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FIRST-ORDER EXPANSIONS FOR EIGENVALUES AND

EIGENFUNCTIONS IN PERIODIC HOMOGENIZATION

JINPING ZHUGE

Abstract. For a family of elliptic operators with periodically oscillating
coefficients, −div(A(·/ε)∇) with tiny ε > 0, we comprehensively study the
first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for
both Dirichlet and Neumann problems in bounded, smooth and strictly
convex domains (or more general domains of finite type). A new first-order
correction term is introduced to derive the expansion of eigenfunctions in
L2 or H1

loc
. Our results rely on the recent progress on the homogenization

of boundary layer problems.

1. Introduction

This paper concerns with the first-order expansions of eigenvalues and eigen-
functions (eigenspaces) for a family of elliptic operators with rapidly oscillating
coefficients. Precisely, we consider

Lε = −div(A(x/ε)∇) = −
∂

∂xi

{
aαβij

(x
ε

) ∂

∂xj

}
, (1.1)

(Einstein’s summation convention will be used throughout) where 1 ≤ i, j ≤

d, 1 ≤ α, β ≤ m with dimension d ≥ 3. The coefficient matrix A = (aαβij )
satisfies the following standard assumptions:

• Ellipticity: there exists Λ > 0 such that

Λ−1|ξ|2 ≤ aαβij ξ
α
i ξ

β
j ≤ Λ|ξ|2, for any ξ = (ξαi ) ∈ R

m×d. (1.2)

• Periodicity: A(y + z) = A(y), for any z ∈ Zd and y ∈ Rd.

• Regularity: aαβij ∈ C∞(Rd).

• Symmetry: A∗ = A (i.e., aαβij = aβαji ).

Throughout this paper, we assume that the domain Ω is bounded and smooth.
We refer to a recent excellent book [12] for general theory of periodic homog-
enization.
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The asymptotic analysis of the eigenvalues and eigenfunctions is an impor-
tant and interesting problem with many applications including the homoge-
nization of heat equations and wave equations (low-frequency vibration) in
composite materials with periodic microstructure; see [9, 6, 7, 11, 1, 10, 5].
To describe our main concern of this paper, we concentrate on the Dirich-
let problem. Let {λε,k}k≥1 denote the sequence of Dirichlet eigenvalues in an
increasing order for Lε in Ω and let φε,k be the normalized Dirichlet eigen-
function corresponding to λε,k, i.e., φε,k ∈ H1

0 (Ω;R
m), ‖φε,k‖L2(Ω) = 1 and

Lεφε,k = λε,kφε,k. Let {λ0,k}k≥1 denote the sequence of Dirichlet eigenvalues
in an increasing order for the homogenized operator L0 in Ω and let {φ0,k}k≥1

be the corresponding normalized Dirichlet eigenfunctions for L0.

It is well-known that for each k ≥ 1 (see, e.g., [12, Chapter 6.2]),

|λε,k − λ0,k| ≤ Ckε. (1.3)

This is exactly the zero-order expansion for the Dirichlet eigenvalues λε,k.
However, the first-order expansion of eigenvalues is a more difficult problem
as the higher-order rate of convergence in homogenization theory essentially
involves PDEs with oscillating boundary data and the geometry of domains.
In [11] and [8], Vogelius and his collaborators attempted to study the asymp-
totic behavior of (λk,ε − λ0,k)/ε as ε → 0, and they showed that if Ω is a
classical convex polygon with all sides having rational normal vectors, then
the limit of (λk,ε − λ0,k)/ε is not just one point, but rather a continuum of
accumulation points. The lack of uniqueness of the limit is caused by the
non-homogenization of the boundary layer problems (see (2.1)) in such do-
mains. The homogenization of boundary layer problem was a longstanding
open problem, and significant progress have been made recently in a series
of papers [3, 4, 2, 13, 14, 15]. The breakthrough was due to Gérard-Varet
and Masmoudi’s striking work [4, 3], in which they showed that the Dirich-
let boundary layer problem homogenizes with an explicit rate of convergence,
provided additionally that Ω is a smooth, strictly convex domain or a con-
vex polygon whose normal vectors satisfying a Diophantine condition (also
referred as small divisor condition). Following by their work, Prange studied
the first-order expansion of the Dirichlet eigenvalues in [10] for both strictly
convex smooth domains and convex polygons with Diophantine normals.

To describe the main result of [10], we let λ0 = λ0,L = λ0,L+1 = · · · =
λ0,L+M−1 be a Dirichlet eigenvalue of L0 with multiplicity M ≥ 1 and let
λε,L+j, 0 ≤ j ≤ M − 1, be the Dirichlet eigenvalues of Lε that converge to λ0.
In [10], Prange proved that if Ω ⊂ R2 is bounded, smooth and strictly convex,
then there exists some fixed constant θ such that

∣∣∣∣
(

1

M

M−1∑

j=0

1

λε,L+j

)−1

− λ0 − εθ

∣∣∣∣ ≤ Cε
12

11
−. (1.4)
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Here and after, we write a ≤ Cεb− to indicate that a ≤ Cσε
b−σ for any

σ ∈ (0, b) with Cσ depending on σ. Note that the first term of (1.4) is the
harmonic average of {λε,L+j : 0 ≤ j ≤ M − 1}. The exponent 12

11
comes from

the rate of convergence for 2-dimensional boundary layer problem obtained
in [4]. More recently, Gérard-Varet and Masmoudi’s result was improved to
an almost optimal rate of convergence [2, 13] and generalized to Neumann
problem [13] and other type of domains [15]. As a consequence, we can easily
extend Prange’s result to higher dimensions (d ≥ 3) as follows.

Theorem 1.1. Let A satisfy the standard assumptions and Ω be a bounded,
smooth and strictly convex domain. Let λ0, λε,L+j (0 ≤ j ≤ M − 1) be the
Dirichlet eigenvalues defined previously. Then there exist a constant θ inde-
pendent of ε such that for sufficiently small ε > 0

|λ̄ε − λ0 − εθ| ≤ Cε
3

2
−, (1.5)

where λ̄ε =M−1
∑M−1

j=0 λε,L+j, and C depends only on λ0, A and Ω.

We should point out that the rate in (1.5) is O(ε
5

4
−) for d = 2, which

improves (1.4). The explicit formula for θ is given by (also see [10])

θ = −
λ0
M

〈Kblφ0,L+j, φ0,L+j〉,

where 〈·, ·〉 denotes the inner product in L2(Ω;Rm), φ0,L+j, 0 ≤ j ≤ M − 1,
are the eigenfunctions of L0 corresponding to λ0, and K

bl is a linear operator
naturally arising in the homogenization of boundary layers; see (2.14) and (2.5)
for the definition. The exponent 3

2
in (1.5) seems optimal due to the optimality

of the convergence rate for Dirichlet boundary layer problem in Theorem 2.1.
The proof of Theorem 1.1 follows from the same argument as [10] by using
Osborn’s theorem [9], yet by a simple observation, we replace the harmonic
average in (1.4) by the usual arithmetic average λ̄ε.

Now we turn to the main contribution of this paper, i.e., the first-order
(two-scale) expansion of the eigenfunctions or eigenspaces, which is not known
to the best of our knowledge. Recall that for k ≥ 1 so that λ0,k is simple, one
has (see [9] or Lemma 4.2)

‖φε,k − φ0,k‖L2(Ω) ≤ Ckε.

Then, a natural question similar to eigenvalues arises: does (φε,k−φ0,k)/ε have
a unique limit in some sense, as ε → 0? To describe our result regarding this
question, consider the Dirichlet problem

{
Lεuε = f in Ω,

uε = 0 on ∂Ω.
(1.6)
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For each f ∈ L2(Ω;Rm), the above equation has a unique weak solution uε ∈
H1

0 (Ω;R
m). Let Tε : L

2(Ω;Rm) 7→ H1
0 (Ω;R

m) denote the linear map f 7→ uε,
i.e., Tεf = uε. By the similar manner, denote by T0 : L

2(Ω;Rm) 7→ H1
0 (Ω;R

m)
the linear map f → u0, where u0 is the unique solution of the homogenized
system {

L0u0 = f in Ω,

u0 = 0 on ∂Ω,
(1.7)

where L0 = −div(Â∇) is the homogenized operator.

As before, let λ0 = λ0,L+j, 0 ≤ j ≤ M − 1, be a Dirichlet eigenvalue of L0

with multiplicity M and λε,L+j be the eigenvalues of Lε converging to λ0. Let
S0 be the spectral projection onto the eigenspace of L0 corresponding to λ0.
In other words, for any f ∈ L2(Ω;Rm), define

S0f = 〈f, φ0,L+j〉φ0,L+j. (1.8)

Similarly, we denote by Sε the spectral projection onto the eigenspace of Lε

corresponding to {λε,L+j : 0 ≤ j ≤M − 1}, i.e.,

Sεf = 〈f, φε,L+j〉φε,L+j. (1.9)

Let R(Sε) and R(S0) denote the ranges of Sε and S0, respectively.

Essentially, the asymptotic behavior of the eigenfunctions or eigenspaces is
completely determined by those of Sε and S0. The main result of this paper
for Dirichlet problem is the following.

Theorem 1.2. Let A and Ω satisfy the same assumptions as Theorem 1.1.
Let Sε and S0 be the spectral projections defined above. Then,

‖Sε − S0 − ε(χε∇ +Ψbl)S0‖R(S0)→L2(Ω) ≤ Cε
3

2
−, (1.10)

and

‖Sε − S0 − ε(χε∇+Ψbl)S0 − εS0(χ
ε∇ +Ψbl)∗‖L2(Ω)→L2(Ω) ≤ Cε

3

2
−, (1.11)

where χε = χ(·/ε) is the first-order corrector, Ψbl : R(S0) 7→ R(S0)
⊥ is a

bounded linear operator given by

Ψblg = λ−1
0 (λ−1

0 − T0)
−1(I − S0)K

blg, (1.12)

and C depends only on λ0, A and Ω.

Observe that (1.10) is the expansion of Sε restricted in R(S0) and (1.11) is
the expansion of Sε on the entire space L2(Ω;Rm). We should point out that
the nontrivial operator Ψbl introduced above plays a crucial role in correcting
the first-order term involving the boundary layers. It is well-defined on R(S0),
since (I − S0)K

blg ∈ R(S0)
⊥ and the Fredholm theory implies (λ−1

0 − T0)
−1 is

4



a bounded linear operator on R(S0)
⊥. Actually, one can show that ψbl = Ψblg

is the unique solution in R(S0)
⊥ of the following system:





L0ψ
bl =

(
− c̄ijk

∂3

∂xi∂xj∂xk
− λ0S0K

bl

)
g + λ0ψ

bl in Ω,

ψbl = Kblg on ∂Ω.

(1.13)

Note that ψbl +R(S0) is the solution set of the above system; see Remark 4.5.

In the case that λ0 = λ0,L is a simple eigenvalue with eigenfunction φ0 =
φ0,L, Theorem 1.2 implies that the eigenfunction φε = φε,L satisfies

‖φε − φ0 − εχε∇φ0 − εΨblφ0‖L2(Ω) ≤ Cε
3

2
−. (1.14)

This particularly implies that

φε − φ0

ε
−→ Ψblφ0 weakly in L2(Ω;Rm),

and
φε − φ0 − εχε∇φ0

ε
−→ Ψblφ0 strongly in L2(Ω;Rm),

which provide a positive answer to our previous question.

Our next result is the interior first-order expansion for the gradient of an
eigenfunction corresponding to a simple eigenvalue.

Theorem 1.3. Let A and Ω satisfy the same assumptions as Theorem 1.1.
Let λ0 = λ0,L be a simple eigenvalue of L0 and φ0 = φ0,L, φε = φε,L be the
eigenfunctions of L0 and Lε, correspondingly. Then, in the sense of L2(Ω;Rm),
we have the following expansion of δ∇φε,

δ∇φε = δ(I +∇χε)∇φ0

+ εδ
[
(χεI +∇Υ ε)∇2φ0 + (I +∇χε)∇Ψblφ0

]
+O(ε

3

2
−),

where δ(x) = dist(x, ∂Ω), χε and Υ ε are the first-order and second-order cor-
rectors, respectively, and the implicit constant depends only on λ0, A and Ω.

Note that the above theorem only provides the interior expansion as the
distance function vanishes at the boundary. More precisely, it implies that for
any Ω′ ⊂⊂ Ω,

‖∇φε−(I+∇χε)∇φ0−ε[(χ
εI+∇Υ ε)∇2φ0+(I+∇χε)∇Ψblφ0]‖L2(Ω′) ≤ Cε

3

2
−.

where C depends also on dist(Ω′, ∂Ω). In particular, this implies that

∇φε − (I +∇χε)∇φ0

ε
−→ ∇Ψblφ0 weakly in L2

loc(Ω;R
m).
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Remark 1.4. We emphasize that it is possible to specify how the constants in
this paper depend on the eigenvalue λ0. However, we will not try to track this
dependence as it is difficult to verify the sharpness of the dependence on λ0
(though this is possible with extra efforts).

Remark 1.5. We should point out that similar results as in Theorem 1.1, 1.2
and 1.3 hold for Neumann eigenvalue problem as well, due to the recent work
in [13], and the proofs are almost the same, which will be omitted. We will
briefly introduce the problem and state the results in Theorem 6.2, 6.3 and
6.5.

Remark 1.6. As shown in [8], without any geometry condition on the domain
Ω, the first-order term in the expansions of the eigenvalues (or eigenfunctions)
of Lε may not be unique and depend on the parameter ε. However, it is
possible to generalize all of our results in this paper from the strictly convex
domains to more general domains, such as domains of finite type [15], at least
for Dirichlet problem. This is because the geometry of domains only play a
role in Theorem 2.2 and Theorem 2.4. By Remark 2.5, estimates of the same
type can be extended, at least, to the Dirichlet problem in domains of finite
type. As a result, Theorem 1.1, 1.2 and 1.3 may be generalized identically

with a worse rate of O(ε1+
α∗

2
−), for some α∗ ∈ (0, 1].

Finally, we give the organization of the paper and some key ideas in the
proofs. In Section 2, we give preliminaries of the classical homogenization
theory and recent results on the boundary layer problems. In Section 3, we
prove Theorem 1.1, following the same argument as in [10]. In particular, we
observe a crucial first-order expansion for the operator Tε

Tε ∼ T0 + εχε∇T0 + εKblT0 +O(ε
3

2
−). (1.15)

Theorem 1.2 is proved in Section 4, where the classical Riesz functional calculus
will be our main tool, as Sε can be expressed by

Sεf =
1

2πi

∫

Γ

(z − Tε)
−1fdz,

where Γ is a suitable contour in the complex plane C. Then the expansion of
Sε is reduced to that of (z − Tε)

−1 for z ∈ Γ, which could be handled by the
second resolvent identity and a more careful analysis combined with (1.15).
Section 5 is devoted to the proof of Theorem 1.3 which relies on both Theorem
1.1 and 1.2. Under the assumption of Theorem 1.3, one can formally write

Lεφε = λεφε

∼ (λ0 + εθ)(φ0 + εχε∇φ0 + εΨblφ0) +O(ε
3

2
−).

Then, we exploit a new trick to deal with the interior gradient estimates in a
circumstance with rough boundary data. In contrast to the classical argument
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in periodic homogenization in which H1 error estimate is obtained priori to L2

estimate, we reverse the argument in a sense that the interior (δ-weighted) H1

estimate follows from the L2 estimate, regardless of the boundary condition,
while the later is previously known by the homogenization of boundary layers.
Finally, in Section 6, we state the parallel results for Neumann problem.

2. Notations and Preliminaries

Most notations in this paper are standard and the summation convention
is used throughout for subscripts i, j, k, ℓ and supscripts α, β, etc (it never
applies to capital letters). For a 1-periodic function f , let f ε(x) = f(x/ε).
We will also use the expression a = b + O(r) to represent |a − b| ≤ Cr (or
‖a−b‖L2(Ω) ≤ Cr, depending the type of elements involved) for some constant
C. As usual, the constant C throughout this paper varies from line to line but
never depends on ε.

For any two Banach spaces X and Y , let ‖·‖X→Y denote the operator norm
from X to Y . For a general function space X ⊂ L1(Ω;Rm), let Ẋ denote
the subspace of X with elements satisfying the zero mean value property, i.e.,
Ẋ = {f ∈ X :

∫
Ω
f = 0}.

For each 1 ≤ j ≤ d, 1 ≤ β ≤ m, let χ = (χβ
j ) = (χ1β

j , χ
2β
j , · · · , χ

mβ
j ) denote

the first-order correctors for Lε, which are 1-periodic functions satisfying the
cell problem 




L1(χ
β
j + P β

j ) = 0 in T
d,

∫

Td

χβ
j = 0,

where P β
j (x) = xje

β with eβ being βth Cartesian basis in Rm. Recall that the

homogenized matrix Â = (âαβij ) is defined by

âαβij =

∫

Td

[
aαβij + aαγik

∂

∂xk
(χγβ

j )

]
dx,

and the homogenized operator is given by L0 = −div(Â∇).

To study the first-order expansion of the eigenfunctions, we also need the
second-order correctors for Lε, Υ = (Υ β

ij) = (Υ 1β
ij , Υ

2β
ij , · · · , Υ

mβ
ij ), which are

1-periodic functions satisfying the cell problem



L1(Υ
β
ij) = a·βij + a·γik

∂

∂xk
χγβ
j − â·βij +

∂

∂xk
(a·γkiχ

γβ
j ) in T

d,
∫

Td

Υ β
ij = 0.

Under our standard assumptions on A, both χ and Υ are smooth.
7



In the following context, we consider the first-order convergence rates for
both Dirichlet and Neumann problems. First recall that the usual Dirichlet
problem in a bounded domain Ω is

{
Lεuε(x) = F (x) in Ω,

uε(x) = f(x) on ∂Ω.
(2.1)

For sufficiently regular F and f , uε converges to u0 in L2(Ω;Rm) as ε → 0,
where u0 is the solution of the homogenized equation with the same data,

{
L0u0(x) = F (x) in Ω,

u0(x) = f(x) on ∂Ω.
(2.2)

Moreover, a formal asymptotic expansion for uε is as follows

uε(x) = u0(x)+ε

[
χj

(x
ε

) ∂

∂xj
u0(x) + vbl1,ε(x)

]

+ ε2
[
Υij

(x
ε

) ∂2

∂xi∂xj
u0(x) + vbl2,ε(x)

]
+ · · · ,

(2.3)

where vbln,ε is the nth-order boundary layer correction which solves a system

with oscillating Dirichlet boundary data. In particular, vbl1,ε is the solution of




Lεv
bl
1,ε(x) = F ∗(x) := −c̄ijk

∂3u0(x)

∂xi∂xj∂xk
in Ω,

vbl1,ε(x) = −χj

(x
ε

)∂u0
∂xj

(x) on ∂Ω,

(2.4)

where c̄ijk are constant.1 The asymptotic analysis of vbl1,ε in the above system
is crucial for the higher-order expansion of uε. In the following theorem, we
summarize the optimal results by far.

Theorem 2.1. Let A satisfy the ellipticity, periodicity and regularity assump-
tions and Ω be a bounded, smooth and strictly convex domain. Let vbl1,ε be the

solution of (2.4). Then, there exists vbl1,0 ∈ L2(Ω;Rm) independent of ε such
that

‖vbl1,ε − vbl1,0‖L2(Ω) ≤ Cε
1

2
−‖u0‖W 3,∞(Ω).

Moreover, vbl1,0 is the solution of
{
L0v

bl
1,0 = F ∗ in Ω,

vbl1,0 = f ∗ on ∂Ω,
(2.5)

where f ∗ ∈ W 1,p(∂Ω;Rm) for any p ∈ (1,∞).

1In the scalar case that m = 1, a careful computation shows that F ∗ = 0. But this fact
will not be used in this paper.
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The proof of Theorem 2.1 are contained in [2, 13, 14]. In particular, the

nearly sharp rate of convergence O(ε
1

2
−) was obtained in [2] for d ≥ 4 and

[13] for d = 3 (The sharp rate O(ε
1

4
−) for d = 2 was also obtained in [13],

which may be used to improve Prange’s result (1.4) in 2-dimensional case).
The explicit formula for the homogenized data f ∗ was first discovered in [2]
and the W 1,p regularity with arbitrary p ∈ (1,∞) has been proved in [14].

As a corollary of Theorem 2.1, we have

Theorem 2.2. Under the same assumptions as Theorem 2.1, the solutions of
(2.1) and (2.2) satisfy

‖uε − u0 − εχε
j

∂u0
∂xj

− εvbl1,0‖L2(Ω) ≤ Cε
3

2
−‖u0‖W 3,∞(Ω), (2.6)

where vbl1,0 is given in Theorem 2.1.

Next, we consider Neumann problem





Lεuε(x) = F (x) in Ω,

∂

∂νε
uε(x) = g(x) on ∂Ω,

(2.7)

where ∂
∂νε

= nia
ε
ij

∂
∂xj

is the conormal derivative and n = (n1, n2, · · · , nd) is

the normal vector. Similar to Dirichlet problem, the solution uε of Neumann
problem (2.7) converges to some function u0 in L̇

2(Ω;Rm) as ε → 0, and u0 is
the solution of the homogenized Neumann problem,





L0u0(x) = F (x) in Ω,

∂

∂ν0
u0(x) = g(x) on ∂Ω,

(2.8)

where ∂
∂ν0

= niâij
∂

∂xj
. Moreover, we have a formal asymptotic expansion for

the solution uε of (2.7),

uε(x) = u0(x)+ε

[
χj

(x
ε

) ∂

∂xj
u0(x) + ṽbl1,ε(x)

]

+ε2
[
Υij

(x
ε

) ∂2

∂xixj
u0(x) + ṽbl2,ε(x)

]
+ · · · ,

(2.9)

where ṽbln,ε is the nth-order boundary layer correction corresponding to a prob-
lem with oscillating Neumann boundary data. Again, we are only interested
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in the first-order correction ṽbl1,ε ∈ L̇2(Ω;Rm), which is given by




Lεṽ
bl
1,ε = F ∗ = −c̄ijk

∂3u0(x)

∂xi∂xj∂xk
in Ω,

∂

∂νε
ṽbl1,ε =

1

2
Tij · ∇

(
bεijk

∂u0
∂xk

)
+ nj c̄ijk

∂2u0
∂xi∂xk

on ∂Ω.

(2.10)

where Tij = niej − njei and bijk are 1-periodic functions satisfying

∂

∂xi
bijk = ajk + ajℓ

∂

∂xℓ
χk − âjk and bijk = −bijk. (2.11)

Note that Tij, 1 ≤ i, j ≤ d, are tangential vector fields on the boundary and
thence (2.10) satisfies the condition of compatibility for Neumann problem.
The derivation for the system of ṽbl1,ε is contained, for example, in the proof of
[13, Theorem 9.1].

Analogous to Theorem 2.1, we have

Theorem 2.3. Let A and Ω satisfy the same assumptions as Theorem 2.1 and
ṽbl1,ε be the solution of (2.10). Then, there exists ṽbl1,0 ∈ L̇2(Ω;Rm) independent
of ε such that

‖ṽbl1,ε − ṽbl1,0‖L2(Ω) ≤ Cε1/2−‖u0‖W 3,∞(Ω).

Moreover, ṽbl1,0 is the solution of




L0ṽ
bl
1,0 = F ∗ in Ω,

∂

∂ν0
ṽbl1,0 = g∗ on ∂Ω,

(2.12)

where g∗ ∈ W 1,p(∂Ω;Rm) for any p ∈ (1,∞).

In the above theorem, the rate O(ε
3

2
−) and the explicit formula of the ho-

mogenized data g∗ were obtained in [13]. The W 1,p regularity of g∗ with any
p ∈ (1,∞) was proved in [14].

As a corollary, we have

Theorem 2.4 ([13], Thoerem 9.1). Let A and Ω satisfy the same assumptions
as Theorem 2.1. Then, the solutions of (2.7) and (2.8) satisfy

‖uε − u0 − εχε
j

∂u0
∂xj

− εṽbl1,0‖L2(Ω) ≤ Cε
3

2
−‖u0‖W 3,∞(Ω), (2.13)

where ṽbl1,0 is given in Theorem 2.3.

Now observe that for arbitrary smooth u0, the mappings u0 7→ vbl1,0 in The-

orem 2.1 and u0 7→ ṽbl1,0 in Theorem 2.3 are both linear and bounded from
10



W 3,∞(Ω;Rm) to L2(Ω;Rm). Thus, one can define bounded linear operators

Kblu0 = vbl1,0, (2.14)

where vbl1,0 is given by Theorem 2.1 for Dirichlet problem, and

K̃blu0 = ṽbl1,0, (2.15)

where ṽbl1,0 is given by Theorem 2.3 for Neumann problem.

Remark 2.5. The results stated above are for strictly convex domains, while
actually similar results are valid for domains of finite type, at least for Dirichlet
problem, with the rate O(ε

3

2
−) replaced by O(ε1+

1

2
α∗−) for some α∗ ∈ (0, 1]

depending explicitly on d and the type of Ω; see [15, Theorem 1.3].

3. Expansion of Dirichlet Eigenvalues

This section is devoted to the proof of Theorem 1.1. Let A and Ω satisfy the
assumptions of Theorem 1.1. Recall the definitions of Tε and T0 in (1.6) and
(1.7). Clearly, the family of operators {Tε : ε > 0} is uniformly bounded from
L2(Ω;Rm) to H1

0 (Ω;R
m) with respect to ε and hence collectively compact

on L2(Ω;Rm), i.e., the set {Tεf : ‖f‖L2(Ω) ≤ 1, ε > 0} is precompact in
L2(Ω;Rm). Similarly, T0 is bounded from L2(Ω;Rm) to H1

0 ∩H2(Ω;Rm) and
therefore compact as an operator on L2(Ω;Rm). Moreover, by the classical
homogenization theorem (see, e.g., [12]), we have

‖Tε − T0‖L2(Ω)→L2(Ω) ≤ Cε, (3.1)

where C depends only on A and Ω.

In view of our setting, we note that the reciprocal of Dirichlet eigenvalues of
Lε, {λ

−1
ε,k : k ≥ 1}, forms the sequence of all the eigenvalues of Tε in a decreasing

order, with the same corresponding eigenfunctions, i.e., Tεφε,k = λ−1
ε,kφε,k for

every k ≥ 1. Similarly, {λ−1
0,k : k ≥ 1} is the sequence of eigenvalues of T0

with the same corresponding eigenfunctions for each k ≥ 1. For simplicity,
throughout this paper, we define µε,k = λ−1

ε,k and µ0,k = λ−1
0,k.

Proof of Theorem 1.1. By the assumptions, µ0 := µ0,L = µ0,L+1 = · · · =
µ0,L+M−1 is an eigenvalue of T0 with multiplicity M ≥ 1. Let S0 = S0(µ0)
be the spectral projection onto the the eigenspace of T0 corresponding to µ0.
By (1.3), it is not hard to see that for sufficiently small ε > 0, there exist
exactly M consecutive eigenvalues of Tε, {µε,L+j : j = 0, 1, · · · ,M − 1}, such
that µε,L+j converges to µ0 for each j. Define

µ̄ε =
µε,L + µε,L+1 + · · ·+ µε,L+M−1

M
. (3.2)

11



It follows from Osborn’s theorem in [8, Theorem 3.1] (or the proof of [9,
Theorem 3]) and (3.1) that

∣∣∣µ̄ε − µ0 −
1

M
〈(Tε − T0)φ0,L+j, φ0,L+j〉

∣∣∣
≤ C‖Tε − T0‖

2
R(S0)→L2(Ω)

≤ Cε2,

(3.3)

where the eigenfunctions {φ0,L+j : j = 0, 1, · · · ,M − 1} forms an (arbitrary)
orthonormal basis of the eigenspace R(S0). Note that the constant C may
depend on the eigenvalue µ0.

To proceed, we need a lemma on the expansion of Tε.

Lemma 3.1. Let Kbl be the operator defined by (2.14). Then,

‖Tε − T0 − εχε
ℓ

∂

∂xℓ
T0 − εKblT0‖R(S0)→L2(Ω) ≤ Cε

3

2
−.

Lemma 3.1 is a simple corollary of Theorem 2.2. In fact, since Ω is smooth,
the normalized eigenfunctions φ0,L+j ∈ R(S0) are smooth and satisfy

‖∇kφ0,L+j‖L∞(Ω) ≤ Ck,

for all j = 0, 1, · · · ,M − 1, where C depends on µ0, k, A and Ω. This implies
that the identical embedding R(S0) ⊂ W 3,∞(Ω;Rm) is bounded. Now, fix j
and set uε = TεφL+j and u0 = T0φ0,L+j. Then, Theorem 2.2 implies

‖(Tε − T0 − εχε
ℓ

∂

∂xℓ
T0 − εKblT0)φ0,L+j‖L2(Ω) ≤ Cε

3

2
−.

This proves the lemma.

Next, we prove the following claim: there exists a fixed number γ indepen-
dent of ε such that

|µ̄ε − µ0 − εγ| ≤ Cε
3

2
−, (3.4)

where γ is given by

γ =
µ0

M
〈Kblφ0,L+j, φ0,L+j〉, (3.5)

and Kbl is defined by (2.14).

To see this, first of all, it follows from (3.3) and Lemma 3.1 that

∣∣µ̄ε − µ0 −
ε

M
〈χε

ℓ

∂

∂xℓ
T0φ0,L+j +KblT0φ0,L+j, φ0,L+j〉

∣∣ ≤ Cε
3

2
−.

We then show that |〈χε
ℓ

∂
∂xℓ
T0φ0,L+j, φ0,L+j〉| ≤ Cε. Actually, since χℓ(y) is

smooth, 1-periodic and of zero mean value, we can find a smooth function
12



Bℓ(y) so that −∆Bℓ = χℓ. Thus, by the fact T0φ0,L+j = µ0φ0,L+j, we have

|〈χε
ℓ

∂

∂xℓ
T0φ0,L+j, φ0,L+j〉| =

∣∣∣∣
∫

Ω

ε2∆[Bℓ(x/ε)]µ0
∂

∂xℓ
φ0,L+j(x)φ0,L+j(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

ε∇Bℓ(x/ε) · ∇

(
µ0

∂

∂xℓ
φ0,L+j(x)φ0,L+j(x)

)
dx

∣∣∣∣

≤ Cε
M−1∑

j=0

‖φ0,L+j‖
2
H2(Ω) ≤ Cε,

As a consequence, we obtain
∣∣µ̄ε − µ0 −

εµ0

M
〈Kblφ0,L+j, φ0,L+j〉

∣∣ ≤ Cε
3

2
−.

It is important to note that 〈Kblφ0,L+j, φ0,L+j〉 is independent of the choice
of the orthonormal basis {φ0,L+j : j = 0, 1, · · · ,M − 1}. Therefore, we have
proved the claim.

Finally, we show that (3.4) implies (1.5). Recall that µ0 = λ−1
0 and µε,j =

λ−1
ε,L+j, and (1.3) gives

|λε,L+j − λ0| ≤ Cε, 0 ≤ j ≤M − 1.

Observe that

µ̄ε − µ0 =

M−1∑
j=0

(λ0 − λεL+j)
∏
s 6=j

λεL+s

Mλ0
M−1∏
j=0

λεL+j−1

=

M−1∑
j=0

(λ0 − λεL+j)

Mλ20
+O(ε2)

=
λ0 − λ̄ε
λ20

+O(ε2),

where λ̄ε =M−1
∑M−1

j=0 λε,L+j. This together with (3.4) implies

λ̄ε − λ0 = −ελ20γ +O(ε
3

2
−).

The theorem follows by letting θ = −λ20γ. �

4. Expansion of Dirichlet Eigenfunctions

In this section, we will concentrate on the first-order expansion for spectral
projections (or eigenspaces) of Tε or Lε. Let µ0 be an eigenvalue of T0 with
multiplicity M and µε,L+j with 0 ≤ j ≤ M − 1 be the eigenvalues of Tε
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that converge to µ0 as ε → 0. Let {φ0,L+j : j = 0, 1, · · · ,M − 1} be an
orthonormal basis of the eigenspace of T0 corresponding to µ0 and let {φε,L+j :
j = 0, 1, · · · ,M − 1} be the orthonormal eigenfunctions of Tε corresponding
to {µε,L+j : j = 0, 1, · · · ,M − 1}.

Suppose Γ ⊂ C is a circle centered at µ0 with fixed radius such that the only
eigenvalue of T0 enclosed by Γ is µ0 and the only eigenvalues of Tε enclosed are
exactly {µε,L+j : 0 ≤ j ≤M−1}. It is harmless and crucial to assume that the
distance form µε,L+j to Γ is uniformly bounded below. This implies that the
resolvents (z − T0)

−1 and (z − Tε)
−1 are bounded on L2(Ω;Rm) uniformly for

any z ∈ Γ and sufficiently small ε. By the theory of Riesz functional calculus,
the spectral projections defined in (1.8) and (1.9) can be expressed by

S0f =
1

2πi

∫

Γ

(z − T0)
−1fdz,

and

Sεf =
1

2πi

∫

Γ

(z − Tε)
−1fdz.

Some basic properties about the projections are listed below.

Proposition 4.1. Let Sε, S0 be defined as above. Then,

(i) S2
0 = S0 = S∗

0 and S2
ε = Sε = S∗

ε ;

(ii) The projection S0 is bounded from L2(Ω;Rm) to Sobolev spaceHk(Ω;Rm)
for any k ≥ 0;

(iii) The projection S0 can be extended naturally to a bounded linear operator
on H−s(Ω;Rm) such that S0 is bounded from H−s(Ω;Rm) to Hk(Ω;Rm) for
arbitrary s, k ≥ 0.

Proof. Part (ii) follows from the fact that S0f = 〈f, φ0,L+j〉φ0,L+j and φ0,L+j

are smooth. To see part (iii), note that 〈f, φ0,L+j〉 can be naturally extended
to the pair action 〈f, φ0,L+j〉H−s(Ω)×Hs(Ω) for any s ≥ 0. Thus

S0f = 〈f, φ0,L+j〉H−s(Ω)×Hs(Ω)φ0,L+j,

defines a bounded linear operator from H−s(Ω;Rm) to Hk(Ω;Rm). �

Then, we have the following zero-order expansion for the spectral projection
Sε that will be used later.

Lemma 4.2. For sufficiently small ε > 0, it holds

‖Sε − S0‖L2(Ω)→L2(Ω) ≤ Cε,

where C depends only on µ0, A and Ω.
14



Proof. For any g ∈ L2(Ω;Rm),

Sεg − S0g =
1

2πi

∫

Γ

((z − Tε)
−1 − (z − T0)

−1)gdz

=
1

2πi

∫

Γ

(z − Tε)
−1(Tε − T0)(z − T0)

−1gdz,

(4.1)

where we have used the second resolvent identity

(z − Tε)
−1 − (z − T0)

−1 = (z − Tε)
−1(Tε − T0)(z − T0)

−1. (4.2)

Recall that ‖Tε − T0‖L2(Ω)→L2(Ω) ≤ Cε, and (z − T0)
−1 and (z − Tε)

−1 are
uniformly bounded in L2(Ω;Rm), provided ε is sufficiently small. The lemma
follows from (4.1) easily. �

Since the identity (4.1) is not sufficient to study the first-order expansion,
we apply the identity (4.2) in (4.1) again and obtain

Sεg − S0g =
1

2πi

∫

Γ

(z − T0)
−1(Tε − T0)(z − T0)

−1gdz

+
1

2πi

∫

Γ

(z − Tε)
−1(Tε − T0)(z − T0)

−1(Tε − T0)(z − T0)
−1gdz

(4.3)

For the same reason as in the proof of Lemma 4.2, the second term of (4.3) is
bounded by Cε2‖g‖L2(Ω), which is a higher-order error. Therefore, it suffices
to consider the first-order expansion of

1

2πi

∫

Γ

(z − T0)
−1(Tε − T0)(z − T0)

−1gdz.

To this end, the lemmas below are crucial for us.

Lemma 4.3. For any f ∈ L2(Ω;Rm), we have

(z − T0)
−1f = z−1f + z−1(z − T0)

−1T0f. (4.4)

In particular, if g ∈ R(S0), then

(z − T0)
−1g =

g

z − µ0

. (4.5)

Proof. It is easy to see (4.4) by acting z− T0 on both sides. And (4.5) follows
from (4.4) and the fact T0g = µ0g. �

Lemma 4.4. Let f ∈ Cσ(Td;Rm) for some σ ∈ (0, 1),
∫
Td f = 0 and g ∈

H1(Ω;Rm). Then,

‖T0(f
εg)‖L2(Ω) ≤ Cε‖f‖Cσ(Td)‖g‖H1(Ω),

where f ε(x) = f(x/ε).
15



Proof. Let vε = T0(f
εg), i.e., vε satisfies L0vε = f εg in Ω and vε = 0 on ∂Ω.

Then integrating the equation against vε and using integration by parts, one
has ∫

Ω

Â∇vε · ∇vε =

∫

Ω

f(x/ε)g(x)vε(x)dx.

Since the mean value of f is zero, there is a unique periodic function F with
mean value zero such that −∆F = f and ‖∇F‖L∞(Td) ≤ C‖f‖Cσ(Td). Then
by the ellipticity condition and the Poincaré inequality,

Λ−1‖∇vε‖
2
L2(Ω) ≤

∫

Ω

Â∇vε · ∇vε

= ε

∫

Ω

∇F (x/ε) · ∇(g(x)vε(x))dx

≤ Cε‖f‖Cσ(Td)‖∇vε‖L2(Ω)‖g‖H1(Ω).

This implies the desired estimate. �

Proof of Theorem 1.2, part I. Fix some g ∈ R(S0) with ‖g‖L2(Ω) = 1. As
mentioned before, (4.3) and (4.5) imply

Sεg − S0g =
1

2πi

∫

Γ

(z − µ0)
−1(z − T0)

−1(Tε − T0)gdz +O(ε2),

in the sense of L2(Ω;Rm). By Lemma 3.1 and T0g = µ0g, we have

Sεg − S0g =
1

2πi

∫

Γ

µ0(z − µ0)
−1(z − T0)

−1(εχε
j

∂

∂xj
g)dz

+
1

2πi

∫

Γ

µ0(z − µ0)
−1(z − T0)

−1εKblgdz +O(ε
3

2
−).

(4.6)

We first deal with the first term on the right-hand side of (4.6). Observe that
Lemma 4.3 implies

(z − T0)
−1(εχε

j

∂

∂xj
g) = z−1εχε

j

∂

∂xj
g + z−1(z − T0)

−1T0(εχ
ε
j

∂

∂xj
g). (4.7)

Note that Lemma 4.4 implies T0(εχ
ε∇g) ≤ Cε2. Combining this with (4.6)

and (4.7), we have

Sεg − S0g =
1

2πi

∫

Γ

µ0(z − µ0)
−1z−1dz · εχε

j

∂

∂xj
g + εΨblg +O(ε

3

2
−)

= εχε
j

∂

∂xj
g + εΨblg +O(ε

3

2
−),

(4.8)

where Ψblg is defined by

Ψblg =
1

2πi

∫

Γ

µ0(z − µ0)
−1(z − T0)

−1Kblgdz, (4.9)
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and we have used the fact

1

2πi

∫

Γ

µ0(z − µ0)
−1z−1dz = 1.

Note that S0g = g for g ∈ R(S0). Thus, (4.8) implies the desired estimate
(1.10).

Finally, we need to show that the operator Ψbl above satisfies (1.12). A
computation shows that

Ψblg =
1

2πi

∫

Γ

µ0

z − µ0
(z − T0)

−1Kblgdz

= −
1

2πi

∫

Γ

(z − T0)
−1Kblgdz +

1

2πi

∫

Γ

z

z − µ0
(z − T0)

−1Kblgdz

= −S0K
blg +

1

2πi

∫

Γ

z

z − µ0
(z − T0)

−1Kblφdz.

Using Lemma 4.3, we have

1

2πi

∫

Γ

z

z − µ0
(z − T0)

−1Kblgdz

=
1

2πi

∫

Γ

z

z − µ0
z−1Kblgdz +

1

2πi

∫

Γ

z

z − µ0
z−1(z − T0)

−1T0K
blgdz

= Kblg +
1

2πi

∫

Γ

1

z − µ0

(z − T0)
−1T0K

blgdz.

It follows that

Ψblg = (I − S0)K
blg +

1

2πi

∫

Γ

1

z − µ0

(z − T0)
−1T0K

blgdz. (4.10)

To proceed, we now claim that T0 commutes with (z − T0)
−1. Actually, by

replacing f with (z− T0)
−1f in (4.4) and then acting z− T0 on both sides, we

obtain

(z − T0)
−1f = z−1f + z−1T0(z − T0)

−1f. (4.11)

This implies the claim in view of (4.4). Hence, the last term on the right-hand
side of (4.10) is equal to µ−1

0 T0(Ψ
blg). As a result,

Ψblg = (I − S0)K
blg + µ−1

0 T0(Ψ
blg), (4.12)

or equivalently,

(µ0 − T0)(Ψ
blg) = µ0(I − S0)K

blg.

Observe that (I−S0)K
blg is orthogonal to R(S0), i.e., (I−S0)K

blg ∈ R(S0)
⊥.

Because T0 is compact on L2(Ω;Rm), the Fredholm theorem allows us to invert
µ0 − T0 on R(S0)

⊥. Consequently, we obtain

Ψblg = µ0(µ0 − T0)
−1(I − S0)K

blg.
17



Note that the operator Ψbl : R(S0) 7→ R(S0)
⊥ is linear and bounded. This

proves (1.12). �

Remark 4.5. The abstract formula (1.12) can be interpreted as a certain sys-
tem. To see this, letting ψbl = Ψblg and applying L0 to (4.12), we obtain

L0ψ
bl =

(
− c̄ijk

∂3

∂xi∂xj∂xk
− λ0S0K

bl

)
g + λ0ψ

bl,

where we have used (2.5) and the fact L0S0 = λ0S0. To find out the boundary
condition, note that S0K

blg and T0(Ψ
blg) are both vanishing on ∂Ω. Thus

(4.12) implies that ψbl|∂Ω = Kblg|∂Ω. Consequently, we obtain the equation
for ψbl:





L0ψ
bl =

(
− c̄ijk

∂3

∂xi∂xj∂xk
− λ0S0K

bl

)
g + λ0ψ

bl in Ω,

ψbl = Kblg on ∂Ω.

(4.13)

Note that ψbl +R(S0) forms the set of all solutions for the above system.

Corollary 4.6. Let A and Ω satisfy the same assumptions as Theorem 1.1. Let
λ0 = λ0,L be a simple Dirichlet eigenvalue of L0 with eigenfunction φ0 = φ0,L

and λε = λε,L be the Dirichlet eigenvalue of Lε with eigenfunction φε = φε,L.
Then for ε > 0 sufficiently small,

‖φε − φ0 − εχε∇φ0 − εΨblφ0‖L2(Ω) ≤ Cε
3

2
−, (4.14)

where the operator Ψbl is given by (1.12)

Proof. Since λ0 is simple, R(S0) = Span{φ0}. In view of (1.3), λε is also simple
for sufficiently small ε and R(Sε) = Span{φε}. Then, (1.10) implies

‖Sεφ0 − φ0 − εχε∇φ0 − εΨblφ0‖L2(Ω) ≤ Cε
3

2
−. (4.15)

Then it is sufficient to show ‖Sεφ0 − φε‖L2(Ω) ≤ Cε2. Actually, by Sεφ0 =
〈φ0, φε〉φε and the fact 〈φε − φ0, φε + φ0〉 = 0, we have

Sεφ0 − φε = 〈φ0, φε − φ0〉φε =
1

2
〈φ0 − φε, φε − φ0〉φ

ε. (4.16)

The desired estimate follows from ‖φε−φ0‖L2(Ω) ≤ Cε, which is a corollary of
Lemma 4.2. �

Now we are in a position to investigate Sε as an operator defined on R(S0)
⊥.

Lemma 4.7. For sufficiently small ε > 0, it holds

‖Sε − εS0(χ
ε∇ +Ψbl)∗‖R(S0)⊥→L2(Ω) ≤ Cε

3

2
−. (4.17)
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Note that in Lemma 4.7, Ψbl∗ is the adjoint operator of Ψbl, and by definition,
Ψbl is a bounded linear operator fromW 3,∞(Ω;Rm) to L2(Ω;Rm). Thus, Ψbl∗ is
a bounded operator from L2(Ω;Rm) to W 3,∞(Ω;Rm)′ ⊂ H−s(Ω;Rm) for some
s > 0. Then, by Proposition 4.1 part (iii), S0Ψ

bl∗ is a well-defined bounded
operator on L2(Ω;Rm).

Proof of Lemma 4.7. Let g ∈ R(S0)
⊥ and ‖g‖L2(Ω) = 1 . For a given h ∈

L2(Ω;Rm) with ‖h‖L2(Ω) = 1, let h = h1 + h2 with h1 ∈ R(S0), h2 ∈ R(S0)
⊥.

Consider
〈h, Sεg〉 = 〈h1, Sεg〉+ 〈h2, Sεg〉.

For the first term, using 〈h1, g〉 = 0, S0h = h1 and (1.10), we have

〈h1, Sεg〉 = 〈Sεh1, g〉

= 〈h1 + ε(χε∇+Ψbl)S0h1, g〉+O(ε
3

2
−)

= 〈h, εS0(χ
ε∇+Ψbl)∗g〉+O(ε

3

2
−).

(4.18)

On the other hand, using S0h2 = 0, Sε = S2
ε and Lemma 4.2, we obtain

〈h2, Sεg〉 = 〈(Sε − S0)
2h2, g〉 = O(ε2). (4.19)

Therefore, we have

〈h, Sεg〉 = 〈h, εS0(χ
ε∇+Ψbl)∗g〉+O(ε

3

2
−).

This implies the desired estimate. �

Lemma 4.8. For sufficiently small ε > 0, it holds

‖S0(χ
ε∇+Ψbl)∗‖R(S0)→L2(Ω) ≤ Cε. (4.20)

Proof. First, we show

‖S0(χ
ε∇)∗‖R(S0)→L2(Ω) ≤ Cε. (4.21)

Actually, let g ∈ R(S0) and h ∈ L2(Ω;Rm). Then, by a similar argument as
Lemma 4.4, we have

|〈h, S0(χ
ε∇)∗g〉| =

∣∣∣∣
∫

Ω

χ(x/ε)∇(S0h)(x) · g(x)dx

∣∣∣∣
≤ Cε‖S0h‖H2(Ω)‖g‖H1(Ω)

≤ Cε‖h‖L2(Ω)‖g‖L2(Ω),

where we also used Proposition 4.1 in the last inequality. This implies (4.21)
as desired.

Next, we show that S0Ψ
bl∗S0 = 0 on L2(Ω;Rm). Actually, recalling that

Ψbl maps R(S0) to R(S0)
⊥, we have S0Ψ

blS0 = 0 on L2(Ω;Rm), which implies
S0Ψ

bl∗S0 = 0 on L2(Ω;Rm). This, together with (4.21), proves the lemma. �
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Proof of Theorem 1.2, part II. For any function g ∈ L2(Ω;Rm) write g = g1+
g2 such that g1 ∈ R(S0) and g2 ∈ R(S0)

⊥. Note that S0g2 = 0. It follows that

‖Sεg − S0g − ε(χε
j∂j +Ψbl)S0g − εS0(χ

ε
j∂j +Ψbl)∗g‖L2(Ω)

≤ ‖Sεg1 − S0g1 − ε(χε
j∂j +Ψbl)S0g1‖L2(Ω)

+ ε‖S0(χ
ε
j∂j +Ψbl)∗g1‖L2(Ω)

+ ‖Sεg2 − εS0(χ
ε
j∂j +Ψbl)∗g2‖L2(Ω).

(4.22)

All the three term are bounded by Cε
3

2
−‖g‖L2(Ω) thanks to (1.10), Lemma 4.8

and Lemma 4.7, respectively. The proof is complete. �

5. Interior expansion of gradient

This section is devoted to the proof of Theorem 1.3. Throughout, we assume
λ0 = λ0,L is a simple Dirichlet eigenvalue for some L ≥ 1 and let φ0 = φ0,L, φε =
φε,L and λε = λε,L. By Theorem 1.1 and Corollary 4.6, we have

Lεφε = λεφε

= λ0φ0 + ε(θφ0 + λ0Ψ
blφ0) + ελ0χ

ε∇φ0 +Rε,

where ‖Rε‖L2(Ω) ≤ Cε
3

2
−. Thus, one can write

φε = λ0Tεφ0 + εTε(θφ0 + λ0Ψ
blφ0)

+ εTε(χ
ε∇φ0) + Tε(Rε).

By the energy estimate and Lemma 4.4 (the lemma holds for Tε as well), we
have

‖∇Tε(Rε)‖L2(Ω) ≤ Cε
3

2
−,

and

‖∇Tε(χ
ε∇φ0)‖L2(Ω) ≤ Cε.

Consequently,

∇φε = λ0∇Tεφ0

+ ε∇Tε(θφ0 + λ0Ψ
blφ0) +O(ε

3

2
−), in L2(Ω;Rm).

(5.1)

Hence, it is sufficient to study the asymptotic behavior for ∇Tεf with some
f independent of ε. Note that uε = Tεf is the weak solution of (1.6). The
following theorem should be well-known.

Theorem 5.1. Let uε = Tεf and u0 = T0f for properly smooth f . Then

‖uε − u0 − εχε∇u0 − εvbl1,ε − ε2Υ ε∇2u0 − ε2vbl2,ε‖H1(Ω) ≤ Cε2‖u0‖H3(Ω). (5.2)
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where vbl1,ε is given by (2.4) and vbl2,ε is given by
{
Lεv

bl
2,ε(x) = 0 in Ω,

vbl2,ε(x) = −Υ ε∇2u0 on ∂Ω.
(5.3)

Sketch of the proof. Define

wε = uε − u0 − εχε∇u0 − εvbl1,ε − ε2Υ ε∇2u0 − ε2vbl2,ε.

A direct calculation as [13, Theorem 9.1] shows that




Lεwε = ε2
∂

∂xi

(
f ε
ijkℓ

∂3u0
∂xj∂xk∂xℓ

)
in Ω,

wε = 0 on ∂Ω,

(5.4)

where f ε
ijkℓ are some bounded periodic functions constructed in terms of A, χ

and Υ . Therefore, we obtain (5.2) by the energy estimate. �

We point out that the key in (5.2) is to understand the asymptotic behav-
ior of ∇vbl1,ε as ε → 0. Since the Dirichlet boundary data of vbl1,ε is rapidly

oscillating on ∂Ω, ∇vbl1,ε tends to blow up near the boundary as ε approaching

zero. Even the homogenized solution vbl1,0 lacks some sort of regularity (say,

H2(Ω;Rm)), because as far as we know, the boundary data vbl1,0|∂Ω = f ∗ is only

in W 1,p(∂Ω;Rm) for p < ∞. Nevertheless, as it has been proved in Theorem

2.1 that vbl1,ε converges to vbl1,0 in L2(Ω;Rm) with a rate of O(ε
1

2
−), in the fol-

lowing two lemmas, we are able to prove a general result that may handle this
situation.

Lemma 5.2. Assume v0 ∈ H1(Ω;Rm) and L0v0 ∈ L2
loc
(Ω;Rm). Then

‖δ∇2v0‖L2(Ω) ≤ C‖∇v0‖L2(Ω) + C‖δL0v0‖L2(Ω),

where δ(x) = dist(x, ∂Ω).

Proof. This follows from the Caccioppoli’s inequality. Actually, by setting
f = L0v0 and applying ∇ to both sides, we have

L0(∇v0) = ∇f.

For any x ∈ Ω, the interior Caccioppoli’s inequality implies that∫

B(x,δ(x)/4)

|∇2v0|
2 ≤

C

δ(x)2

∫

B(x,δ(x)/2)

|∇v0|
2 + C

∫

B(x,δ(x)/2)

|f |2.

Observe that δ(y) ≈ δ(x) for any y ∈ B(x, δ(x)/2). The above inequality
implies∫

B(x,δ(x)/4)

δ2|∇2v0|
2 ≤ C

∫

B(x,δ(x)/2)

|∇v0|
2 + C

∫

B(x,δ(x)/2)

δ2|f |2. (5.5)
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Finally, we can cover Ω by a sequence of balls with finite overlaps, such that
the sizes of these balls are comparable to the distance from boundary. The
lemma follows then from (5.5). �

Lemma 5.3. For any vε, v0 ∈ H1(Ω;Rm) satisfying Lεvε = L0v0 ∈ L2(Ω;Rm),
we have

‖δ(∇vε −∇v0 −∇χε∇v0)‖L2(Ω)

≤ Cε
(
‖∇v0‖L2(Ω) + ‖δL0v0‖L2(Ω)

)
+ C‖vε − v0‖L2(Ω).

(5.6)

Proof. Define wε = vε − v0 − εχε∇v0. Then a direct computation shows that

Lεwε = −div((Â− Aε − Aε∇χε)∇v0) + div(εχε∇2v0).

By (2.11) and a standard technique (see, e.g., [12, Chapter 2.1]), we have

Lεwε = −div(εBε∇2v0) + div(εχε∇2v0),

where B = (bijk) is defined by (2.11). Observe that δ2wε ∈ H1
0 (Ω;R

m). Inte-
grating the above equation against δ2wε, we obtain

∫

Ω

Aε∇wε · ∇(δ2wε) = ε

∫

Ω

Bε∇2v0 · ∇(δ2wε)− ε

∫

Ω

χε∇2v0 · ∇(δ2wε).

Using the fact ‖∇δ‖L∞(Ω) ≤ 1 and the ellipticity condition, we have

‖∇(δwε)‖
2
L2(Ω) ≤ C

∫

Ω

Aε∇(δwε) · ∇(δwε)

≤ C

∫

Ω

Aε∇wε · ∇(δ2wε) + C‖wε‖
2
L2(Ω)

≤ Cε

∫

Ω

Bε∇2v0 · ∇(δ2wε)

− Cε

∫

Ω

χε∇2v0 · ∇(δ2wε) + C‖wε‖
2
L2(Ω).

(5.7)

Now, it follows from the Cauchy-Schwarz inequality that
∣∣∣∣Cε

∫

Ω

Bε∇2v0 · ∇(δ2wε)

∣∣∣∣+
∣∣∣∣Cε

∫

Ω

χε∇2v0 · ∇(δ2wε)

∣∣∣∣

≤ Cε2‖δ∇2v0‖
2
L2(Ω) + C‖wε‖

2
L2(Ω) +

1

2
‖∇(δwε)‖

2
L2(Ω).

Substituting this into (5.7) and using Lemma 5.2, we obtain

‖∇(δwε)‖L2(Ω) ≤ Cε‖δ∇2v0‖L2(Ω) + C‖wε‖
2
L2(Ω)

≤ Cε
(
‖∇v0‖L2(Ω) + ‖δL0v0‖L2(Ω)

)
+ C‖vε − v0‖L2(Ω).

The desired estimate follows by observing ∇(δwε) = δ∇wε +∇δwε and that
the second term is bounded by the right-hand side of (5.6). �
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The above lemma can be applied to find an interior expansion for ∇Tε(θφ0+
λ0Ψ

blφ0) with an error of O(ε).

Corollary 5.4. Let φ0 be as before and Let vε = Tε(θφ0 + λ0Ψ
blφ0) and v0 =

T0(θφ0 + λ0Ψ
blφ0). Then

‖δ(∇vε −∇v0 −∇χε∇v0)‖L2(Ω) ≤ Cε.

Proof. Note that (3.1) implies that

‖vε − v0‖L2(Ω) ≤ Cε‖θφ0 + λ0Ψ
blφ0‖L2(Ω) (5.8)

It follows from Lemma 5.3, (5.8) and the fact L0v0 = θφ0 + λ0Ψ
blφ0 that

‖δ(∇vε −∇v0 −∇χε∇v0)‖L2(Ω) ≤ Cε‖θφ0 + λ0Ψ
blφ0‖L2(Ω).

The desired estimate follows readily. �

Now, it is sufficient to derive the first-order expansion for the leading term
of (5.1), ∇Tεφ0. Let uε = Tεφ0 and u0 = T0φ0. Observe that Theorem 5.1
gives

∇uε = (∇u0 +∇χε∇u0) + ε(χε∇2u0 +∇Υ ε∇2u0)

+ ε∇vbl1,ε + ε2∇vbl2,ε +O(ε2).
(5.9)

By the energy estimate of (5.3), we have ‖∇vbl2,ε‖L2(Ω) ≤ Cε−1/2 and thus

‖ε2∇vbl2,ε‖L2(Ω) ≤ Cε3/2, which exactly is a higher-order error. Therefore, it

suffices to consider the expansion of ∇vbl1,ε, which can be handled by Lemma
5.3.

Corollary 5.5. Let uε = Tεφ0 and u0 = T0φ0. Let vbl1,ε and vbl1,0 be defined as
(2.4) and (2.5). Then

‖δ(∇vbl1,ε −∇vbl1,0 −∇χε∇vbl1,0)‖L2(Ω) ≤ Cε
1

2
−.

Proof. By the definition, one has Lεv
bl
1,ε = L0v

bl
1,0 = F ∗, where

F ∗ = −c̄ijk
∂3u0

∂xi∂xj∂xk
.

Since φ0 is the eigenfunction of T0 corresponding to λ−1
0 , we know u0 = T0φ0 =

λ−1
0 φ0. Thus, ‖F ∗‖L2(Ω) ≤ C, since φ0 is smooth in our setting. Also recall

that f ∗ ∈ W 1,p(∂Ω;Rm) for any p <∞, particularly for p = 2. Now by Lemma
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5.3, we have

‖δ(∇vbl1,ε −∇vbl1,0 −∇χε∇vbl1,0)‖L2(Ω)

≤ Cε
(
‖∇vbl1,0‖L2(Ω) + ‖δL0v

bl
1,0‖L2(Ω)

)
+ C‖vbl1,ε − vbl1,0‖L2(Ω)

≤ Cε
(
‖F ∗‖L2(Ω) + ‖f ∗‖H1(Ω)

)
+ Cε

1

2
−‖λ−1

0 φ0‖W 3,∞(Ω)

≤ Cε
1

2
−,

where we have used Theorem 2.1 in the second inequality. This finishes the
proof. �

Proof of Theorem 1.3. First note that T0φ0 = λ−1
0 φ0 and (4.12) implies

λ0T0(Ψ
blφ0) = Ψblφ0 − (I − S0)K

blφ0.

By Corollary 5.4, 5.5 and (5.9), one obtains

δ∇Tε(θφ0 + λ0Ψ
blφ0)

= δ(I +∇χε)∇T0(θφ0 + λ0Ψ
blφ0) +O(ε)

= δ(I +∇χε)(θλ−1
0 ∇φ0 +∇Ψblφ0 −∇(I − S0)K

blφ0) +O(ε)

and

δ∇Tεφ0 = δ(I +∇χε)∇T0φ0 + εδ(χεI +∇Υ ε)∇2T0φ0

+ εδ(I +∇χε)∇vbl1,0 +O(ε
3

2
−)

= δλ−1
0 (I +∇χε)∇φ0 + εδλ−1

0 (χεI +∇Υ ε)∇2φ0

+ εδλ−1
0 (I +∇χε)∇Kblφ0 +O(ε

3

2
−),

where we also use the fact vbl1,0 = Kbl(T0φ0) = λ−1
0 Kblφ0. Combining these

together, we obtain

δ∇φε = δ(I +∇χε)∇φ0

+ εδ
[
(χεI +∇Υ ε)∇2φ0 + (I +∇χε)(θλ−1

0 ∇φ0 +∇Ψblφ0 +∇S0K
blφ0)

]

+O(ε3/2).

Finally, by the definitions of θ and S0, we have θ = −λ0〈K
blφ0, φ0〉 and

S0K
blφ0 = 〈Kblφ0, φ0〉φ0. It turns out that

θλ−1
0 ∇φ0 +∇S0K

blφ0 = 0.

This ends the proof as desired. �
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6. Neumann Problem

In this section, we briefly introduce the Neumann eigenvalue problem, of
which the results and proofs are parallel to those of Dirichlet problem, though
the set-up will be slightly different due to the Neumann boundary condition.
First, we introduce the operator T̃ε defined on L̇2(Ω;Rm) by T̃εf = uε, where
uε is the solution to 




Lεuε = f in Ω,

∂

∂νε
uε = 0 on ∂Ω.

(6.1)

We also define T̃0 by T̃0f = u0, where u0 is the solution to




L0u0 = f in Ω,

∂

∂ν0
u0 = 0 on ∂Ω.

(6.2)

Note that the necessary condition of compatibility is
∫
Ω
f = 0. Define

Ḣ1
N,ε(Ω;R

m) =

{
f ∈ H1(Ω;Rm) :

∫

Ω

f = 0,
∂

∂νε
f = 0

}
, (6.3)

and

Ḣ1
N,0(Ω;R

m) =

{
f ∈ H1(Ω;Rm) :

∫

Ω

f = 0,
∂

∂ν0
f = 0

}
. (6.4)

Since T̃ε are bounded linear operators from L̇2(Ω;Rm) to Ḣ1
N,ε(Ω;R

m) uni-

formly in ε > 0, {T̃ε : ε > 0} are collectively compact in L̇2(Ω;Rm). Also, T̃0
is a bounded linear operator from L̇2(Ω;Rm) to Ḣ1

N,0 ∩H
2(Ω;Rm) and there-

fore compact on L̇2(Ω;Rm). Moreover, the classical homogenization theory
(see, e.g., [12, Chapter 6.1]) implies

‖T̃ε − T̃0‖L2(Ω) ≤ Cε. (6.5)

Let λε,k and λ0,k be the kth (in an increasing order) Neumann eigenvalue of
Lε and L0, respectively. Let φε,k be the orthonormal eigenfunction of Lε corre-
sponding to λε,k and φ0,k be the orthonormal eigenfunction of L0 corresponding
to λ0,k. In other words, one has

Lεφε,k = λε,kφε,k, φε,k ∈ Ḣ1
N,ε(Ω;R

m), ‖φε,k‖L2(Ω) = 1; (6.6)

and
L0φ0,k = λ0,kφ0,k, φ0,k ∈ Ḣ1

N,0(Ω;R
m), ‖φ0,k‖L2(Ω) = 1. (6.7)

Recall that (6.5) implies that |λε,k − λ0,k| ≤ Ckε for each k ≥ 1.

In the following context, we let λ0 = λ0,L = λ0,L+1 = · · · = λ0,L+M−1

be a Neumann eigenvalue of L0 with multiplicity M ≥ 1. Let S̃0 be the
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spectral projection on the eigenspace of L0 corresponding to λ0, i.e., for any
f ∈ L2(Ω;Rm),

S̃0f = 〈f, φ0,L+j〉φ0,L+j.

Similarly, we denote by S̃ε the spectral projection on the eigenspace of Lε

corresponding to {λε,L+j : 0 ≤ j ≤M − 1}, i.e.,

S̃εf = 〈f, φε,L+j〉φε,L+j.

As Lemma 3.1 in Dirichlet problem, we also have the following lemma which
is crucial to study the first-order expansion of Neumann eigenvalues and spec-
tral projections.

Lemma 6.1. Let K̃bl be the operator defined by (2.15). Then,

‖T̃ε − T̃0 − εχε∇T̃0 − εK̃blT̃0‖R(S̃0)→L2(Ω) ≤ Cε
3

2
−.

Lemma 6.1 is a straightforward corollary of Theorem 2.4. With this lemma
and the previous settings adapted to Neumann problem, we can mimic the
argument of Dirichlet problem and obtain exactly the same results. We state
the results below without proofs.

Theorem 6.2. Let A and Ω satisfy the same assumptions as Theorem 1.1.
Let λ0, λε,L+j (0 ≤ j ≤ M−1) be the Neumann eigenvalues defined previously.
Then there exist a constant θ independent of ε such that for sufficiently small
ε > 0

|λ̄ε − λ0 − εθ| = Cε
3

2
−,

where λ̄ε =M−1
∑M−1

j=0 λε,L+j, θ = −λ0M
−1〈K̃blφ0,L+j, φ0,L+j〉 and C depends

only on λ0, A and Ω.

Theorem 6.3. Let A and Ω satisfy the same assumptions as Theorem 1.1 and

let S̃ε and S̃0 be the spectral projections defined above. Then,

‖S̃ε − S̃0 − ε(χε∇ + Ψ̃bl)S̃0‖R(S̃0)→L2(Ω) ≤ Cε
3

2
−, (6.8)

and

‖S̃ε − S̃0 − ε(χε∇+ Ψ̃bl)S̃0 − εS̃0(χ
ε∇+ Ψ̃bl)∗‖L2(Ω)→L2(Ω) ≤ Cε

3

2
−,

where the bounded linear operator Ψ̃bl : R(S̃0) 7→ R(S̃0)
⊥ is given by

Ψ̃blg = λ−1
0 (λ−1

0 − T̃0)
−1(I − S̃0)K̃

blg. (6.9)

Corollary 6.4. Let A and Ω satisfy the same assumptions as Theorem 1.1. Let
λ0 = λ0,L be a simple Neumann eigenvalue of L0 with eigenfunction φ0 = φ0,L

and λε = λε,L be the Neumann eigenvalue of Lε with eigenfunction φε = φε,L.
Then for ε > 0 sufficiently small,

‖φε − φ0 − εχε∇φ0 − εΨ̃blφ0‖L2(Ω) ≤ Cε
3

2
−,
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where the operator Ψ̃bl is given by (6.9).

Theorem 6.5. Under the same assumptions as Corollary 6.4, we have the
following expansion of δ∇φε in the sense of L2(Ω;Rm),

δ∇φε = δ(I +∇χε)∇φ0

+ εδ
[
(χεI +∇Υ ε)∇2φ0 + (I +∇χε)∇Ψ̃blφ0

]
+O(ε

3

2
−).
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