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1. Introduction

Consider the multipoint Cauchy problem for nonlinear Schrödinger equa-
tions (NLS)

i∂tu+ Lu+ F (u) = 0, x ∈ Rn, t ∈ [0, T ] , (1.1)

u (0, x) = ϕ (x) +

m
∑

k=1

αku (λk, x) , for a.e. x ∈ Rn, (1.2)

where L is an elliptic operator defined by

Lu =

2
∑

i,j=1

aij
∂2u

∂xi∂xj

, aij ∈ C, (1.3)

m is a positive integer, αk are complex numbers, λk ∈ (0, T ] , F is a nonlinear
operator, C−denotes the set of complex numbers and u = u(t, x) is the unknown
function. If F (u) = λ |u|

p
u in (1.1) we get the multipoint Cauchy problem

nonlinear equation

i∂tu+ Lu+ λ |u|
p
u = 0, x ∈ Rn, t ∈ [0, T ] , (1.4)

u (0, x) = ϕ (x) +

m
∑

k=1

αku (λk, x) for a.e. x ∈ Rn,

where p ∈ (1,∞), λ is a real number.

By rescaling the values of u it is possible to restrict attention to the cases λ =
1 or λ = −1. These call as the focusing and defocusing Schrödinger equations,
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respectively. The equation (1.1) also contain two critical case. These are the
mass-critical Schrödinger equation,

i∂tu+ Lu+ λ |u|
4
n = 0, x ∈ Rn, t ∈ [0, T ] ,

which is associated with the conservation of mass,

M (u (t)) :=

∫

Rn

‖u (t, x)‖2E dx

and the energy-critical Schrödinger equation (in dimensions n > 2),

i∂tu+ Lu+ λ |u|
4

n−2 = 0, x ∈ Rn, t ∈ [0, T ] , (1.5)

which is associated with the conservation of energy,

H (u (t)) :=

∫

Rn

[

1

2
|(Lu, u) (t, x)|

2
+ λ

(

1

2
−

1

n

)

|u (t, x)|
2n

n−2

]

dx,

where (Lu, u) denotes scalar product of Lu and u in L2 (Rn) .
The existence of solutions and regularity properties of Cauchy problem for

NLS equations studied e.g in [2− 10], [ 14, 16] and the references therein. In
contrast, to the mentioned above results we will study the existence, uniqueness
and the regularity properties of the multipoint Cauchy problem (1.1)− (1.2).

2. Definitions and background

Let Lq
tL

r
x ((a, b)× Ω) denotes the space of strongly measurable functions that

are defined on the measurable set (a, b)× Ω with the norm

‖f‖Lq
tL

r
x((a,b)×Ω) =







b
∫

a





∫

Ω

|f (t, x)|r dx





q
r

dt







1
q

, 1 ≤ q, r < ∞ .

Let ̥ denotes the Fourier transformation, û = ̥u and

s ∈ R, ξ = (ξ1, ξ2, ..., ξn) ∈ Rn, |ξ|
2
=

n
∑

k=1

ξ2k,

〈ξ〉 =
(

1 + |ξ|
2
)

1
2

.

S = S(Rn) denotes the Schwartz class, i.e. the space of all complex-valued
rapidly decreasing smooth functions on Rn equipped with its usual topology
generated by seminorms. S(Rn) denoted by just S. Let S′(Rn) denote the
space of all continuous linear operators, L : S → C, equipped with the bounded
convergence topology. Recall S(Rn) is norm dense in Lp(Rn) when 1 < p < ∞.

Let D′ (Ω) denote the class of generalized functions on Ω ⊂ Rn. Consider
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Sobolev space W s,p (Rn) and homogeneous Sobolev spaces W̊ s,p (Rn) defined
by respectively,

W s,p (Rn) = {u : u ∈ S′(Rn),

‖u‖W s,p(Rn) =

∥

∥

∥

∥

̥
−1

(

1 + |ξ|
2
)

s
2

û

∥

∥

∥

∥

Lp(Rn)

< ∞

}

,

W̊ s,p (Rn) =
{

u : u ∈ S′(Rn), ‖u‖
W̊ s,p(Rn) =

∥

∥̥
−1 |ξ|

s
∥

∥

Lp(Rn)
< ∞

}

.

Sometimes we use one and the same symbol C without distinction in order
to denote positive constants which may differ from each other even in a single
context. When we want to specify the dependence of such a constant on a
parameter, say α, we write Cα.

Let L is differential operator defined by (1.4) .
Condition 2.1. Assume aij = aji and there are positive constants M1 and

M2 such that M1 |ξ|
2
≤ L (ξ) ≤ M2 |ξ|

2
for ξ = (ξ1, ξ2, ...ξn) ∈ Rn, where

|ξ|2 =
n
∑

k=1

ξ2k, L (ξ) =
2

∑

i,j=1

aijξiξj .

Definition 2.2. Consider the initial value problem (1.1) − (1.2) for ϕ ∈
W̊ s,p (Rn). This problem is critical when s = sc := n

2 − 2
p
, subcritical when

s > sc, and supercritical when s < sc.
We write a . b to indicate that a ≤ Cb for some constant C, which is

permitted to depend on some parameters.

3. Dispersive and Strichartz type inequalities for linear Schrödinger

equation

Let the operator iL generates a continious C0 group eitL(ξ). It can be shown
that the fundamental solution of the free Schrödinger equation

i∂tu+ Lu = 0, t ∈ [0, T ] , x ∈ Rn (3.1)

can be expressed as UL (t) = ̥−1eitL(ξ), i.e.

UL (t) f (x) =

∫

Rn

UL (t) (x− y) f (y)dy. (3.2)

Lemma 3.1.The following dispersive inequalities hold

‖UL (t) f‖Lp
x(Rn) . t−[n(

1
2−

1
p )] ‖f‖

L
p′
x (Rn)

, (3.3)

‖UL (t− s) f‖L∞(Rn) . |t− s|
−n

2 ‖f‖L1(Rn) (3.4)
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for t 6= 0, 2 ≤ p ≤ ∞, 1
p
+ 1

p′
= 1.

Proof. Indeed, by using Young’s integral inequality from (3.2) we get

‖UL (t) f‖Lp
x(Rn) . |t|

−n( 1
2−

1
p ) ‖f‖

L
p′
x (Rn)

, (3.5)

‖UL (t) f‖L∞

x (Rn) . |t|
−n

2 ‖f‖L1
x(R

n) . (3.6)

Condition 3.1. Assume n ≥ 1,

2

q
+

n

r
≤

n

2
, 2 ≤ q, r ≤ ∞ and (n, q, r) 6= (2, 2, ∞) .

Remark 3.1. If 2
q
+ n

r
= n

2 , then (q, r) is called sharp admissible, otherwise

(q, r) is called nonsharp admissible. Note in particular that when n > 2 the

endpoint
(

2, 2n
n−−2

)

is called sharp admissible.

For a space-time slab [0, T ]×Rn, we define the E−valued Strichartz norm

‖u‖S0(I) = sup
(q,r) admissible

‖u‖Lq
tL

r
x(I×Rn) ,

where S0 ([0, T ]) is the closure of test functions under this norm and N0 ([0, T ])
denotes the dual of S0 ([0, T ]) .

Assume H is an abstract Hilbert space and Q is a Hilbert space of function.
Suppose for each t ∈ R an operator U (t): Q → L2 (Ω) obeys the following
estimates:

‖U (t) f‖L2
x(Ω) . ‖f‖H (3.7)

for all t, Ω ⊂ Rn and all f ∈ Q;

‖U (s)U∗ (t) g‖L∞

x (Ω) . |t− s|−
n
2 ‖g‖L1

x(Ω) (3.8)

‖U (s)U∗ (t) g‖L∞

x (Ω) .
(

1 + |t− s|
−n

2

)

‖g‖L1
x(Ω) (3.9)

for all t 6= s and all g ∈ L1
x (Ω) .

For proving the main theorem of this section, we will use the following bi-
linear interpolation result (see [1], Section 3.13.5(b)).

Lemma 3.2. Assume A0, A1, B0, B1, C0, C1 are Banach spaces and T is
a bilinear operator bounded from (A0 × B0, A0 × B1, A1 × B0 ) into (C0, C1,
C1), respectively. Then whenever 0 < θ0, θ1 < θ < 1 are such that 1 ≤ 1

p
+ 1

q

and θ = θ0+ θ1, the operator is bounded from

(A0, A1)θ0pr
× (B0, B1)θ1qr

to (C0, C1)θr .
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By following [9, Theorem 1.2] we have:
Theorem 3.1. Assume U(t) obeys (3.8) and (3.9). Then the following

estimates are hold
‖U (t) f‖Lq

tL
r
x
. ‖f‖H , (3.10)

∥

∥

∥

∥

∫

U∗ (s)F (s) ds

∥

∥

∥

∥

Q

. ‖F‖
L

q′

t Lr′
x
, (3.11)

∫

s<t

‖AαU (t)U∗ (s)F (s) ds‖Lq
tL

r
x
. ‖F‖

L
q̃′

t Lr̃′
x
, (3.12)

for all sharp admissible exponent pairs (q, r), (q̃, r̃) . Furthermore, if the decay
hypothesis is strengthened to (3.9), then (3.10), (3.11) and (3.12) hold for all
admissible (q, r), (q̃, r̃) .

Proof. The first step: Consider the nonendpoint case, i.e. (q, r) 6=
(

2, 2n
n−2

)

and will show firstly, the estimates (3.10), (3.11) . By duality, (3.10)

is equivalent to (3.11). By the TT ∗ method, (3.11) is in turn equivalent to the
bilinear form estimate

∣

∣

∣

∣

∫ ∫

〈U∗ (s)F (s) , U∗ (t)G (t)〉dsdt

∣

∣

∣

∣

. ‖F‖
L

q′

t Lr′
x

‖G‖
L

q′

t Lr′
x

. (3.13)

By symmetry it suffices to show the to the retarded version of (3.13)

|T (F,G)| . ‖F‖
L

q′

t Lr′
x
‖G‖

L
q′

t Lr′
x
, (3.14)

where T (F,G) is the bilinear form defined by

T (F,G) =

∫ ∫

s<t

〈U (s)
∗
F (s) , (U (t))

∗
G (t)〉dsdt

By real interpolation between the bilinear form of (3.7) we get

∣

∣〈(U (s))
∗
F (s) , (U (t))

∗
G (t)〉

∣

∣ . ‖F (s)‖L2
x
‖G (t)‖L2

x
.

By using the bilinear form of (3.8) we have

∣

∣〈(U (s))
∗
F (s) , (U (t))

∗
G (t)〉

∣

∣ . (3.15)

|t− s|
−n

2 ‖F (s)‖L1
x(Ω) ‖G (t)‖L1

x(Ω) .

In a similar way, we obtain

∣

∣〈(U (s))
∗
F (s) , (U (t))

∗
G (t)〉

∣

∣ . (3.16)

|t− s|
−−1−β(r,r)

‖F (s)‖Lr′
x (Ω) ‖G (t)‖Lr′

x (Ω) ,
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where β(r, r̃) is given by

β(r, r̃) =
n

2
− 1−

n

2

(

1

r
−

1

r̃

)

. (3.17)

It is clear that β(r, r) ≤ 0 when n > 2. In the sharp admissible case we have

1

q
+

1

q′
= −β(r, r),

and (3.14) follows from (3.16) and the Hardy-Littlewood-Sobolev inequality
([20]) when q > q′.

If we are assuming the truncated decay (3.9), then (3.16) can be improved
to

∣

∣〈(U (s))
∗
F (s) , (U (t))

∗
G (t)〉

∣

∣ . (3.18)

(1 + |t− s|)
−1−β(r,r)

‖F (s)‖Lr′
x (Ω) ‖G (t)‖Lr′

x (Ω)

and now Young’s inequality gives (3.14) when

−β(r, r) +
1

q
>

1

q′
,

i.e. (q, r) is nonsharp admissible. This concludes the proof of (3.10) and (3.11)
for nonendpoint case.

The second step; It remains to prove (3.10) and (3.11) for the endpoint
case, i.e. when

(q, r) =

(

2,
2n

n− 2

)

, n > 2.

It suffices to show (3.14). By decomposing T (F,G) dyadically as
∑

j

Tj(F,G),

where the summation is over the integers Z and

Tj (F,G) =

∫

t−2j−1<s≤t−2j

〈(U (s))
∗
F (s) , (U (t))

∗
G (t)〉dsdt (3.19)

we see that it suffices to prove the estimate
∑

j

|Tj(F,G)| . ‖F‖L2
tL

r′
x (H) ‖G‖L2

tL
r′
x
. (3.20)

For this aim, before we will show the following estimate

|Tj(F,G)| . 2−jβ(a,b) ‖F‖L2
tL

a′

x
‖G‖L2

tL
b′
x

(3.21)

for all j ∈ Z and all
(

1
a
, 1
b

)

in a neighborhood of
(

1
r
, 1
r

)

. For proving (3.21) we
will use the real interpolation of Lebesque space and sequence spaces lsq (see e.g
[15] , § 1.18.2 ). Indeed, by [15, § 1.18.4.] we have

(

L2
tL

p0
x , L2

tL
p1
x

)

θ,2
= L2

tL
p,2
x (3.22)
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whenever p0, p1 ∈ [1,∞] , p0 6= p1 and 1
p
= 1−θ

p0
+ θ

p1
and (ls0∞, ls1∞)θ,1 = ls1 for s0,

s1 ∈ R, s0 6= s1 and
1

s
=

1− θ

s0
+

θ

s1
,

where

lsq =











u = {uj}
∞
j−1 , uj ∈ C, ‖u‖lsq =





∞
∑

j=1

2jsq |uj|
q





1
q

< ∞











.

By (3.22) the estimate (3.21) can be rewritten as

T : L2
tL

a′

x × L2
tL

b′

x → lβ(a,b)∞ , (3.23)

where T = {Tj} is the vector-valued bilinear operator corresponding to the Tj .

We apply Lemma 3.2 to (3.23) with r = 1, p = q = 2 and arbitrary exponents
a0, a1, b0, b1 such that

β (a0, b1) = β (a1, b0) 6= β (a0, b0) .

Using the real interpolation space identities we obtain

T : L2
tL

a′,2
x × L2

tL
b′,2
x → l

β(a,b)
1

for all (a, b) in a neighborhood of (r, r). Applying this to a = b = r and using
the fact that Lr′ ⊂ Lr′,2 we obtain

T : L2
tL

a′,2
x × L2

tL
b′,2
x → l01

which implies (3.21) .
Consider the multipoint Cauchy problem for forced Schrodinger equation

i∂tu+ Lu = F, t ∈ [0, T ] , x ∈ Rn, (3.24)

u (t0, x) = ϕ (x) +

m
∑

k=1

αku (λk, x) , x ∈ Rn, t0, λk ∈ [0, T ) , λk > t0.

We are now ready to state the standard Strichartz estimates:
Lemma 3.3. Assume the Condition 2.1 are satisfied, ϕ ∈ W̊ γ,p (Rn) for

γ ≥ n
p
and p ∈ [1,∞]. Then problem (3.24) has a unique generalized solution.

Proof. By using the Fourier transform we get from (3.24) :

iût (t, ξ) + L (ξ) û (t, ξ) = F̂ (t, ξ) ,

û (0, ξ) = ϕ̂ (ξ) +

m
∑

k=1

αkû (λk, ξ) , for a.e. ξ ∈ Rn. (3.25)
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where û (t, ξ) is a Fourier transform of u (t, x) with respect to x.

Consider the problem

ût (t, ξ)− iL (ξ) û (t, ξ) = F̂ (t, ξ) , (3.26)

û (0, ξ) = u0 (ξ) , ξ ∈ Rn, t ∈ [0, T ] ,

where u0 (ξ) ∈ C for ξ ∈ Rn. By Condition 2.1 and by [11, § 1.10, § 4.1], iL (ξ)
is a generator of a strongly continuous C0 semigroups UL (t, ξ =) eitL(ξ) and
the Cauchy problem (3.26) has a unique solution for all ξ ∈ Rn, moreover, the
solution can be expressed as

û (t, ξ) = eitL(ξ)u0 (ξ) +

t
∫

t0

eitL(ξ)|t−τ |F̂ (τ , ξ) dτ , t ∈ (0, T ) . (3.27)

Using the formula (3.27) and the condition (3.25) we get

u0 (ξ) = ϕ̂ (ξ) +

m
∑

k=1

αkUL (λk, ξ)u0 (ξ)+ (3.28)

m
∑

k=1

αk

λk
∫

t0

UL (λk − τ, ξ) F̂ (τ, ξ) dτ , τ ∈ (0, T ) .

From (3.27) and (3.28) we obtain that the solution of problem (3.25) can be
expressed as:

û (t, ξ) = UL (t, ξ) ϕ̂ (ξ) +

m
∑

k=1

αkUL (λk, ξ)u0 (ξ)+ (3.29)

m
∑

k=1

αk

λk
∫

t0

UL (λk − τ, ξ) F̂ (τ, ξ) dτ +

t
∫

t0

UL (t− τ, ξ) F̂ (τ , ξ) dτ , τ ∈ (0, T ) .

Then the solution of the problem (3.24) will be expressed as the following
formula:

u (t, x) = V (t)ϕ (x) +

m
∑

k=1

αkVk (t, x) +

m
∑

k=1

αkGk (t, x) +G0 (t, x) ,

where

V (t) = ̥
−1 [UL (t, ξ) ϕ̂ (ξ)] , Vk (t, x) = ̥

−1 [UL (λk, ξ) ϕ̂ (ξ)] , (3.30)

Gk (t, x) = ̥
−1





λk
∫

t0

UL (λk − τ , ξ) F̂ (τ , ξ) dτ



 ,

8



G0 (t, x) = ̥
−1





t
∫

t0

UL (t− τ, ξ) F̂ (τ, ξ) dτ



 .

Theorem 3.2. Assume the Conditions 2.1 and 3.1 are satisfied. Let 0 ≤

s ≤ 1, ϕ ∈ W̊ s,2 (Rn), F ∈ N0
(

[0, T ] ; W̊ s,2 (Rn)
)

and let u : [0, T ]× Rn → C

be a solution to (3.24). Then

‖|∇|
s
u‖S0([0,T ]) + ‖|∇|

s
u‖C0([0,T ];L2(Rn)) . (3.31)

‖|∇|
s
ϕ‖L2(Rn) + ‖|∇|

s
F‖N0([0,T ]) .

Proof. Let 2 ≤ q, r, q̃, r̃ ≤ ∞ with

2

q
+

n

r
=

2

q̃
+

n

r̃
=

n

2
.

If n = 2, we also require that q, q̃ > 2. Consider first, the nonendpoint case.
By Lemma 3.3 the problem has a solution. The linear operators in (3.10) and
(3.11) are adjoint of one another; thus, by the method of TT ∗ both will follow
once we prove

∥

∥

∥

∥

∥

∥

∫

s<t

UL (t− s)F (s) ds

∥

∥

∥

∥

∥

∥

L
q
tL

r
x

. ‖F‖
L

q′

t Lr′
x

. (3.32)

Apply Theorem 3.1 with Q = L2
x (R

n) = L2
x. The energy estiamate (3.10):

‖UL (t) f‖L2
x
. ‖f‖L2

x

follows from Plancherel’s theorem, the untruncated decay estimate

‖UL (t− s) f‖L∞

x
. |t− s|−

n
2 ‖f‖L1

x
,

and explicit representation of the Schrödinger evolution operator UL (t) f (x).
In view of (3.30) , due to properties gropes UL (t) and by the dispersive estimate
(3.4) we have

|Φ| .

∫

s<t

|UL (t− s) ds|B(H) |F (s)| ds .

∫

R

|t− s|
−n( 1

2−
1
p ) |F (s)| ds,

where

Φ =

∫

s<t

UL (t− s)F (s) ds.

Moreover, from above estimate by the Hardy-Littlewood-Sobolev inequality,
we get

‖Φ‖Lq
tL

r
x(R

n+1) .

∥

∥

∥

∥

∥

∥

∫

R

|t− s|
−n( 1

2−
1
p ) ‖F (s)‖Lr′

x (Rn) ds

∥

∥

∥

∥

∥

∥

L
q
t (R)

. (3.33)
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‖F‖Lq1
t Lr′

x
,

where
1

q1
=

1

q
+

1

p
+

1

2
−

α

n
.

The argument just presented also covers (3.33) in the case q = q̃, r = r̃. It
allows to consider the estimate in dualized form:

∣

∣

∣

∣

∣

∣

∫ ∫

s<t

〈UL (t− s)F (s) , G (t)〉ds

∣

∣

∣

∣

∣

∣

. ‖F‖
L

q′

t Lr′
x

‖G‖
L

q̃1
t Lr̃′

x
(3.34)

when
1

q̃1
=

1

q̃
+

1

p̃
+

1

2
−

ν

n
.

The case q̃ = ∞, r̃ = 2 follows from (3.33), i.e.

K .

∥

∥

∥

∥

∥

∥

∫

s<t

UL (t− s)F (s) ds

∥

∥

∥

∥

∥

∥

L∞

t L2
x

‖G‖L1
tL

2
x
. (3.35)

‖F‖Lq1
t Lr′

x
‖G‖L1

tL
2
x
,

where

K =

∣

∣

∣

∣

∣

∣

∫ ∫

s<t

〈UL (t− s)F (s) , G (t)〉ds

∣

∣

∣

∣

∣

∣

.

From (3.3.5) we obtain the esimate (3.34) when s = 0. The general case is
obtained by using the same argument.

Now, consider the endpoint case, i.e. (q, r) =
(

2, 2n
n−2

)

. It is suffices to show

the following estimates

‖UL (t)ϕ‖Lq
tL

r
x
. ‖ϕ‖W s,2(Rn) , (3.36)

‖UL (t)ϕ‖C0(L2
x)

. ‖ϕ‖W s,2(Rn) , (3.37)

∥

∥

∥

∥

∥

∥

∫

s<t

UL (t− s)F (s) ds

∥

∥

∥

∥

∥

∥

L
q
tL

r
x

. ‖F‖
L

q̃′

t Lr̃′
x
, (3.38)

∥

∥

∥

∥

∥

∥

∫

s<t

UL (t− s)F (s) ds

∥

∥

∥

∥

∥

∥

C0L2
x

. ‖F‖
L

q′

t Lr̃′
x

. (3.39)

Indeed, applying Theorem 3.1 for

Q = L2 (Rn) , U (t) = χ[0,T ]UL (t)
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with the energy estimate

‖U (t) f‖L2(Rn) . ‖f‖L2(Rn)

which follows from Plancherel’s theorem, the untruncated decay estimate (3.8)
and by using of Lemma 3.1 we obtain the estimates (3.36) and (3.38) . Let us
temporarily replace the C0

t L
2
x norm in estimates (3.36), (3.38) by the L∞

t L2
x.

Then, all of the above the estimates will follow from Theorem 3.1, once we show
that U (t) obeys the energy estimate (3.7) and the truncated decay estimate
(3.9). The estimate (3.7) is obtain immediate from Plancherel’s theorem, and
(3.9) follows in a similar way as in [13, p. 223-224]. To show that the operator

GF (t) =

∫

s<t

UL (t− s)F (s) ds

is continuous in L2 (Rn) , we use the the identity

GF (t+ ε) = U (ε)GF (t) +G
(

χ[t,t+ε]F
)

(t) ,

the continuity of U (ε) as an operator on L2 (Rn), and the fact that

∥

∥

∥χ[t,t+ε]F
∥

∥

∥

L
q̃′

t Lr̃′
x

→ 0 as ε → 0.

From the estimates (3.36)− (3.39) we obtain (3.31) for endpoint case.

4. Strichartz type estimates for solution to nonlinear Schrödinger

equation

Consider the multipoint initial-value problem (1.1)− (1.2) .
Condition 4.1. Assume that the function F : C → C is continuously

differentiable and obeys the power type estimates

F (u) = O
(

|u|1+p
)

, Fu (u) = O (|u|p) , (4.1)

Fu (υ)− Fu (w) = O
(

|υ − w|
min{p,1}

+ |w|
max{0,p−1}

)

(4.2)

for some p > 0, where Fu (u) denotes the derivative of operator function F with
respect to u.

From (4.1) we obtain

|F (u)− F (υ)| . |u− υ| (|u|
p
+ |υ|

p
) . (4.3)

Remark 4.1. The model example of a nonlinearity obeying the conditions
above is F (u) = |u|

p
u, p ∈ (1,∞) for which the critical homogeneous Sobolev

space is W̊ sc,2
x (Rn) with sc :=

n
2 − 2

p
.
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Definition 4.1. A function F : [0, T ]×Rn → C is called a (strong) solution
to (1.1)− (1.2) if it lies in the class

C0
t

(

[0, T ] ; W̊ s,2
x (Rn)

)

∩ L
p+2
t L

np(p+2)
4

x ([0, T ]×Rn)

and obey:

u (t, x) = V (t)ϕ (x) +

m
∑

k=1

αkVk (t, x) +

m
∑

k=1

αkGk (t, x) +G0 (t, x) , (4.4)

where

V (t) = ̥
−1 [UL (t, ξ) ϕ̂ (ξ)] , Vk (t, x) = ̥

−1 [UL (λk, ξ) ϕ̂ (ξ)] ,

Gk (t, x) = ̥
−1





λk
∫

t0

UL (λk − τ , ξ) F̂ (τ , ξ) dτ



 , (4.5)

G0 (t, x) = ̥
−1





t
∫

t0

UL (t− τ, ξ) F̂ (τ, ξ) dτ



 .

We say that u is a global solution if T = ∞.
Let B (x, δ) denotes the boll in Rn centered in x with radius δ and M denote

the Hardy-Littlewood type maximal operator that is defined as:

Mf (x) = sup
δ>0

[µ (B (x, δ))]
−1

∫

B(x,δ)

|f (y)| dy.

For proving the main result of this section we need the following:
Proposition 4.1 [12](Ch.2, § 1, Theorem 1) Let 1 < p < ∞, 1 < q ≤ ∞.

Then there exists a constant C (p, q) such that for all {f}k≥0 ∈ Lp (Rn) one has

∥

∥

∥{Mf}k≥0

∥

∥

∥

Lp(Rn)
≤ C (p, q)

∥

∥

∥{f}k≥0

∥

∥

∥

Lp(Rn;lq)
.

Lemma 4.1 [4, Proposition 3.1 ]. Assume F ∈ C(1) (R). Suppose α ∈
(0, 1) , 1 < p, q, r < ∞ and r−1 = p−1 + q−1. If u ∈ L∞ (R) , Dαu ∈ Lq (R)
and F ′ (u) ∈ Lp (R), then Dα (F (u)) ∈ Lr (R) and

‖Dα (F (u))‖Lr(R) . ‖F ′ (u)‖Lp(R) ‖D
αu‖Lq(R) .

Theorem 4.1. Assume the Condıtons 2.1, 3.1, 4.1 are satisfied. Let 0 ≤
s ≤ 1, ϕ ∈ W̊ s,2 (Rn) and n ≥ 1. Then there exists η0 = η0 (n) > 0 such that if
0 < η ≤ η0 such that

‖|∇|
s
UL (t)ϕ‖

L
p+2
t Lσ

x([0,T ]×Rn) ≤ η, (4.5)

12



then here exists a unique solution u to (1.1) − (1.2) on [0, T ]× Rn. Moreover,
the following estimates hold

‖|∇|
s
ULu‖Lp+2

t Lσ
x([0,T ]×Rn) ≤ 2η, (4.6)

‖|∇|
s
u‖S0([0,T ]×Rn) + ‖u‖

C0([0,T ];W̊ s,2(Rn)) . ‖|∇|
s
ϕ‖L2

x(R
n) + η1+p, (4.7)

‖u‖S0([0,T ]×Rn;H) . ‖ϕ‖L2
x(R

n;H) , r = r (p, n) =
2n (p+ 2)

2 (n− 2) + np
. (4.8)

Proof. We apply the standard fixed point argument. More precisely, using
the Strichartz estimates (3.31), we will show that the solution map u → Φ(u)
defined by (4.4) − (4.5) is a contraction on the set B1 ∩ B2 under the metric
given by

d (u, υ) = ‖u− υ‖
L

p+2
t Lr

x([0,T ]×Rn) ,

where
B1 =

{

u ∈ W∞,sc,2 = L∞
t W sc,2

x ([0, T ]×Rn) :

‖u‖W∞,sc,2 ≤ 2 ‖ϕ‖W sc,2
x (Rn) + C (n) (2η)

1+p
}

,

B2 =
{

u ∈ W p+2,sc,r = L
p+2
t W sc,r

x ([0, T ]×Rn) :

‖|∇|
sc u‖

L
p+2
t Lr

x([0,T ]×Rn) ≤ 2η, ‖u‖
L

p+2
t Lr

x([0,T ]×Rn) ≤ 2C (n) ‖ϕ‖L2
x(R

n)

}

,

here C(n) denotes the constant from the Strichartz inequality in (3.25) .
Note that both B1 and B2 are closed in this metric. Using the Strichartz

estimate (3.31), Proposition 4.1 and Sobolev embedding in fractional Sobolev
spaces [[15] , § 2.3] we get that for u ∈ B1 ∩B2,

‖Φ (u)‖L∞

t W sc,2([0,T ]×Rn) ≤ ‖ϕ‖W sc,2
x (Rn) + C (n) ‖〈∇〉scF (u)‖

L
(p+2)/(p+1)
t L

r1
x

≤

‖ϕ‖
W

sc,2
x (Rn) + C (n) ‖〈∇〉scu‖

L
p+2
t Lσ

x
‖u‖

L
p+2
t L

np(p+2)/4
x

≤

‖ϕ‖
W

sc,2
x (Rn) + C (n)

(

2η + 2C (n) ‖ϕ‖L2
x(R

n)

)

‖|∇|sc u‖
L

p+2
t Lr

x
≤

‖ϕ‖
W

sc,2
x (Rn) + C (n)

(

2η + 2C (n) ‖ϕ‖L2
x(R

n)

)

(2η)
p
,

where

L
q
tL

r
x = L

q
tL

r
x ([0, T ]×Rn) , r1 = r1 (p, n) =

2n (p+ 2)

2 (n+ 2) + np
.

Similarly,

‖Φ (u)‖
L

p+2
t Lr

x
≤ C (n) ‖ϕ‖L2

x(R
n;H) + C (n) ‖u‖

L
p+2
t Lr

x
≤
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‖ϕ‖
W

sc,2
x (Rn) + 2C2 (n) ‖ϕ‖L2

x(R
n) (2η)

p
.

Arguing as above and invoking (4.5) , we obtain

‖|∇|
sc Φ (u)‖

L
p+2
t Lr

x
≤ η + C (n) ‖|∇|

sc Φ (u)‖
L

(p+2)/(p+1)
t L

r1
x

≤

η + C (n) (2η)
1+p

.

Thus, choosing η0 = η0 (n) sufficiently small, we see that for 0 < η ≤ η0 the
function Φ maps the set B1 ∩ B2 to itself. To see that it is a contraction, we
repeat the computations above and use (4.4) to obtain

‖F (u)− F (υ)‖
L

p+2
t Lr

x
≤ C (n) ‖F (u)− F (υ)‖

L
(p+2)/(p+1)
t L

r1
x

≤

C (n) (2η)
p
‖u− (υ)‖

L
p+2
t Lr

x
.

Thus, choosing η0 = η0 (n) small enough, we can guarantee that is a con-
traction on the set B1 ∩ B2. By the contraction mapping theorem, it follows
that has a fixed point in B1 ∩B2. Since Φ maps into C0

t W
sc,2
x ([0, T ]×Rn) we

derive that the fixed point of Φ is indeed a solution to (1.1)− (1.2).
In view of Definition 4.1, uniqueness follows from uniqueness in the contrac-

tion mapping theorem.
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