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PERIODIC SOLUTIONS FOR A CLASS OF EVOLUTION

INCLUSIONS

NIKOLAOS S. PAPAGEORGIOU, VICENŢIU D. RĂDULESCU, AND DUŠAN D. REPOVŠ

Abstract. We consider a periodic evolution inclusion defined on an evolution
triple of spaces. The inclusion involves also a subdifferential term. We prove
existence theorems for both the convex and the nonconvex problem, and we
also produce extremal trajectories. Moreover, we show that every solution of
the convex problem can be approximated uniformly by certain extremal trajec-
tories (strong relaxation). We illustrate our results by examining a nonlinear
parabolic control system.

1. Introduction

Let T = [0, b] and let (X,H,X∗) be an evolution of spaces (see Section 2). We
assume thatX is embedded compactly intoH . In this paper, we study the following
periodic evolution inclusion

(1)

{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

In this problem, A : T × X → X∗ is a map which is a measurable in t ∈ T

and monotone in x ∈ X . Also, ϕ ∈ Γ0(H) (see Section 2) and ∂ϕ(·) denotes the
subdifferential of ϕ in the sense of convex analysis. Finally, F : T ×H → 2H\{∅}
is a multivalued perturbation.

Periodic problems for evolution inclusions have been studied either with ϕ ≡
0 (see Hu & Papageorgiou [5, Section 1.5], Xue & Zheng [13]) or with A ≡ 0
(see Papageorgiou & Rădulescu [9] and Papageorgiou, Rădulescu & Repovš [10]).
In (1) both terms are present and this distinguishes the present work from the
aforementioned papers. Their methods and techniques are not applicable here. We
prove existence theorems for the “convex” problem (that is, F has convex values)
and for the “nonconvex” problem (that is, F has nonconvex values). We also prove
the existence of extremal trajectories, that is, we produce solutions which move
through the extreme points of the multivalued perturbation F (t, x). Moreover,
we show that every solution of the convex problem can be approximated in the
C(T,H)-norm by certain extremal trajectories (strong relaxation). In the final
part of this paper we illustrate our results by examining a parabolic distributed
parameter system.

Key words and phrases. Evolution triple, L-pseudomonotone map, extremal trajectories,
strong relaxation, parabolic control system, Poincaré map.
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2. Mathematical background

The tools that we use in the study of problem (1) come from multivalued analysis
and from the theory of operations of monotone type. A detailed presentation of
these theories can be found in the books of Hu & Papageorgiou [4] and Zeidler [14].

Let (Ω,Σ) be a measurable space and V a separable Banach space. Throughout
this work we will use the following notations:

Pf(c)(V ) = {C ⊆ V : C is nonempty, closed (and convex)} ,
P(w)k(c)(V ) = {C ⊆ V : C is nonempty, (w)-compact (and convex)} .

.

A multifunction (set-valued function) F : Ω → 2V \{∅} is a said to be “graph
measurable”, if

GrF = {(ω, v) ∈ Ω× V : v ∈ F (ω)} ∈ Σ⊗B(V ),

where B(V ) is the Borel σ-field of V . A multifunction G : Ω → Pf (V ) is “measur-
able”, if for all v ∈ V , the function

ω 7→ d(v, F (ω)) ≡ inf {||v − y||V : y ∈ F (ω)}

is Σ-measurable. For multifunctions with values in Pf (V ), measurability implies
graph measurability, while the converse is true if there is a σ-finite measure µ on Σ
and Σ is µ-complete.

Suppose that (Ω,Σ, µ) is a σ-finite measure space and F : Ω → 2V \{∅}. For
1 6 p 6 ∞, we define

S
p
F = {h ∈ Lp(Ω, V ) : h(ω) ∈ F (ω) µ− almost everywhere} .

A straightforward application of the Yankov-von Neumann-Aumann selection
theorem (see Theorem 2.14 in Hu & Papageorgiou [4, p. 158]), implies that

“Sp
F 6= ∅ if and only if inf{||y||V : y ∈ F (ω)} ∈ Lp(Ω).”

The set Sp
F is “decomposable” in the sense that, if (C, h1, h2) ∈ Σ × S

p
F × S

p
F

then χCh1 + χΩ\Ch2 ∈ S
p
F . Since χΩ\C = 1 − χC , decomposability formally looks

like the notion of convexity, only now the coefficients in the linear combination are
functions. In fact, decomposable sets exhibit some properties which are similar to
those of convex sets (see Hu & Papageorgiou [4, Section 2.3]).

Suppose now that Z and Y are Hausdorff topological spaces and F : Z →
2Y \{∅}. We say that F (·) is “upper semicontinuous (usc)” (resp. “lower semicon-
tinuous (lsc)”), if for all open U ⊆ Y the set F+(U) = {z ∈ Z : F (z) ⊆ U} (resp.
F−(U) = {z ∈ Z : F (z) ∩ U 6= ∅}) is open. If F (·) has closed values and is usc,
then GrF ⊆ Z × Y is closed. The converse is true if F (·) is locally compact (that

is, for every z ∈ Z, we can find a neighbourhood U of z such that F (U) ⊆ Y is
compact). Also, if Y is a metric space, then F : Z → 2Y \{∅} is lsc if and only if
for all y ∈ Y , the mapping z 7→ d(y, F (z)) = inf{d(y, v) : v ∈ F (z)} is an upper
semicontinuous R+-valued function.

Suppose that Y is a metric space. On Pf (Y ) we can define a generalized metric,
known as the “Hausdorff metric”, by

h(C,E) = sup {|d(u,C)− d(u,E)| : u ∈ Y } = max{sup
c∈C

d(C,E), sup
e∈E

d(e, C)} for all C,E ⊆ Y.

If Y is a complete metric space, then so is (Pf (Y ), h). A multifunction F : Z →
Pf (Y ) is said to be “h-continuous”, if it is continuous from Z into (Pf (Y ), h).
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Suppose that V, Y are Banach spaces and assume that V is embedded continu-
ously and densely into Y (denoted by V →֒ Y ). Then

(a) Y ∗ is embedded continuously in V ∗;
(b) if V is reflexive, then Y ∗ →֒ V ∗.

A triple of spaces (X,H,X∗) is said to be an “evolution triple”, if the following
properties hold:

(a) X is a separable, reflexive Banach space;
(b) H is a separable Hilbert space which we identify with its dual (that is,

H∗ = H);
(c) X →֒ H (hence H →֒ X∗).

By || · || (resp. | · |, || · ||∗) we denote the norm of X (resp. of H,X∗). Property
(c) above implies that

| · | 6 ĉ1|| · || and || · ||∗ 6 ĉ2| · | for some ĉ1, ĉ2 > 0.

We denote by 〈·, ·〉 the duality brackets for the pair (X∗, X) and by (·, ·) the
inner product of H . We have

〈·, ·〉|H×X = (·, ·).

Let T = [0, b] and 1 < p <∞. By p′ ∈ (1,∞) we denote the conjugate exponent

of p, that is,
1

p
+

1

p′
= 1. We define

Wp(T ) =
{

u ∈ Lp(T,X) : u′ ∈ Lp′

(T,X∗)
}

.

Here, the derivative u′ is understood in the sense of vector-valued distributions.
If u ∈Wp(T ), then if we view u(·) as an X∗-valued function, then u(·) is absolutely
continuous, hence it is differentiable almost everywhere. This derivative coincides
with the distributional one and we have

Wp(T ) ⊆ AC1,p′

(T,X∗) =W 1,p′

((0, b), X∗).

We endow Wp(T ) with the norm

||u||Wp
= ||u||Lp(T,X) + ||u′||Lp′(T,X∗) for all u ∈ Wp(T ).

Then Wp(T ) becomes a separable reflexive Banach space and we have

Wp(T ) →֒ C(T,H) and Wp(T ) →֒ Lp(T,H) compactly.

The elements of Wp(T ) satisfy the so-called “integration by parts formula”.

Proposition 1. If u, v ∈ Wp(T ) and θ(t) = (u(t), v(t)) for all t ∈ T , then θ(·) is
absolutely continuous and

dθ

dt
(t) = 〈u′(t), v(t)〉 + 〈u(t), v′(t)〉 for almost all t ∈ T.

Let V be a reflexive Banach space, L : D ⊆ V → V ∗ a linear maximal monotone
map and A : V → 2V

∗

. We say that A is “L-pseudomonotone”, if the following
conditions hold

(a) For every v ∈ V,A(v) ∈ Pwkc(V
∗).

(b) A is usc from every finite dimensional subspace of V into V ∗ furnished with
the weak topology.
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(c) If {vn}n>1 ⊆ D, vn
w
−→ v in V, L(vn)

w
−→ L(v) in V ∗, v∗n ∈ A(vn)

v∗n
w
−→ v∗ in V ∗ and lim sup

n→∞
〈v∗n, vn − v〉V 6 0, then v∗ ∈ A(v) and

〈v∗n, vn〉V → 〈v∗, v〉V (here by 〈·, ·〉V we denote the duality brackets for
the pair (V ∗, V )).

Also, we say that A(·) is “strongly coercive”, if

inf[〈v∗, v〉V : v∗ ∈ A(v)]

||v||V
→ +∞ as ||v||V → +∞.

L-pseudomonotone and strongly coercive maps exhibit remarkable surjectivity
properties. More precisely, we have the following result (see Lions [6] for A(·)
single-valued) and Papageorgiou, Papalini & Renzacci [8] (for A(·) multivalued).

Proposition 2. If V is a reflexive Banach space, L : D ⊆ V → V ∗ is linear
maximal monotone and A : V → 2V

∗

is bounded, L-pseudomonotone and strongly
coercive, then L+A is surjective (that is, R(L+A) = V ∗).

Suppose that Y is a Banach space and {Cn}n>1 ⊆ 2Y \{∅}. We define

w − lim sup
n→∞

Cn =

{

y ∈ Y : y = w − lim
k→∞

ynk
, ynk

∈ Cnk
, n1 < n2 < · · · < nk < . . .

}

,

lim inf
n→∞

Cn =
{

y ∈ Y : y = lim
n→∞

yn, yn ∈ Cn, n ∈ N

}

=
{

y ∈ Y : lim
n→∞

d(y, Cn) = 0
}

.

We denote by Γ0(Y ) the cone of all lower semicontinuous, convex proper func-
tions. So, ϕ ∈ Γ0(Y ) if ϕ : Y → R = R ∪ {+∞} is lower semicontinuous, convex
and dom ϕ = {y ∈ Y : ϕ(y) < +∞} (the effective domain of ϕ) is nonempty. By
∂ϕ(·) we denote the subdifferential in the sense of convex analysis. So,

∂ϕ(y) = {y∗ ∈ Y ∗ : 〈y∗, h〉 6 ϕ(y + h)− ϕ(y) for all h ∈ Y } .

It is well known that ∂ϕ : Y → 2Y
∗

is maximal monotone.
Given a nonempty set C ⊆ Y , we set

|C| = sup {||y||Y : y ∈ C} .

Finally, we denote by || · ||w the “weak norm” on the Lebesgue-Bochner space
L1(T, Y ), defined by

||h||w = sup

{

||

∫ t

s

h(τ)dτ ||Y : 0 6 s 6 t 6 b

}

or, equivalently,

||h||w = sup

{

||

∫ t

0

h(τ)dτ ||Y : 0 6 t 6 b

}

.

The norm is equivalent to the Petils norm on L1(T, Y ) (see Egghe [2]). By
L1
w(T, Y ) we denote the space L1(T, Y ) furnished with the weak norm.

3. The “convex” problem

In this section we prove an existence theorem for the “convex” problem, that is,
we assume that the multivalued perturbation F (t, x) is convex-valued.

We work on an evolution triple (X,H,X∗) with X →֒ H compactly. Hence
H →֒ X∗ compactly, too. We impose two sets of hypotheses on the data A(t, x)
and ∂ϕ(x).
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H(A): A : T ×X → X∗ is a map such that

(i) for all x ∈ X, t 7→ A(t, x) is measurable;
(ii) for almost all t ∈ T, x 7→ A(t, x) is demicontinuous (that is, xn → x in X

implies A(t, xn)
w
−→ A(t, x)) and

c0||x||
p 6 〈A(t, x), x〉 for almost all t ∈ T, and all x ∈ R;

(iii) ||A(t, x)||∗ 6 a1(t) + c1||x||
p−1 for almost all t ∈ T , and all x ∈ X , with

a1 ∈ Lp′

(T ) and c1 > 0.

H(ϕ): ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T,X) we

have Sp′

∂ϕ(u(·)) 6= ∅, ∂ϕ(0) ⊆ H is bounded and for all (u, h), (u′, h′) ∈ Gr ∂ϕ we

have

c0|u− u′|2 6 (h− h′, u− u′).

Alternatively, we can assume the following conditions on A and ϕ.

H(A)′: A : T ×X → X∗ is a map such that hypotheses H(A)′(i), (iii) are the
same as hypotheses H(A)(i), (iii) and

(ii) for almost all t ∈ T, x 7→ A(t, x) is demicontinuous,

c0||x||
p 6 〈A(t, x), x〉 for almost all t ∈ T, and all x ∈ X with c0 > 0,

c0||x− y||2 6 〈A(t, x) −A(t, y), x− y〉 for almost all t ∈ T, and all x, y ∈ X.

H(ϕ)′: ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T,X),

S
p′

∂ϕ(u(·)) 6= ∅ and ∂ϕ(0) ⊆ H is bounded.

The hypotheses on the multivalued perturbation F (t, x) are:

H(F )1: F : T ×H → Pfc(H) is a multifunction such that

(i) for every x ∈ H, t 7→ F (t, x) is graph measurable;
(ii) for almost all t ∈ T, GrF (t, ·) ⊆ H ×Hw is sequentially closed (by Hw we

denote the Hilbert space H furnished with the weak topology);
(iii) there exists M > 0 such that

0 6 (h, x) for almost all t ∈ T, and all |x| =M, h ∈ F (t, x),

|F (t, x)| 6 aM (t) for almost all t ∈ T, and all |x| 6M, with aM ∈ Lp′

(T ).

Alternatively, we may assume the following conditions on F (t, x):

H(F )′1: F : T×H → Pfc(H) is a multifunction such that hypothesesH(F )′1(i), (ii)
are the same as the corresponding hypotheses H(F )1(i), (ii) and

(iii) |F (t, x)| 6 k(t)[1+ |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp′

(T ).

Remark 1. Hypotheses H(F )1(i), (ii) imply that for all u ∈ L∞(T,H) the mul-
tifunction u 7→ F (t, u(t)) admits a measurable selection. Indeed, let {sn}n>1 be a
sequence of simple functions such that sn(t) → u(t) as n → ∞ and |sn(t)| 6 |u(t)|
for almost all t ∈ T , all n ∈ N. Then hypothesis H(F )1(i) and the Yankov-von
Neumann-Aumann selection theorem imply that there exists a measurable function
hn : T → H such that hn(t) ∈ F (t, sn(t)) for almost all t ∈ T and all n ∈ N. Then

{hn}n>1 ⊆ L∞(T,H) is bounded and so we may assume that hn
w
−→ h in L1(T,H).

Invoking Proposition 3.9 of Hu & Papageorgiou [4, p. 694] and using hypothesis
H(F )1(ii) we conclude that h(t) ∈ F (t, u(t)) for almost all t ∈ T . Hypothesis
H(F )1(iii) is a multivalued version of a condition due to Hartman (see [8]).
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Let x0 ∈ H and h ∈ Lp′

(T,H) and consider the following Cauchy problem:

(2)

{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T,

u(0) = x0.

}

Proposition 3. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then problem
(2) admits a unique solution u0 ∈ Wp(T ).

Proof. First we do the proof when H(A) and H(ϕ) hold.

Consider the map L : D ⊆ Lp(T,X) → Lp′

(T,X∗) defined by

L(u) = u′ for all u ∈ D = {u ∈ Wp(T ) : u(0) = x0}.

By Lemma 8.93 of Roubicek [12, p. 289] we know that L(·) is maximal monotone
and densely defined.

We introduce the map a : Lp(T,X) → Lp′

(T,X∗) and the functional Φ :
Lp(T,H) → R = R ∪ {+∞} defined by

a(u)(·) = A(·, u(·)) for all u ∈ Lp(T,X),

Φ(u) =

∫ b

0

ϕ(u(t))dt for all u ∈ Lp(T,H).

Theorem 2.35 in Hu & Papageorgiou [5, p. 41] implies that

a(·) is L-pseudomonotone.

Also, Φ ∈ Γ0(L
p(T,H)) and ∂Φ(u) = S

p′

∂ϕ(u(·)) ⊆ Lp′

(T,H) = Lp(T,H∗) for all

u ∈ Lp(T,H) (see Theorem 9.24 in Hu & Papageorgiou [4, p. 271]). Moreover,
hypothesis H(ϕ) implies that Lp(T,X) ⊆ D(∂Φ).

We claim that the multivalued map u 7→ a(u) + ∂Φ(u) is L-pseudomonotone.

Evidently, this multifunction has values in Pwkc(L
p′

(T,X∗)) and it is usc from every

finite dimensional subspace of Lp(T,X) into Lp′

(T,X∗)w (see Proposition 2.23 in
Hu & Papageorgiou [4, p. 43]). Consider two sequences {un}n>1 ⊆ Wp(T ) and

{gn}n>1 ⊆ Lp′

(T,H) such that

(3)
un

w
−→ u in Wp(T ), gn

w
−→ g in Lp′

(T,H), gn ∈ ∂Φ(un) for all n ∈ N,

lim sup
n→∞

((a(un) + gn, un − u)) 6 0

with ((·, ·)) denoting the duality brackets for the pair (Lp′

(T,X∗), Lp(T,X)). Recall

that Lp(T,X)∗ = Lp′

(T,X∗) (see Theorem 2.2.9 in Gasinski & Papageorgiou [3, p.
129]). So

((g, h)) =

∫ b

0

〈g(t), h(t)〉dt for all (g, h) ∈ Lp′

(T,X∗)× Lp(T,X).

We know that Wp(T ) →֒ Lp(T,H) compactly. Therefore we have

(4) un → u in Lp(T,H) (see (3)).

On the other hand, ∂Φ(·) is maximal monotone and so Gr ∂Φ is sequently closed

in Lp(T,H)× Lp′

(T,H)w. Then it follows from (3) and (4) that

(5) (u, g) ∈ Gr ∂Φ.
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Also, we have

((gn, un − u)) =

∫ b

0

〈gn(t), un(t)− u(t)〉dt =

∫ b

0

(gn(t), un(t)− u(t))dt → 0

as n→ ∞ (see (4)).(6)

Returning to the last convergence in (3) and using (6), we obtain

(7) lim sup
n→∞

((a(un), un − u)) 6 0.

But recall that a(·) is L-pseudomonotone. So, from (7) we infer that

(8) a(un)
w
−→ a(u) in Lp′

(T,X∗) and ((a(un), un)) → ((a(u), u)).

Then from (5), (6) and (11), we conclude that

(9) u 7→ a(u) + ∂Φ(u) is L-pseudomonotone.

For every u ∈ Lp(T,X) and every g ∈ ∂Φ(u), we have

(10) ((a(u) + g, u)) =

∫ b

0

〈A(t, u(t)), u(t)〉dt +

∫ b

0

(g(t), u(t))dt.

Hypothesis H(A)(ii) implies that

(11) c0||u||
p

Lp(T,X) 6

∫ b

0

〈A(t, u(t)), u(t)〉dt.

Also, g ∈ ∂Φ(u) implies that

g(t) ∈ ∂ϕ(u(t)) for almost all t ∈ T,

⇒ (g(t), u(t)) = (g(t)− h, u(t)) + (h, u(t)) for all h ∈ ∂ϕ(0)

> (h, u(t)) (since ∂ϕ(·) is monotone),

⇒

∫ b

0

(g(t), u(t))dt > −||u||Lp(T,H)|∂Φ(0)|

> −c1||u||Lp(T,X)|∂Φ(0)| for some c1 > 0 (recall that X →֒ H)

> −c2||u||Lp(T,X)| for some c2 > 0 (see hypothesis H(ϕ)).(12)

We return to (10) and use (11), (12). Then

((a(u) + g, u)) > c0||u||
p

Lp(T,X) − c2||u||Lp(T,X),

⇒ u 7→ a(u) + ∂Φ(u) is strongly coercive.(13)

Then (9) and (13) permit the use of Proposition 2 and so

R(L+ a+ ∂Φ) = Lp′

(T,X∗).

Therefore we can find u0 ∈Wp(T ) such that

−u′0 ∈ a(u0) + ∂Φ(u0) + h.

Next, we show that this solution is unique. To this end, suppose that v0 ∈Wp(T )
is another solution of problem (2). We have

−u′0(t) = A(t, u0(t)) + gu0(t) + h(t) for almost all t ∈ T, u0(0) = x0, gu0 ∈ ∂Φ(u0),(14)

−v′0(t) = A(t, v0(t)) + gv0(t) + h(t) for almost all t ∈ T, v0(0) = x0, gv0 ∈ ∂Φ(v0).(15)

We subtract (15) from (14) and obtain

(16) u′0(t)−v
′
0(t)+A(t, u0(t))−A(t, v0(t))+gv0(t)−gv0(t) = 0 for almost all t ∈ T.
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On (16) we act with u0(t)− v0(t) ∈ X and then integrate. Using the integration
by parts formula (see Proposition 1), the monotonicity of A(t, ·) and hypothesis
H(ϕ), we have

|u0(t)− v0(t)|
2 6 −c0

∫ t

0

|u0(s)− v0(s)|
2ds 6 0 for all t ∈ T,

⇒ u0 = v0.

This proves the uniqueness of the solution u0 ∈ Wp(T ) of problem (2).
Now suppose that hypotheses H(A)′ and H(ϕ)′ hold. The existence part of the

above proof remains unchanged. For the uniqueness part, the only change is that
now we have

|u0(t)− v0(t)|
2
6 −c0

∫ t

0

|u0(s)− v0(s)|
2ds 6 0 (see hypothesis H(A)′(ii))

⇒ u0 = v0.

The proof is now complete. �

We can introduce the Poincaré map K : H → H defined by

K(x0) = u(b),

where u ∈ Wp(T ) is the unique solution of (2) (see Proposition 3).

Proposition 4. If hypotheses H(A), H(ϕ) of H(A)′, H(ϕ′) hold, then K(·) is a
contraction.

Proof. Let x0, x̂0 ∈ H be two distinct initial conditions for problem (2) and let
u0, û ∈ Wp(T ) be the corresponding unique solutions of the Cauchy problem (2)
(see Proposition 3). We have

−u′0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h(t) for almost all t ∈ T, u0(0) = x0,(17)

−v′0(t) ∈ A(t, v0(t)) + ∂ϕ(v0(t)) + h(t) for almost all t ∈ T, v0(0) = x0.(18)

First we assume that hypotheses H(A) and H(ϕ) hold.
As before, subtracting (18) from (17) and using Proposition 1 and hypothesis

H(ϕ), we obtain

1

2

d

dt
|u0(t)− û(t)|2 6 −c0|u0(t)− û(t)|2 for almost all t ∈ T,

⇒
d

dt

[

e2c0t|u0(t)− û(t)|2
]

6 0 for almost all t ∈ T,

⇒ |u0(t)− û(t)| 6 e−2c0t|x0 − x̂| for all t ∈ T.

It follows that

|K(x0)−K(x̂)| 6 e−2c0b|x0 − x̂|,

⇒ K(·) is a contraction.

If hypotheses H(A)′ and H(ϕ)′ hold, then

1

2

d

dt
|u0(t)− û(t)|2 6 −c0||u0(t)− û(t)||2

6 −c3|u0(t)− û(t)|2 for almost all t ∈ T

and some c3 > 0 (recall that X →֒ H)
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and then continuing as above, we obtain

|K(x0)−K(x̂)| 6 e−2c3b|x0 − x̂|.

The proof is now complete. �

Given h ∈ Lp′

(T,H), we consider the following periodic problem:

(19)

{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T,

u(0) = u(b).

}

Proposition 5. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then problem
(19) has a unique solution

u0 ∈Wp(T ) ⊆ C(T,H)

and we have

(20) |u0(t)| 6 ĉ+

∫ t

0

|h(s)|ds for all t ∈ T, and some ĉ > 0.

Proof. By Proposition 4, we know that for both cases the Poincaré mapK : H → H

is a contraction. So, the Banach fixed point theorem guarantees the existence of a
unique x0 ∈ H such that

(21) K(x0) = x0.

Let u0 ∈ Wp(T ) ⊆ C(T,H) be the unique solution of (2) with u0(0) = x0 ∈ H .
From (21) it follows that this is the unique solution of (21).

Next, we establish the uniform bound in (20). We have
{

−u′(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h(t) for almost all t ∈ T,

u0(0) = u0(b).

}

The proof is common for both cases. We act with u0(t) and use Proposition 1.

Then for some g0 ∈ S
p′

∂ϕ(u0(·))
and for all η ∈ ∂ϕ(0), we have

1

2

d

dt
|u0(t)|

2 6 −c4|u0(t)|
2 − (g0(t)− η, u0(t))− (η, u0(t))− (h(t), u0(t))

for almost all t ∈ T, and some c4 > 0 (see hypothesis H(A)(ii))

6 −c4|u0(t)|
2 + [|∂ϕ(0)|+ |h(t)|]|u0(t)| for almost all t ∈ T

(since ∂ϕ(·) is monotone)

⇒ |u0(t)|
d

dt
|u0(t)| 6 −c4|u0(t)|

2 + [|∂ϕ(0)|+ |h(t)|]|u0(t)| for almost all t ∈ T,

⇒
d

dt
|u0(t)| 6 −c4|u0(t)|+ [|∂ϕ(0)|+ |h(t)|] for almost all t ∈ T,

⇒
d

dt
[ec4t|u0(t)|] 6 ec4t[|∂ϕ(0)|+ |h(t)|]

⇒ |u0(t)| 6 e−c4t|u0(0)| + e−c4t

∫ t

0

ec4s[|∂ϕ(0)|+ |h(t)|]ds

6 e−c4t|u0(0)|+ |∂ϕ(0)|b+

∫ t

0

|h(s)|ds for all t ∈ T.(22)
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If t = b, then using the periodic boundary condition, we have

ec4b−1

ec4b
|u0(0)| 6 |∂ϕ(0)|b+ ||h||L1(T,H),

⇒ |u0(0)| 6
ec4b

ec4b−1

[

|∂ϕ(0)|b+ ||h||L1(T,H)|
]

.(23)

We return to (22) and use (23). Then

|u0(t)| 6
ec4b

ec4b − 1

[

|∂ϕ(0)|b+ ||h||L1(T,H)

]

+ |∂ϕ(0)|b+

∫ t

0

|h(s)|ds

⇒ |u0(t)| 6 ĉ+

∫ t

0

|h(s)|ds for all t ∈ T, and some ĉ > 0.

The proof is now complete. �

Let M > 0 be as in hypothesis H(F )(iii) and let pM : H → H be the M -radial
retraction defined by

pM (x) =







x if |x| 6M
Mx

|x|
if M < |x|

for all x ∈ H.

We set F̂ (t, x) = F (t, pM (x)) for all (t, x) ∈ T × H . Clearly, F̂ (t, x) satisfies
hypotheses H(F ), (i), (ii) and

|F̂ (t, x)| 6 aM (t) for almost all t ∈ T, and all x ∈ H, where aM ∈ Lp′

(T )

(see hypothesis H(F ), (iii)).

In what follows, we denote by Ŝ ⊆Wp(T ) the solution set of (1) with F replaced

by F̂ , and by S ⊆Wp(T ) the solution set of (1) with the original F .
Also, we will need the following extra condition on ϕ.

H0: For all (u, h) ∈ Gr ∂ϕ, we have 0 6 (h, u).

Remark 2. Evidently, this condition is satisfied if 0 ∈ ∂ϕ(0) (hence 0 is a mini-
mizer of ϕ).

Proposition 6. (a) If hypotheses H(A), H(ϕ) or H(A′), H(ϕ)′ and H(F )1, H0

hold, then |u(t)| 6M for all t ∈ T , u ∈ Ŝ.
(b) If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )′1 hold, then there

exists M > 0 such that |u(t)| 6M for all t ∈ T , u ∈ S.

Proof. (a) Suppose that the conclusion of this part is not true. Then for some

u ∈ Ŝ one of the following assertions holds.

• |u(t)| > M for all t ∈ T .
• There exist τ, r ∈ T with τ < r such that |u(τ)| =M and |u(r)| > M .

We have

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + ĥ(t) a.e on T, u(0) = u(b)
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with ĥ ∈ S
p′

F̂ (·,u(·))
. As before, using Proposition 1 and hypotheses H(A)(iii) and

H0 we have

|u(t)|2 + c0

∫ t

0

||u(s)||2ds 6 |u(0)|2 −

∫ t

0

(ĥ(s), u(s))ds

= |u(0)|2 −

∫ t

0

u(s)

M
(ĥ(s), pM (u(s)))ds

6 |u(0)|2 (see hypothesis H(F )1(iii)),

⇒ |u(b)|2 < |u(0)|2, a contradiction.

If the second case holds, then repeating the above argument on the interval [τ, r],
we obtain

|u(r)|2 < |u(τ)|2, again a contradiction.

Therefore we conclude that

|u(t)| 6M for all t ∈ T, u ∈ Ŝ.

(b) Let u ∈ S ⊆Wp(T ). Then we have

− u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T,

u(0) = u(b),

with h ∈ S
p′

F (·,u(·)). Then form (20) of Proposition 5, we have

|u(t)| 6 ĉ+

∫ t

0

|h(s)|ds

6 ĉ+

∫ t

0

k(s)[1 + |u(s)|]ds (see hypothesis H(F )′1(iii))

⇒ |u(t)| 6 M for some M > 0, and all t ∈ T, u ∈ S (use Gronwall’s inequality).

This completes the proof. �

On account of Proposition 6, we see that we can replace F (t, x) by

F̂ (t, x) = F (t, pM (x)) for all (t, x) ∈ T ×H.

As we have already mentioned, F̂ preserves the properties of F . More precisely,
we have:

• For all x ∈ H, t 7→ F̂ (t, x) is graph measurable.

• For almost all t ∈ T, Gr F̂ (t, ·) ⊆ H ×Hw is sequentially closed.

Moreover, we have

|F̂ (t, x)| 6 η̂(t) for almost all t ∈ T, and all x ∈ H

with η̂ ∈ Lp′

(T ) (η̂ = aM if H(F )1, H0 hold and η̂ = (1 +M)k if H(F )2 holds).

Let ξ : Lp′

(T ) → C(T,H) be the solution map for problem (19). So, for every

h ∈ Lp′

(T,H), ξ(h) ∈Wp(T ) ⊆ C(T,H) is the unique solution of problem (19) (see
Proposition 5).

Proposition 7. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ hold, then ξ : Lp′

(T,H) →

C(T,H) is completely continuous (that is, if hn
w
−→ h in Lp′

(T,H), then ξ(hn) →
ξ(h) in C(T,H)).
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Proof. Suppose that hn
w
−→ h in Lp′

(T,H) and let un = ξ(hn) for all n ∈ N, u =

ξ(h). Then there exist {gn, g}n>1 ⊆ Lp′

(T,H) such that

gn(t) ∈ ∂ϕ(un(t)) for almost all t ∈ T, and all n ∈ N, and g(t) ∈ ∂ϕ(u(t))

for almost all t ∈ T.(24)

We have

u′n(t) +A(t, un(t)) + gn(t) + hn(t) = 0, for almost all t ∈ T, and all n ∈ N,

un(0) = un(b).(25)

u′(t) +A(t, u(t)) + g(t) + h(t) = 0 for almost all t ∈ T, u(0) = u(b).(26)

On (25) we act with un(t). Using Proposition 1 (the integration by parts formula)
and hypothesis H(A)(ii) or H(A)′(ii) we obtain

1

2

d

dt
|un(t)|

2 + c0||un(t)||
p + (gn(t), un(t)) + (hn(t), un(t)) = 0 for almost all t ∈ T,

Integrating over T and using the periodic boundary condition, we have

c0||un||
p

Lp(T,X) +

∫ b

0

(gn(t)− v∗, un(t))dt+

∫ b

0

(v∗, un(t))dt 6 c5||un||Lp(T,X)

for some c5 > 0, and all n ∈ N with v∗ ∈ ∂ϕ(0).

Hypothesis H(ϕ) or H(ϕ)′ implies that

c0||un||
p

Lp(T,X) 6 c6||un||Lp(T,X) for some c6 > 0, and all n ∈ N,

⇒ {un}n>1 ⊆ Lp(T,X) is bounded.(27)

Recall that ∂ϕ(·) is bounded (see hypothesis H(ϕ) and [4]). Hence, if M > 0 is
as in Proposition 6 and BM = {x ∈ H : |x| 6M}, then

∂ϕ(BM ) ⊆ H is bounded.

So, we can find M1 > 0 such that

(28) |∂ϕ(un(t))| 6M1 for all n ∈ N, t ∈ T.

From (25), (27), (28) and hypothesis H(A)(iii) it follows that

(29) ||u′n||Lp′(T,X∗) 6M2 for some M2 > 0, and all n ∈ N.

From (27) and (29) we infer that

(30) {un}n>1 ⊆Wp(T ) is bounded.

So by passing to a suitable subsequence if necessary, we may assume that

un → û in Lp(T,H) and un
w
−→ û in C(T,H)(31)

(recall that Wp(T ) →֒ Lp(T,H) compactly, Wp(T ) →֒ C(T,H) and see (30)).

Let ǫm → 0+ be such that for all m ∈ N, un(ǫm) → û(ǫm) in H as n → ∞ (see
the first convergence in (31)). As before, using (25), (26) and Proposition 1 (the
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integration by parts formula), we have for all n, m ∈ N and all t ∈ [ǫm, b]

|un(t)− u(t)|2 6 |un(ǫm)− u(ǫm)|2 +

∫ t

ǫm

〈A(s, un(s))−A(s, u(s)), u(s)− un(s)〉ds

+

∫ t

ǫm

(gn(s)− g(s), u(s)− un(s))ds+

∫ t

ǫm

(hn(s)− h(s), u(s)− un(s))ds

6 |un(ǫm)− u(ǫm)|2 − c7

∫ t

ǫm

|un(s)− u(s)|2ds+(32)

∫ t

ǫm

(hn(s)− h(s), u(s)− un(s))ds for some c7 > 0, and all n ∈ N.

To derive (32) if H(A) and H(ϕ) hold, we have used H(A)(ii), the monotonicity
of ∂ϕ(·) and the fact that X →֒ H , while if H(A)′, H(ϕ)′ hold, we have used the
strong monotonicity of ∂ϕ(·) and the monotonicity of A(t, ·).

In (32) we pass to the limit as n→ ∞ and obtain

|û(t)− u(t)|2 6 |û(ǫm)− u(ǫm)|2 − c7

∫ t

ǫm

|û(s)− u(s)|2ds for all m ∈ N

(see (31) and recall that un(ǫm) → û(ǫm) in H for all m ∈ N and 2 6 p).

Finally, letting m→ ∞ we get

|û(t)− u(t)|2 6 |û(0)− u(0)|2 − c7

∫ t

0

|û(s)− u(s)|2ds for all t ∈ T.

Choosing t = b and recalling that û(0) = û(b), u(0) = u(b), we have

0 6 −c7

∫ b

0

|û(s)− u(s)|2ds 6 0

⇒ û = u.

It follows from (32) that

||un − u||C(T,H) → 0 as n→ ∞.

Hence for the original sequence we have

un = ξ(hn) → ξ(h) = u in C(T,H) as n→ ∞,

⇒ ξ : Lp′

(T,H) → C(T,H) is completely continuous.

The proof is complete. �

As we have already indicated by replacing F by F̂ if necessary, we may assume
that

|F (t, x)| 6 η̂(t) for almost all t ∈ T, and all x ∈ H with η̂ ∈ Lp′

(T ).

Based on this, we introduce the following set

W = {h ∈ Lp′

(T,H) : |h(t)| 6 η̂(t) for almost all t ∈ T }.

From the Eberlein-Smulian theorem we know thatW ⊆ Lp′

(T,H) is sequentially
weakly compact. Therefore, using Proposition 7, we conclude that

(33) E = ξ(W ) ⊆ C(T,H) is compact.

Now we are ready for our first existence theorem for the “convex” problem (that
is, the multivalued perturbation F (t, x) is convex-valued).
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Theorem 8. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )1, H0 or H(F )′1
hold, then problem (1) admits a solution û ∈Wp(T ).

Proof. We furnishW ⊆ Lp′

(T,H) with the relative weak topology and consider the
multifunction H :W → Pkc(W ) defined by

H(h) = S
p′

F (·,ξ(h)(·)).

Let {(hn, gn)}n>1 ⊆ GrH and assume that

hn
w
→ h, gn

w
→ g in Lp′

(T,H) as n→ ∞.(34)

Then (34) and Proposition 7 imply that

(35) ξ(hn) → ξ(h) in C(T,H) as n→ ∞.

Invoking Proposition 3.9 of Hu & Papageorgiou [4, p. 694], we have

g(t) ∈ convw − lim sup
n→∞

F (t, ξ(hn)(t))

⊆ F (t, ξ(h)(t)) for almost all t ∈ T

(see (35) and hypothesis H(F )1(ii) = H(F )′1(ii))

⇒ (h, g) ∈ GrH,

⇒ H(·) is usc (see Proposition 2.23 of Hu & Papageorgiou [4, p. 43]).

By the Kakutani-Ky Fan fixed point theorem (see Theorem 2.6.7 in Papageor-
giou, Kyritsi & Yiallourou [7, p. 114]), H(·) admits a fixed point. So, there exists
h0 ∈W such that

h0 ∈ H(g0),

⇒ h0 ∈ S
p′

F (·),ξ(h0)(·)
.

Let u0 = ξ(h0) ∈ Wp(T ). Then

−u′0(t) ∈ A(t, u0(t)) + ∂ϕ(u0(t)) + h0(t) for almost all t ∈ T, u0(0) = u0(b),

⇒ u0 ∈Wp(T ) is a solution of problem (1).

The proof of Theorem 8 is complete. �

The above existence theorem was proved under the assumption that at least one
of A(t, ·) and ∂ϕ(·) is strongly monotone (see hypotheses H(A)′ and H(ϕ)). Next,
we remove this requirement.

So, the new hypotheses on A(t, x) and ∂ϕ(x) are the following:

H(A)1 : A : T ×X → X∗ is a map such that

(i) for all x ∈ X, t 7→ A(t, x) is measurable;
(ii) for almost all t ∈ T, x 7→ A(t, x) is demicontinuous and

c0||x||
p 6 〈A(t, x), x〉 for almost all t ∈ T, all x ∈ X ;

(iii) ||A(t, x), x||∗ 6 a1(t) + c1||x||
p−1 for almost all t ∈ T , and all x ∈ X with

a1 ∈ Lp′

(T ), c1 > 0.

H(ϕ)1 : ϕ ∈ Γ0(H) is bounded above on bounded sets, for all u ∈ Lp(T,X) we

have Sp′

∂ϕ(u(·)) 6= ∅ and ∂ϕ(0) ⊆ H is bounded.

By the Troyanski renorming theorem (see Gasinski-Papageorgiou [3, p. 911])
we may assume without any loss of generality that both X and X∗ are locally
uniformly convex.
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Let F : X → X∗ be the duality map defined by

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ||x||2 = ||x∗||2∗}.

The local uniform convexity of X and X∗ implies that F(·) is single-valued,
bounded, monotone, bicontinuous bijection (hence maximal monotone, too), coer-
cive and F−1 is the duality map of X∗ (see Gasinski & Papageorgiou [3] and Zeidler
[14]).

Note that, if ψ(x) =
1

2
||x||2 for all x ∈ X , then

F(x) = ∂ψ(x) (see [3, p. 132])

and so by Rockafellar & Wets [11, p. 565] we have

F(·) is strongly monotone.

Using this observation we can prove the following existence theorem.

Theorem 9. If hypotheses H(A)1, H(ϕ)1 and H(F )1, H0 or H(ξ)′1 hold, then
problem (1) admits a solution û ∈Wp(T ).

Proof. Let ǫn → 0+ and consider the following approximating evolution inclusion
{

−u′(t) ∈ A(t, u(t)) + ǫnF(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

Note that for every n ∈ N the mapping x 7→ A(t, x)+ ǫnF(x) satisfies the strong
monotonicity condition in hypothesis H(A)(ii). So, by Theorem 8 we can find a
solution un ∈Wp(T ) (n ∈ N) for the periodic problem. We have {un}n>1 ⊆ E and
so

{un}n>1 ⊆ C(T,H) is relatively compact.

Also, since |un(t)| 6M for all t ∈ T , n ∈ N, it follows that

{un}n>1 ⊆Wp(T ) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

un
w
→ û in Wp(T ) and un → û in C(T,H).

Then as in the proofs of Proposition 3 and 7, taking the limit as n → ∞, we
have

{

−û′(t) ∈ A(t, û(t)) + ∂ϕ(û(t)) + F (t, û(t)) for almost all t ∈ T,

û(0) = û(b),

}

which shows that û ∈Wp(T ) is a solution of (1). �

Let Ŝc ⊆ Wp(T ) ⊆ C(T,H) denote the solution set of “convex” problem. Then
we have the following property.

Theorem 10. If hypotheses H(A)1, H(ϕ)1 and H(F )1, H0 or H(F )′1 hold, then

Ŝc ∈ Pk(C(t,H)).
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4. The “nonconvex” problem

In this section we consider problem (1) when the multivalued perturbation F (t, x)
has nonconvex values.

Now, the hypotheses on F (t, x) are the following:
H(F )2 : F : T ×H → Pf (H) is a multifunction such that

(i) the mapping (t, x) 7→ F (t, x) is graph measurable;
(ii) for almost all t ∈ T, x 7→ F (t, x) is lsc;
(iii) there exists M > 0 such that

0 6 (h, x) for almost all t ∈ T, and all |x| =M, h ∈ F (t, x),

|F (t, x)| 6 aM (t) for almost all t ∈ T, and all |x| 6M, with aM ∈ Lp′

(T ).

Alternatively, we can assume the following:

H(F )′2 : F : T×H → Pf (H) is a multifunction such that hypothesesH(F )′2(i), (ii)
are the same as the corresponding hypotheses H(F )2(i), (ii) and

(iii) |F (t, x)| 6 k(t)[1+ |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp′

(T ).

Following the approach of the previous section, we first consider problem (1)
under the strong monotonicity conditions.

Theorem 11. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )2, H0 or
H(F )′2 hold, then problem (1) admits a solution û ∈ Wp(T ).

Proof. Clearly, Proposition 6 can also be applied here. So, by replacing F (t, x)

with F̂ (t, x), we may assume that

(36) |F (t, x)| 6 η̂(t) for almost all t ∈ T, and all x ∈ H, with η̂ ∈ Lp′

(T ).

As before, we introduce the set

W = {h ∈ Lp′

(T,H) : |h(t)| 6 η̂(t) for almost all t ∈ T }.

On account of Proposition 7, we have

ξ = ξ(W ) ∈ Pk(C(T,H)).

Let E∗ = convE ∈ Pkc(C(T,H)) and consider the multifunction H : E∗ →

Pwk(L
p′

(T,H)) defined by

H(u) = S
p′

F (·,u(·)) for all u ∈ E∗ (see (36)).

We claim that H(·) is lsc. According to Proposition 2.6 of Hu & Papageorgiou
[4, p. 37], to show the lower semicontinuity of H(·), it suffices to prove that

if un → u in C(T,H), then H(u) 6 lim inf
n→∞

H(un).

Let h ∈ V (u) and for every n ∈ N consider the multifunction Gn : T → Pwk(H)
defined by

Gn(t) =

{

v ∈ F (t, un(t)) : |h(t)− v| 6 d(h(t), F (t, un(t))) +
1

n

}

.

Hypothesis H(F )2(i) implies that the mapping t 7→ F (t, un(t)) is measurable for
every n ∈ N. It follows that

GrGn ∈ LT ⊗B(H),
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with LT being the Lebesgue σ-field of T and B(H) the Borel σ-field of H . Invoking
the Yankov-von Neumann-Aumann selection theorem, we can find a measurable
function hn : T → H such that

hn(t) ∈ Gn(t) for almost t ∈ T,

⇒ |h(t)− hn(t)| 6 d(h(t), F (t, un(t))) +
1

n
for almost all t ∈ T, and all n ∈ N,

⇒ lim sup
n→∞

|h(t)− hn(t)| 6 lim sup
n→∞

d(h(t), F (t, un(t)))

6 d(h(t), lim inf
n→∞

F (t, un(t)))

(see Proposition 1.47 in Hu & Papageorgiou [4, p. 672])

6 d(h(t), F (t, u(t))) for almost all t ∈ T,

(see (??) and hypothesis H(F )2(ii)),

⇒ hn(t) → h(t) in H for almost all t ∈ T,

⇒ hn → h in Lp′

(T,H) and hn ∈ H(un) = S
p′

F (·,un(·))
for all n ∈ N,

⇒ H(·) is lsc.

Also, H(·) has decomposable values. So, we can apply the Bressan-Colombo

selection theorem [1] and find a continuous map v : E∗ → Lp′

(T,H) such that

v(u) ∈ H(u) for all u ∈ E∗.

We define τ = ξ ◦ v : E∗ → E∗. This is a continuous map (see Proposition 7).
Invoking the Schauder fixed point theorem, we can find û ∈ E∗ such that

û = τ(û).

From the definition of H(·) we see that û ∈Wp(T ) is a solution of the nonconvex
problem. The proof is now complete. �

Since we have the result for the strongly monotone case, we can now pass to the
general setting.

Theorem 12. If hypotheses H(A)1, H(ϕ)1 and H(F )2, H0 or H(F )′2 hold, then
problem (1) admits a solution û ∈Wp(T ).

Proof. Let ǫn → 0+ and consider the approximate problem
{

−u′(t) ∈ A(t, u(t)) + ǫnF(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

This problem satisfies the conditions of Theorem 11 and we obtain a solution
un ∈ Wp(T ) for all n ∈ N. From the proof of Theorem 11, we know that {un}n>1 ⊆
E∗. Hence {un}n>1 ⊆ Wp(T ) is bounded and given the compactness of E∗ ⊆
C(T,H), we may assume that

un
w
→ û in Wp(T ) and un → û in C(T,H).

We have that

un = (ξn ◦ v)(un) for all n ∈ N

with ξn(·) being the solution map for the approximate problem (see Proposition
7) and v(·) is the continuous selection of the multifunction H(·) (see the proof of
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Theorem 11). We have
{

−u′n(t) = A(t, un(t)) + ǫnF(un(t)) + gn(t) + v(un)(t) for almost all t ∈ T,

un(0) = un(b)

}

with gn ∈ ∂Φ(un), n ∈ N. Since ∂φ(·) maps bounded sets to bounded sets we may
assume that

gn
w
→ g in Lp′

(T,H) and g ∈ ∂Φ(u)

(since ∂Φ(·) is maximal monotone). As in the proof of Proposition 3, using the
L-pseudomonotonicity of a(·), in the limit as n→ ∞, we obtain

{

−u′(t) = A(t, u(t)) + g(t) + v(u)(t) almost everywhere on T,
u(0) = u(b).

}

We conclude that u ∈ Wp(T ) is a solution of the nonconvex problem. �

5. Extremal trajectories

In this section we establish the existence of extremal periodic trajectories for
problem (1), that is, solutions which move through the extreme points of the mul-
tivalued perturbation F (t, x). We know that even if F (t, ·) is regular, the multi-
function x 7→ extF (t, x) assigning the extreme points of F (t, x), need not have any
continuity properties (see Hu & Papageorgiou [4, Section 2.4]).

In this section, the problem under consideration is the following:
{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + extF (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

(37)

To be able to solve (37), we need to strengthen the conditions on the multifunc-
tion F (t, x) :

H(F )3 : F : T ×H → Pfc(H) is a multifunction such that

(i) for all x ∈ H, t 7→ F (t, x) is graph measurable;
(ii) for all t ∈ T, F (t, ·) is h-continuous;
(iii) there exists M > 0 such that

0 6 (h, x) for almost all t ∈ T, and all |x| =M, h ∈ F (t, x),

|F (t, x)| 6 aM (t) for almost all t ∈ T, and all |x| 6M, with aM ∈ Lp′

(T ).

Alternatively, we can assume the following:

H(F )′3 : F : T×H → Pfc(H) is a multifunction such that hypothesesH(F )′3(i), (ii)
are the same as the corresponding hypotheses H(F )3(i), (ii) and

(iii) |F (t, x)| 6 k(t)[1+ |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp′

(T )

Again, we first deal with problem (37) under the strong monotonicity conditions
on the data.

Theorem 13. If hypotheses H(A), H(ϕ) or H(A)′, H(ϕ)′ and H(F )3, H0 or
H(F )′3 hold, then problem (37) admits a solution û ∈Wp(T ).

Proof. The a priori bounds from Proposition 6, allow us to replace F (t, x) by

F̂ (t, x) = F (t, pM (x)). So, without any loss of generality, we may assume that

(38) |F (t, x)| 6 η̂(t) for almost all t ∈ T, and all x ∈ H, with η̂ ∈ Lp′

(T ).

As before, we introduce the set

W = {h ∈ Lp′

(T,H) : |h(t)| 6 η̂(t) for almost all t ∈ T }
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and we define

E∗ = conv ξ(W ) ∈ Pkc(C(T,H)).

Theorem 8.31 of Hu & Papageorgiou [4, p. 260] implies that there exists a
continuous map γ : E∗ → L1

w(T,H) such that

γ(u) ∈ extSp′

F (·,u(·)) = S
p′

extF (·,u(·)) for all u ∈ E∗(39)

(see Hu & Papageorgiou [4, Theorem 4.5, p. 191]).

We consider the map σ = ξ ◦ γ : E∗ → E∗ (see (38)). Suppose that un → u in
E∗. Then γ(un) → γ(u) in L1

w(T,H). Invoking Lemma 2.8 of Hu & Papageorgiou

[5, p. 24], we have γ(un)
w
→ γ(u) in Lp′

(T,H). Then by Proposition 7, we have

σ(un) = ξ(γ(un)) → ξ(γ(u)) = σ(u) in C(T,H),

⇒ σ : E∗ → E∗ is continuous.

Since E∗ ∈ Pkc(C(T,H)), we can apply the Schauder fixed point theorem and
find û ∈ E∗ such that

û = σ(û),

⇒ û ∈Wp(T ) is a solution of problem (37) (see (39)).

The proof of Theorem 13 is complete. �

Next, we remove the strong monotonicity condition.

Theorem 14. If hypotheses H(A)1, H(ϕ)1 and H(F )3, H0 or H(F )′3 hold, then
problem (37) admits a solution û ∈Wp(T ).

Proof. Again we choose ǫn → 0+ and consider the approximate problems
{

−u′(t) ∈ A(t, u(t)) + ǫnF(u(t)) + ∂ϕ(u(t)) + extF (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

This problem satisfies the strong monotonicity condition and so Theorem 13 can
be applied to produce a solution un ∈Wp(T ) for all n ∈ N. We have

{un}n>1 ⊆ E∗ and un = (ξ ◦ γ)(un) for all n ∈ N.

Therefore {un}n>1 is bounded in Wp(T ) and relatively compact in C(T,H). So,
we may assume that

un
w
→ û in Wp(T ) and un → û in C(T,H) as n→ ∞.

We have

γ(un) → γ(û) in L1
w(T,H),

⇒ γ(un)
w
→ γ(û) in Lp′

(T,H)

(see Hu & Papageorgiou [5, Lemma 2.8, p. 24] and (38)).

We know that for every n ∈ N

−u′n(t) ∈ A(t, un(t)) + ǫnF(un(t)) + gn(t) + γ(un)(t) for almost all t ∈ T,

un(0) = un(b)

with gn ∈ ∂Φ(un), n ∈ N. Since ∂ϕ(·) maps bounded sets to bounded sets and it
is maximal monotone, we have (at least for a subsequence)

gn
w
→ g in Lp′

(T,H) and g ∈ ∂Φ(û).
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Passing to the limit as n→ ∞ in the evolution equation and using the L-pseudo-
monotonicity of a(·), as before, we obtain

−û′(t) ∈ A(t, û(t)) + g(t) + γ(û)(t) for almost all t ∈ T,

u(0) = u(b),

⇒ û ∈ Wp(T ) is a solution of (37).

This completes the proof of Theorem 14. �

6. Strong relaxation

In this section we show that every solution of the convex problem can be ap-
proximated in the C(T,H)-norm topology by certain extremal trajectories. Such
a result is known as “strong relaxation” and is important for many applications.
For example, in control theory it is related to the so-called “bang-bang principle”.
In this context the result says that any state of the control system can be approx-
imated by states which are generated by bang-bang controls. So, in the operation
of the system, we can economize in the use of control functions.

To prove such an approximation result, we need to strengthen the conditions on
the multivalued perturbation F (t, x). So, the hypotheses are the following:

H(F )4 : F : T ×X → Pwkc(H) is a multifunction such that

(i) for all x ∈ H, t 7→ F (t, x) is graph measurable;
(ii) h(F (t, x), F (t, y)) 6 l(t)|x − y| for almost all t ∈ T , and all x, y ∈ H , with

l ∈ L1(T );
(iii) there exists M > 0 such that

0 6 (h, x) for almost all t ∈ T, and all |x| =M, h ∈ F (t, x),

|F (t, x)| 6 aM (t) for almost all t ∈ T, and all |x| 6M, with aM ∈ Lp′

(T ).

Alternatively, we can impose the following conditions on F (t, x).
H(F )′1 : F : T×H → Pwkc(H) is a multifunction such that hypothesesH(F )′4(i), (ii)

are the same as the corresponding hypotheses H(F )4(i), (ii) and

(iii) |F (t, x)| 6 k(t)[1+ |x|] for almost all t ∈ T , and all x ∈ H , with k ∈ Lp′

(T ).

In what follows, we denote by Ŝc ⊆ Wp(T ) the solution set of problem (1) with

the multivalued perturbation F (t, x) being convex-valued. Suppose u ∈ Ŝc. Then

by Ŝe(u(0)) we denote the solution set of the following Cauchy problem

−v′(t) ∈ A(t, v(t)) + ∂ϕ(v(t)) + extF (t, v(t)) for almost all t ∈ T, v(0) = u(0).

Reasoning as in the proof of Theorem 13, we show that Ŝe(u(0)) ⊆ Wp(T ) is
nonempty.

Theorem 15. If hypotheses H(A)1, H(ϕ)1 and H(F )4, H0 or H(F )′4 hold and

u ∈ Ŝc, then we can find {un}n>1 ⊆ Ŝe(u(0)) such that un → u in C(T,H).

Proof. As before, as a result of the a priori bounds established in Proposition 6,
we may assume without any loss of generality that

(40) |F (t, x)| 6 η̂(t) for almost all t ∈ T, and all x ∈ H, with η̂ ∈ Lp′

(T ).

Since u ∈ Ŝc, there exists h ∈ S
p′

F (·,u(·)) such that
{

−u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + h(t) for almost all t ∈ T,

u(0) = u(b).

}
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Again, we introduce the following two sets

W = {h ∈ Lp′

(T,H) : |h(t)| 6 η̂(t) for almost all t ∈ T },

E∗ = conv ξ(W ) ∈ Pkc(C(T,H)).

Given v ∈ E∗ and ǫ > 0, we consider the multifunction Γv,ǫ : T → 2H\{∅}
defined by

Γv,ǫ(t) =
{

y ∈ F (t, v(t)) : |h(t)− y| <
ǫ

2Mb
+ d(h(t), F (t, v(t)))

}

.

Here,M > 0 is the a priori bound from Proposition 6. Hypotheses H(F )4(i), (ii)
imply that the mapping t 7→ F (t, v(t)) is measurable. It follows that t 7→ Γv,ǫ(t)
is graph measurable and by invoking the Yankov-von Neumann-Aumann selection

theorem, we can find a measurable function ĥv,ǫ : T → H such that

ĥv,ǫ(t) ∈ Γv,ǫ(t) for almost all t ∈ T,

⇒ ĥv,ǫ ∈ Lp′

(T,H) (see (40)).(41)

Therefore, if we introduce the multifunction Ĥǫ : E∗ → 2L
p′(T,H) defined by

Ĥǫ(v) = S
p′

Γv,ǫ
,

then from (41) we see that Ĥǫ(v) 6= ∅ for all v ∈ E∗. In addition, Lemma 8.3 of Hu
& Papageorgiou [4, p. 239] implies that

v → Ĥǫ(v) is lsc,

⇒ v → Ĥǫ

|·|

(v) is lsc

(see Hu & Papageorgiou [4, Proposition 2.38, p. 50]).

Moreover, v 7→ Ĥǫ

|·|

(v) has decomposable values. So, using the Bressan-Colombo

[1] selection theorem, we produce a continuous map γǫ : E∗ → Lp′

(T,H) such that

γǫ(v) ∈ Ĥǫ

|·|

(v) for all v ∈ E∗.

Then Theorem 8.31 of Hu & Papageorgiou [4, p. 260] gives a continuous map
βǫ : E∗ → L1

w(T,H) such that

(42) βǫ(v) ∈ extSp′

F (·,v(·)) = S
p′

extF (·,v(·)) and ||βǫ(v)− γǫ(v)||w < ǫ for all v ∈ E∗.

Now let ǫn =
1

n
, γn = γǫn , βn = βǫn for all n ∈ N and u0 = u(0) = u(b). We

cosider the following Cauchy problem

(43) − u′(t) ∈ A(t, u(t)) + ∂ϕ(u(t)) + βn(u(t)) for almost all t ∈ T, u(0) = u0.

Let un ∈ Wp(T ) be a solution of (42). It is clear that {un}n>1 ⊆ Ŝe(u0).
Therefore {un}n>1 ⊆ C(T,H) is relatively compact. Also, directly from (43) we
see that {un}n>1 ⊆Wp(T ) is bounded. So, we may assume that

(44) un
w
→ û in Wp(T ) and un → û in C(T,H) as n→ ∞.
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From (32) (with ǫm = 0) and since un(0) = u0 = u(0) for all n ∈ N, we have

|un(t)− u(t)|2 6

∫ t

0

(βn(un)(s)− h(s), un(s)− u(s))ds

6

∫ t

0

(βn(un)(s)− γn(un)(s), un(s)− u(s))ds

+

∫ t

0

|γn(un)(s)− h(s)| · |un(s)− u(s)|ds

6

∫ t

0

(βn(un)(s)− γn(un)(s), un(s)− u(s))ds

+

∫ t

0

[

1

2Mbn
+ d(h(s), F (s, un(s)))

]

|un(s)− u(s)|ds

6

∫ t

0

(βn(un)(s)− γn(un)(s), un(s)− u(s))ds

+
1

n
+

∫ t

0

h(F (s, u(s)), F (s, un(s)))|un(s)− u(s)|ds

6

∫ t

0

(βn(un)(s)− γn(un)(s), un(s)− u(s))ds+ ǫ+

∫ t

0

l(s)|un(s)− u(s)|2ds.(45)

By (42) and Lemma 2.8 of Hu & Papageorgiou [5, p. 24], we have

βn(un)− γn(un)
w
→ 0 in Lp′

(T,H) as n→ ∞,

⇒

∫ b

0

(βn(un)(s)− γn(un)(s), un(s)− u(s))ds → 0 as n→ ∞ (see (44)).(46)

Therefore, if in (45) we pass to the limit as n→ ∞ and use (44) and (46), then

|û(t)− u(t)|2 6

∫ t

0

l(s)|û(s)− u(s)|2ds,

⇒ û = u (by Gronwall’s inequality).

Hence u = lim
n→∞

un in C(T,H) with un ∈ Ŝe(u(0)) for all n ∈ N. �

7. Examples

In this section we illustrate the previous results, by considering parabolic dis-
tributed parameter control systems.

Let T = [0, b] and assume that Ω ⊆ R
N is a bounded domain with Lipschitz

boundary ∂Ω. We consider the following nonlinear control system










∂u

∂t
−∆pu+ β(u) ∋ f0(t, z, u) + (k(t, z), v(t, z))RN in (0, b)× Ω,

u(t, ·)|∂Ω = 0 for all t ∈ (0, b), u(0, ·) = u(b, ·) in Ω,
v(t, z) ∈ K(t, z) for almost all (t, z) ∈ T × Ω.











(47)

In this problem, ∆p (2 6 p < ∞) denotes the p-Laplacian differential operator
defined by

∆pu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω).
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The nonlinearity f0 : T × Ω× R → R is a Carathéodory function, that is,

• for all x ∈ R, the mapping (t, z) 7→ f0(t, z, x) is measurable;
• for almost all (t, z) ∈ T × Ω, x 7→ f0(t, z, x) is continuous;
• |f0(t, z, x)| 6 k0(t, z)(1 + |x|) for almost all (t, z) ∈ T × Ω, and all x ∈ R,
with k0 ∈ L2(T × Ω).

Also, β : R → 2R is a maximal monotone map. Then

β = ∂j with j ∈ Γ0(R)

(see Corollary 3.2.40 of Papageorgiou & Kyritsi Yiallourou [7, p. 176]). We set

ϕ(u) =







∫

Ω

j(u(z))dz if j(u(·)) ∈ L1(Ω)

+∞ otherwise
for all u ∈ L2(Ω).

We know that ϕ ∈ Γ(L2(Ω)) and

y ∈ ∂ϕ(u) if and only if y(z) ∈ ∂j(u(z)) = β(u(z)) for almost all z ∈ Ω

(see Hu & Papageorgiou [4]). We assume that if B ⊆ L2(Ω) is bounded, then
∫

Ω

j(u(z))dz 6 M for all u ∈ B, some M > 0, and for every u ∈ Lp(T,W 1,p
0 (Ω)),

the multifunction (t, z) 7→ β(u(t, z)) has a selection in the space Lp′

(T, L2(Ω)).
Since p > 2, this is satisfied if (t, z) 7→ β(u(t, z)) admits a selection in L2(T × Ω).

The function v ∈ L2(T × Ω), v : T × Ω → R
m is the control function and

K(t, z) ⊆ R
m is the control constant set. We assume that the multifunction K :

T × Ω → Pkc(R
m) is graph measurable and |K(t, z)| 6 M̂ for some M̂ > 0 and for

almost all (t, z) ∈ T × Ω.
We formulate problem (47) in the form of an abstract evolution inclusion as (1).

The evolution triple consists of the following spaces

X =W
1,p
0 (Ω), H = L2(Ω), X∗ =W−1,p′

(Ω)

(

1

p
+

1

p′
= 1

)

.

The Sobolev embedding theorem implies that X →֒ H compactly. Let A : X →
X∗ be the nonlinear map defined by

〈A(u), h〉 =

∫

Ω

|Du|p−2(Du,Dh)RNdz.

Evidently, A(·) is continuous, strictly monotone, hence maximal monotone, too.
Also, we have

〈A(u), u〉 = ||Du||pp = ||u||p (by the Poincaré inequality)

and 〈A(u), h〉 6 ||u||p−1||h||p for all h ∈ W
1,p
0 (Ω) (by Hölder’s inequality).

So, hypotheses H(A)1 are satisfied.
Let f : T ×H → H be the Nemitsky map corresponding to the function f0, that

is,
f(t, u)(·) = f0(t, ·, u(·)) for all u ∈ H = L2(Ω).

We introduce the multifunction G : T → Pwkc(L
2(Ω)) defined by

G(t) = {(k(t, ·), v(·))Rm : v ∈ S2
K(t,·)}.

Then G(·) is measurable and |G(·)| ∈ L2(T ). We set

F (t, u) = f(t, u) +G(t) for all (t, u) ∈ T × L2(Ω).
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It follows that this multifunction satisfies hypotheses H(F )′1. Then problem (47)
is equivalent to the following nonlinear evolution inclusion

{

−u′(t) ∈ A(u(t)) + ∂ϕ(u(t)) + F (t, u(t)) for almost all t ∈ T,

u(0) = u(b).

}

By Theorem 9, this problem has a solution u ∈ Lp(T,W 1,p
0 (Ω)) such that

∂u

∂t
∈ Lp′

(T,W−1,p′

(Ω)).

In fact, the set of solutions is compact in C(T, L2(Ω)) (see Theorem 10). More-
over, if we assume that

|f0(t, z, x)−f0(t, z, y)| 6 l0(t, z)|x−y| for almost all (t, z) ∈ T×Ω, and all x, y ∈ R,

then by the strong relaxation theorem (see Theorem 15), given any solution u of
the convex problem, we can find a solution û which is generated by a bang-bang
control v(t, z) ∈ extV (t, z) for almost all (t, z) ∈ T × Ω such that

sup
t∈T

|u(t, ·)− û(t, ·)|L2(Ω) < ǫ, ǫ > 0

In a similar way, we can also deal with the following control system










∂u

∂t
−∆pu−∆u = f0(t, z, u) + (k(t, z), v(t, z))Rm in (0, b)× Ω,

0 ∈ β(u(t, z)) for all (t, z) ∈ T × ∂Ω,
u(0, z) = u(b, z) for almost all z ∈ Ω, v(t, z) ∈ K(t, z) almost everywhere in T × Ω.











Note that in this case hypothesis H(A) is satisfied.
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