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ON PROPERTIES OF THE SOLUTIONS TO THE α-HARMONIC

EQUATION

PEIJIN LI, ANTTI RASILA∗, AND ZHI-GANG WANG

Abstract. The aim of this paper is to establish properties of the solutions to
the α-harmonic equations: ∆α(f(z)) = ∂z[(1 − |z|2)−α∂zf ](z) = g(z), where g :
D → C is a continuous function and D denotes the closure of the unit disc D in the
complex plane C. We obtain Schwarz type and Schwarz-Pick type inequalities for
the solutions to the α-harmonic equation. In particular, for g ≡ 0, the solutions to
the above equation are called α-harmonic functions. We determine the necessary
and sufficient conditions for an analytic function ψ to have the property that f ◦ψ
is α-harmonic function for any α-harmonic function f . Furthermore, we discuss
the Bergman-type spaces on α-harmonic functions.

1. Introduction

Let C denote the complex plane. For a ∈ C, let D(a, r) = {z : |z − a| < r}
(r > 0) and D(0, r) = Dr, D = D1 and T = ∂D, the boundary of D, and D = D ∪ T,
the closure of D. Furthermore, we denote by Cm(Ω) the set of all complex-valued
m-times continuously differentiable functions from Ω into C, where Ω stands for a
subset of C and m ∈ N0 := N∪ {0}. In particular, C(Ω) := C0(Ω) denotes the set of
all continuous functions in Ω. We use d(z) to denote the Euclidean distance from z
to T.

1.1. Distributions. Let Ω be an open set in Rn, and let f : Ω → R be an infinitely
many times differentiable function. We may write its partial derivatives in the form

∂αf = ∂α1

1 · · ·∂αn

n f,

where α = (α1, . . . , αn) is a multi-index and ∂j = ∂/∂xj , j = 1, 2, . . . , n. We denote
by C∞

0 (Ω) the space of functions which are infinitely many times differentiable and
have a compact support in Ω.

A distribution f in Ω is a linear form on C∞
0 (Ω) such that for every compact set

K ⊂ Ω there exist constants C and k such that

|f(φ)| ≤ C
∑

|α|≤k

sup |∂αφ|,

where φ ∈ C∞
0 (K). The set of all distributions in Ω is denoted by D′(Ω) (cf. [16]).
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For locally integrable u and v are on Ω and

−

∫

Ω

u∂jϕdx =

∫

Ω

vϕ dx,

for all ϕ ∈ C∞
0 (Ω), we shall say that ∂ju = v in the distribution sense (cf. [14]).

1.2. The α-harmonic equation. We denote by ∆α the weighted Laplace operator
corresponding to the so-called standard weight wα = (1− |z|2)α, that is,

∆α(f(z)) = ∂z[(1 − |z|2)−α∂zf ](z)(1.1)

in D, where α > −1 (see [20, Proposition 1.5] for the reason for this constraint),

∂z =
1

2

( ∂

∂x
− i

∂

∂y

)

and ∂z =
1

2

( ∂

∂x
+ i

∂

∂y

)

.

The weighted Laplacians of the form (1.1) were first systematically studied by
Garabedian in [11]. In [20], Olofsson and Wittsten introduced the operator ∆α and
gave a counterpart of the classical Poisson integral formula for it.

Let g ∈ C(D) and f ∈ C2(D). Of particular interest to us is the following inho-

mogeneous α-harmonic equation in D:

∆α(f) = g.(1.2)

We also consider the associated Dirichlet boundary value problem of functions f ,
satisfying the equation (1.2),

{

∆α(f) = g in D,

f = f ∗ on T.
(1.3)

Here the boundary data f ∗ is a distribution on T, i.e. f ∗ ∈ D′(T), and the boundary
condition in (1.3) is understood as fr → f ∗ ∈ D′(T) as r → 1−, where

fr(e
iθ) = f(reiθ)

for eiθ ∈ T and r ∈ [0, 1).
If g ≡ 0 in (1.2), the solutions to (1.2) are said to be α-harmonic functions.

Obviously, α-harmonicity coincides with harmonicity when α = 0. See [8] and the
references therein for the properties of harmonic mappings.

In [20], Olofsson and Wittsten showed that if an α-harmonic function f satisfies

lim
r→1−

fr = f ∗ ∈ D′(T) (α > −1),

then it has the form of a Poisson type integral

f(z) = Pα[f
∗](z) =

1

2π

∫ 2π

0

Pα(ze
−iθ)f ∗(eiθ)dθ(1.4)

in D, where

Pα(z) =
(1− |z|2)α+1

(1− z)(1− z)α+1

is the α-harmonic Poisson kernel in D. See [17] and [19] for related discussions.
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In [3], Behm found the Green function for −∆α. The α-harmonic Green function

Gα is given in D by

Gα(z, w) = −(1− zw)αh ◦ ϕ(z, w), z 6= w,(1.5)

where

h(s) =

∫ s

0

tα

1− t
dt =

∞
∑

n=0

sα+1+n

α+ 1 + n
, 0 ≤ s < 1,(1.6)

and

ϕ(z, w) = 1−
∣

∣

∣

z − w

1− zw

∣

∣

∣

2

=
(1− |z|2)(1− |w|2)

|1− zw|2
.

For convenience, we let

G[g](z) =

∫

D

Gα(z, w)g(w) dA(w)

and

P[f ∗](z) =
1

2π

∫ 2π

0

P (ze−iθ)f ∗(eiθ)dθ,

where dA(w) = (1/π) dx dy denotes the normalized area measure in D and

P (z) =
1− |z|2

|1− z|2

is the Poisson kernel in D.
By [20, Theorem 5.3] and [3, Theorem 2], we see that all solutions to the α-

harmonic equation (1.3) are given by

f(z) = Pα[f
∗](z) + G[g](z).(1.7)

2. Main results

2.1. A Schwarz type lemma. The classical Schwarz lemma states that an analytic
function f from D into itself, with f(0) = 0, satisfies |f(z)| ≤ |z| for all z ∈ D. This
result is a crucial theme in many branches of research for more than a hundred years.

Heinz [15] proved the following Schwarz lemma of complex-valued harmonic func-
tions: If f is a complex-valued harmonic function from D into itself with f(0) = 0,
then, for z ∈ D,

(2.1) |f(z)| ≤
4

π
arctan |z|.

The first purpose of this paper is to consider the results of the above type for the
solutions to the α-harmonic equation. Our result is the following:

Theorem 2.1. Suppose that g ∈ C(D) and f ∗ ∈ C1(T). If f ∈ C2(D) satisfying

(1.3) with α ≥ 0 and Pα[f
∗](0) = 0, then for z ∈ D,

(2.2) |f(z)| ≤ 2α
[

4

π
‖f ∗‖∞ arctan |z|+ ‖g‖∞(1− |z|2)α+1

]

,

where ‖f ∗‖∞ = supz∈T{|f
∗(z)|}, and ‖g‖∞ = supz∈D{|g(z)|}.
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Moreover, if we take α = 0, g(z) ≡ −C, where C is a positive constant, and

f(z) = C(1− |z|2),

then we see that the inequality (2.2) is sharp.

Clearly, if α = 0, g ≡ 0 and f maps D into itself, then (2.2) coincides with (2.1).

2.2. A Schwarz-Pick type lemma. Suppose f = u + iv is in C1(Ω), where Ω is
a domain in C and u, v are real functions. The Jacobian matrix of f at z is denoted
by

Df(z) =

(

ux uy
vx vy

)

.

Then

(2.3) ‖Df(z)‖ = sup{|Df(z)ς| : |ς| = 1} = |fz(z)| + |fz(z)|

and

(2.4) l(Df(z)) = inf{|Df(z)ς| : |ς| = 1} =
∣

∣|fz(z)| − |fz(z)|
∣

∣.

Colonna [7] obtained a sharp Schwarz-Pick type lemma for complex-valued har-
monic functions, which is as follows: If f is a complex-valued harmonic function
from D into itself, then, for z ∈ D,

(2.5) ‖Df(z)‖ ≤
4

π

1

1− |z|2
.

The following result establishes a Schwarz-Pick type lemma for the solutions to
the α-harmonic equation.

Theorem 2.2. Suppose that g ∈ C(D), f ∈ C2(D) satisfies (1.3) with α ≥ 0 and

that f ∗ ∈ C(T). Then for z ∈ D,

‖Df(z)‖ ≤ (α + 1)2α+1‖f ∗‖∞
1

1− |z|2
+ (α +

4

3
)2α+1‖g‖∞,

where ‖f ∗‖∞ and ‖g‖∞ are as in Theorem 2.1.

In particular, if f maps D into D and g ≡ 0, then

(2.6) ‖Df (z)‖ ≤ (α + 1)2α+1 1

1− |z|2
.

We remark that the estimate of (2.6) is sharper than the estimate given by [17,
Theorem 1.1].

2.3. Compositions of α-harmonic functions. Although the composition f ◦ φ,
where f is harmonic and φ is analytic, is known to be harmonic, an α-harmonic
function (α 6= 0) precomposed with an analytic function may not be α-harmonic.
This can be seen by the following example.
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Example 2.1. Let α ∈ (−1, 0)∪ (0,+∞) and let k ≥ 1 be an integer. Denote by f
the function

f(z) =
(

∞
∑

n=0

Γ(n+ k)

Γ(n+ 1)Γ(k)
(1− |z|2)n

−(1 − |z|2)α+1
∞
∑

n=0

Γ(n+ α + k + 1)

Γ(n+ α + 2)Γ(k)
(1− |z|2)n

)

zk

for z ∈ D \ {0}, where Γ(s) =
∫∞

0
ts−1e−tdt (s > 0) is the Gamma function. Let

ψ(z) = z2. Then

(1) f is an α-harmonic function in D \ {0};
(2) f ◦ ψ is not an α-harmonic function in D \ {0}.

To see this note that, by [20, Lemma 1.6], f is an α-harmonic function in D \ {0}.
By letting η = ψ(z) = z2, we have

∂

∂z
f ◦ ψ(z) =

∂

∂η
f(η) ·

∂η

∂z
= 2

Γ(α+ k + 1)

Γ(α + 1)(k − 1)!
(1− |z|2)α(1 + |z|2)αz2k−1,

and then
∂

∂z

(

(1− |z|2)−α ∂

∂z
f ◦ ψ(z)

)

6= 0.

Hence, it follows that f ◦ ψ is not an α-harmonic function in D \ {0}.

Now we are ready to state our result.

Theorem 2.3. Let ψ be an analytic function in D. Then for any α-harmonic

function f with α ∈ (−1, 0)∪(0,+∞), f ◦ψ is α-harmonic if and only if ψ(z) = eitz,
t ∈ [0, 2π].

2.4. Bergman-type spaces. For ν, µ, t ∈ R,

Df(ν, µ, t) =

∫

D

dν |f(z)|µ‖Df(z)‖tdA(z) <∞

is called Dirichlet-type energy integral of the complex-valued function f (cf. [1, 2, 4,
5, 6, 10, 12, 13, 21]). In particular, for ν > −1, 0 < µ <∞ and t = 0, we denote by
bν,µ(D) the Bergman-type space, consisting of all f ∈ C0(D) with the norm

‖f‖bν,µ = |f(0)|+ (Df(ν, µ, 0))
1

µ <∞.

We refer to [6, 9, 12, 13, 22] for basic characterizations of analytic or harmonic
Bergman-type spaces and Dirichlet-type spaces. However, very few related studies
can be found from the literature for the general complex-valued functions. The
following is a characterization of α-harmonic functions in Bergman-type spaces.

Theorem 2.4. Let f ∈ C2(D) be an α-harmonic function in D with α > −1,
Re (f∆f) ≥ 0 and supz∈D |f(z)| ≤ M , where M is a constant. Then for p ≥ 2,
f ∈ bp−1,p(D).

We will give proofs of Theorem 2.1 and Theorem 2.2 in Section 3. Theorem 2.3
and Theorem 2.4 will be proved in Section 4.
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3. Schwarz type and Schwarz-Pick type lemmas for the solutions of

the α-harmonic equation

The aim of this section is to prove Theorems 2.1 and 2.2. First, we show Theorem
2.1. For this, we need some lemmas.

Lemma 3.1. For α ≥ 0, the function h(s) given by (1.6) satisfies the estimate

h(s) ≤ sα log
1

1− s
.

Proof. By (1.6), we obtain that

h(s) =
∞
∑

n=0

sα+1+n

α + 1 + n
=

∞
∑

n=1

sα+n

α+ n
= sα

∞
∑

n=1

sn

α + n
≤ sα

∞
∑

n=1

sn

n
= sα log

1

1− s
,

and the result follows. �

Lemma 3.2. For α ≥ 0, the function Gα(z, w) given by (1.5) satisfies the estimate

|Gα(z, w)| ≤ 2α(1− |z|2)α log
∣

∣

∣

1− zw

z − w

∣

∣

∣

2

.

Proof. Applying Lemma 3.1, shows that

|Gα(z, w)| ≤ |1− zw|α
(1− |z|2)α(1− |w|2)α

|1− zw|2α
log

∣

∣

∣

1− zw

z − w

∣

∣

∣

2

≤ 2α(1− |z|2)α log
∣

∣

∣

1− zw

z − w

∣

∣

∣

2

,

and the result follows. �

Proof of Theorem 2.1. For a given g ∈ C(D), by (1.4), we have

|f(z)| ≤ |Pα[f
∗](z)|+ |G[g](z)|.

Since

|Pα[f
∗](z)| =

∣

∣

∣

∣

1

2π

∫ 2π

0

1− |z|2

|1− ze−iθ|2
·
(1− |z|2)α

(1− zeiθ)α
f ∗(eiθ)dθ

∣

∣

∣

∣

≤ (1 + |z|)α
1

2π

∫ 2π

0

1− |z|2

|1− ze−iθ|2
|f ∗(eiθ)|dθ

≤ 2αP[|f ∗|](z)

and P[|f ∗|](z) is harmonic in D, by (2.1), we know that, for z ∈ D

(3.1) |Pα[f
∗](z)| ≤ 2αP[|f ∗|](z) ≤ 2α ·

4

π
‖f ∗‖∞ arctan |z|.

On the other hand, by Lemma 3.2, we get

|G[g](z)| =
∣

∣

∣

∫

D

Gα(z, w)g(w) dA(w)
∣

∣

∣
≤ 2α‖g‖∞(1− |z|2)αJ1,
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where

J1 =

∫

D

log
∣

∣

∣

1− zw

z − w

∣

∣

∣

2

dA(w).

In order to estimate J1, we let

w 7→ ζ = φ(w) =
z − w

1− wz
= reiϑ

so that φ = φ−1,

w =
z − ζ

1− ζz
, φ′(w) = −

1− |z|2

(1− wz)2
,

and thus,

dA(w) = |(φ−1)′(ζ)|2dA(ζ) =
(1− |z|2)2

|1− ζz|4
dA(ζ).

Consequently, by switching to the polar coordinates and using [18, (2.3)], we obtain

J1 =

∫

D

(1− |z|2)2

|1− ζz|4
log

1

|ζ |2
dA(ζ)

=
(1− |z|2)2

π

∫ 1

0

∫ 2π

0

r

|1− zreiϑ|4
log

1

r2
dϑ dr

= 2(1− |z|2)2
∞
∑

n=0

(n+ 1)2|z|2n
∫ 1

0

r2n+1 log
1

r2
dr

= 1− |z|2,

which implies that

(3.2) |G[g](z)| ≤ 2α‖g‖∞(1− |z|2)α+1.

Hence, it follows from (3.1) and (3.2) that (2.2) holds, and the proof of the theorem
is complete.

�

In order to prove Theorem 2.2, we need some auxiliary lemmas. The following
result is from [17].

Lemma A. ([17, Lemma 2.1]) If α > −1 and f ∗ ∈ C(T), then

∂

∂z

∫ 2π

0

Pα(ze
−iθ)f ∗(eiθ)dθ =

∫ 2π

0

∂

∂z
Pα(ze

−iθ)f ∗(eiθ)dθ

and
∂

∂z

∫ 2π

0

Pα(ze
−iθ)f ∗(eiθ)dθ =

∫ 2π

0

∂

∂z
Pα(ze

−iθ)f ∗(eiθ)dθ.

Lemma 3.3. Assume that f ∗ ∈ C(T) and α ≥ 0. Then

‖DPα[f∗](z)‖ ≤ (α + 1)2α+1‖f ∗‖∞
1

1− |z|2
.
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Proof. By elementary calculations, we obtain

∂

∂z
P (ze−iθ) =

e−iθ

(1− ze−iθ)2

and
∂

∂z
P (ze−iθ) =

eiθ

(1− zeiθ)2
.

Then

∂

∂z
Pα(ze

−iθ) =
(1− |z|2)α

[

e−iθ(1− |z|2)− (α+ 1)z(1− ze−iθ)
]

(1− ze−iθ)2(1− zeiθ)α+1

=
(1− |z|2)α

(1− zeiθ)α+1

[

1− |z|2 − (α+ 1)zeiθ(1− ze−iθ)
] ∂

∂z
P (ze−iθ)(3.3)

and

∂

∂z
Pα(ze

−iθ) =
(α + 1)(1− |z|2)αeiθ

(1− zeiθ)α+2
=

(α + 1)(1− |z|2)α

(1− zeiθ)α
∂

∂z
P (ze−iθ).(3.4)

Since
∣

∣1− |z|2 − (α+ 1)zeiθ(1− ze−iθ)
∣

∣ =
∣

∣(1− ze−iθ)(−αzeiθ) + (1− zeiθ)
∣

∣

≤ (α + 1)|1− zeiθ|,

we see from (3.3) that
∣

∣

∣

∣

∂

∂z
Pα(ze

−iθ)

∣

∣

∣

∣

≤ (α + 1)2α
∣

∣

∣

∣

∂

∂z
P (ze−iθ)

∣

∣

∣

∣

.

Hence, by combining the above with (3.4), we conclude
∣

∣

∣

∣

∂

∂z
Pα(ze

−iθ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂

∂z
Pα(ze

−iθ)

∣

∣

∣

∣

≤ (α+ 1)2α
(
∣

∣

∣

∣

∂

∂z
P (ze−iθ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂

∂z
P (ze−iθ)

∣

∣

∣

∣

)

.

Consequently, from Lemma A and the identities

1

2π

∫ 2π

0

∣

∣

∣

∣

∂

∂z
P (ze−iθ)

∣

∣

∣

∣

dθ =
1

2π

∫ 2π

0

∣

∣

∣

∣

∂

∂z
P (ze−iθ)

∣

∣

∣

∣

dθ =
1

1− |z|2
,

it follows that

‖DPα[f∗](z)‖ ≤ (α + 1)2α+1‖f ∗‖∞
1

1− |z|2
,

which is what is needed. �

Identify the complex plane C with R2, and denote by L1
loc(D) the space of lo-

cally integrable functions in D. Functions ψ ∈ L1
loc(D) with distributional partial

derivatives in D, we have the action

〈ψz, ϕ〉 = −

∫

D

ψϕz dA, ϕ ∈ C∞
0 (D),

for the distributional partial derivative ψz have, and similarly for the distribution
ψz (cf. [3, 14, 16]).
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Lemma 3.4. For α ≥ 0 and g ∈ C(D), the function Gα(z, w), given by (1.5),
satisfies the following inequality:

(1)

∫

D

|Gα(z, w)g(w)|dA(w) ≤ 2α‖g‖∞ and
∫

D
|Gα(z, w)| dA(z) <∞;

(2) For fixed w ∈ D,

∂Gα(z, w)

∂z
= αw(1− zw)α−1h ◦ g(z, w)−

(1− |z|2)α(1− |w|2)α+1

(1− zw)α(1− zw)
·

1

z − w

and
∂Gα(z, w)

∂z
=

(1− |z|2)α(1− |w|2)α+1

(1− zw)α+1(z − w)

in the sense of distributions in D;

(3) (a)
∂G[g](z)

∂z
=

∫

D

∂Gα(z, w)

∂z
g(w) dA(w), and

(b)

∣

∣

∣

∣

∂G[g](z)

∂z

∣

∣

∣

∣

≤

∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z
g(w)

∣

∣

∣

∣

dA(w) ≤ (α +
2

3
)2α+1‖g‖∞,

in the sense of distributions in D;

(4) (a)
∂G[g](z)

∂z
=

∫

D

∂Gα(z, w)

∂z
g(w) dA(w), and

(b)

∣

∣

∣

∣

∂G[g](z)

∂z

∣

∣

∣

∣

≤

∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z
g(w)

∣

∣

∣

∣

dA(w) ≤
2α+2

3
‖g‖∞,

in the sense of distributions in D.

Proof. Obviously, it follows from (3.2) and the proof of [3, Proposition 4] that (1)
holds. Therefore, Gα(z, w) ∈ L1(D) so that its derivative has the action

〈

∂Gα(z, w)

∂z
, ϕ(z)

〉

= −

∫

D

Gα(z, w)ϕz(z) dA(z), ϕ ∈ C∞
0 (D).

By Lebesgue’s dominated convergence theorem we get
∫

D

Gα(z, w)ϕz(z) dA(z) = lim
ε→0

∫

D\D(w,ε)

Gα(z, w)ϕz(z) dA(z).

For ε > 0, let Dε = D(w, ε). Partial integration gives
∫

D\Dε

Gα(z, w)ϕz(z) dA(z) = −

∫

∂Dε

Gα(z, w)ϕ(z)v(z) ds(z)

−

∫

D\Dε

∂Gα(z, w)

∂z
ϕ(z) dA(z),

where v is the unit exterior normal of D\Dε, that is, the inward directed unit normal
of Dε and ds denotes the normalized arc length measure.

It follows from Lemma 3.2 that

|Gα(z, w)| ≤ 2α(1− |z|2)α log
∣

∣

∣

1− zw

z − w

∣

∣

∣

2

.
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Then

∣

∣

∣

∣

∫

∂Dε

Gα(z, w)ϕ(z)v(z) ds(z)

∣

∣

∣

∣

≤ Cϕ

∫

∂Dε

|Gα(z, w)| ds(z)

≤ 2αCϕε log
4

ε2
→ 0,

as ε → 0, where Cϕ is a constant depending only on supϕ, and the supremum is
taken over all functions ϕ. A straightforward computation shows that for z 6= w we
have

∂Gα(z, w)

∂z
= H(z, w) = αw(1− zw)α−1h ◦ g(z, w) +

(1− |z|2)α(1− |w|2)α

(1− zw)α(1− zw)
·

1

z − w
.

It follows from Lemma 3.1 that

∣

∣

∣

∣

∂Gα(z, w)

∂z

∣

∣

∣

∣

≤ α · 2α+1(1− |z|2)α−1 log
∣

∣

∣

1− zw

z − w

∣

∣

∣

2

(3.5)

+2α(1− |z|2)α
1− |w|2

|1− zw| · |z − w|
.

Therefore

〈

∂Gα(z, w)

∂z
, ϕ(z)

〉

= lim
ε→0

∫

D\Dε

∂Gα(z, w)

∂z
ϕ(z) dA(z)

=

∫

D

H(z, w)ϕ(z) dA(z) = 〈H(z, w), ϕ(z)〉.

By a similar reasoning as above, one obtains that

∂Gα(z, w)

∂z
=

(1− |z|2)α(1− |w|2)α+1

(1− zw)α+1(z − w)

in the sense of distributions in D. Hence, the assertion (2) of the lemma holds.
To prove the assertion (3), it follows from (3.5) that

∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z

∣

∣

∣

∣

dA(w) ≤ α2α+1(1− |z|2)α−1

∫

D

log

∣

∣

∣

∣

1− wz

z − w

∣

∣

∣

∣

2

dA(w)

+2α(1− |z|2)α
∫

D

1− |w|2

|1− zw| · |z − w|
dA(w).

Moreover, as before, by using the transformation

w 7→ ζ = φ(w) =
z − w

1− wz
= reiϑ
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we obtain after computation that
∫

D

1− |w|2

|z − w| · |1− wz|
dA(w) =

∫

D

(1− |z|2)(1− |ζ |2)

|ζ | · |1− ζz|4
dA(ζ)

=
(1− |z|2)

π

∫ 1

0

∫ 2π

0

1− r2

|1− zreiϑ|4
dϑ dr

= 2(1− |z|2)

∞
∑

n=0

(n+ 1)2|z|2n
∫ 1

0

r2n(1− r2) dr

= 4(1− |z|2)

∞
∑

n=0

(n+ 1)2

(2n+ 1)(2n+ 3)
|z|2n

≤
4(1− |z|2)

3

∞
∑

n=0

|z|2n =
4

3
.

Thus, we conclude that
∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z

∣

∣

∣

∣

dA(w) ≤ α2α+1(1− |z|2)α−1J1 + 2α
4

3
(1− |z|2)α

= α2α+1(1− |z|2)α + 2α
4

3
(1− |z|2)α

≤ (α +
2

3
)2α+1.

Hence
∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z
g(w)

∣

∣

∣

∣

dA(w) ≤ (α+
2

3
)2α+1‖g‖∞.(3.6)

By the assertion (1) and (3.6), we see that
〈

∂

∂z

∫

D

Gα(z, w)g(w)dA(w), ϕ(z)

〉

= −

∫

D

(
∫

D

Gα(z, w)g(w)dA(w)

)

ϕz(z) dA(z)

= −

∫

D

(
∫

D

Gα(z, w)g(w)ϕz(z)dA(z)

)

dA(w)

=

∫

D

〈

∂

∂z
Gα(z, w)g(w), ϕ(z)

〉

dA(w)

=

∫

D

(
∫

D

∂

∂z
Gα(z, w)g(w)ϕ(z)dA(z)

)

dA(w)

=

∫

D

(
∫

D

∂

∂z
Gα(z, w)g(w)dA(w)

)

ϕ(z) dA(z)

=

〈
∫

D

∂

∂z
Gα(z, w)g(w)dA(w), ϕ(z)

〉

Hence, we conclude that

∂G[g](z)

∂z
=

∫

D

∂Gα(z, w)

∂z
g(w) dA(w),
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and then the assertion (3) holds.
For the assertion (4), it follows from the assertion (2) that

∣

∣

∣

∣

∂Gα(z, w)

∂z

∣

∣

∣

∣

≤ 2α(1− |z|2)α
1− |w|2

|1− zw||z − w|
,

and then
∫

D

∣

∣

∣

∣

∂Gα(z, w)

∂z
g(w)

∣

∣

∣

∣

dA(w) ≤ 2α(1− |z|2)α‖g‖∞

∫

D

1− |w|2

|z − w| · |1− wz|
dA(w)

≤
2α+2

3
‖g‖∞.

The proof of the remaining assertion (4) is similar to the proof of the assertion (3).
Hence the proof of the lemma is complete. �

Proof of Theorem 2.2. The result follows from Lemma 3.3 and Lemma 3.4 to-
gether with (2.3). �

4. Some properties of α-harmonic functions

In this section, we will prove Theorem 2.3 and Theorem 2.4.
In [20], the authors obtained the following homogeneous expansion of α-harmonic

functions (see [20, Theorem 1.2]):
A function f in D is α-harmonic if and only if it has the following convergent

power series expansion:

f(z) =
∞
∑

k=0

ckz
k +

∞
∑

k=1

c−kPα,k(|z|
2)zk,(4.1)

where

Pα,k(x) =

∫ 1

0

tk−1(1− tx)αdt,(4.2)

−1 < x < 1, and {ck}
∞
k=−∞ denotes a sequence of complex numbers with

lim
|k|→∞

sup |ck|
1

|k| ≤ 1.

Now, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. The sufficiency is obvious, and now we prove the necessity.
Suppose that f ◦ ψ is α-harmonic. By (4.1), we get

f ◦ ψ(z) =

∞
∑

k=0

ckψ(z)
k +

∞
∑

k=1

c−kPα,k(|ψ(z)|
2)ψ(z)

k
.

Take the derivative of (4.2), we obtain

P ′
α,k(x) = −

∫ 1

0

tkα(1− tx)α−1dt,
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and an integration by parts gives

xP ′
α,k(x) + kPα,k(x) = (1− x)α.(4.3)

Let τ(z) = Pα,k(|ψ(z)|
2)ψ(z)

k
. Then, by (4.3), we obtain

τz(z) = ψ′(z) · ψ(z)
k−1

(

|ψ(z)|2P ′
α,k(|ψ(z)|

2) + kPα,k(|ψ(z)|
2)
)

= ψ′(z) · ψ(z)
k−1

(1− |ψ(z)|2)α.

This together with the fact that f ◦ ψ is α-harmonic, shows that

∂

∂z

[

(1− |z|2)−α(1− |ψ(z)|2)α
]

= 0,

and then

zψ′(z)ψ(z) =
1− |ψ(z)|2

1− |z|2
|z|2(4.4)

is real valued. This implies that ψ(z) = akz
k, k = 1, 2, . . ., where ak are constants.

Therefore, it follows from (4.4) that, for z ∈ D\{0},

|ak|
2 =

1

k|z|2k−2 − (k − 1)|z|2k
.

Hence, for k ≥ 2, ak are not constants. This contradicts with the assumption that
ak are constants. Therefore, ψ(z) = a1z. By (4.4), we have that

|a1|
2|z|2 =

1− |a1|
2|z|2

1− |z|2
|z|2.

Therefore, we conclude that |a1|
2 = 1, which completes the proof. �

Proof of Theorem 2.4. By [6, Theorem 3], we only need to prove
∫

D

(1− |z|2)p+1∆(|f(z)|p) dA(z) <∞.(4.5)

From Theorem 2.2 we know that

‖Df (z)‖ ≤
C1

1− |z|2
,(4.6)

where C1 = (α + 1)2α+1. Since f is α-harmonic, the function (1 − |z|2)−αfz is
antianalytic. Therefore it has a power series expansion of the form

(1− |z|2)−αfz(z) =
∞
∑

k=0

akz
k, z ∈ D.

By calculations, we have

∆f(z) = 4fzz(z) =
−4αz

1− |z|2
fz(z).

Hence, it follows from (4.6) that

|∆f(z)| ≤
4α

1− |z|2
‖Df(z)‖ ≤

C2

(1− |z|2)2
,(4.7)
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where C2 = α(α + 1)2α+3. Furthermore,

|f(z)| ≤ |f(0)|+

∣

∣

∣

∣

∫

[0,z]

df(ξ)

∣

∣

∣

∣

≤ |f(0)|+

∫

[0,z]

‖Df (ξ)‖ |dξ|

≤ |f(0)|+
C1

1− |z|2
,

where [0, z] denotes the line segment from 0 to z. Then, for z ∈ D,

|f(z)|p−1 ≤ 2p−2

(

|f(0)|p−1 +
Cp−1

1

(1− |z|2)p−1

)

,(4.8)

and

|f(z)|p−2 ≤ 2p−2

(

|f(0)|p−2 +
Cp−2

1

(1− |z|2)p−2

)

.(4.9)

We divide the remaining part of the proof into two cases, namely, p ∈ [4,∞) and
p ∈ [2, 4). For the case p ∈ [4,∞), a straightforward computation gives

∆(|f |p) = p(p− 2)|f |p−4|ffz + fzf |
2 + 2p|f |p−2(|fz|

2 + |fz|
2) + p|f |p−2Re (f∆f)

≤ p2|f |p−2‖Df‖
2 + p|f |p−1|∆f |.

Hence, by (4.6), (4.7), (4.8) and (4.9), we conclude that

(1− |z|2)p+1∆(|f(z)|p)

≤ p2(1− |z|2)p+1|f(z)|p−2‖Df(z)‖
2 + p(1− |z|2)p+1|f(z)|p−1|∆f(z)|

≤ p22p−2(1− |z|2)p+1

(

|f(0)|p−2 +
Cp−2

1

(1− |z|2)p−2

)

C2
1

(1− |z|2)2

+p2p−2(1− |z|2)p+1

(

|f(0)|p−1 +
Cp−1

1

(1− |z|2)p−1

)

C2

(1− |z|2)2

≤ p22p−2(|f(0)|p−2 + Cp−2
1 )C2

1(1− |z|2) + p2p−2(|f(0)|p−1 + Cp−1
1 )C2

< ∞.

In the case p ∈ [2, 4), let F p
n = (|f |2 + 1

n
)
p

2 for n ∈ {1, 2, . . .}. Then

∆(F p
n) = p(p− 2)

(

|f |2 +
1

n

)
p

2
−2

|ffz + fzf |
2

+2p
(

|f |2 +
1

n

)
p

2
−1

(|fz|
2 + |fz|

2) + p
(

|f |2 +
1

n

)
p

2
−1

Re (f∆f).

Let

F = p(p− 2)|f |p−2‖Df(z)‖
2 + 2p

(

|f |2 + 1
)

p

2
−1
(|fz|

2 + |fz|
2)

+p
(

|f |2 + 1
)

p

2
−1
Re (f∆f).
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For r ∈ (0, 1), ∆(F p
n) and F are integrable in Dr, and ∆(F p

n) ≤ F . By Lebesgue’s
dominated convergence theorem, we have

lim
n→∞

∫

Dr

(1− |z|2)p+1∆
(

F p
n(z)

)

dA(z) =

∫

Dr

(1− |z|2)p+1 lim
n→∞

(

∆
(

F p
n(z)

)

)

dA(z)

≤

∫

Dr

(1− |z|2)p+1
[

p2|f(z)|p−2‖Df(z)‖
2

+p|f(z)|p−1|∆f(z)|
]

dA(z)

≤

∫

Dr

[

p22p−2(|f(0)|p−2 + Cp−2
1 )C2

1(1− |z|2)

+p2p−2(|f(0)|p−1 + Cp−1
1 )C2

]

dA(z)

< ∞.

Therefore, (4.5) follows from the above two estimates and so the proof of the theorem
is complete. �
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