ON PROPERTIES OF THE SOLUTIONS TO THE α-HARMONIC EQUATION

PEIJIN LI, ANTTI RASILA[∗] , AND ZHI-GANG WANG

Abstract. The aim of this paper is to establish properties of the solutions to the α -harmonic equations: $\Delta_{\alpha}(f(z)) = \partial z[(1-|z|^2)^{-\alpha}\overline{\partial}zf](z) = g(z)$, where g: $\overline{\mathbb{D}} \to \mathbb{C}$ is a continuous function and $\overline{\mathbb{D}}$ denotes the closure of the unit disc \mathbb{D} in the complex plane C. We obtain Schwarz type and Schwarz-Pick type inequalities for the solutions to the α -harmonic equation. In particular, for $g \equiv 0$, the solutions to the above equation are called α -harmonic functions. We determine the necessary and sufficient conditions for an analytic function ψ to have the property that $f \circ \psi$ is α -harmonic function for any α -harmonic function f. Furthermore, we discuss the Bergman-type spaces on α -harmonic functions.

1. INTRODUCTION

Let C denote the complex plane. For $a \in \mathbb{C}$, let $\mathbb{D}(a,r) = \{z : |z-a| < r\}$ $(r > 0)$ and $\mathbb{D}(0, r) = \mathbb{D}_r$, $\mathbb{D} = \mathbb{D}_1$ and $\mathbb{T} = \partial \mathbb{D}$, the boundary of \mathbb{D} , and $\overline{\mathbb{D}} = \mathbb{D} \cup \mathbb{T}$, the closure of \mathbb{D} . Furthermore, we denote by $\mathcal{C}^m(\Omega)$ the set of all complex-valued m-times continuously differentiable functions from Ω into \mathbb{C} , where Ω stands for a subset of $\mathbb C$ and $m \in \mathbb N_0 := \mathbb N \cup \{0\}$. In particular, $\mathcal C(\Omega) := \mathcal C^0(\Omega)$ denotes the set of all continuous functions in Ω . We use $d(z)$ to denote the Euclidean distance from z to T.

1.1. **Distributions.** Let Ω be an open set in \mathbb{R}^n , and let $f: \Omega \to \mathbb{R}$ be an infinitely many times differentiable function. We may write its partial derivatives in the form

$$
\partial^{\alpha} f = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} f,
$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a *multi-index* and $\partial_j = \partial/\partial x_j$, $j = 1, 2, \ldots, n$. We denote by $C_0^{\infty}(\Omega)$ the space of functions which are infinitely many times differentiable and have a compact support in Ω .

A distribution f in Ω is a linear form on $C_0^{\infty}(\Omega)$ such that for every compact set $K \subset \Omega$ there exist constants C and k such that

$$
|f(\phi)| \le C \sum_{|\alpha| \le k} \sup |\partial^{\alpha} \phi|,
$$

where $\phi \in C_0^{\infty}(K)$. The set of all distributions in Ω is denoted by $\mathcal{D}'(\Omega)$ (cf. [16]).

Date: September 10, 2021.

²⁰¹⁰ *Mathematics Subject Classification.* Primary 31A05; Secondary 35C15, 35J25.

Key words and phrases. α-harmonic function; α-harmonic equation; Schwarz lemma; composition; Bergman-type spaces.

[∗]Corresponding author.

For locally integrable u and v are on Ω and

$$
-\int_{\Omega} u \partial_j \varphi \, dx = \int_{\Omega} v \varphi \, dx,
$$

for all $\varphi \in C_0^{\infty}(\Omega)$, we shall say that $\partial_j u = v$ *in the distribution sense* (cf. [14]).

1.2. The α -harmonic equation. We denote by Δ_{α} the weighted Laplace operator corresponding to the so-called standard weight $w_{\alpha} = (1 - |z|^2)^{\alpha}$, that is,

(1.1)
$$
\Delta_{\alpha}(f(z)) = \partial z[(1-|z|^2)^{-\alpha}\overline{\partial}zf](z)
$$

in D, where $\alpha > -1$ (see [20, Proposition 1.5] for the reason for this constraint),

$$
\partial z = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)
$$
 and $\overline{\partial} z = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.

The weighted Laplacians of the form (1.1) were first systematically studied by Garabedian in [11]. In [20], Olofsson and Wittsten introduced the operator Δ_{α} and gave a counterpart of the classical Poisson integral formula for it.

Let $g \in \mathcal{C}(\mathbb{D})$ and $f \in \mathcal{C}^2(\mathbb{D})$. Of particular interest to us is the following *inhomogeneous* α*-harmonic equation* in D:

(1.2) ∆α(f) = g.

We also consider the associated *Dirichlet boundary value problem* of functions f, satisfying the equation (1.2),

(1.3)
$$
\begin{cases} \Delta_{\alpha}(f) = g & \text{in } \mathbb{D}, \\ f = f^* & \text{on } \mathbb{T}. \end{cases}
$$

Here the boundary data f^* is a distribution on \mathbb{T} , i.e. $f^* \in \mathcal{D}'(\mathbb{T})$, and the boundary condition in (1.3) is understood as $f_r \to f^* \in \mathcal{D}'(\mathbb{T})$ as $r \to 1^-$, where

$$
f_r(e^{i\theta}) = f(re^{i\theta})
$$

for $e^{i\theta} \in \mathbb{T}$ and $r \in [0, 1)$.

If $g \equiv 0$ in (1.2), the solutions to (1.2) are said to be α -harmonic functions. Obviously, α -harmonicity coincides with harmonicity when $\alpha = 0$. See [8] and the references therein for the properties of harmonic mappings.

In [20], Olofsson and Wittsten showed that if an α -harmonic function f satisfies

$$
\lim_{r \to 1^-} f_r = f^* \in \mathcal{D}'(\mathbb{T}) \quad (\alpha > -1),
$$

then it has the form of a *Poisson type integral*

(1.4)
$$
f(z) = \mathcal{P}_{\alpha}[f^*](z) = \frac{1}{2\pi} \int_0^{2\pi} P_{\alpha}(ze^{-i\theta}) f^*(e^{i\theta}) d\theta
$$

in D, where

$$
P_{\alpha}(z) = \frac{(1 - |z|^2)^{\alpha + 1}}{(1 - z)(1 - \overline{z})^{\alpha + 1}}
$$

is the α -harmonic Poisson kernel in \mathbb{D} . See [17] and [19] for related discussions.

In [3], Behm found the Green function for $-\overline{\Delta_{\alpha}}$. The α -harmonic Green function G_{α} is given in \mathbb{D} by

(1.5)
$$
G_{\alpha}(z,w) = -(1 - z\overline{w})^{\alpha}h \circ \varphi(z,w), \ \ z \neq w,
$$

where

(1.6)
$$
h(s) = \int_0^s \frac{t^{\alpha}}{1-t} dt = \sum_{n=0}^{\infty} \frac{s^{\alpha+1+n}}{\alpha+1+n}, \ \ 0 \le s < 1,
$$

and

$$
\varphi(z, w) = 1 - \left| \frac{z - w}{1 - \overline{z}w} \right|^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - z\overline{w}|^2}.
$$

For convenience, we let

$$
\mathcal{G}[g](z) = \int_{\mathbb{D}} G_{\alpha}(z, w) g(w) dA(w)
$$

and

$$
\mathcal{P}[f^*](z) = \frac{1}{2\pi} \int_0^{2\pi} P(ze^{-i\theta}) f^*(e^{i\theta}) d\theta,
$$

where $dA(w) = (1/\pi) dx dy$ denotes the normalized area measure in D and

$$
P(z) = \frac{1 - |z|^2}{|1 - z|^2}
$$

is the *Poisson kernel* in D.

By [20, Theorem 5.3] and [3, Theorem 2], we see that all solutions to the α harmonic equation (1.3) are given by

(1.7)
$$
f(z) = \mathcal{P}_{\alpha}[f^*](z) + \mathcal{G}[g](z).
$$

2. Main results

2.1. A Schwarz type lemma. The classical Schwarz lemma states that an analytic function f from $\mathbb D$ into itself, with $f(0) = 0$, satisfies $|f(z)| \le |z|$ for all $z \in \mathbb D$. This result is a crucial theme in many branches of research for more than a hundred years.

Heinz [15] proved the following Schwarz lemma of complex-valued harmonic functions: If f is a complex-valued harmonic function from $\mathbb D$ into itself with $f(0) = 0$, then, for $z \in \mathbb{D}$,

(2.1)
$$
|f(z)| \leq \frac{4}{\pi} \arctan|z|.
$$

The first purpose of this paper is to consider the results of the above type for the solutions to the α -harmonic equation. Our result is the following:

Theorem 2.1. Suppose that $g \in \mathcal{C}(\overline{\mathbb{D}})$ and $f^* \in \mathcal{C}^1(\mathbb{T})$. If $f \in \mathcal{C}^2(\mathbb{D})$ satisfying (1.3) *with* $\alpha \geq 0$ *and* $\mathcal{P}_{\alpha}[f^*](0) = 0$ *, then for* $z \in \overline{\mathbb{D}}$ *,*

(2.2)
$$
|f(z)| \le 2^{\alpha} \left[\frac{4}{\pi} ||f^*||_{\infty} \arctan |z| + ||g||_{\infty} (1 - |z|^2)^{\alpha + 1} \right],
$$

 $where \||f^*||_{\infty} = \sup_{z \in \mathbb{T}} \{|f^*(z)|\}, \text{ and } ||g||_{\infty} = \sup_{z \in \mathbb{D}} \{|g(z)|\}.$

Moreover, if we take $\alpha = 0$ *,* $g(z) \equiv -C$ *, where* C *is a positive constant, and*

$$
f(z) = C(1 - |z|^2),
$$

then we see that the inequality (2.2) *is sharp.*

Clearly, if $\alpha = 0$, $q \equiv 0$ and f maps $\mathbb D$ into itself, then (2.2) coincides with (2.1).

2.2. A Schwarz-Pick type lemma. Suppose $f = u + iv$ is in $C^1(\Omega)$, where Ω is a domain in $\mathbb C$ and u, v are real functions. The Jacobian matrix of f at z is denoted by

$$
D_f(z) = \left(\begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right).
$$

Then

(2.3)
$$
||D_f(z)|| = \sup\{|D_f(z)\varsigma| : |\varsigma| = 1\} = |f_z(z)| + |f_{\overline{z}}(z)|
$$

and

(2.4)
$$
l(D_f(z)) = \inf\{|D_f(z)\varsigma| : |\varsigma| = 1\} = | |f_z(z)| - |f_{\overline{z}}(z)| |.
$$

Colonna [7] obtained a sharp Schwarz-Pick type lemma for complex-valued harmonic functions, which is as follows: If f is a complex-valued harmonic function from $\mathbb D$ into itself, then, for $z \in \mathbb D$,

(2.5)
$$
||D_f(z)|| \leq \frac{4}{\pi} \frac{1}{1 - |z|^2}.
$$

The following result establishes a Schwarz-Pick type lemma for the solutions to the α -harmonic equation.

Theorem 2.2. Suppose that $g \in \mathcal{C}(\overline{\mathbb{D}})$, $f \in \mathcal{C}^2(\mathbb{D})$ satisfies (1.3) with $\alpha \geq 0$ and *that* $f^* \in C(\mathbb{T})$ *. Then for* $z \in \mathbb{D}$ *,*

$$
||D_f(z)|| \le (\alpha + 1)2^{\alpha + 1} ||f^*||_{\infty} \frac{1}{1 - |z|^2} + (\alpha + \frac{4}{3})2^{\alpha + 1} ||g||_{\infty},
$$

where $||f^*||_{\infty}$ *and* $||g||_{\infty}$ *are as in Theorem 2.1.*

In particular, if f maps \mathbb{D} *into* \mathbb{D} *and* $q \equiv 0$ *, then*

(2.6)
$$
||D_f(z)|| \leq (\alpha + 1)2^{\alpha + 1} \frac{1}{1 - |z|^2}.
$$

We remark that the estimate of (2.6) is sharper than the estimate given by [17, Theorem 1.1].

2.3. Compositions of α -harmonic functions. Although the composition $f \circ \phi$, where f is harmonic and ϕ is analytic, is known to be harmonic, an α -harmonic function ($\alpha \neq 0$) precomposed with an analytic function may not be α -harmonic. This can be seen by the following example.

Example 2.1. Let $\alpha \in (-1,0) \cup (0,+\infty)$ and let $k \ge 1$ be an integer. Denote by f the function

$$
f(z) = \left(\sum_{n=0}^{\infty} \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} (1-|z|^2)^n - (1-|z|^2)^{\alpha+1} \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha+k+1)}{\Gamma(n+\alpha+2)\Gamma(k)} (1-|z|^2)^n \right) \overline{z}^k
$$

for $z \in \mathbb{D} \setminus \{0\}$, where $\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt$ $(s > 0)$ is the Gamma function. Let $\psi(z) = z^2$. Then

- (1) f is an α -harmonic function in $\mathbb{D}\setminus\{0\};$
- (2) $f \circ \psi$ is not an α -harmonic function in $\mathbb{D} \setminus \{0\}.$

To see this note that, by [20, Lemma 1.6], f is an α -harmonic function in $\mathbb{D} \setminus \{0\}$. By letting $\eta = \psi(z) = z^2$, we have

$$
\frac{\partial}{\partial \overline{z}} f \circ \psi(z) = \frac{\partial}{\partial \overline{\eta}} f(\eta) \cdot \frac{\partial \overline{\eta}}{\partial \overline{z}} = 2 \frac{\Gamma(\alpha + k + 1)}{\Gamma(\alpha + 1)(k - 1)!} (1 - |z|^2)^{\alpha} (1 + |z|^2)^{\alpha} \overline{z}^{2k - 1},
$$

and then

$$
\frac{\partial}{\partial z}\Big((1-|z|^2)^{-\alpha}\frac{\partial}{\partial \overline{z}}f\circ\psi(z)\Big)\neq 0.
$$

Hence, it follows that $f \circ \psi$ is not an α -harmonic function in $\mathbb{D} \setminus \{0\}$.

Now we are ready to state our result.

Theorem 2.3. Let ψ be an analytic function in \mathbb{D} . Then for any α -harmonic *function* f *with* $\alpha \in (-1,0) \cup (0,+\infty)$, $f \circ \psi$ *is* α -harmonic if and only if $\psi(z) = e^{it}z$, $t \in [0, 2\pi]$.

2.4. Bergman-type spaces. For $\nu, \mu, t \in \mathbb{R}$,

$$
\mathcal{D}_f(\nu,\mu,t) = \int_{\mathbb{D}} d^{\nu} |f(z)|^{\mu} ||Df(z)||^t dA(z) < \infty
$$

is called *Dirichlet-type energy integral* of the complex-valued function f (cf. [1, 2, 4, 5, 6, 10, 12, 13, 21]). In particular, for $\nu > -1$, $0 < \mu < \infty$ and $t = 0$, we denote by $b_{\nu,\mu}(\mathbb{D})$ the *Bergman-type space*, consisting of all $f \in C^0(\mathbb{D})$ with the norm

$$
||f||_{b_{\nu,\mu}} = |f(0)| + (\mathcal{D}_f(\nu,\mu,0))^{\frac{1}{\mu}} < \infty.
$$

We refer to $[6, 9, 12, 13, 22]$ for basic characterizations of analytic or harmonic Bergman-type spaces and Dirichlet-type spaces. However, very few related studies can be found from the literature for the general complex-valued functions. The following is a characterization of α -harmonic functions in Bergman-type spaces.

Theorem 2.4. Let $f \in C^2(\mathbb{D})$ be an α -harmonic function in \mathbb{D} with $\alpha > -1$, $\text{Re}(f \Delta f) \geq 0$ and $\sup_{z \in \overline{\mathbb{D}}} |f(z)| \leq M$, where M is a constant. Then for $p \geq 2$, $f \in b_{p-1,p}(\mathbb{D}).$

We will give proofs of Theorem 2.1 and Theorem 2.2 in Section 3. Theorem 2.3 and Theorem 2.4 will be proved in Section 4.

3. Schwarz type and Schwarz-Pick type lemmas for the solutions of THE α -HARMONIC EQUATION

The aim of this section is to prove Theorems 2.1 and 2.2. First, we show Theorem 2.1. For this, we need some lemmas.

Lemma 3.1. *For* $\alpha \geq 0$ *, the function* $h(s)$ *given by* (1.6) *satisfies the estimate*

$$
h(s) \le s^{\alpha} \log \frac{1}{1-s}.
$$

Proof. By (1.6), we obtain that

$$
h(s) = \sum_{n=0}^{\infty} \frac{s^{\alpha+1+n}}{\alpha+1+n} = \sum_{n=1}^{\infty} \frac{s^{\alpha+n}}{\alpha+n} = s^{\alpha} \sum_{n=1}^{\infty} \frac{s^n}{\alpha+n} \le s^{\alpha} \sum_{n=1}^{\infty} \frac{s^n}{n} = s^{\alpha} \log \frac{1}{1-s},
$$

and the result follows.

Lemma 3.2. *For* $\alpha \geq 0$ *, the function* $G_{\alpha}(z, w)$ *given by* (1.5) *satisfies the estimate* $|G_{\alpha}(z,w)| \leq 2^{\alpha}(1-|z|^2)^{\alpha} \log \left|$ $1 - \overline{z}w$ $z - w$ $\begin{array}{c} \hline \end{array}$ 2 .

Proof. Applying Lemma 3.1, shows that

$$
|G_{\alpha}(z,w)| \leq |1 - z\overline{w}|^{\alpha} \frac{(1 - |z|^2)^{\alpha} (1 - |w|^2)^{\alpha}}{|1 - z\overline{w}|^{2\alpha}} \log \left| \frac{1 - \overline{z}w}{z - w} \right|^2
$$

$$
\leq 2^{\alpha} (1 - |z|^2)^{\alpha} \log \left| \frac{1 - \overline{z}w}{z - w} \right|^2,
$$

and the result follows.

Proof of Theorem 2.1. For a given $g \in \mathcal{C}(\overline{\mathbb{D}})$, by (1.4), we have $|f(z)| \leq |\mathcal{P}_{\alpha}[f^*](z)| + |\mathcal{G}[g](z)|.$

Since

$$
|\mathcal{P}_{\alpha}[f^*](z)| = \left| \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \cdot \frac{(1 - |z|^2)^{\alpha}}{(1 - \overline{z}e^{i\theta})^{\alpha}} f^*(e^{i\theta}) d\theta \right|
$$

\n
$$
\leq (1 + |z|)^{\alpha} \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} |f^*(e^{i\theta})| d\theta
$$

\n
$$
\leq 2^{\alpha} \mathcal{P}[|f^*||(z)]
$$

and $\mathcal{P}[[f^*]](z)$ is harmonic in \mathbb{D} , by (2.1), we know that, for $z \in \mathbb{D}$

(3.1)
$$
|\mathcal{P}_{\alpha}[f^*](z)| \leq 2^{\alpha} \mathcal{P}[|f^*|](z) \leq 2^{\alpha} \cdot \frac{4}{\pi} ||f^*||_{\infty} \arctan|z|.
$$

On the other hand, by Lemma 3.2, we get

$$
|\mathcal{G}[g](z)| = \Big| \int_{\mathbb{D}} G_{\alpha}(z, w) g(w) dA(w) \Big| \leq 2^{\alpha} ||g||_{\infty} (1 - |z|^2)^{\alpha} J_1,
$$

where

$$
J_1 = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{z}w}{z - w} \right|^2 dA(w).
$$

In order to estimate J_1 , we let

$$
w \mapsto \zeta = \phi(w) = \frac{z - w}{1 - w\overline{z}} = re^{i\vartheta}
$$

so that $\phi = \phi^{-1}$,

$$
w = \frac{z - \zeta}{1 - \zeta \overline{z}}, \ \phi'(w) = -\frac{1 - |z|^2}{(1 - w\overline{z})^2},
$$

and thus,

$$
dA(w) = |(\phi^{-1})'(\zeta)|^2 dA(\zeta) = \frac{(1 - |z|^2)^2}{|1 - \zeta \overline{z}|^4} dA(\zeta).
$$

Consequently, by switching to the polar coordinates and using [18, (2.3)], we obtain

$$
J_1 = \int_{\mathbb{D}} \frac{(1-|z|^2)^2}{|1-\zeta\overline{z}|^4} \log \frac{1}{|\zeta|^2} dA(\zeta)
$$

=
$$
\frac{(1-|z|^2)^2}{\pi} \int_0^1 \int_0^{2\pi} \frac{r}{|1-\overline{z}re^{i\vartheta}|^4} \log \frac{1}{r^2} d\vartheta dr
$$

=
$$
2(1-|z|^2)^2 \sum_{n=0}^{\infty} (n+1)^2 |z|^{2n} \int_0^1 r^{2n+1} \log \frac{1}{r^2} dr
$$

=
$$
1-|z|^2,
$$

which implies that

(3.2)
$$
|\mathcal{G}[g](z)| \le 2^{\alpha} ||g||_{\infty} (1 - |z|^2)^{\alpha + 1}
$$

Hence, it follows from (3.1) and (3.2) that (2.2) holds, and the proof of the theorem is complete.

.

 \Box

In order to prove Theorem 2.2, we need some auxiliary lemmas. The following result is from [17].

Lemma A. ([17, Lemma 2.1]) *If* $\alpha > -1$ *and* $f^* \in C(\mathbb{T})$ *, then*

$$
\frac{\partial}{\partial z} \int_0^{2\pi} P_\alpha(ze^{-i\theta}) f^*(e^{i\theta}) d\theta = \int_0^{2\pi} \frac{\partial}{\partial z} P_\alpha(ze^{-i\theta}) f^*(e^{i\theta}) d\theta
$$

and

$$
\frac{\partial}{\partial \overline{z}} \int_0^{2\pi} P_\alpha(ze^{-i\theta}) f^*(e^{i\theta}) d\theta = \int_0^{2\pi} \frac{\partial}{\partial \overline{z}} P_\alpha(ze^{-i\theta}) f^*(e^{i\theta}) d\theta.
$$

Lemma 3.3. *Assume that* $f^* \in C(\mathbb{T})$ *and* $\alpha \geq 0$ *. Then*

$$
||D_{\mathcal{P}_{\alpha}[f^*]}(z)|| \leq (\alpha+1)2^{\alpha+1}||f^*||_{\infty}\frac{1}{1-|z|^2}.
$$

Proof. By elementary calculations, we obtain

$$
\frac{\partial}{\partial z}P(ze^{-i\theta}) = \frac{e^{-i\theta}}{(1 - ze^{-i\theta})^2}
$$

and

$$
\frac{\partial}{\partial \overline{z}}P(ze^{-i\theta}) = \frac{e^{i\theta}}{(1 - \overline{z}e^{i\theta})^2}.
$$

Then

$$
\frac{\partial}{\partial z} P_{\alpha}(ze^{-i\theta}) = \frac{(1-|z|^2)^{\alpha} \left[e^{-i\theta}(1-|z|^2) - (\alpha+1)\overline{z}(1-ze^{-i\theta})\right]}{(1-ze^{-i\theta})^2(1-\overline{z}e^{i\theta})^{\alpha+1}}
$$
\n(3.3)\n
$$
= \frac{(1-|z|^2)^{\alpha}}{(1-\overline{z}e^{i\theta})^{\alpha+1}} [1-|z|^2 - (\alpha+1)\overline{z}e^{i\theta}(1-ze^{-i\theta})] \frac{\partial}{\partial z} P(ze^{-i\theta})
$$

and

$$
(3.4)\frac{\partial}{\partial \overline{z}}P_{\alpha}(ze^{-i\theta}) = \frac{(\alpha+1)(1-|z|^2)^{\alpha}e^{i\theta}}{(1-\overline{z}e^{i\theta})^{\alpha+2}} = \frac{(\alpha+1)(1-|z|^2)^{\alpha}}{(1-\overline{z}e^{i\theta})^{\alpha}}\frac{\partial}{\partial \overline{z}}P(ze^{-i\theta}).
$$

Since

$$
|1 - |z|^2 - (\alpha + 1)\overline{z}e^{i\theta}(1 - ze^{-i\theta})| = |(1 - ze^{-i\theta})(-\alpha\overline{z}e^{i\theta}) + (1 - \overline{z}e^{i\theta})|
$$

$$
\leq (\alpha + 1)|1 - \overline{z}e^{i\theta}|,
$$

we see from (3.3) that

$$
\left|\frac{\partial}{\partial z}P_{\alpha}(ze^{-i\theta})\right| \leq (\alpha+1)2^{\alpha}\left|\frac{\partial}{\partial z}P(ze^{-i\theta})\right|.
$$

Hence, by combining the above with (3.4), we conclude

$$
\left|\frac{\partial}{\partial z}P_{\alpha}(ze^{-i\theta})\right| + \left|\frac{\partial}{\partial \overline{z}}P_{\alpha}(ze^{-i\theta})\right| \leq (\alpha+1)2^{\alpha}\left(\left|\frac{\partial}{\partial z}P(ze^{-i\theta})\right| + \left|\frac{\partial}{\partial \overline{z}}P(ze^{-i\theta})\right|\right).
$$

Consequently, from Lemma A and the identities

$$
\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\partial}{\partial z} P(ze^{-i\theta}) \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\partial}{\partial \overline{z}} P(ze^{-i\theta}) \right| d\theta = \frac{1}{1 - |z|^2},
$$

it follows that

$$
||D_{\mathcal{P}_{\alpha}[f^*]}(z)|| \leq (\alpha+1)2^{\alpha+1}||f^*||_{\infty}\frac{1}{1-|z|^2}
$$

which is what is needed. $\hfill \square$

Identify the complex plane $\mathbb C$ with $\mathbb R^2$, and denote by $L^1_{loc}(\mathbb D)$ the space of locally integrable functions in \mathbb{D} . Functions $\psi \in L^1_{loc}(\mathbb{D})$ with distributional partial derivatives in D, we have the action

$$
\langle \psi_z, \varphi \rangle = -\int_{\mathbb{D}} \psi \varphi_z \, dA, \ \ \varphi \in C_0^{\infty}(\mathbb{D}),
$$

for the distributional partial derivative ψ_z have, and similarly for the distribution $\psi_{\overline{z}}$ (cf. [3, 14, 16]).

,

Lemma 3.4. *For* $\alpha \geq 0$ *and* $g \in \mathcal{C}(\overline{\mathbb{D}})$ *, the function* $G_{\alpha}(z, w)$ *, given by* (1.5)*, satisfies the following inequality:*

$$
(1) \int_{\mathbb{D}} |G_{\alpha}(z,w)g(w)| dA(w) \le 2^{\alpha} ||g||_{\infty} \text{ and } \int_{\mathbb{D}} |G_{\alpha}(z,w)| dA(z) < \infty;
$$
\n
$$
(2) \text{ For fixed } w \in \mathbb{D},
$$
\n
$$
\frac{\partial G_{\alpha}(z,w)}{\partial z} = \alpha \overline{w} (1 - z \overline{w})^{\alpha - 1} h \circ g(z,w) - \frac{(1 - |z|^2)^{\alpha} (1 - |w|^2)^{\alpha + 1}}{(1 - \overline{z}w)^{\alpha} (1 - z \overline{w})} \cdot \frac{1}{z - w}
$$
\n
$$
\frac{\partial G_{\alpha}(z,w)}{\partial \overline{z}} = \frac{(1 - |z|^2)^{\alpha} (1 - |w|^2)^{\alpha + 1}}{(1 - \overline{z}w)^{\alpha + 1} (\overline{z} - \overline{w})}
$$
\n
$$
\text{in the sense of distributions in } \mathbb{D};
$$
\n
$$
(3) \quad (a) \quad \frac{\partial \mathcal{G}[g](z)}{\partial z} = \int_{\mathbb{D}} \frac{\partial G_{\alpha}(z,w)}{\partial z} g(w) dA(w), \text{ and}
$$
\n
$$
(b) \quad \left| \frac{\partial \mathcal{G}[g](z)}{\partial z} \right| \le \int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z,w)}{\partial z} g(w) \right| dA(w) \le (\alpha + \frac{2}{3}) 2^{\alpha + 1} ||g||_{\infty},
$$
\n
$$
\text{in the sense of distributions in } \mathbb{D};
$$
\n
$$
(4) \quad (a) \quad \frac{\partial \mathcal{G}[g](z)}{\partial \overline{z}} = \int_{\mathbb{D}} \frac{\partial G_{\alpha}(z,w)}{\partial \overline{z}} g(w) dA(w), \text{ and}
$$
\n
$$
(b) \quad \left| \frac{\partial \mathcal{G}[g](z)}{\partial \overline{z}} \right| \le \int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z,w)}{\partial \overline{z}} g(w) \right| dA(w) \le \frac{2^{\alpha + 2}}{3} ||g||_{\infty},
$$
\n
$$
\text{in the sense of distributions in } \mathbb{D}.
$$

Proof. Obviously, it follows from (3.2) and the proof of [3, Proposition 4] that (1) holds. Therefore, $G_{\alpha}(z, w) \in L^{1}(\mathbb{D})$ so that its derivative has the action

$$
\left\langle \frac{\partial G_{\alpha}(z,w)}{\partial z}, \varphi(z) \right\rangle = -\int_{\mathbb{D}} G_{\alpha}(z,w)\varphi_{z}(z) dA(z), \ \ \varphi \in C_{0}^{\infty}(\mathbb{D}).
$$

By Lebesgue's dominated convergence theorem we get

$$
\int_{\mathbb{D}} G_{\alpha}(z,w)\varphi_{z}(z) dA(z) = \lim_{\varepsilon \to 0} \int_{\mathbb{D}\setminus \mathbb{D}(w,\varepsilon)} G_{\alpha}(z,w)\varphi_{z}(z) dA(z).
$$

For $\varepsilon > 0$, let $D_{\varepsilon} = D(w, \varepsilon)$. Partial integration gives

$$
\int_{\mathbb{D}\setminus D_{\varepsilon}} G_{\alpha}(z,w)\varphi_{z}(z) dA(z) = -\int_{\partial D_{\varepsilon}} G_{\alpha}(z,w)\varphi(z)v(z) ds(z) \n- \int_{\mathbb{D}\setminus D_{\varepsilon}} \frac{\partial G_{\alpha}(z,w)}{\partial z}\varphi(z) dA(z),
$$

where v is the unit exterior normal of $\mathbb{D}\backslash D_{\varepsilon}$, that is, the inward directed unit normal of D_{ε} and ds denotes the normalized arc length measure.

It follows from Lemma 3.2 that

$$
|G_{\alpha}(z,w)| \le 2^{\alpha}(1-|z|^2)^{\alpha}\log\left|\frac{1-\overline{z}w}{z-w}\right|^2.
$$

Then

$$
\left| \int_{\partial D_{\varepsilon}} G_{\alpha}(z, w) \varphi(z) v(z) \, ds(z) \right| \leq C_{\varphi} \int_{\partial D_{\varepsilon}} |G_{\alpha}(z, w)| \, ds(z)
$$

$$
\leq 2^{\alpha} C_{\varphi} \varepsilon \log \frac{4}{\varepsilon^2} \to 0,
$$

as $\varepsilon \to 0$, where C_{φ} is a constant depending only on sup φ , and the supremum is taken over all functions φ . A straightforward computation shows that for $z \neq w$ we have

$$
\frac{\partial G_{\alpha}(z,w)}{\partial z} = H(z,w) = \alpha \overline{w} (1 - z\overline{w})^{\alpha - 1} h \circ g(z,w) + \frac{(1 - |z|^2)^{\alpha} (1 - |w|^2)^{\alpha}}{(1 - \overline{z}w)^{\alpha} (1 - z\overline{w})} \cdot \frac{1}{z - w}.
$$

It follows from Lemma 3.1 that

(3.5)
$$
\left| \frac{\partial G_{\alpha}(z,w)}{\partial z} \right| \leq \alpha \cdot 2^{\alpha+1} (1-|z|^2)^{\alpha-1} \log \left| \frac{1-\overline{z}w}{z-w} \right|^2
$$

$$
+ 2^{\alpha} (1-|z|^2)^{\alpha} \frac{1-|w|^2}{|1-z\overline{w}| \cdot |z-w|}.
$$

Therefore

$$
\left\langle \frac{\partial G_{\alpha}(z,w)}{\partial z}, \varphi(z) \right\rangle = \lim_{\varepsilon \to 0} \int_{\mathbb{D}\setminus D_{\varepsilon}} \frac{\partial G_{\alpha}(z,w)}{\partial z} \varphi(z) dA(z)
$$

$$
= \int_{\mathbb{D}} H(z,w) \varphi(z) dA(z) = \langle H(z,w), \varphi(z) \rangle.
$$

By a similar reasoning as above, one obtains that

$$
\frac{\partial G_{\alpha}(z,w)}{\partial \overline{z}} = \frac{(1-|z|^2)^{\alpha}(1-|w|^2)^{\alpha+1}}{(1-\overline{z}w)^{\alpha+1}(\overline{z}-\overline{w})}
$$

in the sense of distributions in D . Hence, the assertion (2) of the lemma holds.

To prove the assertion (3) , it follows from (3.5) that

$$
\int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z,w)}{\partial z} \right| dA(w) \leq \alpha 2^{\alpha+1} (1-|z|^2)^{\alpha-1} \int_{\mathbb{D}} \log \left| \frac{1-\overline{w}z}{z-w} \right|^2 dA(w) + 2^{\alpha} (1-|z|^2)^{\alpha} \int_{\mathbb{D}} \frac{1-|w|^2}{|1-z\overline{w}| \cdot |z-w|} dA(w).
$$

Moreover, as before, by using the transformation

$$
w \mapsto \zeta = \phi(w) = \frac{z - w}{1 - w\overline{z}} = re^{i\vartheta}
$$

we obtain after computation that

$$
\int_{\mathbb{D}} \frac{1-|w|^2}{|z-w|\cdot|1-\overline{w}z|} dA(w) = \int_{\mathbb{D}} \frac{(1-|z|^2)(1-|\zeta|^2)}{|\zeta|\cdot|1-\zeta\overline{z}|^4} dA(\zeta)
$$

\n
$$
= \frac{(1-|z|^2)}{\pi} \int_0^1 \int_0^{2\pi} \frac{1-r^2}{|1-\overline{z}re^{i\vartheta}|^4} d\vartheta dr
$$

\n
$$
= 2(1-|z|^2) \sum_{n=0}^{\infty} (n+1)^2 |z|^{2n} \int_0^1 r^{2n} (1-r^2) dr
$$

\n
$$
= 4(1-|z|^2) \sum_{n=0}^{\infty} \frac{(n+1)^2}{(2n+1)(2n+3)} |z|^{2n}
$$

\n
$$
\leq \frac{4(1-|z|^2)}{3} \sum_{n=0}^{\infty} |z|^{2n} = \frac{4}{3}.
$$

Thus, we conclude that

$$
\int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z, w)}{\partial z} \right| dA(w) \leq \alpha 2^{\alpha + 1} (1 - |z|^2)^{\alpha - 1} J_1 + 2^{\alpha} \frac{4}{3} (1 - |z|^2)^{\alpha}
$$

$$
= \alpha 2^{\alpha + 1} (1 - |z|^2)^{\alpha} + 2^{\alpha} \frac{4}{3} (1 - |z|^2)^{\alpha}
$$

$$
\leq (\alpha + \frac{2}{3}) 2^{\alpha + 1}.
$$

Hence

(3.6)
$$
\int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z, w)}{\partial z} g(w) \right| dA(w) \leq (\alpha + \frac{2}{3}) 2^{\alpha + 1} ||g||_{\infty}.
$$

By the assertion (1) and (3.6), we see that

$$
\begin{aligned}\n\left\langle \frac{\partial}{\partial z} \int_{\mathbb{D}} G_{\alpha}(z, w) g(w) dA(w), \varphi(z) \right\rangle &= -\int_{\mathbb{D}} \left(\int_{\mathbb{D}} G_{\alpha}(z, w) g(w) dA(w) \right) \varphi_{z}(z) dA(z) \\
&= -\int_{\mathbb{D}} \left(\int_{\mathbb{D}} G_{\alpha}(z, w) g(w) \varphi_{z}(z) dA(z) \right) dA(w) \\
&= \int_{\mathbb{D}} \left\langle \frac{\partial}{\partial z} G_{\alpha}(z, w) g(w), \varphi(z) \right\rangle dA(w) \\
&= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \frac{\partial}{\partial z} G_{\alpha}(z, w) g(w) \varphi(z) dA(z) \right) dA(w) \\
&= \int_{\mathbb{D}} \left(\int_{\mathbb{D}} \frac{\partial}{\partial z} G_{\alpha}(z, w) g(w) dA(w) \right) \varphi(z) dA(z) \\
&= \left\langle \int_{\mathbb{D}} \frac{\partial}{\partial z} G_{\alpha}(z, w) g(w) dA(w), \varphi(z) \right\rangle\n\end{aligned}
$$

Hence, we conclude that

$$
\frac{\partial \mathcal{G}[g](z)}{\partial z} = \int_{\mathbb{D}} \frac{\partial G_{\alpha}(z, w)}{\partial z} g(w) dA(w),
$$

and then the assertion (3) holds.

For the assertion (4) , it follows from the assertion (2) that

$$
\left|\frac{\partial G_{\alpha}(z,w)}{\partial \overline{z}}\right| \leq 2^{\alpha} (1-|z|^2)^{\alpha} \frac{1-|w|^2}{|1-\overline{z}w||z-w|},
$$

and then

$$
\int_{\mathbb{D}} \left| \frac{\partial G_{\alpha}(z, w)}{\partial \overline{z}} g(w) \right| dA(w) \leq 2^{\alpha} (1 - |z|^2)^{\alpha} \|g\|_{\infty} \int_{\mathbb{D}} \frac{1 - |w|^2}{|z - w| \cdot |1 - \overline{w}z|} dA(w)
$$

$$
\leq \frac{2^{\alpha+2}}{3} \|g\|_{\infty}.
$$

The proof of the remaining assertion (4) is similar to the proof of the assertion (3). Hence the proof of the lemma is complete. \Box

Proof of Theorem 2.2. The result follows from Lemma 3.3 and Lemma 3.4 together with (2.3) .

4. SOME PROPERTIES OF α -HARMONIC FUNCTIONS

In this section, we will prove Theorem 2.3 and Theorem 2.4.

In [20], the authors obtained the following homogeneous expansion of α -harmonic functions (see [20, Theorem 1.2]):

A function f in $\mathbb D$ is α -harmonic if and only if it has the following convergent power series expansion:

(4.1)
$$
f(z) = \sum_{k=0}^{\infty} c_k z^k + \sum_{k=1}^{\infty} c_{-k} P_{\alpha,k}(|z|^2) \overline{z}^k,
$$

where

(4.2)
$$
P_{\alpha,k}(x) = \int_0^1 t^{k-1} (1 - tx)^{\alpha} dt,
$$

 $-1 < x < 1$, and ${c_k}_{k=-\infty}^{\infty}$ denotes a sequence of complex numbers with

$$
\lim_{|k| \to \infty} \sup |c_k|^{\frac{1}{|k|}} \le 1.
$$

Now, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. The sufficiency is obvious, and now we prove the necessity. Suppose that $f \circ \psi$ is α -harmonic. By (4.1), we get

$$
f \circ \psi(z) = \sum_{k=0}^{\infty} c_k \psi(z)^k + \sum_{k=1}^{\infty} c_{-k} P_{\alpha,k}(|\psi(z)|^2) \overline{\psi(z)}^k.
$$

Take the derivative of (4.2), we obtain

$$
P'_{\alpha,k}(x) = -\int_0^1 t^k \alpha (1 - tx)^{\alpha - 1} dt,
$$

and an integration by parts gives

(4.3)
$$
xP'_{\alpha,k}(x) + kP_{\alpha,k}(x) = (1-x)^{\alpha}.
$$

Let $\tau(z) = P_{\alpha,k}(|\psi(z)|^2)\overline{\psi(z)}^k$. Then, by (4.3), we obtain

$$
\tau_{\overline{z}}(z) = \overline{\psi'(z)} \cdot \overline{\psi(z)}^{k-1} (|\psi(z)|^2 P'_{\alpha,k}(|\psi(z)|^2) + k P_{\alpha,k}(|\psi(z)|^2))
$$

=
$$
\overline{\psi'(z)} \cdot \overline{\psi(z)}^{k-1} (1 - |\psi(z)|^2)^{\alpha}.
$$

This together with the fact that $f \circ \psi$ is α -harmonic, shows that

$$
\frac{\partial}{\partial z}\Big[(1-|z|^2)^{-\alpha}(1-|\psi(z)|^2)^{\alpha}\Big] = 0,
$$

and then

(4.4)
$$
z\psi'(z)\overline{\psi(z)} = \frac{1 - |\psi(z)|^2}{1 - |z|^2}|z|^2
$$

is real valued. This implies that $\psi(z) = a_k z^k$, $k = 1, 2, \dots$, where a_k are constants. Therefore, it follows from (4.4) that, for $z \in \mathbb{D}\backslash\{0\}$,

$$
|a_k|^2 = \frac{1}{k|z|^{2k-2} - (k-1)|z|^{2k}}.
$$

Hence, for $k \geq 2$, a_k are not constants. This contradicts with the assumption that a_k are constants. Therefore, $\psi(z) = a_1 z$. By (4.4), we have that

$$
|a_1|^2|z|^2 = \frac{1 - |a_1|^2 |z|^2}{1 - |z|^2} |z|^2.
$$

Therefore, we conclude that $|a_1|^2 = 1$, which completes the proof.

Proof of Theorem 2.4. By [6, Theorem 3], we only need to prove

(4.5)
$$
\int_{\mathbb{D}} (1-|z|^2)^{p+1} \Delta(|f(z)|^p) dA(z) < \infty.
$$

From Theorem 2.2 we know that

(4.6)
$$
||D_f(z)|| \leq \frac{C_1}{1-|z|^2},
$$

where $C_1 = (\alpha + 1)2^{\alpha+1}$. Since f is α -harmonic, the function $(1 - |z|^2)^{-\alpha} f_{\overline{z}}$ is antianalytic. Therefore it has a power series expansion of the form

$$
(1-|z|^2)^{-\alpha} f_{\overline{z}}(z) = \sum_{k=0}^{\infty} a_k \overline{z}^k, \ z \in \mathbb{D}.
$$

By calculations, we have

$$
\Delta f(z) = 4f_{\overline{z}z}(z) = \frac{-4\alpha\overline{z}}{1 - |z|^2}f_{\overline{z}}(z).
$$

Hence, it follows from (4.6) that

(4.7)
$$
|\Delta f(z)| \le \frac{4\alpha}{1-|z|^2} ||D_f(z)|| \le \frac{C_2}{(1-|z|^2)^2},
$$

where $C_2 = \alpha(\alpha + 1)2^{\alpha+3}$. Furthermore,

$$
|f(z)| \leq |f(0)| + \left| \int_{[0,z]} df(\xi) \right|
$$

\n
$$
\leq |f(0)| + \int_{[0,z]} ||D_f(\xi)|| \, |d\xi|
$$

\n
$$
\leq |f(0)| + \frac{C_1}{1 - |z|^2},
$$

where $[0, z]$ denotes the line segment from 0 to z. Then, for $z \in \mathbb{D}$,

(4.8)
$$
|f(z)|^{p-1} \le 2^{p-2} \left(|f(0)|^{p-1} + \frac{C_1^{p-1}}{(1-|z|^2)^{p-1}} \right),
$$

and

(4.9)
$$
|f(z)|^{p-2} \le 2^{p-2} \left(|f(0)|^{p-2} + \frac{C_1^{p-2}}{(1-|z|^2)^{p-2}} \right).
$$

We divide the remaining part of the proof into two cases, namely, $p \in [4, \infty)$ and $p \in [2, 4)$. For the case $p \in [4, \infty)$, a straightforward computation gives

$$
\Delta(|f|^p) = p(p-2)|f|^{p-4}|f\overline{f_z} + f_{\overline{z}}\overline{f}|^2 + 2p|f|^{p-2}(|f_z|^2 + |f_{\overline{z}}|^2) + p|f|^{p-2}\text{Re}(\overline{f}\Delta f)
$$

\n
$$
\leq p^2|f|^{p-2}\|D_f\|^2 + p|f|^{p-1}|\Delta f|.
$$

Hence, by (4.6) , (4.7) , (4.8) and (4.9) , we conclude that

$$
(1 - |z|^2)^{p+1} \Delta(|f(z)|^p)
$$

\n
$$
\leq p^2 (1 - |z|^2)^{p+1} |f(z)|^{p-2} \|D_f(z)\|^2 + p(1 - |z|^2)^{p+1} |f(z)|^{p-1} |\Delta f(z)|
$$

\n
$$
\leq p^2 2^{p-2} (1 - |z|^2)^{p+1} \left(|f(0)|^{p-2} + \frac{C_1^{p-2}}{(1 - |z|^2)^{p-2}} \right) \frac{C_1^2}{(1 - |z|^2)^2}
$$

\n
$$
+ p2^{p-2} (1 - |z|^2)^{p+1} \left(|f(0)|^{p-1} + \frac{C_1^{p-1}}{(1 - |z|^2)^{p-1}} \right) \frac{C_2}{(1 - |z|^2)^2}
$$

\n
$$
\leq p^2 2^{p-2} (|f(0)|^{p-2} + C_1^{p-2}) C_1^2 (1 - |z|^2) + p2^{p-2} (|f(0)|^{p-1} + C_1^{p-1}) C_2
$$

\n
$$
\leq \infty.
$$

In the case $p \in [2, 4)$, let $F_n^p = (|f|^2 + \frac{1}{n})$ $\frac{1}{n}$)² for $n \in \{1, 2, ...\}$. Then

$$
\Delta(F_n^p) = p(p-2) \left(|f|^2 + \frac{1}{n} \right)^{\frac{p}{2}-2} |f\overline{f_z} + f_{\overline{z}}\overline{f}|^2
$$

+2p\left(|f|^2 + \frac{1}{n} \right)^{\frac{p}{2}-1} (|f_z|^2 + |f_{\overline{z}}|^2) + p\left(|f|^2 + \frac{1}{n} \right)^{\frac{p}{2}-1} \text{Re}(\overline{f}\Delta f).

Let

$$
F = p(p-2)|f|^{p-2}||D_f(z)||^2 + 2p(|f|^2 + 1)^{\frac{p}{2}-1}(|f_z|^2 + |f_{\overline{z}}|^2) + p(|f|^2 + 1)^{\frac{p}{2}-1}\text{Re}(\overline{f}\Delta f).
$$

For $r \in (0,1)$, $\Delta(F_n^p)$ and F are integrable in \mathbb{D}_r , and $\Delta(F_n^p) \leq F$. By Lebesgue's dominated convergence theorem, we have

$$
\lim_{n \to \infty} \int_{\mathbb{D}_r} (1 - |z|^2)^{p+1} \Delta(F_n^p(z)) dA(z) = \int_{\mathbb{D}_r} (1 - |z|^2)^{p+1} \lim_{n \to \infty} \left(\Delta(F_n^p(z)) \right) dA(z)
$$
\n
$$
\leq \int_{\mathbb{D}_r} (1 - |z|^2)^{p+1} \left[p^2 |f(z)|^{p-2} \|D_f(z)\|^2 + p|f(z)|^{p-1} |\Delta f(z)| \right] dA(z)
$$
\n
$$
\leq \int_{\mathbb{D}_r} \left[p^2 2^{p-2} (|f(0)|^{p-2} + C_1^{p-2}) C_1^2 (1 - |z|^2) + p2^{p-2} (|f(0)|^{p-1} + C_1^{p-1}) C_2 \right] dA(z)
$$
\n
$$
< \infty.
$$

Therefore, (4.5) follows from the above two estimates and so the proof of the theorem is complete. \square

ACKNOWLEDGMENTS

The present investigation was supported by the *Natural Science Foundation of Hunan Province* under Grant no. 2016JJ2036.

REFERENCES

- 1. G. Arfken, Mathematical methods for physicists, 3rd ed., Orlando, FL, Academic Press, 1985.
- 2. K. Astala, T. Iwaniec and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Math. Ser., Vol. 48, Princeton University Press, Princeton, 2009.
- 3. G. Behm, Solving Poisson's equation for the standard weighted Laplacian in the unit disk, *arXiv:1306.2199v2*.
- 4. Sh. Chen, A. Rasila and X. Wang, Radial growth, Lipschitz and Dirichlet spaces on solutions to the non-homogenous Yukawa equation, *Israel J. Math.*, 204 (2014), 261-282.
- 5. Sh. Chen, S. Ponnusamy and A. Rasila, On Characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces, *Math. Z.*, 279 (2015), 163-183.
- 6. Sh. Chen, A. Rasila and M. Vuorinen, Characterizations of Hardy-type, Bergman-type and Dirichlet-type spaces on certain classes of complex-valued functions, *arXiv:1410.8283*.
- 7. F. Colonna, The Bloch constant of bounded harmonic mappings, *Indiana Univ. Math. J.*, 38 (1989), 829–840.
- 8. P. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
- 9. P. Duren, and A. P. Schuster, Bergman spaces, American Mathematics Society, Providence, 2004.
- 10. L. C. Evans, Partial differential equations, American Mathematical Society, 1998.
- 11. P. R. Garabedian, A partial differential equation arising in conformal mapping, *Pacific J. Math.*, 4 (1951), 482–524.
- 12. D. Girela, M. Pavlović and J. A. Peláez, Spaces of analytic functions of Hardy-Bloch type, *J. Anal. Math.*, 100 (2006), 53–81.
- 13. D. Girela and J. A. Peláez, Carleson measures, multipliers and integration operators for spaces of Dirichlet type, *J. Funct. Anal.*, 241 (2006), 334–358.
- 14. G. Grubb, Distributions and operators, Springer, 2008.
- 15. E. Heinz, On one-to-one harmonic mappings, *Pacific J. Math.*, 9 (1959), 101–105.
- 16. L. Hörmander, The analysis of linear partial differential operators I: distribution theory and fourier analysis, Springer-Verlag Berlin Heidelberg New York Tokyo, 1983.
- 17. P. Li, X. Wang and Q. Xiao, Several properties of α -harmonic functions in the unit disk, *Monatsh. Math.*, 184 (2017), 627–640.
- 18. P. Li and S. Ponnusamy, Representation formula and bi-Lipschitz continuity of solutions to inhomogeneous biharmonic Dirichlet problems in the unit disk, *J. Math. Anal. Appl.*, 456 (2017), 1150–1175.
- 19. A. Olofsson, Differential operators for a scale of Poisson type kernels in the unit disc, *J. Anal. Math.*, 123 (2014), 227–249.
- 20. A. Olofsson and J. Wittsten, Poisson integrals for standard weighted Laplacians in the unit disc, *J. Math. Soc. Japan*, 65 (2013), 447–486.
- 21. J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of C, *Trans. Amer. Math. Soc.*, 328 (1991), 619–637.
- 22. K. Zhu, Spaces of holomorphic functions in the unit ball, Springer, New York, 2005.

Peijin Li, Department of Mathematics, Hunan First Normal University, Changsha, Hunan 410205, People's Republic of China *E-mail address*: wokeyi99@163.com

Antti Rasila, Department of Mathematics and Systems Analysis, Aalto University, P. O. Box 11100, FI-00076 Aalto, Finland.

E-mail address: antti.rasila@iki.fi

Zhi-Gang Wang, Department of Mathematics, Hunan First Normal University, Changsha, Hunan 410205, People's Republic of China *E-mail address*: wangmath@163.com