

sup f e dy, < Voly(Z) + mle' 4 . (94)
ueEL | ully 0 <1 JE
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This particularly leads to (i) of Theorem 2l

Finally we construct a sequence of functions to show that the estimate (@4) is not true. This
implies that blow-up can not occur and elliptic estimates on ([92) give a desired extremal function.
To do this, we let 7., ¢, be defined respectively as in (68) and ([82) satisfying n. € W'*(Z, g) and
lpelli.e = 1. Note that the constants ¢ and B in definitions of 7. and ¢ are given by (80) and (8T))
respectively. It then follows that

4rl|GI1%, 1
f e dy, > Voly(T) + nle' o + LED Lo ). (95)
s —loge —loge
Let
mj_y
be = pc = > ($e ee. (96)
i=1

Obviously ¢, € Ej{l. Since G satisfies (@3) and
fGeidvg =lim | ceueeidvy =0, V1 <i<mj,,
) e—0 ) '

we calculate

_ G _ 1
(Pe, €i) = f (e — . )eidvg + f (— - 176) eidvy, = 0(—2).
UL, Bage(ory(x0) S\UL, Boge(i(xo)) © € log” e

This together with (O6)) leads to

~ 1
2

Ge = b +0(—5), Bl = 1+0(—5). 97)

log“ e log’ €

It follows from ([©@3) and (O7) that

4l 5% 2 1

= n2

fe 1gellf dvg fe47r[¢s+o(Tgs)dvg
z z

1 4rl||G|I? 1
> (1 + o( )) {Volg(z) Tl Ay 4 # N (_2)
—loge - "
4ntlGIE, .
> VOlg(E) +n€el+4ﬂ{Ax0 + (Z,2) ‘o ),
—loge —loge

which implies that (94) does not hold. This completes the proof of (iii) of Theorem[2l
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