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Abstract. We examine a viscous Cahn-Hilliard phase-separation model with memory and where the
chemical potential possesses a nonlocal fractional Laplacian operator. The existence of global weak

solutions is proven using a Galerkin approximation scheme. A continuous dependence estimate provides
uniqueness of the weak solutions and also serves to define a precompact pseudometric. This, in addition
to the existence of a bounded absorbing set, shows that the associated semigroup of solution operators
admits a compact connected global attractor in the weak energy phase space. The minimal assumptions
on the nonlinear potential allow for arbitrary polynomial growth.
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1. Introduction

Let Ω be a smooth (at least Lipschitz) bounded domain in R
N , N = 3, 2, 1, with boundary ∂Ω and

let T > 0. We consider the following viscous fractional Cahn-Hilliard equation in the unknown (order
parameter) u satisfying

∂tu(t, x) =

∫ ∞

0

k(s)∆µ(t− s, x)ds in Ω× (0, T ), (1.1)

k is a so-called relaxation kernel, with a chemical potential µ given by

µ(t, x) = α∂tu(t, x) + (−∆)βu(t, x) + F ′(u(t, x)) in Ω× R, (1.2)

α > 0, β ∈ (0, 1), and typically F is a double-well potential (the precise assumptions on F are stated in
(N1)-(N3) below), subject to the boundary conditions

u = 0 on R
N\Ω× (0, T ) and ∂nµ = 0 on ∂Ω× (0, T ), (1.3)
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with the given initial and past conditions

u(0) = u0(0) in Ω and u(−t) = u0(−t) in Ω× [0, T ), (1.4)

for
u0 : Ω× (−∞, 0)→ R.

Here we define (−∆)β with 0 < β < 1 as the (nonlocal) fractional Laplace operator. In other words,
let Ω ⊂ R

N be an arbitrary open set and fix

L1(Ω) :=
{

u : Ω→ R measurable,

∫

Ω

|u(x)|
(1 + |x|)N+2β

dx <∞
}

.

For u ∈ L1(RN ), x ∈ R
N and ε > 0, we write

(−∆)βεu(x) = CN,β

∫

{y∈RN ,|y−x|>ε}

u(x)− u(y)
|x− y|N+2β

dy

with the normalized constant CN,β given by

CN,β =
β22βΓ

(

N+2β
2

)

π
N
2 Γ(1− β)

, (1.5)

where Γ denotes the usual Gamma function. The (restricted) fractional Laplacian (−∆)βu of the function
u is defined by the formula

(−∆)βu(x) = CN,βP.V.

∫

RN

u(x)− u(y)
|x− y|N+2β

dy = lim
ε↓0

(−∆)βε u(x), x ∈ R
N , (1.6)

provided that the limit exists. We call Aβ the self-adjoint realization of the fractional Laplacian (−∆)β

with Dirichlet boundary condition (1.3)1, see, e.g., [27, Section 2.2] (cf. also [57]).
Some remarks: First, observe the chemical potential (1.2) involves the Neumann (no-flux) condition

described by (1.3)2. Hence, when the memory function k is close to the Dirac delta function, we recover
the usual parabolic equation associated with the Cahn-Hilliard equation with the flux-free chemical
potential.

Naturally, we are also interested in the closely related problem to (1.1)-(1.4) whereby the fractional

Laplace operator (−∆)β is replaced with the regional fractional Laplacian, Aβ
Ω, defined by first setting

Aβ
Ω,εu(x) = CN,β

∫

{y∈Ω,|y−x|>ε}

u(x)− u(y)
|x− y|N+2β

dy,

where CN,β is given by (1.5), then

Aβ
Ωu(x) = CN,βP.V.

∫

Ω

u(x)− u(y)
|x− y|N+2β

dy = lim
ε↓0

Aβ
Ω,εu(x), x ∈ Ω, (1.7)

provided that the limit exists. Assuming u ∈ D(Ω) (cf. [27, page 1280]) then the two fractional Laplacian
operators are related by

(−∆)βu(x) = Aβ
Ωu(x) + VΩ(x)u(x), ∀u ∈ D(Ω) (1.8)

with the following potential

VΩ(x) := CN,β

∫

RN\Ω

dy

|x− y|N+2β
, x ∈ Ω. (1.9)

The comparable Cahn-Hilliard problem with the regional fractional Laplacian is then (1.1) with the
chemical potential

µ = α∂tu+Aβ
Ωu+ F ′(u) in Ω× (0, T ), (1.10)

now subject to the boundary conditions

u = 0 on ∂Ω× (0, T ) and ∂nµ = 0 on ∂Ω× (0, T ), (1.11)

with the above initial and past conditions in (1.4). Our focus here is on obtaining results for the restricted
fractional Laplacian, of which the regional counterpart can be view as a perturbation thanks to (1.8).
The restricted fractional Laplacian appears in the context of nonlocal phase transitions with Dirichlet
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boundary conditions in [8, 9]. On the other hand, the regional fractional Laplacian is generally better
suited to treat problems with nonhomogeneous boundary data and even dynamic boundary conditions
(see [27, 21] and the references therein).

Inside a bounded container Ω ⊂ R
3, the Cahn-Hilliard equation (cf. [10]) is a phase separation model

for a binary solution (e.g. a cooling alloy, glass, or polymer),

∂tu = ∇ · [κ(u)∇µ],

where u is the order-parameter (the relative difference of the two phases), κ is the mobility function
(which we set κ ≡ 1 throughout this article), and µ is the chemical potential (the first variation of the
free-energy E with respect to u). In the classical model,

µ = −∆u+ F ′(u) and E(u) =

∫

Ω

(

1

2
|∇u|2 + F (u)

)

dx,

where F describes the density of potential energy in Ω (e.g. the double-well potential F (s) = (1− s2)2).
Recently the nonlocal free-energy functional appears in the literature [31],

E(φ) =

∫

Ω

∫

Ω

1

4
J(x− y)(φ(x) − φ(y))2dxdy +

∫

Ω

F (φ)dx,

hence, the chemical potential is,

µ = aφ− J ∗ φ+ F ′(φ), (1.12)

where

a(x) =

∫

Ω

J(x− y)dy and (J ∗ φ)(x) =
∫

Ω

J(x− y)φ(y)dy. (1.13)

In view of [20, 22], the nonlocality expressed in (1.12)-(1.13) (cf. also [3, 6, 13, 18, 19, 24, 43, 49, 53, 51])
is termed weak while the type under consideration here in (1.2) and (1.6) is called strong. Under certain
conditions the strong type reduces to the weak (cf. [20], and also see [31]). Recently there has been
much interest in the nonlocal Cahn–Hilliard equation with strong interactions of the restricted fractional
Laplacian type (1.6) and the regional fractional Laplacian type (1.7) (cf. [2, 8, 20, 21, 22]). The results
in these references concern global well-posedness, and when available, the existence of finite dimensional
global attractors and regularity.

Additionally, there has been exceptional growth concerning dissipative infinite-dimensional systems
with memory including models arising in the theory of heat conduction in special materials (cf. e.g.
[17, 26, 33, 34, 52]) and the theory of phase-transitions (cf. e.g. [11, 16, 23, 28, 29, 32, 35, 39, 40]). One
feature of equations that undergo “memory relaxation” is admissibility of a so-called inertia term. For
example (cf. e.g. [30]) the first-order equation with memory

ut(t) +

∫ ∞

0

kε(s)f(u(t− s))ds = 0

for

kε(s) =
1

ε
e−s/ε

leads us (formally) to the “hyperbolic relaxation” equation

εutt(t) + ut(t) + f(u(t)) = 0.

In this way, our model also includes the Cahn–Hilliard equation with inertial term (cf. [12, 41, 42, 50]).
Hence, the novelty in the present work is a relaxation of a phase-field model with a strongly interacting
nonlocal diffusion mechanism.

In this article, our aims are:

• To provide a framework to establish the global (in time) well-posedness of the model problems
(1.1)-(1.4) and (1.1), (1.4), (1.10) and (1.11).
• To prove the semigroup of solution operators admits a compact global attractor.
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In order to reach these aims, we require sufficient growth conditions on F (given below) in order to
employ a Galerkin scheme with suitable a priori estimates. With a finite energy phase space identified,
a one-parameter family of solution operators is defined, hence generating a semi-dynamical system. This
semigroup is dissipative on the energy phase-space and also defines an α-contraction on the phase-space.
The existence of a compact global attractor follows.

2. Past history formulation and functional setup

We now introduce the well-established past history approach from [38] (cf. also [16, 28]) by defining
the past history variable, for all s > 0 and t > 0,

ηt(x, s) =

∫ s

0

−∆µ(x, t− σ)dσ. (2.1)

Observe, η satisfies the boundary condition

ηt(x, 0) = 0 on Ω× (0,∞). (2.2)

When k is sufficiently smooth and vanishes at +∞ (these assumptions will be made more precise below),
then integration by parts yields

∫ ∞

0

k(s)∆µ(x, t− s)ds = −
∫ ∞

0

ν(s)ηt(x, s)ds

where ν(s) = −k′(s).
We may now formulate the model problem (1.1)-(1.4) as:

Problem P. Find (u, η) = (u(x, t), ηt(x, s)) on (0,∞) such that

∂tu(x, t) +

∫ ∞

0

ν(s)ηt(x, s)ds = 0 in Ω× (0,∞) (2.3)

µ(x, t) = α∂tu(x, t) + (−∆)βu(x, t) + F ′(u(x, t)) in Ω× (0,∞) (2.4)

∂tη
t(x, s) + ∂sη

t(x, s) = −∆µ(x, t) in Ω× (0,∞)× (0,∞) (2.5)

hold subject to (1.3) and (2.2), and satisfying the initial conditions (1.4)1 and

η0(x, s) = η0(x, s) in Ω× (0,∞), (2.6)

whereby with (2.1),

η0(x, s) =

∫ s

0

−∆µ0(x,−y)dy in Ω× (0,∞), (2.7)

where in light of (1.4)2,

µ0(x, t) = α∂tu0(x, t) + (−∆)βu0(x, t) + F ′(u0(x, t)) for t ≤ 0. (2.8)

Additionally, we are also interested in treating the related problem where the above fractional Laplace

operator (−∆)β is replaced with the regional counterpart Aβ
Ω. Hence, the formulation of the related

regional Problem P is based on (1.1), (1.4), (1.10), and (1.11).
Here we introduce some notation. From now on, we denote by ‖ · ‖X , the norm in the specified (real)

Banach space X , and (·, ·)Y denotes the product on the specified (real) Hilbert space Y . The dual pairing
between Y and the dual Y ∗ is denoted by 〈u, v〉Y ∗×Y . The set Ω is omitted from the space when we
indicate the norm. We denote the measure of the domain Ω by |Ω|. In many calculations, functional
notation indicating dependence on the variable t is dropped; for example, we will write u in place of
u(t) or ηt in place of ηt(s). Throughout the paper, C will denote a generic positive constant, while
Q : R+ → R+ will denote a generic increasing function. Such generic terms may or may not indicate
dependencies on the (physical) parameters of the model problem, and may even change from line to line.

Let us define the linear operator AN := −∆ on D(AN ) = {ψ ∈ H2(Ω) : ∂nψ = 0 on ∂Ω}, as the
realization in L2(Ω) of the Laplace operator endowed with Neumann boundary conditions. Here, −∆
denotes the usual (local) Laplace operator. It is well-known that AN is the generator of a bounded
analytic semigroup e−AN t on L2(Ω). Additionally, AN is nonnegative and self-adjoint on L2(Ω). With
H−r(Ω) := (Hr(Ω))∗, r ∈ N+, denote by 〈·〉 the spatial average over Ω; i.e.,

〈ψ〉 := 1

|Ω| 〈ψ, 1〉H−r×Hr .
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We set Hr
(0)(Ω) = {ψ ∈ Hr(Ω) : 〈ψ〉 = 0}, H0(Ω) = L2(Ω), and we know that A−1

N : H0
(0)(Ω)→ H0

(0)(Ω)

is a well-defined mapping. We will refer to the following norms in H−r(Ω) (which are equivalent to the
usual norms)

‖ψ‖2H−r = ‖A−r/2
N (ψ − 〈ψ〉)‖2 + |〈ψ〉|2. (2.9)

The Sobolev space H1(Ω) is endowed with the norm,

‖ψ‖2H1 := ‖∇ψ‖2 + 〈ψ〉2. (2.10)

Denote by λΩ > 0 the constant in the Poincaré-Wirtinger inequality,

‖ψ − 〈ψ〉‖ ≤
√

λΩ‖∇ψ‖. (2.11)

Whence, for λ∗Ω := max{λΩ, 1}, there holds, for all ψ ∈ H1(Ω),

‖ψ‖2 ≤ λΩ‖∇ψ‖2 + 〈ψ〉2 (2.12)

≤ λ∗Ω‖ψ‖2H1 .

We now more rigorously describe the fractional Laplacian with Dirichlet boundary conditions. For an
arbitrary bounded domain Ω ⊂ R

N and for β ∈ (0, 1), denote the fractional-order Sobolev space by,

W β,2(Ω) :=

{

u ∈ L2(Ω) :

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|N+2β

dxdy <∞
}

,

to be equipped with the norm

‖u‖Wβ,2 :=

(
∫

Ω

|u(x)|2dx+
CN,β

2

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|N+2β

dxdy

)1/2

,

where CN,β is given by (1.5). Let

W β,2
0 (Ω) = D(Ω)W

β,2(Ω)
.

Hence, W β,2
0 (Ω) is a closed subspace of W β,2(Ω) containing D(Ω). Moreover, thanks to [1, Theorem

10.1.1],

W β,2
0 (Ω) = {u ∈W β,2(RN ) : ũ = 0 on R

N \ Ω},
where ũ is the quasi-continuous version (with respect to the capacity defined with the space W β,2(Ω)) of

u. One may easily show that the following defines an equivalent norm on the space W β,2
0 (Ω),

|‖u‖|2
Wβ,2

0

=
CN,β

2

∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|N+2β

dxdy +

∫

Ω

VΩ(x)|u(x)|2dx

=
CN,β

2

∫

RN

∫

RN

|u(x)− u(y)|2
|x− y|N+2β

dxdy. (2.13)

Here, VΩ is the potential (1.9).

Remark 2.1. Either definition of the space W β,2
0 (Ω) makes sense for any arbitrary open set Ω ⊂ R

3 (not

necessarily bounded). Also, if Ω has Lipschitz boundary, then by [7], W β,2
0 (Ω) = W β,2(Ω) for every

0 < β ≤ 1
2 .

From now on, we write u ∈ W β,2
0 (Ω) to mean u ∈ W β,2(RN ) and u = 0 on R

N \ Ω. Let aE,β be the

bilinear symmetric closed form with domain D(aE,β) =W β,2
0 (Ω) and defined for u, v ∈ W β,2

0 (Ω) by

aE,β(u, v) =
CN,β

2

∫

Ω

∫

Ω

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2β

dxdy +

∫

Ω

VΩ(x)u(x)v(x)dx

=
CN,β

2

∫

RN

∫

RN

(u(x)− u(y))(v(x) − v(y))
|x− y|N+2β

dxdy. (2.14)

Let AE,β be the closed linear self-adjoint operator on L2(Ω) associated with aE,β by
{

D(AE,β) := {u ∈ W β,2
0 (Ω) : ∃v ∈ L2(Ω), aE,β(u, ϕ) = (v, ϕ) ∀ϕ ∈W β,2

0 (Ω)}
AE,βu = v.

(2.15)
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According to [27, Proposition 2.2], the operator AE,β on L2(Ω) associated with the bilinear form aE,β is
given by

D(AE,β) := {u ∈ W β,2
0 (Ω) : (−∆)βEu ∈ L2(Ω)} and ∀u ∈ D(AE,β), AE,βu := (−∆)βEu. (2.16)

Observe, comparing (1.6) and (2.13)-(2.16) shows, for all u ∈ D(AE,β),

((−∆)βEu, u) = aE,β(u, u) = |‖u‖|2Wβ,2
0

. (2.17)

Concerning the related regional problem discussed above, we let aD,β be the bilinear symmetric closed

form with domain D(aD,β) =W β,2
0 (Ω) and defined for u, v ∈ W β,2

0 (Ω) by

aD,β(u, v) =
CN,β

2

∫

Ω

∫

Ω

(u(x)− u(y))(v(x) − v(y))
|x− y|N+2β

dxdy. (2.18)

Let AD,β be the closed linear self-adjoint operator on L2(Ω) associated with aD,β by
{

D(AD,β) := {u ∈ W β,2
0 (Ω) : ∃v ∈ L2(Ω), aD,β(u, ϕ) = (v, ϕ) ∀ϕ ∈W β,2

0 (Ω)}
AD,βu = v.

(2.19)

Then by [27, Proposition 2.3], the operator AD,β on L2(Ω) associated with the bilinear form aD,β is given
by

D(AD,β) := {u ∈W β,2
0 (Ω) : Aβ

Ωu ∈ L2(Ω)} and ∀u ∈ D(AD,β), AD,βu := Aβ
Ωu. (2.20)

We introduce the spaces for the memory variable η. First, the product in Hσ(Ω) for σ ∈ R and
u1, u2 ∈ Hσ(Ω) is defined by

(u1, u2)Hσ = (A
σ/2
N u1, A

σ/2
N u2). (2.21)

For a nonnegative measurable function θ defined on R+ and for a Hilbert space W (with inner-product
(·, ·)W ), let L2

θ(R+;W ) be the Hilbert space of W -valued functions on R+ equipped with the following
product,

(φ1, φ2)L2
θ(R+;W ) =

∫ ∞

0

θ(s)(φ1(s), φ2(s))W ds.

Thus, we set

Mσ = L2
ν(R+;H

σ(Ω)) and M(0)
σ = L2

ν(R+;H
σ
(0)(Ω)) for σ ∈ R,

where ν = ν(s) is the kernel from (2.3). Hence, for σ ∈ R and φ1, φ2 ∈ Mσ, using (2.21) the product in

Mσ (andM(0)
σ ) can be expressed as

(φ1, φ2)Mσ =

∫ ∞

0

ν(s)(A
σ/2
N φ1(s), A

σ/2
N φ2(s))ds.

Naturally, we may also consider spaces of the form Hk
ν (R+;H

σ(Ω)) for k ∈ N.
We mention that solutions of Problem P must also satisfy the mass conservation constraints,

〈u(t)〉 = 〈u0(0)〉 and 〈ηt(s)〉 = 0 ∀t > 0, ∀s > 0. (2.22)

With this, it is important to realize that the norm of ηt in the space M(0)
−1 may be expressed without

writing the average value of η0 in (2.9) by virtue of the second of (2.22). Indeed, for ηt ∈M(0)
−1,

‖ηt‖M−1 =

(
∫ ∞

0

ν(s)‖ηt(s)‖2H−1ds

)1/2

=

(
∫ ∞

0

ν(s)‖A−1/2
N ηt(s)‖2ds

)1/2

.

We now state the basic function spaces we intend to study Problem P in. For each β ∈ (0, 1) and

σ ∈ R, define the following (weak) energy Hilbertian phase-space Hβ,σ := W β,2
0 (Ω) ×M(0)

σ−1, equipped

with the norm on W β,2
0 (Ω)×M(0)

σ−1 whose square is given by, for all φ = (u, η)tr ∈ Hβ,σ,

‖φ‖2Hβ,σ
:= ‖u‖2

Wβ,2
0

+ ‖ηt‖2Mσ−1
.



VISCOUS FRACTIONAL CAHN-HILLIARD EQUATIONS WITH MEMORY 7

Then, for each M ≥ 0, define the closed subset

HM
β,σ = {φ = (u, η)tr ∈ Hβ,σ : |〈u〉| ≤M}. (2.23)

When we are concerned with the dynamical system associated with the model Problem P, we will utilize
the following metric space,

XM
β,σ :=

{

φ = (u, η)tr ∈ HM
β,σ : F (u) ∈ L1(Ω)

}

,

endowed with the metric

dXM
β,σ

(φ1, φ2) := ‖φ1 − φ2‖HM
β,σ

+

∣

∣

∣

∣

∫

Ω

F (u1)dx−
∫

Ω

F (u2)dx

∣

∣

∣

∣

1/2

.

Remark 2.2. The embedding HM
β,1 →֒ HM

β,0 is continuous but not compact, due to the presence of the

second componentM(0)
σ−1. Indeed, see [47] for a counterexample.

It is appropriate for us to state the various assumptions that may used on the kernel ν.

(K1): ν ∈ C1(R+) ∩ L1(R+) and ν(s) ≥ 0 for all s ∈ R+.
(K2): ν′(s) ≤ 0 for all s ∈ R+.

(K3): k0 =

∫ ∞

0

ν(s)ds > 0. (For the sake of simplicity we now assume k0 = 1 throughout the rest

of the paper.)
(K4): ν0 = lim

s→0+
ν(s) <∞.

(K5): ν′(s) + λν(s) ≤ 0 for a.a. s ∈ R+, for some λ > 0.

Some remarks for these assumptions. By assumption (K2), the inequality holds for all ηt ∈ D(Tr)

(Trη
t, ηt)M−1 ≤ 0. (2.24)

We remind the reader that the assumption (K5) is only required when we examine the asymptotic behavior
of the solutions (and in that case, (K2) is redundant).

In order to formulate a suitable (abstract) evolution equation for ηt, we define the linear operator
Tr = −∂s with the domain

D(Tr) = {ηt ∈ M(0)
−1 : ∂sη

t ∈M(0)
−1, η

t(0) = 0}.

It is well-known that Tr is the infinitesimal generator of the right-translation semigroup onM−1; indeed,
the following result comes from [38, Theorem 3.1].

Proposition 2.3. The operator Tr with domain D(Tr) is an infinitesimal generator of a strongly con-
tinuous semigroup of contractions on M−1, denoted e

Trt.

As a consequence, we also have (cf., e.g. [48, Corollary IV.2.2]).

Corollary 2.4. Let T > 0 and assume g ∈ L1(0, T ;H−1(Ω)). Then, for every η0 ∈ M−1, the Cauchy
problem for ηt,

{

∂tη
t = Trη

t + g(t), for t > 0,
η0 = η0,

(2.25)

has a unique (mild) solution η ∈ C([0, T ];M−1) which can be explicitly given as

ηt(s) =















∫ s

0

g(t− y)dy, for 0 < s ≤ t,

η0(s− t) +
∫ t

s

g(t− y)dy, for s > t,
(2.26)

cf. also [17, Section 3.2] and [38, Section 3].
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3. Variational formulation and well-posedness

To begin this section, we state the assumptions on the nonlinear term F and report some important
consequences of these assumptions. These assumptions on F are based on [18, 24] and can be found in
[21, Section 3].

(N1): F ∈ C2
loc(R) and there exists cF > 0 such that, for all r ∈ R,

F ′′(r) ≥ −cF .

(N2): There exists cF > 0 and p ∈ (1, 2] such that, for all r ∈ R,

|F ′(r)|p ≤ cF (|F (r)| + 1).

(N3): There exist C1, C2 > 0 such that, for all r ∈ R,

F (r) ≥ C1|r|p/(p−1) − C2.

The last assumption is not needed to obtain the existence of weak solutions, but it will be relied upon
later when we seek the existence of strong/regular solutions and uniqueness of these solutions.

(N4): There exist ρ ≥ 2 and C3 > 0 such that, for all r ∈ R,

|F ′′(r)| ≤ C3(1 + |r|ρ−2). (3.1)

The following remarks are from [21]. Assumption (N1) implies that the potential F is a quadratic
perturbation of some strictly convex function; i.e., there holds,

F (r) = G(r) − cF
2
r2, (3.2)

with G ∈ C2(R) strictly convex as G′′ ≥ 0 in Ω. Also with (N1), for each M ≥ 0 there are constants
Ci > 0, i = 3, . . . , 6, (with C4 and C5 depending on M and F ) such that, for all r ∈ R,

F (r) − C3 ≤ C4(r −M)2 + F ′(r)(r −M), (3.3)

1

2
|F ′(s)|(1 + |r|) ≤ F ′(r)(r −M) + C5, (3.4)

(cf. [11, Equations (4.7) and (4.8)]) and

|F (r)| − C6 ≤ |F ′(r)|(1 + |r|). (3.5)

The last inequality appears in [25, page 8]. With the positivity condition (N3), it follows that, for all
r ∈ R,

|F ′(r)| ≤ cF (|F (r)| + 1). (3.6)

Assumption (N2) allows for arbitrary polynomial growth p̄ = p/(p− 1) in the potential F . Significantly,
the double-well potential F (r) = (r2 − 1)2 satisfies (N2) with p = 4/3 and (N4) with p = 2.

We are now ready to introduce the variational/weak formulation of Problem P.

Definition 3.1. Let T > 0 and φ0 = (u0, η0)
tr ∈ HM

β,0 = W β,2
0 (Ω) ×M(0)

−1 be such that F (u0) ∈ L1(Ω).

A pair φ = (u, η) satisfying

φ = (u, η) ∈ L∞(0, T ;HM
β,0), (3.7)

∂tu ∈ L2(0, T ;H−1(Ω)), (3.8)

∂tη ∈ L2(0, T ;H−1
ν (R+;H

−1
(0) (Ω))), (3.9)

µ ∈ L2(0, T ;W−β,2(Ω)), (3.10)

F ′(u) ∈ L∞(0, T ;Lp(Ω)) (3.11)
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is called a weak solution to Problem P on [0, T ] with initial data φ0 = (u0, η0) ∈ HM
β,0 if the following

identities hold almost everywhere in (0, T ), and for all v ∈ H1(Ω), ξ ∈ W β,2
0 (Ω) ∩ Lp(Ω) and ζ ∈M1:

〈∂tu, v〉H−1×H1 +

∫ ∞

0

ν(s)〈ηt(s), v〉H−1×H1ds = 0, (3.12)

aE,β(u, ξ) + 〈F ′(u), ξ〉W−β,2×Wβ,2
0

+ α〈∂tu, ξ〉W−β,2×Wβ,2
0

= 〈µ, ξ〉W−β,2×Wβ,2
0
, (3.13)

(∂tη
t, ζ)M−1 − (Trη

t, ζ)M−1 = (µ, ζ)M0 . (3.14)

Also, the initial conditions hold in the L2-sense

u(0) = u0 and η0 = η0. (3.15)

Finally, we say that φ = (u, η)tr is a global weak solution of Problem P if it is a weak solution on
[0, T ], for any T > 0.

Remark 3.2. It is important to note that although η0 is defined by (2.1) and (2.8), η0 may be taken to
be initial data independent of u. Henceforth we will consider a more general problem with respect to the
original one.

Remark 3.3. Concerning equation (3.14) and the representation formula (2.26), we have

Trη
t(s) = −∂sηt(s) =

{

−∆µ(t− s) for 0 < s ≤ t,
−∂sη0(s− t)−∆µ(t− s) for s > t.

Thus, when given η0 ∈ M(0)
−1, then Trη

t ∈ H−1
ν (R+;H

−1(Ω)), for each t ∈ (0, T ), by virtue of (3.10).
Moreover, taking ζ = 1 in the variational equation

(∂tη
t, ζ)M−1 − (Trη

t, ζ)M−1 = −
∫ ∞

0

ν(s)(−∆µ, ζ)H−1×H1ds,

we find, for all s > t,

∂

∂t
〈ηt(s)〉+ ∂

∂s
〈η0(s− t)〉+ 〈∆µ(t− s)〉 = 〈∆µ(t− s)〉k0.

We know that η0 ∈ M(0)
−1 and k0 = 1, hence

∂

∂t
〈ηt(s)〉 = 0,

and it follows that

〈ηt(s)〉 = 0 ∀t ≥ 0.

Remark 3.4. In the Cahn-Hilliard model, it is well-known that the average value of u is conserved (cf.
e.g. [56, Section III.4.2]). A similar property holds here for our problem. Indeed, we may choose the test
function v = 1 in (3.12) which yields

∂

∂t
〈u(t)〉+

∫ ∞

0

ν(s)〈ηt(s)〉ds = 0.

By (3.3), there holds 〈ηt(s)〉 = 0 for all t > 0 and for all s > 0. Hence, we recover conservation of mass

〈u(t)〉 = 〈u0〉 and 〈∂tu(t)〉 = 0, ∀t ≥ 0. (3.16)

Remark 3.5. Before we continue to the existence statement, it is worthwhile to recall Theorem A.1 (d)
in Appendix A for which the following embedding holds

D(AE,β) →֒ L∞(Ω), ∀β ∈ (
N

4
, 1), for N = 1, 2, 3. (3.17)

Theorem 3.6. Let T > 0 and φ0 = (u0, η0)
tr ∈ HM

β,0 = W β,2
0 (Ω)×M(0)

−1 for β ∈ (N4 , 1), N = 1, 2, 3, be

such that F (u0) ∈ L1(Ω). Assume α > 0 and that (K1)-(K4) and (N1)-(N3) hold. Problem P admits at
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least one weak solution φ = (u, η) on (0, T ) according to Definition (3.1) with the additional regularity

u ∈ L∞(0, T ;Lp/(p−1)(Ω)), (3.18)
√
α∂tu ∈ L2(Ω× (0, T )), (3.19)

η ∈ L2(0, T ;L2
−ν′(R+;H

−1
(0) (Ω))), (3.20)

F (u) ∈ L∞(0, T ;L1(Ω)), F ′(u) ∈ L∞(0, T ;L1(Ω)). (3.21)

for any T > 0. Furthermore, setting

E(t) := |‖u(t)‖|2
Wβ,2

0

+ 2(F (u(t)), 1) + ‖ηt‖2M−1
+ C (3.22)

for some C > 0 sufficiently large, the following energy equality holds for every such weak solution,

E(t) + 2

∫ t

0

(

α‖∂tu(τ)‖2dτ −
∫ ∞

0

ν′(s)‖ητ (s)‖2H−1ds

)

dτ = E(0). (3.23)

Proof. The proof proceeds in several steps. The existence proof begins with a Faedo-Galerkin approxima-
tion procedure in which we later pass to the limit. We first assume that u0 ∈ D(AE,β). (This assumption
will be used to show that there is a sequence {u0n}∞n=1 such that u0n → u0 in D(AE,β) as well as L

∞(Ω)
per (3.17), which will be important in light of the fact that F (u0n) is of arbitrary polynomial growth per

assumptions (N1)-(N3).) The existence of a weak solution for u0 ∈ W β,2
0 (Ω) with F (u0) ∈ L1(Ω) will

follow from a density argument. To establish the equality in the energy identity, we exploit the fact that
the potential F is a quadratic perturbation of some strictly convex function.

Step 1: The Galerkin approximation. To begin, we introduce the family {vj}j≥1 of eigenvectors of
the fractional Laplacian AE,β which exist thanks to Theorem A.1 in Appendix A. Moreover, there is a
family {wj}j≥1 consisting of the eigenvectors of the Neumann-Laplacian AN , and with this, we define the
smooth sequence of {zj}j≥1 ⊂ D(Tr) ∩W 1,2

ν (R+;H
1
(0)(Ω)) by zj = bjwj such that {bj}j≥1 ⊂ C∞

c (R+) is

an orthonormal basis for L2
ν(R+). Using these we define the following finite-dimensional spaces:

V n = span{v1, v2, . . . , vn}, Wn = span{w1, w2, . . . , wn}, Mn = span{z1, z2, . . . , zn}, (3.24)

and set

V∞ =

∞
⋃

n=1

V n, W∞ =

∞
⋃

n=1

Wn, M∞ =

∞
⋃

n=1

Mn.

Clearly, V∞ is a dense subspace of W β,2
0 (Ω) and W∞ is a dense subspace of H1(Ω). In addition,M∞ is

a dense subspace ofM(0)
−1. For T > 0 fixed, we look for two functions of the form on (0, T ),

un(t) =

n
∑

k=1

a
(n)
k (t)vk and ηtn(s) =

n
∑

k=1

c
(n)
k (t)zk, (3.25)

where a
(n)
j and c

(n)
j are assumed to be (at least) C2([0, T ]) for each j = 1, 2, . . . an for each n = 1, 2, . . . ,

that solve the following approximating Problem Pn:

(∂tun, v) +

∫ ∞

0

ν(s)(ηtn(s), v)ds = 0 (3.26)

aE,β(un, ξ) + (F ′(un), ξ) + α(∂tun, ξ) = (µn, ξ) (3.27)

(∂tη
t
n, ζ)M−1 − (Trη

t
n, ζ)M−1 = (µn, ζ)M0 (3.28)

un(0) = u0n, η0n = η0n (3.29)

for every v ∈ V n, ξ ∈ Wn and ζ ∈Mn, and where u0n and η0n denote the finite-dimensional projections
of u0 and η0 onto V n and Mn, respectively. This approximating problem is equivalent to solving a
Cauchy problem for a system of ordinary differential equations (indeed, cf. e.g. [11, page 131]). Hence,
the Cauchy-Lipschitz theorem ensures that there exists a Tn ∈ (0,∞] such that this approximating system
has a unique maximal solution.

Step 2: A priori estimates. We now derive some a priori estimates in order to show that Tn =∞ for
every n ≥ 1 and that the sequences of un, η

t
n, µn are bounded in suitable functional spaces. By using
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v = µn as a test function in (3.26) and ξ = ∂tun as a test function in (3.27) we obtain

(∂tun, µn) +

∫ ∞

0

ν(s)(ηtn(s), µn)ds = 0 (3.30)

(µn, ∂tun) = ((−∆)βEun, ∂tun) + (F ′(un), ∂tun) + α‖∂tun‖2, (3.31)

and taking ζ = ηtn as a test function in (3.28) yields (for the products inM−1, this is multiplication by
(−∆)−1ηtn inM0)

∫ ∞

0

ν(s)

(
∫

Ω

∂tη
t
n(x, s)(−∆)−1ηtn(x, s)dx

)

ds+

∫ ∞

0

ν(s)

(
∫

Ω

∂sη
t
n(x, s)(−∆)−1ηtn(x, s)dx

)

ds

=

∫ ∞

0

ν(s)

(
∫

Ω

(−∆)µn(x, t)(−∆)−1ηtn(x, s)dx

)

ds,

which is, after an integration by parts,

(∂tη
t
n, η

t
n)M−1 + (∂sη

t
n, η

t
n)M−1 = (µn, η

t
n)M0 . (3.32)

Then combining the results produces the differential identity, which holds for almost all t ∈ (0, T ),

1

2

d

dt

{

|‖un‖|2Wβ,2
0

+ 2(F (un), 1) + ‖ηt‖2M−1

}

+ α‖∂tun‖2 − (Trη
t
n, η

t
n)M−1 = 0. (3.33)

For all t ∈ (0, Tn), set

En(t) := |‖un(t)‖|2Wβ,2
0

+ 2(F (un(t)), 1) + ‖ηtn‖2M−1
+ C (3.34)

where, in light of (N3), the constant C > 0 may be taken sufficiently large (i.e. C > C2|Ω|) in order to
ensure that En(t) is nonnegative for all t ∈ (0, Tn). We have

d

dt
En + 2α‖∂tun‖2 − 2

∫ ∞

0

ν′(s)‖ηtn(s)‖2H−1ds = 0 (3.35)

for almost all t ∈ (0, Tn). Hence, integrating the equation above with respect to time in (0, t), we are led
to the following integral equality (which does hold for the approximate solutions)

En(t) + 2

∫ t

0

(

α‖∂tun(τ)‖2 −
∫ ∞

0

ν′(s)‖ητn(s)‖2H−1ds

)

dτ = En(0). (3.36)

Furthermore, from (3.34) and assumption (N3), we find the lower bound

|‖un(t)‖|2Wβ,2
0

+ 2C1‖un(t)‖p/(p−1)

Lp/(p−1) + ‖ηtn‖2M−1
≤ En(t). (3.37)

Using the fact that F (u0) ∈ L1(Ω), we also obtain the upper bound

En(t) ≤ En(0) ≤ |‖un(0)‖|2Wβ,2
0

+ (F (un(0)), 1) + ‖η0n‖2M−1

≤ Q(‖φn(0)‖HM
β,0

) + C. (3.38)

In particular, the uniform bound derived from (3.36)-(3.38) implies that the local solution to Problem
Pn can be extended up to time T , that is Tn = T , for every n. Moreover, from (3.36)-(3.37) we deduce
the following bounds for the approximate solution

‖un‖L∞(0,T ;Wβ,2
0 ) ≤ C (3.39)

‖ηn‖L∞(0,T ;M−1) ≤ C (3.40)

‖F (un)‖L∞(0,T ;L1) ≤ C (3.41)
√
α‖∂tun‖L2(Ω×(0,T )) ≤ C (3.42)

‖ηn‖L2(0,T ;L2
−ν′

(R+;H−1)) ≤ C (3.43)

‖un‖L∞(0,T ;Lp/(p−1)) ≤ C. (3.44)

Obviously, (3.6) and (3.41) immediately show us

‖F ′(un)‖L∞(0,T ;L1) ≤ C. (3.45)



12 E. ÖZTÜRK AND J. L. SHOMBERG

Next, since 〈A−1
N ∂tun〉 = 0 (recall (3.16)2), we may (and do) take v = A−1

N ∂tun in (3.26) which leads us
to the estimate,

‖A− 1
2

N ∂tun‖2 ≤
∫ ∞

0

ν(s)‖A− 1
2

N ηtn(s)‖‖A
− 1

2

N ∂tun(t)‖ds, (3.46)

that is,

‖∂tun‖2H−1 ≤
∫ ∞

0

ν(s)‖ηtn(s)‖H−1‖∂tun‖H−1ds. (3.47)

Using Young’s inequality and assumption (K3), we can write

‖∂tun‖H−1 ≤ ‖ηtn‖M−1 . (3.48)

Thus, (3.40) and (3.48) yield

‖∂tun‖L∞(0,T ;H−1) ≤ C. (3.49)

Need to bound F ′(un), then µn. In light of (3.27), we apply (3.45), (3.49), and the fact that operator

AE,β is bounded from W β,2
0 (Ω) into W−β,2(Ω) (in particular, ‖AE,βun‖L2(0,T ;W−β,2(Ω)) ≤ C), to obtain

the following uniform bounds for µn

|〈µn〉| ≤ C, (3.50)

and

‖µn‖L2(0,T ;W−β,2(Ω)) ≤ C. (3.51)

This completes Step 2.
Step 3: Passage to the limit. On account of the above uniform inequalities, we can argue that there

are functions u, η, µ, such that, up to subsequences,

un ⇀ u weakly-* in L∞(0, T ;W β,2
0 (Ω)), (3.52)

un ⇀ u weakly-* in L∞(0, T ;Lp/(p−1)(Ω)), (3.53)

∂tun ⇀ ∂tu weakly-* in L∞(0, T ;H−1(Ω)), (3.54)√
α∂tun ⇀

√
α∂tu weakly in L2(Ω× (0, T )), (3.55)

ηn ⇀ η weakly-* in L∞(0, T ;M−1), (3.56)

ηn ⇀ η weakly in L2(0, T ;L2
−ν′(R+;H

−1(Ω))), (3.57)

∂tηn ⇀ ∂tη weakly in L2(0, T ;H−1
ν (R+;H

−1(Ω))), (3.58)

µn ⇀ µ weakly in L2(0, T ;W−β,2(Ω)). (3.59)

(Note that (3.58) is due to (3.28) and the definition of the the operator Tr.) Using the above convergences

(3.52) and (3.54), as well as the fact that the injection W β,2
0 (Ω) →֒ L2(Ω) is compact for any β ∈ (0, 1),

we draw upon the conclusion of the Aubin-Lions Lemma (cf. Lemma A.3 in Appendix A) to deduce the
following embedding is compact

W := {χ ∈ L2(0, T ;W β,2
0 (Ω)) : ∂tχ ∈ L2(0, T ;H−1(Ω))} →֒ L2(Ω× (0, T )). (3.60)

Hence,

un → u strongly in L2(Ω× (0, T )), (3.61)

and we deduce that un converges to u, almost everywhere in Ω × (0, T ). Using assumption (N1) with
(3.61), we deduce

F ′(un)→ F ′(u) strongly in L2(0, T ;L1(Ω)). (3.62)

Thus, we now have all the sufficient convergence resuts to pass to the limit in equations (3.26) and (3.27)
in order to recover (2.3) and (2.4), respectively. It remains to recover equation (3.28) after we pass to
the limit. An integration by parts on the first term in (3.28) and then an application of (3.56) yields, for
any ζ ∈ C∞

0 ((0, T );C∞
0 ((0, T );H1(Ω)))

∫ T

0

(∂tη
τ
n, ζ)M−1dτ = −

∫ T

0

(ητn, ∂tζ)M−1dτ → −
∫ T

0

(ητ , ∂tζ)M−1dτ. (3.63)
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With this we have

∂tη
t
n ⇀ ∂tη

t weakly in L2(0, T ;H−1
ν (R+;H

−1(Ω))) (3.64)

and that ηt ∈ L∞(0, T ;H−1
ν (R+;H

−1(Ω))). Furthermore, with the help of (3.57), we have

−
∫ T

0

(Trη
τ
n, ζ)M−1dτ = −

∫ T

0

ν′(s)(ητn, ζ)H−1dτ → −
∫ T

0

ν′(s)(ητ , ζ)H−1dτ. (3.65)

By using a density argument (cf. [38]) and the following distributional equality

−
∫ T

0

(ητn, ∂tζ)M−1dτ −
∫ T

0

ν′(s)(ητ , ζ)H−1(Ω)dτ =

∫ T

0

(∂tη
τ − Trητ , ζ)M−1dτ, (3.66)

we also get (3.28) on account of (3.56) and (3.59). This completes Step 3 of the proof.

Step 4: Energy equality. To begin, let u0 ∈ D(AE,β), η0 ∈ M(0)
−1 and let φ = (u, η)tr be the corre-

sponding weak solution. Recall from (3.61), we have, for almost all t ∈ (0, T ),

un(t)→ u(t) strongly in L2(Ω) and a.e. in Ω. (3.67)

Since F is measurable (see (N1)), Fatou’s lemma implies
∫

Ω

F (u(t))dx ≤ lim inf
n→+∞

∫

Ω

F (un(t))dx. (3.68)

Passing to the limit in (3.36), and while keeping in mind (3.52), (3.56), (3.55), (3.58), (3.59) and (3.62),
as well as the weak lower-semicontinuity of the norm, we arrive at the integral inequality which holds for
any weak solution

E(t) + 2

∫ t

0

(

α‖∂tu(τ)‖2dτ −
∫ ∞

0

ν′(s)‖ητ (s)‖2H−1ds

)

dτ ≤ E(0).

We argue as in the proof of [13, Corollary 2] to establish the energy equality. Indeed, take ξ = µ
in (3.12). By (2.4), we need to treat the dual pairing 〈F ′(u), ∂tu〉W−β,2×Wβ,2

0
. It is here where we

employ (3.2) where F ′(u) = G′(u)− cFu and G′ ∈ C1(R) is monotone increasing. Define the functional
G : L2(Ω)→ R by

G(φ) :=







∫

Ω

G(u)dx if G(u) ∈ L1(Ω),

+∞ otherwise.

Now by [5, Proposition 2.8, Chapter II], it follows that G is convex, lower-semicontinuous on L2(Ω), and
χ ∈ ∂G(u) if and only if χ = G′(u) almost everywhere in Ω. Since we have (3.8), we apply [14, Proposition
4.2] to find that there holds, for almost all t ∈ (0, T ),

〈∂tu, F ′(u)〉W−β,2×Wβ,2
0

= 〈∂tu,G′(u)〉W−β,2×Wβ,2
0
− cF 〈∂tu, u〉W−β,2×Wβ,2

0

=
d

dt

{

G(u)− cF
2
‖u‖2

}

=
d

dt

∫

Ω

F (u)dx.

Similar to Step 2 above, take v = µ, ξ = ∂tu and ζ = ηt (now without the index n) in (3.12)-(3.14),
respectively. Using the above result on the dual product with F ′(u) and (3.8), we are led to the differential
identity (3.35) with E, u and η in place of En, un and ηn, respectively. Integrating the resulting differential
identity on (0, t) produces (3.23) as claimed. This completes Step 4.

Step 5: (u, η) weak solution to Problem P. Now let us take φ0 = (u0, η0)
tr ∈ HM

β,0 where F (u0) ∈ L1(Ω).

Proceeding exactly as in [13, page 440] the bounds (3.39)-(3.45) and (3.49)-(3.51) hold. Moreover, with
the aid of the Aubin-Lions compact embedding (again see Lemma A.3 in Appendix A below) we deduce
the existence of functions u, η and µ that satisfy (3.7), (3.10), (3.18) and (3.20). Thus, passing to the limit
in the variational formulation for φk = (uk, ηk)

tr , we find φ = (u, η)tr is a solution corresponding to the
initial data φ0 = (u0, η0)

tr ∈ HM
β,0 for which F (u0) ∈ L1(Ω). This finishes the proof of the theorem. �

Before we continue, we make some important remarks.
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Remark 3.7. The continuity property

u ∈ C([0, T ];W β−ι,2
0 (Ω)),

for any ι > 0, sufficiently small follows from the conditions in Definition 3.1 after an application of the
Aubin-Lions Lemma (cf. Lemma A.3 in Appendix A). In addition, the property

η ∈ C([0, T ];M(0)
−1)

follows from the density argument in [38]. Thus, we deduce the continuity properties

φ = (u, η) ∈ C([0, T ];HM
β,0).

Remark 3.8. From (3.23) we see that if there is a t∗ > 0 in which

E(t∗) = E(0),
then, for all t ∈ (0, t∗),

∫ t

0

(

α‖∂tu(τ)‖2 + ‖ητ‖2L2
−ν′

(R+;H−1)

)

dτ = 0. (3.69)

We deduce ∂tu(t) = 0 for all t ∈ (0, t∗). Additionally, since u(t) = u0 for all t ∈ (0, t∗), equation (2.4)
shows

µ(t) = AE,βu0 + F ′(u0) ∀t ∈ (0, t∗),

i.e., µ(t) = µ∗ is also stationary. Thus, by the definition of ηt given in (2.1), we find here that, for each
t ∈ (0, t∗)

ηt(s) = sANµ
∗ ∀s ≥ 0.

Therefore φ = (u, η)tr is a fixed point of the trajectory φ(t) = S(t)φ0, where S is the solution operator
defined below in Corollary 3.12.

The following result (cf. [11, Theorem 3.4]) concerns the existence of strong/regular solutions which
will be utilized in the proof of the continuous dependence estimate. Note that we will now employ the
added assumption on the nonlinear term.

Theorem 3.9. Let T > 0 and φ0 = (u0, η0)
tr ∈ HM

β+1,β+1 :=W β+1,2
0 (Ω)×L2

ν(R+;W
β,2
0 (Ω)) be such that

F (u0) ∈ L1(Ω) and η0 ∈ D(Tr). Assume α > 0 and that (K1)-(K4) and (N1)-(N3) hold. Additionally,
assume that (N4) holds. Problem P admits at least one weak solution φ = (u, η) on (0, T ) according to
Definition (3.1) with the additional regularity, for any T > 0,

φ = (u, η) ∈ L∞(0, T ;HM
β+1,β+1) ∩W 1,∞(0, T ;HM

β,0), (3.70)
√
α∂tu ∈ L2(0, T ;H1(Ω)) (3.71)

∂ttu ∈ L∞(0, T ;H−1(Ω)), (3.72)
√
α∂ttu ∈ L2(Ω× (0, T )), (3.73)

µ ∈ L∞(0, T ;H1(Ω)), (3.74)

η ∈ L∞(0, T ;D(Tr)). (3.75)

Proof. The proof relies on the Galerkin approximation scheme developed in the proof of Theorem 3.6.
We will seek φn = (un, ηn) of the form (3.25) satisfying Problem Pn:

(∂ttun, v) +

∫ ∞

0

ν(s)(∂tη
t
n(s), v)ds = 0 (3.76)

aE,β(∂tun, ξ) + (F ′′(un)∂tu, ξ) + α(∂ttun, ξ) = (∂tµn, ξ) (3.77)

(∂ttη
t
n, ζ)M−1 − (Tr∂tη

t
n, ζ)M−1 = (∂tµn, ζ)M0 (3.78)

for every t ∈ (0, T ), v ∈ V n, ξ ∈ Wn and ζ ∈ Mn, and which satisfy the initial conditions

un(0) = ũ0n and η0n = η̃0n, (3.79)

where we have set

ũ0n := −
∫ ∞

0

ν(s)η0n(s)ds, (3.80)
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and

η̃0n := Trη0n +ANµ0n, (3.81)

and also

µ0n = −α
∫ ∞

0

ν(s)η0n(s)ds+AE,βu0n + F ′(u0n). (3.82)

It is important to note that when φ0 = (u0, η0) satisfies the assumptions of Theorem 3.9, then it is
guaranteed that (ũ0, η̃0) ∈ HM

1,0. Indeed, relying on the fact that ‖(u0n, η0n)‖HM
β,0
≤ ‖(u0, η0)‖HM

β,0
, we

easily obtain the estimate ‖(∂tun(0), ∂tη0n)‖HM
β,0
≤ Q(‖(u0, η0)‖HM

β+1,β+1
). Now, for any fixed n ∈ N, we

find a unique local maximal solution φn = (un, ηn) ∈ C2([0, Tn];HM
β+1,2). Next we integrate (3.76) and

(3.77) with respect to time on (0, t) and argue as in the proof of Theorem 3.6 to find the uniform bounds
(3.39)-(3.45), (3.49) and (3.51). In order to obtain the required higher-order estimates, let us begin by
labeling

ũ(t) = ∂tu(t), η̃t = ∂tη
t, µ̃(t) = ∂tµ(t),

where we are also dropping the index n for the sake of simplicity. Then (ũ, η̃) solves the system

〈∂tũ, v〉H−1×H1 +

∫ ∞

0

ν(s)〈η̃t(s), v〉H−1×H1ds = 0, (3.83)

aE,β(ũ, ξ) + (F ′′(u)ũ, ξ) + α(∂tũ, ξ) = 〈µ, ξ〉W−β,2×Wβ,2
0
, (3.84)

(∂tη̃
t, ζ)M−1 − (Trη̃

t, ζ)M−1 = (µ̃, ζ)M0 , (3.85)

for all v ∈ H1(Ω), ξ ∈W β,2
0 (Ω) and ζ ∈M1, with the initial conditions

ũ(0) = ũ0 and η̃0 = η̃0.

Let us now take v = µ̃, ξ = ∂tũ and ζ = η̃t in (3.83)-(3.85), respectively. Summing the resulting
identities together, we obtain, for all t ∈ (0, T ),

1

2

d

dt

{

‖ũ‖2
Wβ,2

0

+ ‖η̃t‖2M−1

}

−
∫ ∞

0

ν′(s)‖η̃t(s)‖2H−1ds+ α‖∂tũ‖2 = −(F ′′(u)ũ, ∂tũ).

Here we apply (K5) as well as (N4) with (3.44) and the embedding W β,2
0 (Ω) →֒ L2(Ω) to find

1

2

d

dt

{

‖ũ‖2
Wβ,2

0

+ ‖η̃t‖2M−1

}

+ λ‖η̃t‖2M−1
+ α‖∂tũ‖2 ≤ Cα‖ũ‖2 +

α

2
‖∂tũ‖

≤ Cα‖ũ‖2Wβ,2
0

+
α

2
‖∂tũ‖, (3.86)

where Cα ∼ α−1 is a positive constant. Integrating (3.86) over (0, t) produces

‖ũ(t)‖2
Wβ,2

0

+ ‖η̃t‖2M−1
+

∫ t

0

(

2λ‖η̃τ‖2M−1
+ α‖∂tũ(τ)‖2

)

dτ

≤ ‖ũ(0)‖2
Wβ,2

0

+ ‖η̃0‖2M−1
+ Cα

∫ t

0

‖ũ(τ)‖2
Wβ,2

0

dτ, (3.87)

and an application of Grönwall’s (integral) inequality shows, for all t ≥ 0,

‖(ũ(t), η̃t)‖HM
β,0
≤ Q(‖(ũ0, η̃0)‖HM

β,0
) (3.88)

and
√
α‖∂tũ(t)‖L2(Ω×(0,T )) ≤ Q(‖(ũ0, η̃0)‖HM

β,0
). (3.89)

Through (3.80)-(3.82) we find ‖(ũ0, η̃0)‖HM
β,0

depends on

∫ ∞

0

ν(s)‖η0(s)‖2Wβ,2
0

ds, ‖ANµ0‖M−1 and ‖Trη0‖M−1 ,

hence the assumption on the initial data is justified.
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Furthermore, we now consider (3.28) and take ζ = AN µ̄(t) where µ̄ = µ − 〈µ〉, so that, with (3.40),
(3.43) and (3.88), we obtain, for all t ≥ 0 and for every ε > 0,

‖∇µ‖2 = (∂tη
t, µ)M0 − (Trη

t, µ)M0 (3.90)

=

∫ ∞

0

ν(s)(∂tη
t(s), µ(t))ds −

∫ ∞

0

ν′(s)(ηt(s), µ(t))ds (3.91)

≤ Cε

(

‖∂tηt‖2M−1
−
∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds

)

+ ε‖∇µ‖2 (3.92)

≤ Cε

(

1−
∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds

)

+ ε‖∇µ‖2 (3.93)

≤ Cε + ε‖∇µ‖2 (3.94)

where Cε ∼ ε−1. Together (3.50) and (3.94) show us, for all t ≥ 0,

‖µ(t)‖H1 ≤ C. (3.95)

At this point we can reason as is in the proof of Theorem 3.6 to find that there is a solution φ =
(u, η) ∈ W 1,∞(0, T ;HM

β,0) to Problem P satisfying (3.72) and (3.73). Additionally, thanks to (3.95), the

condition (3.74) holds. It remains to show that

φ = (u, η) ∈ L∞
(

0, T ;
[

W β+1,2
0 (Ω)× L2

ν(R+;W
β,2
0 (Ω))

])

.

First, in light of (3.88) we multiply (2.3) by AE,βη
t in L2(Ω) which yields

‖ηt‖2
L2

ν(R+;Wβ,2
0 (Ω))

= −
∫ ∞

0

ν(s)(A
1
2

E,β∂tu(t), A
1
2

E,βη
t(s))ds.

Hence, η ∈ L∞(0, T ;L2
ν(R+;W

β,2
0 (Ω))). Next we consider the identity (3.13) whereby we may now rely

on the regularity properties of ∂tu and µ. We take ξ = AN∂tu to produce

1

2

d

dt
|‖u‖|2

Wβ+1,2
0

+ 〈F ′′(u)∇u,∇u〉+ α‖∂tu‖2H1 = 〈∇µ,∇u〉.

After applying (N1) and integrating the resulting differential inequality with respect to t over (0, t), there
holds, for all t ≥ 0,

|‖u(t)‖|2
Wβ+1,2

0

+ 2

∫ ∞

0

α‖∂tu(τ)‖2H1dτ ≤ |‖u(0)‖|2
Wβ+1,2

0

+Q(‖(u0, η0)‖HM
β,0

).

We now deduce

u ∈ L∞(0, T ;W β+1,2
0 (Ω)) and

√
α∂tu ∈ L2(0, T ;H1(Ω)).

This completes the proof. �

The following proposition provides continuous dependence and uniqueness for the solutions constructed
above.

Proposition 3.10. Let the assumptions of Theorem 3.6 hold. Additionally, assume (N4) holds. Let
T > 0 and let φi = (ui, ηi)

tr, i = 1, 2, be two solutions to Problem P on (0, T ) corresponding to the initial

data φ0i = (u0i, η0i)
tr ∈ HM

β,0 = W β,2
0 (Ω) ×M(0)

−1, such that F (u0i) ∈ L1(Ω), i = 1, 2. Then, for each

α > 0 there is a positive constant Cα ∼ α−1 such that the following estimate holds, for any t ∈ (0, T ),

‖φ1(t)− φ2(t)‖2HM
β,0

+

∫ t

0

(

α‖∂tu1(τ) − ∂tu2(τ)‖2 + ‖ητ1 − ητ2‖2L2
−ν′

(R+;H−1)

)

dτ

≤ eCαt‖φ01 − φ02‖2HM
β,0
. (3.96)

Proof. To begin, we assume (u0i, η0i), i = 1, 2, satisfy the assumptions of Theorem 3.9 (recall, above we
are assuming (N4) holds), and we will work with the more regular solutions to obtain (3.96). For all
t ∈ [0, T ], we then set

φ(t) := φ1(t)− φ2(t), u(t) := u1(t)− u2(t), ηt := ηt1 − ηt2 and µ := µ1 − µ2
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where φi(t) = (ui(t), η
t
i) is a solution corresponding to (u0i, η0i), i = 1, 2. Then, formally, φ = (u, η)

solves the equations for all v ∈ H1(Ω), ξ ∈ W β,2
0 (Ω) ∩ Lp(Ω) and ζ ∈ M1:

〈∂tu, v〉H−1×H1 +

∫ ∞

0

ν(s)〈ηt(s), v〉H−1×H1ds = 0, (3.97)

aE,β(u, ξ) + 〈F ′(u1)− F ′(u2), ξ〉W−β,2×Wβ,2
0

+ α〈∂tu, ξ〉W−β,2×Wβ,2
0

= 〈µ, ξ〉W−β,2×Wβ,2
0
, (3.98)

(∂tη
t, ζ)M−1 − (Trη

t, ζ)M−1 = (µ, ζ)M0 (3.99)

with the initial data

u(0) = u01 − u02, η0 = η01 − η02.
In (3.97) we choose v = µ and in (3.98) we choose ξ = ∂tu. Owing to Theorem 3.9, for each t ∈ [0, T ],

these elements are in H1(Ω) and W β,2
0 (Ω), respectively, then sum the results to obtain

(AE,βu, ∂tu) + (F ′(u1)− F ′(u2), ∂tu) + α‖∂tu‖2 +
∫ ∞

0

ν(s)(µ, ηt(s))ds = 0. (3.100)

Further, multiply (3.99) by A−1
N ηt inM0, then adding the obtained relation to (3.100), we have

1

2

d

dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2M−1
}+ α‖∂tu‖2 −

∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds+ (F ′(u1)− F ′(u2), ∂tu) = 0. (3.101)

Using Hölder’s inequality, (N4), Young’s inequality and the embedding L∞(Ω) →֒W β,2
0 (Ω), we estimate

the remaining product as

|(F ′(u1)− F ′(u2), ∂tu)| ≤ ‖F ′(u1)− F ′(u2)‖‖∂tu‖
≤ C‖(1 + |u1|ρ−2 + |u2|ρ−2)u‖‖∂tu‖
≤ C(1 + ‖u1‖ρ−2

L2(ρ−2) + ‖u2‖ρ−2

L2(ρ−2))‖u‖L∞‖∂tu‖
≤ Qα(‖(u0i, η0i)‖HM

β,0
)|‖u‖|2

Wβ,2
0

+
α

2
‖∂tu‖2, (3.102)

where the positive monotone increasing functionQα(·) ∼ α−1 (we remind the reader ‖(u0i, η0i)‖HM
β+1,β+1

≤
Q‖(u0i, η0i)‖HM

β,0
, for i = 1, 2 and the bounds on u1 and u2 follow from (3.22) and (3.23)). With (3.101)

and (3.102), we obtain the following differential inequality which holds for almost all t ∈ [0, T ]

d

dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2M−1
}+ α‖∂tu‖2 + ‖ηt‖2L2

−ν′
(R+;H−1) ≤ Qα(‖(u0i, η0i)‖HM

β,0
)|‖u‖|2

Wβ,2
0

≤ Qα(‖(u0i, η0i)‖HM
β,0

)
(

|‖u‖|2
Wβ,2

0

+ ‖ηt‖2M−1

)

.

(3.103)

Employing a Grönwall inequality to (3.103), we obtain, for all t ∈ [0, T ],

|‖u(t)‖|2
Wβ,2

0

+ ‖ηt‖2M−1
+

∫ t

0

(

α‖∂tu(τ)‖2 + ‖ητ‖2L2
−ν′

(R+;H−1)

)

dτ

≤ eCα

(

|‖u(0)‖|2
Wβ,2

0

+ ‖η0‖2M−1

)

. (3.104)

This shows the claim (3.96) holds for the regular solutions. Since none of the above constants due to
the above estimate actually depend on the assumptions of Theorem 3.9, then standard approximation
arguments can be employed to obtain (3.96) for the weak solutions as well. �

Remark 3.11. It is quite important to remark that in N = 3 uniqueness for the nonviscous problem
(where α = 0) remains an open problem (indeed, cf. [15, 36, 42]).

We now formalize the semi-dynamical system generated by Problem P.

Corollary 3.12. Let the assumptions of Theorem 3.6 be satisfied. Additionally, assume (N4) holds. We
can define a strongly continuous semigroup of solution operators S = (S(t))t≥0, for each α > 0 and
β ∈ (0, 1),

S(t) : XM
β,0 → XM

β,0
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by setting, for all t ≥ 0,

S(t)φ0 := φ(t)

where φ(t) = (u(t), ηt) is the unique global weak solution to Problem P. Furthermore, as a consequence
of (3.96), the semigroup S(t) : XM

β,0 → XM
β,0 is Lipschitz continuous on XM

β,0, uniformly in t on compact
intervals.

4. Absorbing sets and global attractors

We now give a dissipation estimate for Problem P from which we deduce the existence of a bounded
absorbing set and an important uniform bound on the solutions of Problem P. The existence of an
absorbing set will also be used later to show that the semigroup of solution operators S admits a compact
global attractor in the metric space XM

β,0.

Lemma 4.1. Let φ0 = (u0, η0)
tr ∈ HM

β,0 = W β,2
0 (Ω) ×M(0)

−1 for β ∈ (N4 , 1), N = 1, 2, 3, be such that

F (u0) ∈ L1(Ω). Assume (K1), (K3)-(K5) and (N1)-(N3) hold. Assume φ = (u, η)tr is a weak solution
to Problem P. There are positive constants κ1 and C, each depending on Ω but independent of t, α and
φ0, such that, for all t ≥ 0, the following holds

‖φ(t)‖2HM
β,0

+

∫ t+1

t

α‖∂tu(τ)‖2dτ ≤ Q(‖φ0‖HM
β,0

)e−κ1t + C, (4.1)

for some monotonically increasing function Q independent of t and α.

Proof. The idea of the proof is from [11]. We give a formal calculation that can be justified by a suitable
Faedo-Galerkin approximation based on the proof of Theorem 3.6 above. To begin, define the functional,
for all t ≥ 0,

Y(t) := E(t) + εα‖u(t)‖2 − 2ε

∫ ∞

0

ν(s)
(

u(t), A−1
N ηt(s)

)

ds, (4.2)

where ε ∈ (0, λ) will be chosen sufficiently small later. From (2.3)-(2.5), we find

− d

dt

∫ ∞

0

ν(s)(u,A−1
N ηt(s))ds

= ‖∂tu‖2H−1 −
∫ ∞

0

ν(s)(u,A−1
N ∂tη

t(s))ds

= ‖∂tu‖2H−1 −
∫ ∞

0

ν′(s)(u,A−1
N ηt(s))ds−

∫ ∞

0

ν(s)(u, µ)ds

= ‖∂tu‖2H−1 −
∫ ∞

0

ν′(s)(u,A−1
N ηt(s))ds− α

2

d

dt
‖u‖2 − |‖u‖|2

Wβ,2
0

− (F ′(u), u). (4.3)

Differentiating Y with respect to t while keeping in mind (3.34), (3.35) (without the index n) and (4.3),
we find

d

dt
Y + ε0Y − 2

∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds = h(t), (4.4)

for ε0 ∈ (0, ε) where

h(t) =− 2α‖∂tu(t)‖2 + 2ε‖∂tu(t)‖2H−1 − 2ε

∫ ∞

0

ν′(s)(u(t), A−1
N ηt(s))ds

− 2ε0(F
′(u(t))u(t)− F (u(t)), 1)− 2(ε− ε0)(F ′(u(t)), u(t)) + ε0‖ηt‖2M−1

− (2ε− ε0)|‖u(t)‖|2Wβ,2
0

+ ε0εα‖u(t)‖2 − 2ε0ε

∫ ∞

0

ν(s)(u(t), A−1
N ηt(s))ds+ ε0C. (4.5)

From (3.3) and (3.4) (with M = 0) it follows that

− 2ε0(F
′(u(t))u(t)− F (u(t)), 1)− 2(ε− ε0)(F ′(u(t)), u(t))

≤ −(ε− ε0)(|F (u)|, 1) + ε0C|‖u‖|2Wβ,2
0

. (4.6)
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Next, using assumption (K4) and the embeddings H−1(Ω) ←֓ L2(Ω) ←֓ W β,2
0 (Ω), we find

−2ε
∫ ∞

0

ν′(s)(u,A−1
N ηt(s))ds = −2ε

∫ ∞

0

ν′(s)(A
−1/2
N u,A

−1/2
N ηt(s))ds

≤ −ε
∫ ∞

0

ν′(s)

(

1

ν0
|‖u‖|2

Wβ,2
0

+ Cν0‖ηt(s)‖2H−1

)

ds

≤ ε|‖u‖|2
Wβ,2

0

− εC
∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds, (4.7)

and, now with (K3) and (3.48) (without the index n),

−2ε0ε
∫ ∞

0

ν(s)(u,A−1
N ηt(s))ds ≤ ε0εC|‖u‖|2Wβ,2

0

+ ε0ε‖ηt‖2M−1
. (4.8)

Together (4.5)-(4.8) make the following estimate

h ≤− 2α‖∂tu‖2 + 2ε‖∂tu‖2H−1 − (ε− ε0(1 + C + εαC))|‖u‖|2
Wβ,2

0

+ 2ε0‖ηt‖2M−1

− εC
∫ ∞

0

ν′(s)‖ηt(s)‖2H−1ds+ C. (4.9)

Here we employ assumption (K5) so that from (4.4) and (4.9) we are able to fix ε ∈ (0, λ) and ε0 ∈ (0, ε)
sufficiently small to, in turn, find positive constants ε1, ε2, ε3 so that there holds

d

dt
Y + ε1Y + 2‖ηt‖2M−1

+ ε2α‖∂tu‖2 + ε3|‖u‖|2Wβ,2
0

≤ C. (4.10)

It is important to note that C on the right-hand side of (4.10) is independent of t and φ0. One can readily
show (cf. (3.34), (3.37)-(3.38)) that there holds, for all t ≥ 0,

C1‖φ(t)‖2HM
β,0
− C2 ≤ Y(t) ≤ Q(‖φ0‖HM

β,0
), (4.11)

for some positive constants C1, C2, and for some monotone nondecreasing function Q independent of t.
Finally, by applying a Grönwall type inequality to (4.10) (cf. e.g. [40, Lemma 2.5]), then integrating the
result and applying (4.11) yield the claim (4.1). This finishes the proof. �

We immediately deduce the existence of a bounded absorbing set from Lemma 4.1.

Proposition 4.2. Let the assumptions of Lemma 4.1 hold. Additionally, assume (N4) holds. Then there
exists R0 > 0, independent of t and φ0, such that S(t) possesses an absorbing ball BM

β,0(R0) ⊂ HM
β,0,

bounded in HM
β,0. Precisely, for any bounded subset B ⊂ HM

β,0, there exists t0 = t0(B) > 0 such that

S(t)B ⊂ BM
β,0(R0), for all t ≥ t0. Moreover, for every R > 0, there exists C∗ = C∗(R) ≥ 0, such that, for

any φ0 ∈ BM
β,0(R),

sup
t≥0
‖S(t)φ0‖HM

β,0
+

∫ ∞

0

‖∂tu(τ)‖2dτ ≤ C∗, (4.12)

where BM
β,0(R) denotes the ball in HM

β,0 of radius R, centered at 0.

Throughout the remainder of the article, we simply write BM
β,0 in place of BM

β,0(R0) to denote the

bounded absorbing set admitted by the semigroup of solution operators S(t).
For the rest of this section, our aim is to prove the following.

Theorem 4.3. Let the assumptions of Lemma 4.1 hold. Additionally, assume (N4) holds. The dynamical
system (XM

β,0,S(t)) (see Corollary 3.12) possesses a connected global attractor AM
β,0 in HM

β,0. Precisely,

1: for each t ≥ 0, S(t)AM
β,0 = AM

β,0, and

2: for every nonempty bounded subset B of HM
β,0,

lim
t→∞

distHM
β,0

(S(t)B,AM
β,0) := lim

t→∞
sup
ζ∈B

inf
ξ∈AM

β,0

‖S(t)ζ − ξ‖HM
β,0

= 0.

Additionally,
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3: the global attractor is the unique maximal compact invariant subset in HM
β,0 given by

AM
β,0 := ω(BM

β,0) :=
⋂

s≥0

⋃

t≥s

S(t)BM
β,0

HM
β,0

.

Furthermore,

4: The global attractor AM
β,0 is connected and given by the union of the unstable manifolds connecting

the equilibria of S(t).
5: For each ζ0 = (φ0, θ0)

tr ∈ HM
β,0, the set ω(ζ0) is a connected compact invariant set, consisting of

the fixed points of S(t).
With the existence of a bounded absorbing set BM

β,0 (in Lemma 4.1), the existence of a global attractor
now depends on the precompactness of the semigroup of solution operators S. To this end we will show
there is a t∗ > 0 such that the map S(t∗) is a so-called α-contraction on BM

β,0; that is, there exist a time

t∗ > 0, a constant 0 < κ < 1 and a precompact pseudometricM∗ on BM
β,0 such that, for all φ01, φ02 ∈ BM

β,0,

‖S(t∗)φ01 − S(t∗)φ02‖HM
β,0
≤ κ‖φ01 − φ02‖HM

β,0
+M∗(φ01, φ02). (4.13)

Such a contraction is commonly used in connection with phase-field type equations as an alternative to
establish the precompactness of a semigroup; for some particular recent results see [37, 43, 59].

Lemma 4.4. Under the assumptions of Proposition 3.10 where φ01, φ02 ∈ BM
β,0, there are positive con-

stants κ2, C1 and C2α ∼ α−1, each depending on Ω but independent of t and φ01, φ02, such that, for all
t ≥ 0,

‖φ1(t)− φ2(t)‖2HM
β,0
≤ C1e

−κ2t‖φ1(0)− φ2(0)‖2HM
β,0

+ C2α

∫ t

0

(

‖∇µ1(τ)−∇µ2(τ)‖2 + ‖u1(τ)− u2(τ)‖2
)

dτ. (4.14)

Proof. The proof is based on the proof of Proposition 3.10. We begin by recovering (3.101) by multiplying
(3.97) and (3.98) by µ and ∂tu, respectively, in L2(Ω), and multiplying (3.99) by A−1

N ηt in M0, then
adding the obtained relations together to find

1

2

d

dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2M−1
}+ α‖∂tu‖2 −

∫ ∞

0

v′(s)‖ηt(s)‖2H−1ds+ (F ′(u1)− F ′(u2), ∂tu) = 0. (4.15)

Recall φ1 = (u1, η1), φ2 = (u2, η2) are the unique weak solutions corresponding to the initial data φ01 and
φ02, respectively; also, u = u1 − u2 and ηt = ηt1 − ηt2 formally satisfy (3.97)-(3.98). Applying assumption
(K5) and the estimate based on (N4),

|(F ′(u1)− F ′(u2), ∂tu)| ≤ ‖F ′(u1)− F ′(u2)‖‖∂tu‖
≤ C‖(1 + |u1|ρ−2 + |u2|ρ−2)u‖‖∂tu‖
≤ C(1 + ‖u1‖ρ−2

L2(ρ−2) + ‖u2‖ρ−2
L2(ρ−2))‖u‖L∞‖∂tu‖

≤ Qα(‖(u0i, η0i)‖HM
β,0

)|‖u‖|2
Wβ,2

0

+
α

2
‖∂tu‖2 (4.16)

≤ Qα(‖(u0i, η0i)‖HM
β,0

) +
α

2
‖∂tu‖2, (4.17)

where the positive monotone increasing function Qα(·) ∼ α−1, we find the differential inequality

1

2

d

dt
{|‖u‖|2

Wβ,2
0

+ ‖ηt‖2M−1
}+ α

2
‖∂tu‖2 + λ‖ηt‖2M−1

≤ Qα(‖(u0i, η0i)‖HM
β,0

). (4.18)

In addition, we now multiply (3.98) by u in L2(Ω) to obtain

|‖u‖|2
Wβ,2

0

+ (F ′(u1)− F ′(u2), u) +
α

2

d

dt
‖u‖2 = (µ, u). (4.19)

Estimating the first product above using (N1) yields

(F ′(u1)− F ′(u2), u) ≥ −cF‖u‖2. (4.20)
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We also estimate with Young’s inequality

(µ, u) ≤ 1

2
‖µ‖2 + 1

2
‖u‖2. (4.21)

Combining (4.18)-(4.21) yields

1

2

d

dt

{

|‖u‖|2
Wβ,2

0

+ ‖ηt‖2M−1
+
α

2
‖u‖2

}

+
α

2
‖∂tu‖2 + |‖u‖|2Wβ,2

0

+ λ‖ηt‖2M−1

≤ 1

2
‖µ‖2 +Qα(‖(u0i, η0i)‖HM

β,0
)|‖u‖|2

Wβ,2
0

. (4.22)

Then adding α
2 ‖u‖2 to each side of (4.22) we find,

d

dt
N + cN + α‖∂tu‖2 ≤ ‖µ‖2 +Qα(‖(u0i, η0i)‖HM

β,0
), (4.23)

where c = min{2, 2λ, α} and
N (t) := |‖u(t)‖|2

Wβ,2
0

+ ‖ηt‖2M−1
+
α

2
‖u(t)‖2. (4.24)

Applying Grönwall’s inequality to (4.23) after omitting the term α‖∂tu‖2, we obtain the claim (4.14). �

Consequently, we deduce the following precompactness result for the semigroup S.
Proposition 4.5. Let the assumptions of Lemma 4.4 hold. There is t∗ > 0 such that the operator S(t∗)
is a strict contraction up to the precompact pseudometric on BM

β,0, in the sense of (4.13), where

M∗(φ01, φ02) := C2α

(
∫ t∗

0

(

‖∇µ1(τ) −∇µ2(τ)‖2 + ‖u1(τ) − u2(τ)‖2
)

dτ

)1/2

, (4.25)

with Cα ∼ α−1. Furthermore, S is precompact on BM
β,0.

Proof. Naturally we follow from the conclusion of Lemma 4.4. Clearly there is a t∗ > 0 so that
C1e

−κ2t∗/2 < 1. Thus, the operator S(t∗) is a strict contraction up to the pseudometric M∗ defined
by (4.25). The pseudometric M∗ is precompact thanks to the Aubin-Lions compact embedding (3.60).
This completes the proof. �

Proof of Theorem 4.3. The precompactness of the solution operators S follows via the method of pre-
compact pseudometrics (see Proposition 4.5). With the existence of a bounded absorbing set BM

β,0 in HM
β,0

(Lemma 4.1), the existence of a global attractor in HM
β,0 is well-known and can be found in [4, 55] for

example. Additional characteristics of the attractor follow thanks to the gradient structure of Problem P
(Remark 3.8). In particular, the first three claims in the statement of Theorem 4.3 are a direct result of
the existence of an absorbing set, a Lyapunov functional E , and the fact that the system (XM

β,0,S(t), E) is
gradient. The fourth property is a direct result of [55, Theorem VII.4.1], and the fifth follows from [58,
Theorem 6.3.2]. This concludes the proof. �

Appendix A.

The following is reported from [27, Theorem 2.5].

Theorem A.1. Let 0 < β < 1. For K ∈ {E,D}, the following assertions hold.

(a) The operator −AK,β generates a submarkovian semigroup (e−AK,β )t≥0 on L2(Ω) and hence can
be extended to a strongly continuous contraction semigroup on Lp(Ω) for every p ∈ [1,∞), and
to a contraction semigroup on L∞(Ω).

(b) The operator AK,β has a compact resolvent, and hence has a discrete spectrum. The spectrum of
AK,β may be ordered as an increasing sequence of real numbers 0 ≤ λ1 < λ2 < · · · < λk < · · ·
that diverges to +∞. Moreover, 0 is not an eigenvalue for AK,β, and if φk is an eigenfunction
associated with the eigenvalue λk, then φk ∈ D(AK,β) ∩ L∞(Ω).

(c) Denoting the generator of the semigroup on Lp(Ω) by AK,p so that AK = AK,2, then the spectrum
of AK,p is independent of p for every p ∈ [1,∞].

(d) There holds D(AK,β) ⊂ L∞(Ω) provided that N < 4β. Let p ∈ (2,∞) and assume that N <
4βp/(p− 2). Then also D(AK,β) ⊂ Lp(Ω).
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Remark A.2. From [27, page 1284, after equation (2.3)]), we know the following embedding is compact

W β,2
0 (Ω) →֒ Lp(Ω) when 1 ≤ p < ⋆ for ⋆ =







2N

N − 2β
if N > 2β

+∞ if N = 2β.
(A.1)

Also,

W β,2
0 (Ω) →֒ C0,h(Ω) with h := β − N

2
if N < 2β and 2 < p <∞.

The following result is the classical Aubin-Lions Lemma, reported here for the reader’s convenience
(cf. [45], and, e.g. [54, Lemma 5.51] or [58, Theorem 3.1.1]).

Lemma A.3. Let X,Y, Z be Banach spaces where Z ←֓ Y ←֓ X with continuous injections, the second
being compact. Then the following embeddings are compact:

W := {χ ∈ L2(0, T ;X), ∂tχ ∈ L2(0, T ;Z)} →֒ L2(0, T ;Y ),

and

W ′ := {χ ∈ L∞(0, T ;X), ∂tχ ∈ L2(0, T ;Z)} →֒ C([0, T ];Y ).

Here we recall the notion of α-contraction and provide the main propositions which guarantee the
existence of a global attractor for the semigroup of solution operators S(t).
Definition A.4. Let X be a Banach space and α be a measure of compactness in X (cf., e.g., [59,
Definition A.1]). Let B ⊂ X. A continuous map T : B → B is an α-contraction on B, if there exists a
number q ∈ (0, 1) such that for every subset A ⊂ B, α(T (A)) ≤ qα(A).
Proposition A.5. Assume that B ⊂ X is closed and bounded, and that T : B → B is an α-contraction
on B. Define the semigroup generated by the iterations of T , i.e. S := (T n)n∈N. Then the set

ω(B) :=
⋂

n≥0

⋃

m≥n

Tm(B)
X

is compact, invariant, and attracts B.

Proposition A.6. Assume that S is a continuous semigroup of operators on X admitting a bounded,
positively invariant absorbing set B, and that there exists t∗ > 0 such that the operator S∗ := S(t∗) is an
α-contraction on B. Let

A∗ :=
⋂

n≥0

⋃

m≥n

Sm
∗ (B)

X

= ω∗(B)

be the ω-limit set of B under the map S∗, and set

A :=
⋃

0≤t≤t∗

S(t)A∗.

Assume further that for all t ∈ [0, t∗], the map x → S(t)x is Lipschitz continuous from B to B, with
Lipschitz constant L(t), L : [0, t∗] → (0,+∞) being a bounded function. Then A = ω(B), and this set is
the global attractor of S in B.

Theorems 3.1 and 3.2 are motivated by [44, Sections II.2 and III.2], but appear in the above form in
[59, Appendix A] and [46, Sections II.7]. We also rely on the following.

Definition A.7. A pseudometric d in X is precompact in X if every bounded sequence has a subsequence
which is a Cauchy sequence relative to d.

Proposition A.8. Let B ⊂ X be bounded, let d be a precompact pseudometric in X, and let T : B → B
be a continuous map. Suppose T satisfies the estimate

‖Tx− Ty‖X ≤ q‖x− y‖X + d(x, y)

for all x, y ∈ B and some q ∈ (0, 1) independent of x and y. Then T is an α-contraction.
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3. Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero, Nonlocal diffusion problems,

Mathematical Surveys and Monographs, vol. 165, American Mathematical Society, Real Sociedad Matemática Española,
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