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ON SOME LARGE GLOBAL SOLUTIONS FOR THE COMPRESSIBLE
MAGNETOHYDRODYNAMIC SYSTEM

JINLU LI, YANGHATI YU, AND WEIPENG ZHU

ABSTRACT. In this paper we consider the global well-posedness of compressible mag-
netohydrodynamic system in R? with d > 2, in the framework of the critical Besov
spaces. We can show that if the initial data, the shear viscosity and the magnetic
diffusion coeflicient are small comparing with the volume viscosity, then compressible
magnetohydrodynamic system has a unique global solution.

1. INTRODUCTION

The present paper is devoted to the equations of magnetohydrodynamics (MHD) which
describe the motion of electrically conducting fluids in the presence of a magnetic field.
The barotropic compressible magnetohydrodynamic system can be written as

(Oyp + div(pu) =0, in R* x R4
Oy (pu) + div(pu @ u) + VP(p) = b- Vb — 3V(|b]*) + pAu
+V((p + N)divu), in Rt xR (1.1)
b+ (divu)b+u-Vb—b-Vu—vAb=0, in RT x R4
(divb =0, in Rt x R4

where p = p(t,z) € R* denotes the density, u = u(t,z) € R? and b = b(t, z) € R? stand
for the velocity field and the magnetic field, respectively. The barotropic assumption
means that the pressure P = P(p) is given and assumed to be strictly increasing. The
constant v > 0 is the resistivity acting as the magnetic diffusion coefficient of the mag-
netic field. The shear and volume viscosity coefficients pu and A\ are constant and fulfill
the standard strong parabolicity assumption:

>0, K=A+2pu>0. (1.2)
To complete the system (1.1), the initial data are supplemented by
(u, b, p) (¢, @)[e=0 = (uo(x), bo(x), po(x)) (1.3)
and also, as the space variable tends to infinity, we assume
lim po(z) = 1. (1.4)
|| 00

The system of MHD involves various topics such as the evolution and dynamics of astro-
physical objects, thermonuclear fusion, metallurgy and semiconductor crystal growth, see
for example [2, 4]. Roughly speaking, The system (1.1) is a coupling between the com-
pressible Navier-Stokes equations with the magnetic equations (heat equations). On the
other hand, notice that b = 0, system (1.1) reduces to the usual compressible Navier-
Stokes system for baratropic fluids. Due to its physical importance, complexity, rich
phenomena and mathematical challenges, there have been huge literatures on the study
of the compressible MHD problem (1.1) by many physicists and mathematicians, see
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for example, [2, 15, 16, 13, 17, 18, 19, 20, 21, 5, 4, 6, 22, 23, 24, 25] and the references
therein. Now, we briefly recall some results concerned with the multi-dimensional com-
pressible MHD equations in the absence of vacuum, which are more relatively with our
problem. Kawashima [5] established the local and global well-posedness of the solutions
to the compressible MHD equations as the initial density is strictly positive, see also
Vol'pert-Khudiaev [7] and Strohmer [6] for the local existence results. To catch the
scaling invariance property, Danchin first introduce in his series papers [8, 9, 10, 11, 12]
the “Critical Besov Spaces” which were inspired by those efforts on the incompressible
Navier-Stokes. Recently, Danchin et.al prove that the compressible Navier-Stokes system
convergence to the homogeneous incompressible case for the large volume viscosity in [3].
Motivated this, our main goal of the present paper is devoted to extend the compressible
Navier-Stokes system to the MHD system. That is, we will prove the global existence
of strong solutions to (1.1) for a class of large initial data. We notice that if x tends to
+00, then velocity field and magnetic field will satisfy the incompressible MHD system:

&sU+U-VU—uAU+VH—B-VB—%V(|B|2) =
oB+U-VB—-B-VU —-vAB =0, (1.5)
divU = divB =0, (U, B)|1=0 = (Uy, By)
with Uy = Pug and By = by. Here, the projectors P and Q are defined by
P =1d+ (—A)"'Vdiv, Q = —(—A)"'Vdiv.

Our main result can state be stated as follows:

Ld Ld

Theorem 1.1. Assume that d > 2, ug € B3, 1(Rd) and ag := po — 1 € B3, 1(]Rd) N
d Ld_

B3, (R?). Suppose that (1.5) generates a unique global solution (U, B) € C(R™; B3, 1(]Rd))
satisfying Uy := Pug and By = by. Let C' be a large universal constant and denote

M :=|U, B|| gy +||Us, By, uV?U, V2B

.d_
Lo (R 3221 LI(R+'3221 1)

Dy i= CCWH D0 (oo Quyl| y, + slaol| g +1). (16)
2 2

1

)

50 = 0620(1+M—2+y—2)(M+1) (/{_1D(2] Ttk QDO)-

If K is large enough and ||a0||B%
2.1

15 small enough such that

1
k1Dy < 1, 50(; +-+1)<
then (1.1) has a unique global-in-time solution (p,w,b) which satisfies

T | 1mpt. e+l
u, b€ C(R ; B3y )N LR ; B3y ), (1.7)
.d_ . d d '
a:=p—1eCR" B NB)NLART; BE)).

Remark 1.2. If d = 2, according to Lemma 2.6, we can set

1 1
M = Cl1U, Bollgg, exp Oz + 0o, Boll ).

From Theorem 1.1, we deduce that the system (1.1) has a unique global-in-time solu-
tion without any smallness condition on the initial data. On the other hand, our result
improves the the previous one due to Danchin et.al who considered the compressible
Navier-Stokes system in [3].
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2. LITTLEWOOD-PALEY ANALYSIS

In this section, we recall the Littlewood-Paley theory, the definition of homogeneous
Besov spaces and some useful properties. First, let us introduce the Littlewood-Paley
decomposition. Choose a radial function ¢ € S(R?) supported in € = {{ € RY, 2 < ¢ <
2} such that

Z(p@*jg) =1 forall £#0.
JEL
The frequency localization operator Aj and Sj are defined by
Aif =o@27D)f = F He@7)Ff), Sif= > Auf for jeL
k<j—1
With a suitable choice of ¢, one can easily verify that
NAf =0 if =k =22, Aj(SeafApf)=0 if |j—k>5.
Now, we will introduce the definition of the homogeneous Besov space. We denote the
space Z'(R?) by the dual space of Z(R?) = {f € S(R%); D*f(0) = 0; Va € N}, which
can be identified by the quotient space of &'(R?)/P with the polynomials space P. The

formal equality f = > Aj f holds true for f € Z'(R?%) and is called the homogenous
JEZ
Littlewood-Paley decomposition.
The operators A; help us recall the definition of the homogenous Besov space (see [1])

Definition 2.1. Let s € R, 1 < p,r < 0o. The homogeneous Besov space B;r is defined
by

B, ={feZ®):|f

B, < +OO},
where

4

111, 2 || @1l -
Remark 2.2. Let C' be an annulus and (u;);ez be a sequence of functions such that
Supp @; C2°C" and ||(27°||u;]|e) jez| e < 0.
There exists a constant C depending on s such that
lulls;, < Call27lwl o) jezller-

Next, we give the important product acts on homogenous Besov spaces by collecting
some useful lemmas from [1].

Lemma 2.3. Let s1,52 < £, 81455 >0 and (f,g) € BS}l(Rd) X B‘;fl(Rd). Then we have
19l < CIf]

P 19l sz -
Lemma 2.4. Assume that F' € W'l[;'c]”’oo(]R) with F(0) = 0. Then for any f € L=(R¥)N
Bs (R, we have

1F()lls, < CULAL=)ILf

Lemma 2.5. For (p,ry,79,7) € [1,00]%, 51 # 59 and 0 € (0,1), the following interpola-
tion inequality holds

DS .
B34

HUHBg’STH(lfe)sQ < CHu’ GB;}” ”u| IBE?Q@T2
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Proposition 2.6. Let Uy, By € BY | (R?) with divU, = divBy = 0. Then there exists a
unique solution to (1.5) such that

U, B € C(R"; By, (R*) N L' (R*; B} | (R%)).
Furthermore, there exists some universal constant C', one has for all T > 0,

||U7 B||L§'9(Bgl) + ||Ut7 Btv NVZU, VVZBHL;(BQJ)
1 1
< ClIU, Bollgg, exp (Cz + )1, Boll )

Proof. For any t € [0,T], the standard energy balance reads:

t t
U OII72 + 1 B()]]7 +2M/ IVUI[7 +2V/ IVB|[72 = [|Uol[72 + || Bol [z,
0 0
which implies for all 7" > 0,

1 1
4 1||B < Bo)| 2. 2.1
P g1 +VAIBIL, 1 ) < CIIUG Bl 2.)

From the estimates of the Stokes system in homogeneous Besov spaces, we have
U, B||L;9(Bgyl) + Ut Bta:MVQUv VVQBHLIT(BQQ

(2.2)
< C(|[Un. Bollsg, +IU- VU ~ B VBl s, + 1B VU = U - VBl 30 )

In view of the interpolation inequality and Young inequality, we deduce that
T
V-0l <€ [ 101 1901 d
’ 2 2

r 1 3
< [0, IVl Vol a 23)
0 51 2,1 2,1

C T . ,
: e3® Jo I ||B§1,1|| ||Bgvldt el HLIT(BS,l)
Similar argument as in (2.3), we obtain

\mmm%<—/W@W@MMW%mm

U - VB3 59,y < 837 HUH41 1Bl g, dt + V|| VBl 3 (59 (2.4)

C
1B VUl < - [ 18I

<aa U159, dt + £l [V2U 13 .

1

B2

2

Therefore, combing (2.2)-(2.4) and choosing ¢ small enough, we find that
||UvBHL%°(BS’1) + HUt7Bt7MV2U7 VV?BHUT(BS’I)

<o(L+ 1)/T<HUH4 1B
= ) ) 1 L1
,u?, Vg 0 B22,1 B22,1

YT zg, + 1Bl g )it + [[Us, Boll zg,)-

It follows from the Gronwall inequality and (2.1) that the desired result of this lemma.
O
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3. THE PROOF OF THE MAIN RESULTS

In this section, we shall give the main details for the proof of Theorem 1.1. Our main
idea basically follows from the recent work in [3]
Setting a = p — 1, we infer from (1.1) that

(Oya + div(au) + divu = 0,
du+u-Vu+P(1+a)Va—0b-Vb+ 1V(|b?) — pAu — V((p + A)divu)
= —a(u; +u - Vu), (3.1)
b + (divu)b+u - Vb —b - Vu — vAb = 0,
 divb = 0.

Before continue on, we recall the following local well-posedness of the system (3.1).

Theorem 3.1. [14] Assume that the initial data (ag := p — 1,ug,by) satisfy divby = 0
and

. d .d_q - d_q
(ag,uo,b0) € Bgy x By, X B3, .
In addition, inf,cra ag(z) > —1, then there exists some time T' > 0 such that the system

(3.1) has a local unique solution (a,u,b) on [0,T] x R® which belongs to the function
space

- . d ~ Ld_ . d
Er:=C([0,T]; B3y) x (C([0.7: B3, ) N Ly B3y )™,
where C([0, TY; 33,1) = C([0,T7; B;l) N L>=([0,T7; B;l) with s € R and 1 < ¢ < oo.
We set
v=u—U and c=b-D.

From the very beginning, the potential Qv and divergence-free Pv parts of v are treated
separately. Applying Q to the velocity equation of (3.1) and noticing that Qu = Qu
yield

9,(Qv) + Q((v+U) - VQu) — kAQu + Va = —Q(al, + av,) — QRy, (3.2)
where, denoting k(a) = P'(1+a) — 1

Ri=1+a)(v+U) - VPv+(1+a)(v+U) - VU+alv+U)-VQu

1 ) (3.3)
+k(a)Va— (B+c)-V(B+c)+ §V(|B +c[).

In view of the density equation of (3.1) and using u = Qv + Pv + U, we find that a
satisfies

oa+ (v+U)-Va+divQv = —adivQu. (3.4)
Because PU = U and P(Qu - VQu) = P(aVa) = 0, applying P to the velocity
equation of (3.1), we discover that
9(Pv) + P((v +U) - VPv) — pAPv = —P(al; + av, + aVa) — PRy, (3.5)
where
Ry=(1+a)(v+U)-VQu+ (14+a)v-VU+a(v+U)-VPu
+aU-VU - (B+c¢)-Ve—c-VB
=1+a)Pv-VU+Qu)+(14+a)U-VQu+ (14 a)Qu-VU
+a(v+U)-VPv+aU - -VU +aQv-VQu — (B+¢)-Ve—c-VB.

(3.6)
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According to the magnetic equation of (3.1), we can show that ¢ satisfies
e+ (v+U)-Ve—vAc= —Rs, (3.7)
where
R3 = (divQu)B + (divQu)c+v-VB — (B+¢) - Vv —c¢- VU. (3.8)

In the sequel, we denote a’ and a” the low and high frequencies parts of a as

= Z A]‘a, ah = Z Aja,

k<1 2k>1
and set
X4(T) = ||Qu,a, xVal| L) + ||Qu; + Va, HV2QU,/£V2QZ’Vah|| by
2,1

Yi(T) = Y1 (T) + Yyo(T) := HPU,CH %_1 + [Py, ¢, uVPu, VVQCH B"l)’

Z4(T) = ||U, B|| 4_1+||Ut,Bt,uV2UVV2B||

Loo( 21 ) BQl )

Xa(0) = [lao, Quol| .g-. + llaol|,

d .
B2
21 2

1
It is easy to show that
Zy(T) <M forall T > 0. (3.9)
We concentrate our attention on the proof global in time a priori estimates, as the local

well-posedness issue has been ensured by Theorem 3.1. We claim that if « is large enough

then one may find some (large) D and (small) 6 so that there holds for all T < T,
X(T) <D, YaT) <6, w'D<1,
1,1 1 (3.10)

Step 1. Estimate on the terms Pv and c. '
We first consider the estimates for Pv. Applying A; to (3.5), taking the L? inner
product with A;Pv then using that P? = P, we deduce that

2dt||A Pl 2, + pl|VA;P|2, = / ([v+U,A;] - VPv) - AjPuda (3.11)
R4

— /Rd Aj(alU; + av, + aVa + Ry) - A;Pvdx — % /Rd |A;Pu|*diveda.
(3.12)
According to the commutator estimates of Lemma 2.100 in [1], the commutator term
may be estimated as follows:
PE| o+ VA VPol |1z < Col|V(0-+ D)l g Pell g withlyllo =1,
(3.13)

Now, multiplying both sides of (3.11) by 2i(5-1) and summing up over j € Z, using
Lemma 2.3 and (3.13), we obtain that

L%O(BQQI ) (BQI )
d_y +C||R2|| d_y -

%(322,1 ) 221 )

T
1Pl s TP, g <C [V @O 1P
By (3.14)

+ C||la(U; + Pvy + (Quy + Va))||
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¢_, , we infer from (3.5) and (3.14) that

In order to bound ||731),5||L1
T

Poll, g0, HIPos¥Pell, g1 <€ [ IS G+ Oy Pl g

Lg (B3,

T
+C/ ||(v+U)-V73v||B%_ldt+C'/ ||a(Ut+Pvt+(Qvt+Va))||B%_ldt (3.15)
2,1 0 2,1

+C/ (LA

Next, we will estimate the Besov norm of the right-hand side for (3.15). For the second
term of the right-hand side for (3.15), we can infer from Lemma 2.3 that

(v +U)-VPul[ | 4,

T( 21)
T

T
sc/ IPol 5.l 1Poll, dﬂdtw/ Qv+l 1Pl

T
C [Pl g Pl
B3,
+—/ [(Qu,U) ||2% ||73v|| g 1dt+Cu€||V2Pv|| a8
2 21
C T
| 1w 0l 1Pel 4 .
0 Bg,l BQ,I

< C/o || Pl . Qg 1||731)|| d+1dt+C€Yd( )+a
(3.16)
For the third term of the right-hand side for (3.15), we can infer from that
T
/ lla(U + Pog + (Qui + Va))|| .g,ldt
0 (3.17)

<
< Clall,_ g (WAl o, 1P, g+ 1190+ V], )
< Cx Xy () (XalT) + Ya(T) + Zd(T))-
For the last term of the right-hand side for (3.15), in view of Lemma 2.3, we can
estimate them into the following parts:

11 +aPe- YW+ QI o

7( 2.1
T (3.18)
< C [ (1t llll g I+ @oll gl Pl
0 Bsa Bsa
(1+a)(Qu-VU+U - VQU)HLlT(BQ%’;l)
+ [|a ¢ )|[Qu Ull , .4
OO+l g M@ 0, B.19)

(T))%*EMWXd(T)Zd(T),
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|la(v+U) - VP ||

(3221 N

lo+Ull | g0 POl

LE B2 LBE

< Clal| (3.20)

. d
L (B3y)

< Cr X (T)Yy(T) (Xd(T) + Ya(T) + Zd<T))7

llaU - VU + aQu - VQUH i
21
<
Clall,_ <||U||Lw(32211||U||L1(BQH)+||Q gt 1901, ) (320

< C/@_le(T) (w1 23() + 51 X3T)),

|(B+c¢) -Ve+c- VB||

d_q
221)
T T
<C dt +C B t.
<O [ el g llll gt C [ Bl el

C , (3.22)
gt o [ 1B Ll g

1

T
sc/ el -1l .04 + Cvlel,
0 B2

( 2,1

T C
<0 [ lell g il gt + vy + £ [Cim

Therefore, summing up (3.15)-(3.22), we obtain

[Pl §-1, +|[Poe, VPl | g

L§e(BF, ) BQ%I )
< CeYy(T) + Cn*le(T)( a(T) + Ya(T) + Za(T >)
+ O+ K Xg(T))k ™2 12 Xg(T) Zo(T) + Cr " Xo(T) (M‘lZfl(T) + ﬁ‘lXﬁ(T)>

+ Ok XalT)Ya(T) (XalT) + Ya(T) + zd<T>)

T
+0/ (1 +1lall )IIPo, Qo T, ), st ﬂII(Qv O, + ||B||2%)mdt.
0 2 2 2
(3.23)

Now, we estimate the term for ¢. Similar argument as in (3.15) and (3.16), we infer
from (3.7) that

4, +|l(e, vV d_
el g s, + NPl s

T
< ||bo—Bo||.g_1+C'/ |(Pv, Qu,U)|| . d+1||c|| 4 (3.24)
B2,1 0 21
+Cllv+U)-Ve|| g4, +C| 3|| 4oy -

LT(322,1 ) 221 )
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For the last two terms of the right-hand side for (3.24), according to Lemma 2.3, we
can tackle with them as follows:

o+ 0) - Vell, g

T T
<O [ 1Pl llell gt +C [ 11QU+ Ty el
2,1 By

/ 1Pell 4 1||c||.%+1dt+—/ (Qu.O)IP g Il gt Coelle] | g
By, By, 22 By, (B
T C T
<C ) Jdt + CeYy(T) + — CO)|)? g, dt.
<O [ 11Pvll gl g+ C¥T) + 2 [ 1H@u DI el
(3.25)
||(divQu)e — ¢ - Vv —c- VU|| (5 <C/ |(U, Pv, Qu)|| . d+1||C|| Py dt, (3.26)
21 21
||(divQu)B+v-VB—B- Vv|| %7)
¢ [ 1@l 1By 40 [Pl 181
0 2,1 By 2 2
T (3.27)
¢ [ Nl q 1B MH_/ IPoll g 2 IBIR g dt+ CovlPell,
0 322,1 22 22 T(32 )
1 1 C 2
< Ot XN ZUT) + ) + S [P aalIBIE
0 2 21
Hence, collecting the estimates (3.24)-(3.27), we get
2
el o, v ¥,
C 11
<||bo—Bo|| --1+ Yd( )+ CeYy(T) + Cr™2v 2 Xy(T) Za(T) (3.28)
+0/ (P, Q0,00 g —||(Qv UB)HQ% )Yddt.

Then, combining (3.23) and (3.28) and choosing € small enough, we can conclude from
Gronwall’ inequality that

CllPv.@uUell 4., HE+D)IQUB)IE
Yu(T) < Ce il 0 L X (T) (XalT) + Ya(T) + Za(T))

F (L + kX (T) K 22 Xg(T) Zo(T) + 5 X o(T) (;lefl(T) + fleﬁ(T))

57 T X(T)Ya(T) (Xa(T) + Ya(T) + Zu(T) ) + 530 EX(T) Z4(T) }.
(3.29)

Step 2. Estimate on the terms Qv and a.

Now, applying A; to (3.1) and (3.2) yields that
owa; + (v+U)-Va; +divQu; = g;, (3.30)
0,Quj+ Q((v+U) - VQu;) — kAQu; + Va,; = fj, '
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where
aj; = Aja, Qu; = Aj Qu, g;= —Aj(adiVQv) — [Aj, (v+U)]- Va,
fi = —A,;0(al; + av;) — A;QR; — Q[A;, (v + U)] - VQu.

We take the L? inner product for the first equation of (3.30) with a; and the second
equation of (3.30) with Qu; to obtain

%%HG’JH%Q + (ajv diVij) = %(diV’U, (I?) + (gj7 aj)v
241 Quill72 + KIIV Qujllf2 — (a5, divQuy) = 3(dive, |Qu;?) + (5, Quy),
We next want to estimate for ||Va,||3.. From the first equation of (3.30), we have

OVa;+ (v+U)-VVa; + VdivQu; = Vg; — V(v+U) - Va,. (3.33)

(3.31)

(3.32)

Following (3.33) and second equation of (3.30) and taking the L? inner product, we
obtain
L4902, + (v + U) - VVa, Va;) + (VdivQu;, Va;)
= (ng - V(U + U) . Vaj, Vaj),

. 3.34
4 (Quy, V) + (0 + U, V(v - Vay) — (o, Vay) + Vel O3
—|—<VdiVQUj, Q’Uj) = (ng — v<’U + U) . Vaj, QU]') + (fj, Vaj).
Noticing that (VdivQu;, Va;) = (Aij, Va;) and Aij = VdivQu;, we get
1d
§E(H||Vaj\\%2 +2(Qu; - Vay)) + ([IVayl[72 — |V Qujl[72)
(3.35)

1
= (§K|Vaj|2 + Qu; - Va,, divv) + k(Vg; — V(v +U) - Va,, Va,)
+(Vg; = V(v+U) - Va,, Qu;) + (f, Va; ).
Multiplying (3.35) by x and adding up twice (3.32) yield

1d
5553 +6([VQujllze +[1Vayl72)

= / (2g5a; + 2f; - Quj + k*°Vg; - Va; + kVg; - Quj + Kf; - Va,)dx (3.36)
Rd
+ l/ L2divods — /-@/ (V(v+U)-Va;) - (kVa; + Qu;)dz,
2 Rd J R4
with

Lj = /Rd(2a§ +2|Quyl* + 26Qu; - Va; + [V ay|*)dw

(3.37)
= / (245 + |Qu;* + |Qu; + kVa;|*)dz = |[(Quj, aj, kVa;)||7-.
R4
By (3.37), we obtain
K(|[VQuyl|7: +1IVal[72) > emin(r2%, k™) L3,

which along with (3.36) yields

1d ., . % 1y p2 oL 2

5&;6] + leH(FLQ ]’ R )‘C] S(iule’UHLoo + ||V<U + U)HL°°)£] (338)

+ C||(gj7 fj7 K'ng)HLQ‘C]"
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Multiplying both sides of (3.38) by 29(5=1) and then summing up over j € Z, we infer
from Remark 2.2 that

(@, Va, Qu)ll g, + (572 Qu, iV2a, Vab) |y,

.4
F(B ) Ly(B3y )

< C|(a, #Va, Qu)(0)]| d_1+c/ .0l gallla. 570, Q)|

(3.39)
" C/ sz(__l 11(g5, f5, £V g;)|| z2dL.
JEZ
Combining the estimates
T
|ladivQu, kV (adivOu)|| 4, < C/ ||divQul|| .4 ||a, kVal|  4_,dt,
L%(B22,1 ) 0 B22,1 B22,1
and
T . d . .
/ Z 2CV[A (v + U)Va, kV([A;, (v + U)[Va)|| 2dt
<c/ 190+ V)l lla sl
we have
T
[ S 2l <€ [ 1@ gl sTall g aar (40

JEZL

Next, we will estimate the last term fOT > ez 272 =V||f;]| ,2dt. According to Lemmas
2.3-2.4 and the commutator estimates of Lemma 2.100 in [1], we have

I+ a)(w+ V)T Po+ O, s
< d d
cu+ il >||<7>v,U>||LT(BQ_1_1 I(VPe SO, s
T
0 [ lall TP TV 1001 (3.41)

<O+ k' Xg(T))pw H (Y(T) + Z3(T))

T
+c/0 (LIl TP, TV 110l -,

lla(v+U) - VQUH

4, <Clla a ||(v, U a4, ||IVOQu d
ty S Ol g OO o 900N g
<Cr? j(T) (Xa(T) + Ya(T) + Z4(T)),
T T
Ik@all,, 40 <C [Py dt<C [ (g + 0| )it
7\ P21 0 21 0 2 21 <343)

T
<C [l gl g+ N

2,1

)t < Okt X3(T),

d
B2
2

T
/Zza ——1)H[A],v—|—U]VQv||det<C/ IV@+O)l g 1Qul] gt (3.44)

JEZ
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laldl| | i+ [lavel]

.d_
LL(B2, ) L2
T
< IV P QuA Va)ll | g flall 4 +C / al? , dt (3.45)
T( 21 ) (32,1) 0 221

< Ok X4(T) (Xd(T) + Yy(T') + Zd(T)>v

I59(B+ ) ~ (B+0)- V(B+ o)l

L} (Bd )
c (3.46)
<C||(B —(Z5(T) + Y} (D)).
< CNB My B ) < S (ZHT)+Y2)
Therefore, collecting (3.39)-(3.46), we have
Clirllal g IPe@UI g
XT)<Ce  FFaw s L x,(0)
+ C(1+ 6 X (T)) (™ + v ) (Y(T) + Z3(T)) (3.47)

+ C(R2X2(T) + K X (T)) (Xa(T) + Ya(T) + Zd(T))}.
By (3.9) and (3.10), we can deduce that
(Il g WPe Qo Tell, g < (0 n7 D) D M+ 540710

oo
T (B3 2,1

<214 pt+r (M +1),
(3.48)
and

(= + v HllQu, U, B)||2 i) S (W 4+ (D% (7 v M)

1 (3.49)
<L+ p+ v (M + 1)

According to (3.10), (3.29) and (3.47)—(3.49), we have
Yd(T) S CeC(1+p—2+V—2)(M+1)2 (KI—IDQ + Ki%(,ui% + Vﬁé)DM + KlfluleM2
+ k' u D) (3.50)
< CCU+p24+v=2)(M+1)? (/@’IDQ + /@’%D),

and
X(T) < CeCO+n~ v 1) (M+1) (Xd(O) St Y M)+ M+ 1) )
< CeCO+p v~ H(M+1)? (Xd<0) n 1)’ .
for a suitable large (universal) constant C'. So it is natural to take first
D = Ol M (X (0) 4-1), (3.52)
and then to set
§ = C2CWHnTH D (=1 D2 4 =3 D). (3.53)

for a suitable large (universal) constant C'. It is easy to prove that ||a(t,-)||z~ < Crx™1D.
Therefore, if we make the assumption that x is large enough such that

11
kD <1, §(—+ = o+ 1) <
W 2’
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then we deduce from (3.50)-(3.53) that the desired result (3.10).
Proof of Theorem 1.1 First, Theorem 3.1 implies that there exists a unique

- . d ~ d

maximal solution (a,wu,b) to (3.1) which belongs to C([0,T]; B3;) x (C([0,T]; B3, 1) N
- d

LITBQQII)M on some time interval [0,7*), with the global a priori estimates (3.9) and

(3.10) at our hand, then one conclude that 7" = +oo. In fact, let us assume (by contra-

diction) that 7™ < co. Next, applying (3.9) and (3.10) for all ¢ < T* yields

= < C <oo. (3.54)
1

Then, for all ¢, € [0,7*), one can solve (3.1) starting with data (ag,ug,bo) at time
t =ty and get a solution according to Theorem 3.1 on the interval [ty, T + to] with T
independent of ty. Choosing ty > T™ — T thus shows that the solution can be continued
beyond T, a contradiction.

[|a, u, 0|

%
L7 (B3
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