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NONLINEAR MULTIVALUED DUFFING SYSTEMS

NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

Abstract. We consider a multivalued nonlinear Duffing system driven by a nonlin-
ear nonhomogeneous differential operator. We prove existence theorems for both the
convex and nonconvex problems (according to whether the multivalued perturbation
is convex valued or not). Also, we show that the solutions of the nonconvex problem
are dense in those of the convex (relaxation theorem). Our work extends the recent
one by Kalita-Kowalski (JMAA, https://doi.org/10.1016/j.jmaa. 2018.01.067).

1. Introduction

In this paper we study the following nonlinear multivalued Duffing system

(1)

{
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) ∈ F (t, u(t)) for a.a. t ∈ T = [0, b],

u(0) = u(b) = 0, 1 < p < +∞.

In this system a : R
N → R

N is a suitable monotone homeomorphism which in-
corporates as special cases many differential operators of interest such as the vector
p-Laplacian which corresponds to the map a(y) = |y|p−2y for all y ∈ R

N (1 < p < +∞).
The term F (t, x) is a multivalued perturbation. We prove existence theorems for both
the “convex problem” (that is, F is convex valued) and the “nonconvex problem” (that
is, F has nonconvex values). Finally we show that under more restrictive conditions on
the data of the problem, the solutions of the nonconvex problem are dense in those of
the convex problem (relaxation theorem).

The starting point of our work here is the recent paper of Kalita-Kowalski [7], where
N = 1 (scalar problem), a(y) = y for all y ∈ R

N (semilinear equation), the growth
condition on F (t, ·) is more restrictive and the authors treat only the convex problem.

The Duffing equation originates as a model of certain damped and driven oscillators.
The equation is well-known for its chaotic behavior, well documented in the works of
Holmes [4] and Moon-Holmes [12]. Additional recent results on the scalar, semilinear
and single-valued version of the equation, can be found in Galewski [2], Kowalski [8],
Tomiczek [14].

2. Mathematical Background

The presence of the term r(t)|u′|p−2u′ makes problem (1) nonvariational and so our
approach is topological based on the fixed point theory. Our tools come frommultivalued
analysis and nonlinear functional analysis.

Let X be a Banach space. We introduce the following hyperspaces:

Pf(c)(X) = {A ⊆ X : nonempty, closed (and convex)},
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P(w)k(c)(X) = {A ⊆ X : nonempty, (weakly-) compact (and convex)}.

A multifunction (set-valued function) G : X → 2X \ {∅} is said to be “upper semicon-
tinuous (usc)” (resp. “lower semicontinuous (lsc)”), if for all C ⊆ X closed, the set
G−(C) = {x ∈ X : G(x) ∩ C 6= ∅} (resp. G+(C) = {x ∈ X : G(x) ⊆ C}) is closed.

Given A,B ∈ Pf(X), we set

h(A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)}.

Then h(·, ·) is an extended metric on Pf (X) known as the “Hausdorff metric”.
Now let (Ω,Σ) be a measurable space and X a separable Banach space. A multifunc-

tion F : Ω → 2X \ {∅} is said to be “graph measurable” if GrF = {(ω, x) ∈ Ω × X :
x ∈ F (ω)} ∈ Σ ⊗ B(X) with B(X) being the Borel σ-field of X . Suppose that µ(·) is
a finite measure on Σ. By S1

F we denote the set of L1(Ω, X)-selectors of F (·), that is,
S1
F = {f ∈ L1(Ω, X) : f(ω) ∈ F (ω) µ-a.e. on Ω}. Note that as a consequence of the

Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou [5], Theorem
2.14, p. 158), we have that for a graph measurable multifunction F (·), the set S1

F is
nonempty if and only if the function ω → inf[‖x‖ : x ∈ F (ω)] belongs in L1(Ω). The
set S1

F is “decomposable”, that is

“if (A, f1, f2) ∈ Σ× S1
F × S1

F , then χAf1 + χΩ\Af2 ∈ S1
F .”

Here for any C ⊆ Ω, χC denotes the characteristic function of C, that is,

χC(ω) =

{
1 if ω ∈ C

0 if ω 6∈ C
.

Let Y, V be Banach spaces and K : Y → V . We say that K(·) is “completely

continuous”, if yn
w
−→ y in Y , then K(yn) → K(y) in V . A multivalued map G : Y →

2V \ {∅} is said to be “compact”, if it is usc and maps bounded sets in Y to relatively
compact sets in V .

We will need the following multivalued generalization of the Leray-Schauder alter-
native theorem, due to Bader [1]. So, Y , V are Banach spaces, N : Y → Pwkc(V )
is usc from Y into Vw (= the Banach space V endowed with the weak topology) and
K : V → Y is completely continuous. We set G = K ◦N .

Proposition 1. If Y, V,G are as above and G(·) is a compact multifunction, then one
of the following statements holds:

(a) the set S = {y ∈ Y : y ∈ λG(y), 0 < λ < 1} is unbounded;
(b) G(·) admits a fixed point (that is, there exists y ∈ Y such that y ∈ G(y)).

Consider the following nonlinear vector eigenvalue problem

(2)

{
−(|u′(t)|p−2u′(t))′ = λ̂|u(t)|p−2u(t) for a.a. t ∈ T,

u(0) = u(b) = 0, 1 < p < +∞.

We say that λ̂ ∈ R is an eigenvalue, if problem (2) admits a nontrivial solution

û ∈ W
1,p
0 ((0, b),RN), known as an eigenfunction corresponding to λ̂. We know that (2)

has a sequence of eigenvalues

λ̂n =
(n
b

)p

(p− 1)

[
2

∫ 1

0

dt

(1− tp)1/p

]p
for all n ∈ N
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and the corresponding eigenfunctions are

ûn(t) = aun(t) for all n ∈ N

with a ∈ R
N and un being the corresponding scalar Dirichlet eigenfunctions. Therefore

|ûn(t)| 6= 0 for a.a. t ∈ T . Also, we have

(3) λ̂1 = inf

[
‖u′‖pp
‖u‖pp

: u ∈ W
1,p
0 ((0, b),RN), u 6= 0

]

(see Gasiński-Papageorgiou [3], p. 768).
If by ‖ · ‖ we denote the norm of the Sobolev space W 1,p

0 ((0, b),RN), then from the
Poincaré inequality, we have

‖u‖ = ‖u′‖p for all u ∈ W
1,p
0 ((0, b),RN).

For notational economy in the sequel we will write

C0 = C0(T,R
N) = {u ∈ C(T,RN) : u(0) = u(b) = 0},

C1
0 = C1

0(T,R
N) = C1(T,RN) ∩ C0(T,R

N),

W
1,p
0 = W

1,p
0 ((0, b),RN),

W 1,p = W 1,p((0, b),RN),

Lr
N = Lr(T,RN) for all 1 ≤ r ≤ +∞.

3. Convex Problem

In this section we deal with the “convex problem” (that is, F is convex valued). The
precise hypotheses on the data of the convex problem are the following:

H(a): a : RN → R
N is a continuous and strictly monotone map such that

c0|y|
p ≤ (a(y), y)RN for all y ∈ R

N , some c0 > 0.

Remark 1. Note that a(·) is maximal monotone, surjective (see Gasiński-Papageorgiou
[3] (pp. 309, 319)). Moreover |a−1(y)| → +∞ as |y| → +∞. We stress that no growth
restriction is imposed. Such very general operators were first used by Manásevich-
Mawhin [10, 11]. Later Kyritsi-Matzakos-Papageorgiou [9] used them in the context of
multivalued systems with unilateral constraints.

Example 1. The following maps a : RN → R
N satisfy hypotheses H(a):

a(y) = |y|p−2y for all y ∈ R
N , with 1 < p < +∞

(this map corresponds to the vector p-Laplacian),

a(y) = |y|p−2y + |y|q−2y for all y ∈ R
N , with 1 < q < p < +∞

(this map corresponds to the vector (p, q)-Laplacian),

a(y) = (1 + |y|2)
p−2

2 y for all y ∈ R
N , with 1 < p < +∞,

a(y) = |y|p−2y(ce|y|
p

− 1) for all y ∈ R
N , with 1 < p < +∞, c > 1.

H(r): r ∈ L∞(T ).

H(F )1: F : T × R
N → Pkc(R

N) is a multifunction such that
(i) for all x ∈ R

N , the multifunction t→ F (t, x) admits a measurable selection;
(ii) for a.a. t ∈ T , GrF (t, ·) ⊆ R

N × R
N is closed;
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(iii) if ξ = c0 −
‖r‖∞

λ̂
1/p
1

> 0, then there exists a function θ ∈ L∞(T )+ such that

θ(t) ≤ λ̂1ξ for a.a. t ∈ T , the inequality is strict on a set of positive measure,

lim sup
|x|→+∞

sup[(h, x)RN : h ∈ F (t, x)]

|x|p
≤ θ(t) uniformly for a.a. t ∈ T

and for every η > 0, there exists aη ∈ L1(T )+ such that

|F (t, x)| = sup[|h| : h ∈ F (t, x)] ≤ aη(t) for a.a. t ∈ T , all |x| ≤ η.

Remark 2. Hypothesis H(F )1(i) is satisfied if, for example, for all x ∈ R
N the mul-

tifunction t → F (t, x) is graph measurable (that is, GrF (·, x) ∈ LT ⊗ B(RN) for all
x ∈ R

N with LT being the lebesgue σ-field of T and B(RN) is the Borel σ-field of RN).

Let ψ : W 1,p
0 → R be the C1-functional defined by

ψ(u) = ξ‖u′‖pp −

∫ b

0

θ(t)|u|pdt for all u ∈ W
1,p
0 .

We have that ψ(u) ≥ 0 for all u ∈ W
1,p
0 . To see this, let u ∈ W

1,p
0 . Then

ψ(u) = ξ‖u′‖pp −

∫ b

0

θ(t)|u|pdt

≥ ξλ̂1‖u‖
p
p −

∫ b

0

θ(t)|u|pdt (see (3))

=

∫ b

0

[ξλ̂1 − θ(t)]|u|pdt ≥ 0 (see hypothesis H(F )1(iii)).

Lemma 1. There exists c1 > 0 such that c1‖u‖
p ≤ ψ(u) for all u ∈ W

1,p
0 .

Proof. We argue indirectly. So, suppose that the lemma is not true. Exploiting the
p-homogeneity of ψ(·), we can find {un}n≥1 ⊆W

1,p
0 such that

(4) ‖un‖ = 1 and 0 ≤ ψ(un) <
1

n
for all n ∈ N.

We may assume that

un
w
−→ u in W 1,p

0 .

Also note that ψ(·) is sequentially weakly lower semicontinuous (recall that W 1,p
0 →֒

C0 compactly). So, in the limit as n→ +∞, we have

ψ(u) = 0,

⇒ ξ‖u′‖pp =

∫ b

0

θ(t)|u|pdt ≤ λ̂1ξ‖u‖
p
p,(5)

⇒ ‖u′‖pp ≤ λ̂1‖u‖
p
p,

⇒ ‖u′‖pp = λ̂1‖u‖
p
p (see (3)),

⇒ u = ηû for some η ∈ R.

If η = 0, then u = 0 and so from (4) we have ‖u′n‖p → 0, which contradicts the fact
that ‖un‖ = 1 for all n ∈ N. So, η 6= 0 and it follows that |u(t)| 6= 0 for a.a. t ∈ T .



NONLINEAR MULTIVALUED DUFFING SYSTEMS 5

From (5) and the hypothesis on θ(·) we have

‖u′‖pp < λ̂1‖u‖
p
p,

a contradiction to (3). �

Let h ∈ L1
N and consider the following auxiliary Dirichlet problem

(6) − a(u′(t))′ = h(t) for a.a. t ∈ T , u(0) = u(b) = 0.

By Lemma 4.1 of Manásevich-Mawhin [11], we know that problem (6) admits a unique
solution u = K(h) ∈ C1

0 . So, we can define the solution map K : L1
N → C1

0 .

Proposition 2. The solution map K : L1
N → C1

0 is completely continuous.

Proof. Suppose that hn
w
−→ h in L1

N and let un = K(hn), n ∈ N. We have

(7) − a(u′n(t))
′ = hn(t) for a.a. t ∈ T , un(0) = un(b) = 0, n ∈ N.

Taking inner product with un(t), integrating over T = [0, b] and performing integra-
tion by parts, we obtain

∫ b

0

(a(u′n), u
′
n)RNdt =

∫ b

0

(hn, un)RNdt

⇒ c0‖u
′
n‖

p
p ≤ ‖hn‖1‖un‖∞ ≤ c2‖u

′
n‖ for some c2 > 0, all n ∈ N

(see hypothesis H(a)),

⇒ {un}n≥1 ⊆W
1,p
0 is bounded,

⇒ {un}n≥1 ⊆ C0 is relatively compact(8)

(recall that W 1,p
0 →֒ C0 compactly).

From (7) we have

a(u′n(t)) = a(u′n(0)) +

∫ t

0

hn(s)ds for all t ∈ T , all n ∈ N,(9)

⇒ u′n(t) = a−1

[
a(u′n(0)) +

∫ t

0

hn(s)ds

]
,

⇒ 0 =

∫ b

0

a−1

[
a(u′n(0)) +

∫ t

0

hn(s)ds

]
dt for all n ∈ N.

Invoking Proposition 3.1 of Manásevich-Mawhin [11], we infer that

(10) {a(u′n(0))}n≥1 ⊆ R
N is bounded.

From (9), (10) and the Arzelà-Ascoli theorem it follows that

(11) {a(u′n(·))}n≥1 ⊆ C(T,RN ) is relatively compact.

Let â−1 : C(T,RN) → C(T,RN) be defined by

â−1(u)(·) = a−1(u(·)) for all u ∈ C(T,RN).

Evidently this map is continuous and maps bounded sets to bounded sets. So, from
(11) it follows that

(12) {u′n}n≥1 ⊆ C(T,RN) is relatively compact.
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From (8) and (12) it follows that

{un}n≥1 ⊆ C1
0 is relatively compact.

We may assume that

(13) un → u in C1
0 .

From (7) we have
∫ b

0

(a(u′n), v
′)RNdt =

∫ b

0

(hn, v)RNdt for all v ∈ W
1,p
0 , all n ∈ N,

⇒

∫ b

0

(a(u′), v′)RNdt =

∫ b

0

(h, v)RNdt for all v ∈ W
1,p
0 (see (13)),

⇒ u = K(h).

Therefore K(hn) → K(h) in C1
0 and so the solution map K(·) is completely continu-

ous. �

Let N1 : C
1
0 → 2L

1

N be defined by N1(u) = S1
F (·,u(·)) for all u ∈ C1

0 .

Proposition 3. If hypothesesH(r), H(F )1 hold, then the multifunction N1(·) is Pwkc(L
1
N )-

valued and it is usc from C1
0 with the norm topology into L1

N with the weak topology.

Proof. First we show that N1 has values in Pwkc(L
1
N ). Clearly, hypothesis H(F )1(iii)

implies that for every u ∈ C1
0 , the set N1(u) is w-compact, convex. We only need to

show that the set S1
F (·,u(·)) is nonempty. To this end, let {sn}n≥1 be simple functions

such that

|sn(t)| ≤ |u(t)| and sn(t) → u(t) for a.a. t ∈ T.

On account of hypothesis H(F )1(i), the multifunction t→ F (t, sn(t)) admits a mea-
surable selection fn : T → R

N . If η = ‖u‖∞, then by hypothesis H(F )1(iii), we have

|fn(t)| ≤ aη(t) for a.a. t ∈ T , all n ∈ N.

By the Dunford-Pettis theorem, we may assume that

fn
w
−→ f in L1

N .

Invoking Proposition 3.9, p. 694, of Hu-Papageorgiou [5], we have

f(t) ∈ conv lim sup{fn(t)}n≥1

⊆ conv lim sup
n→+∞

F (t, sn(t))

⊆ F (t, u(t)) for a.a. t ∈ T (see hypothesis H(F )1(ii)),

⇒ f ∈ S1
F (·,u(·)).

Therefore we conclude that

N1(u) ∈ Pwkc(L
1
N ) for all u ∈ C1

0 .

To show the claimed by the proposition upper semicontinuity, according to Propo-
sition 2.23, p. 43, of Hu-Papageorgiou [5], it suffices to show that GrN1 = {(u, f) ∈
C1

0 × L1
N : f ∈ N1(u)} is sequentially closed in C1

0 × (L1
N , w). So, consider a sequence

{(un, fn)}n≥1 ⊆ GrN1 and assume that

(14) un → u in C1
0 and fn

w
−→ f in L1

N .
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Let η = supn≥1 ‖un‖∞ < +∞ (see (14)). Then by hypothesis H(F )1(iii) we have

|fn(t)| ≤ aη(t) for a.a. t ∈ T , all n ∈ N, with aη ∈ L1(T )+.

So, at least for a subsequence, we have

fn
w
−→ f in L1

N .

As before using Proposition 3.9, p. 694, of Hu-Papageorgiou [5] we obtain f ∈
S1
F (·,u(·)). Hence (u, f) ∈ GrN1 and so we have the desired upper semicontinuity of

N1(·). �

Clearly the map u → r(·)|u′(·)|p−2u′(·) is continuous from C1
0 into L1

N . Therefore the
multifunction N : C1

0 → Pwkc(L
1
N ) defined by

N(u) = N1(u) + r(·)|u′(·)|p−2u′(·) for all u ∈ C1
0 ,

is usc from C1
0 into (L1

N , w).
Then Propositions 2 and 3 imply that u→ K ◦N(u) is compact from C1

0 into itself.
We introduce the set

S = {u ∈ C1
0 : u = λKN(u), 0 < λ < 1}.

Proposition 4. If hypotheses H(a), H(r), H(F )1 hold, then S ⊆ C1
0 is bounded.

Proof. Let u ∈ S. Then we have

1

λ
u ∈ KN(u),

⇒ − a

(
1

λ
u′
)′

− r(t)|u′|p−2u′ = f with f ∈ S1
F (·,u(·)).

We act with u and perform integration by parts. We obtain

(15)

∫ b

0

(
a

(
1

λ
u′
)
, u′

)

RN

dt−

∫ b

0

r(t)|u′|p−2(u′, u)RNdt =

∫ b

0

(f, u)RNdt.

We have∣∣∣∣
∫ b

0

r(t)|u′|p−2(u′, u)RNdt

∣∣∣∣ ≤ ‖r‖∞

∫ b

0

|u′|p−1|u|dt

≤ ‖r‖∞‖u′‖p−1
p ‖u‖p (by Hölder’s inequality)

≤
‖r‖∞

λ̂1/p
‖u′‖pp (see (3)).(16)

Also from hypothesis H(F )1(iii) we see that given ε > 0, we can find aε ∈ L1(T )+
such that

(17) (f(t), u(t))RN ≤ aε(t) + [θ(t) + ε]|u(t)|p for a.a. t ∈ T.

We return to (15) and use hypothesis H(a), the fact that 0 < λ < 1 and (16), (17).
Then [

c0 −
‖r‖∞

λ̂
1/p
1

]
‖u′‖pp ≤ ‖aε‖1 +

∫ b

0

θ(t)|u|pdt+
ε

λ̂1
‖u′‖pp,

⇒ ξ‖u′‖pp −

∫ b

0

θ(t)|u|pdt−
ε

λ̂1
‖u′‖pp ≤ ‖aε‖1,
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⇒

[
c1 −

ε

λ̂1

]
‖u‖p ≤ ‖aε‖1 (see Lemma 1).

Choosing ε ∈ (0, λ̂1c1), we infer that

S ⊆ W
1,p
0 is bounded,

⇒ S ⊆ C0 is compact and {u′}u∈S ⊆ L
p
N is bounded.(18)

We have

(19) − a

(
1

λ
u′
)′

= f + r|u′|p−2u′.

Let hu = f + r|u′|p−2u′, u ∈ S. From (18) and hypothesis H(F )1(iii) it follows that

{hu}u∈S ⊆ L1
N is uniformly integrable.

This fact and (19) (recall 0 < λ < 1), as in the proof of Proposition 2 imply that
S ⊆ C1

0 is bounded (in fact relatively compact). �

Applying Proposition 1, we have the following existence theorem for problem (1).

Theorem 1. If hypotheses H(a), H(r), H(F )1 hold, then problem (1) admits a solution
u0 ∈ C1

0 .

Remark 3. It is clear from the proof of Proposition 4, that under the above hypotheses
the solution set of (1) is compact in C1

0 .

4. Nonconvex Problem

In this section, we prove an existence theorem for the case when F (t, x) has nonconvex
values. Now the hypotheses on F are the following:

H(F )2: F : T × R
N → Pf(R

N) is a multifunction such that
(i) (t, x) → F (t, x) is graph measurable (that is GrF ∈ LT ⊗B(RN ));
(ii) for a.a. t ∈ T , x→ F (t, x) is lsc;
(iii) the same as hypothesis H(F )1(iii).

Theorem 2. If hypotheses H(a), H(r), H(F )2 hold, then problem (1) admits a solution
u0 ∈ C1

0 .

Proof. On account of hypothesis H(F )2(i), for every u ∈ C1
0 , we have that

t→ F (t, u(t)) is graph measurable

(see Hu-Papageorgiou [5], Theorem 2.4, p. 156)

⇒ N1(u) = S1
F (·,u(·)) ∈ Pf(L

1
N ) for all u ∈ C1

0 (see hypothesis H(F )2(iii)).

From Hu-Papageorgiou [6], Proposition 2.7, p. 237, we have that N1 : C
1
0 → Pf(L

1
N )

is lsc. Also, it has decomposable values. So, Theorem 8.7, p. 245, of Hu-Papageorgiou
[5] implies that we can find a continuous map γ : C1

0 → L1
N such that

γ(u) ∈ N1(u) for all u ∈ C1
0 .

We consider the following Dirichlet problem

−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = γ(u)(t) for a.a. t ∈ T , u(0) = u(b) = 0.

Then from Theorem 1 we know that this problem has a solution u0 ∈ C1
0 . Evidently

u0 is also a solution of (1). �
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5. Relaxation Theorem

In this section p = 2 and we deal with the following two problems:

− a(u′(t))′ − r(t)u(t) ∈ F (t, u(t)) for a.a. t ∈ T , u(0) = u(b) = 0,(20)

− a(u′(t))′ − r(t)u(t) ∈ convF (t, u(t)) for a.a. t ∈ T , u(0) = u(b) = 0.(21)

By Ŝ ⊆ C1
0 we denote the solution set of (20) and by Ŝc ⊆ C1

0 the solution set of (21).
Under stronger conditions on the map a(·) and the orientor field F , we show that

Ŝc = Ŝ
C1

0

.

Such a result is known as “relaxation theorem” and has important applications in
control theory.

The new stronger conditions on the map a(·) are the following:

H(a)′: a : RN → R
N is continuous and

c0|y|
2 ≤ (a(y), y)RN for all y ∈ R

N , some c0 > 0,

and for every η > 0, there exists ĉη > 0 such that

ĉη|y − v|2 ≤ (a(y)− a(v), y − v)RN for all |y|, |v| ≤ η.

Remark 4. Clearly a(·) is strictly monotone and maximal monotone too.

Example 2. The following maps satisfy hypotheses H(a)′:

a(y) = ĉy for all y ∈ R
N , with ĉ > 0,

a(y) =

{
|y|q−2y if |y| ≤ 1,

y if 1 < |y|,
with 1 < q < 2,

a(y) = |y|p−2y + y for all y ∈ R
N , with 1 < p < +∞,

a(y) = (1 + |y|2)
p−2

2 + y for all y ∈ R
N , with 1 < p < +∞,

a(y) = 2ye|y|
2

+ y for all y ∈ R
N .

The new hypotheses on the multivalued perturbation F (t, x) are the following:

H(F )3: F : T × R
N → Pf(R

N) is a multifunction such that
(i) for all x ∈ R

N , t→ F (t, x) is graph measurable;
(ii) for every η > 0, there exists kη ∈ L∞(T )+ such that

ξ̂η = ĉη −
‖r‖∞

λ̂
1/2
1

− ‖kη‖∞b
2 > 0,

and

h(F (t, x), F (t, v)) ≤ kη(t)|x− v| for a.a. t ∈ T , all |x|, |v| ≤ η;

(iii) the same as hypothesis H(F )1(iii) with p = 2.

Remark 5. Under the above hypotheses ∅ 6= Ŝ ⊆ Ŝc ∈ Pk(C
1
0).

Theorem 3. If hypotheses H(a)′, H(r), H(F )3 hold, then Ŝc = Ŝ
C1

0

.
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Proof. Let u ∈ Ŝc. Then we have

−a(u′(t))′ − r(t)u′(t) = f(t) for a.a. t ∈ T , u(0) = u(b) = 0,

with f ∈ S1
convF (·,u(·)).

Proposition 3.30, p. 185, of Hu-Papageorgiou [5] says that we can find {fn}n≥1 ⊆
S1
F (·,u(·)) such that

fn
w
−→ f in L1

N .

Let v ∈ W
1,p
0 and εn → 0+. Consider the multifunction Lv

n : T → 2R
N

\ {∅} defined
by

Lv
n(t) = {h ∈ R

N : |fn(t)− h| < εn + d(fn(t), F (t, v(t))), h ∈ F (t, v(t))}.

Clearly GrLv
n ∈ LT ⊗ B(RN) (recall LT is the Lebesgue σ-field of T and B(RN) the

Borel σ-field of R
N). By the Yankov-von Neumann-Aumann selection theorem (see

Hu-Papageorgiou [5], Theorem 2.14, p. 158), we can find hn : T → R
N , n ∈ N, a

measurable map such that

hn(t) ∈ Lv
n(t) for a.a. t ∈ T , all n ∈ N.

Evidently hn ∈ L1
N (that is, hn ∈ S1

Lv
n
).

We consider the multifunction Gn : W 1,p
0 → 2L

1

N defined by

Gn(v) = S1
Lv
n
.

We have just seen that for all v ∈ W
1,p
0 and all n ∈ N, Gn(v) 6= ∅. Moreover, using

Lemma 8.3, p. 239, of Hu-Papageorgiou [5], we have that

v → Gn(v) is lsc,

⇒ v → Gn(v) is lsc (see [5], Proposition 2.38, p. 50).

Of course this multifunction has decomposable values. So, we can find a continuous
map gn : W 1,p

0 → L1
N , n ∈ N, such that

gn(v) ∈ Gn(v) for all v ∈ W
1,p
0 , all n ∈ N.

We consider the following nonlinear Duffing system

(22)

{
−a(v′(t))′ − r(t)v′(t) = gn(v)(t) for a.a. t ∈ T,

v(0) = v(b) = 0, n ∈ N.

This problem has a solution vn ∈ C1
0 (see Theorem 1).

From (22), reasoning as in the proof of Proposition 4, we have
[
c0 −

‖r‖∞

λ̂
1/2
1

]
‖v′n‖

2
2 ≤

∫ b

0

(gn(vn), vn)RNdt

≤

∫ b

0

[
aε(t) + (θ(t) + ε)|vn|

2
]
dt (see (17)),

⇒ ξ‖v′n‖
2
2 −

∫ b

0

θ(t)|vn|
2dt−

ε

λ̂1
‖v′n‖

2
2 ≤ ‖aε‖1,

⇒

[
c1 −

ε

λ̂1

]
‖v′n‖

2
2 ≤ ‖aε‖1 for all n ∈ N (see Lemma 1),
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⇒ {vn}n≥1 ⊆W
1,2
0 is bounded (choose ε ∈ (0, λ̂1c1)).(23)

From (23), as in the proof of Proposition 2 (see the part of the proof from (8) and
after), we establish that {vn}n≥1 ⊆ C1

0 is relatively compact. So, we may assume that

(24) vn → v in C1
0 .

We have
−a(v′n)

′ + a(u′)′ − r(t)[v′n − u′] = gn(vn)− f, n ∈ N.

We act with vn − u and after integration by parts, we obtain
∫ b

0

(a(v′n)− a(u′), v′n − u′)RNdt−

∫ b

0

r(t)(v′n − u′, vn − u)RNdt

=

∫ b

0

(gn(vn)− f, vn − u)RNdt.(25)

Let η = max{supn≥1 ‖vn‖∞, ‖u‖∞} > 0. Using hypothesis H(a)′ for this η > 0 we
have

(26) ĉη‖v
′
n − u′‖22 ≤

∫ b

0

(a(v′n)− a(u′), v′n − u′)RNdt.

Also, we have
∣∣∣∣
∫ b

0

r(t)(v′n − u′, vn − u)RNdt

∣∣∣∣ ≤ ‖r‖∞‖v′n − u′‖2‖vn − u‖2

≤
‖r‖∞

λ̂
1/2
1

‖v′n − u′‖22 (see (3)).(27)

Moreover,
∣∣∣∣
∫ b

0

(gn(vn)− f, vn − u)RNdt

∣∣∣∣

≤

∣∣∣∣
∫ b

0

(f − fn, vn − u)RNdt

∣∣∣∣+
∫ b

0

|(gn(vn)− fn||vn − u|dt.(28)

Note that

(29)

∫ b

0

(f − fn, vn − u)RNdt→ 0 as n→ +∞.

Also with η > 0 as above, we have
∫ b

0

|(gn(vn)− f ||vn − u|dt ≤

∫ b

0

[εn + h(F (s, vn), F (s, u))]|vn − u|ds

≤ 2ηbεn +

∫ b

0

kη(t)|vn − u|2dt for all n ∈ N.(30)

Using (29), (30) in (28), we obtain
∣∣∣∣
∫ b

0

(gn(vn)− f, vn − u)RNdt

∣∣∣∣ ≤ ε′n +

∫ b

0

kη(t)|vn − u|2dt

≤ ε′n + ‖kη‖∞b
2‖v′n − u′‖22 with ε′n → 0+(31)

(here we have used Jensen’s inequality).
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Returning to (25) and using (26), (27) and (31), we have
[
ĉη −

‖r‖∞

λ̂
1/2
1

− ‖kη‖∞b
2

]
‖v′n − u′‖22 ≤ εn,

⇒ ξ̂η‖v
′ − u′‖22 = 0 (see (24)),

⇒ v = u.

So, vn → u in C1
0 (see (24)) and vn ∈ Ŝ for all n ∈ N. Therefore Ŝc = Ŝ

C1

0

. �

Remark 6. Continuing this line of work, it is interesting to know if we can have extremal
solutions for the multivalued Duffing system (that is, solutions of (1) when F (t, x) is
replaced by extF (t, x) = the extreme points of F (t, x)). If such trajectories exist, then
we would like to know if they are C1

0 -dense in those of the convex problem (strong
relaxation). Such a result is of interest in control theory in connection with the “bang-
bang principle”. Results of this kind were proved for a different class of multivalued
nonlinear second order systems, by Papageorgiou-Vetro-Vetro [13].
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