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A NEW PERSPECTIVE ON THE POWERS OF TWO DESCENT
FOR DISCRETE LOGARITHMS IN FINITE FIELDS

THORSTEN KLEINJUNG AND BENJAMIN WESOLOWSKI

ABSTRACT. A new proof is given for the correctness of the powers of two de-
scent method for computing discrete logarithms. The result is slightly stronger
than the original work, but more importantly we provide a unified geometric
argument, eliminating the need to analyse all possible subgroups of PGL2(Fy).
Our approach sheds new light on the role of PGL32, in the hope to eventually
lead to a complete proof that discrete logarithms can be computed in quasi-
polynomial time in finite fields of fixed characteristic.

1. INTRODUCTION

In this paper we prove the following result.

Theorem 1.1. Given a prime power q, a positive integer d, coprime polynomials
ho and hy in Falx] of degree at most two, and an irreducible degree € factor I of
hix9 — hg, the discrete logarithm problem in Fac = F alz]/(I) can be solved in

expected time ¢'o82 ¢+0O(d),

It was originally proven in [GKZI8] when ¢ > 61, ¢ is not a power of 4, and
d > 18. Even though we eliminate these technical conditions, the main contribution
is the new approach to the proof. The theorem represents the state of the art of
provable quasi-polynomial time algorithms for the discrete logarithm problem (or
DLP) in finite fields of fixed characteristic. The obstacle separating Theorem [I.1]
from a full provable algorithm for DLP is the question of the existence of a good
field representation: polynomials hg, hy and I for a small d. A direction towards
a full provable algorithm would be to find analogues of this theorem for other field
representations, but this may require in the first place a good understanding of why
Theorem [[1]is true.

The integers ¢, d and ¢, and the polynomials hg,h; and I are defined as in
the above theorem for the rest of the paper. The core of that result is Proposi-
tion [[.3] below, which essentially states that elements of F ac represented by a good
irreducible polynomial in Fga[z] of degree 2m can be rewritten as a product of
good irreducible polynomials of degrees dividing m — a process called degree two
elimination, first introduced for m = 1 in [GGMZ13].

Definition 1.2 (Traps and good polynomials). An element 7 € F, for which
[Fya(7) : Fya] is an even number 2m and hy(7) # 0 is called

(1) a degenerate trap root if Z—?(T) € Fyim,

(2) a trap root of level 0 if it is a root of hja? — hg, or
dm+1 _ ho
Analogously, a polynomial in F,[z] that has a trap root is called a trap. A polyno-
mial is good if it is not a trap.

(3) a trap root of level dm if it is a root of hqx?
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Proposition 1.3 (Degree two elimination). Given an extension k/F ja of degree m
such that dm > 23, and a good irreducible quadratic polynomial Q € k[x], there is
an algorithm which finds a list of good linear polynomials (Lo, ..., Ly) in k[x] such
thatn < q+1 and

n
Q=mL;" - J[Li mod1,
i=1
and runs in expected polynomial time in q, d and m.

The difficulty of proving Theorem [I1] lies mostly in Proposition [[L3] We recall
briefly in Section how the proposition implies the theorem. The main con-
tribution of the present paper is a new proof of Proposition [[L3] which hopefully
provides a better understanding of the degree two elimination method, the under-
lying geometry, and the role of traps. The action of PGLy on the polynomial 9 —x
became a crucial ingredient in the recent progress on the discrete logarithm prob-
lem for fields of small characteristic, since [Jould] (and implicitly in [GGMZI3]).
While the proof in [GKZ18] resorted to an intricate case by case analysis enumer-
ating through all possible subgroups of PGL2(F,), we provide a unified geometric
argument, shedding new light on the role of PGLq.

1.1. Degree two elimination algorithm. The key observation allowing degree
two elimination is that a polynomial of the form az9t! + Sz7 + ya + § has a high
chance to split completely over its field of definition. Furthermore, we have the
congruence

(1.1) azt™ 4+ Bx? + yx + 6 = hi (axho + Bho + yzhy + 6hy) mod I,

and the numerator of the right-hand side has degree at most 3. Consider the F,-
vector space V spanned by 297!, 2%, x and 1 in Fy[z], and the linear subspace

Vo = {az®™ + B9+ yx +6 € V | azho + Bho + yzhy + 6h1 =0 mod Q}.

As long as @ is a good irreducible polynomial, Vg is of dimension two. The al-
gorithm simply consists in sampling uniformly at random elements f € Vo (k) (or
equivalently in its projectivisation PlQ(k)) until f splits completely over k into good
linear polynomials (L1, ..., Laeg f). Since f € Vg, the polynomial @ divides the
numerator of the right-hand side of ([LI]), and the quotient is a polynomial Ly of
degree at most 1. The algorithm returns (Lo, ..., Ldeg f)-

To prove that the algorithm terminates in expected polynomial time, we need
to show that a random polynomial in Vg (k) has good chances to split into good
linear polynomials over k. In this paper, we prove this by constructing a morphism
C— PlQ where C is an absolutely irreducible curve defined over k, such that the
image of any k-rational point of C is a polynomial that splits completely over k.
This construction is the object of Sectiondl The absolute irreducibility implies that
C has a lot of k-rational points, allowing us to deduce that a lot of polynomials in
P}Q(k:) split over k. This is done in Section

1.2. Proof of Theorem[I.7l We briefly explain in this section how Proposition[L.3]
implies Theorem [[L.T1 Consider the factor base

§={f€Fulz]|degf <1 f#0}U{h}.
First, the following proposition extends the degree two elimination to a full descent
algorithm from any polynomial down to the factor base.
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Proposition 1.4. Suppose d > 23. Given a polynomial F' € F a[z], there is an
algorithm that finds integers (o) e such that

F= H % mod I,

feT
and runs in expected time ¢'°82 ¢+0(d)
Proof. This is essentially the zigzag descent presented in [GKZ18]. We recall the
main idea for the convenience of the reader. First, one finds a good irreducible
polynomial G € Fa[x] of degree 2¢ such that F' = G mod I (this can be done
for e = [logy(4€ 4+ 1)], see [Wan97, Th. 5.1] and [GKZI8, Lem. 2]). Over the
extension qugefl, the polynomial G splits into 2°7! good irreducible quadratic
polynomials, all conjugate under Gal(qugefl/qu). Let @ be one of them, and
apply the algorithm of Proposition to rewrite @ in terms of linear polynomials
(Lo, ..., Ln) in F ge-1[z] and hy. For any index ¢, let L; be the product of all the
conjugates of L; in the extension qu2c71 /qu. Then,

F=h"Lg T[4 mod 1,
i=1
and each L) factors into good irreducible polynomials of degree a power of 2 at

most 2¢71. The descent proceeds by iteratively applying this method to each L.
until all the factors are in the factor base §. O

Then, as in [GKZI8| Sec. 2], the descent algorithm of Proposition [l can be
used to compute discrete logarithms, following ideas from [EG02] and [Diell]. To
compute the discrete logarithm of an element h in base g, the idea is to collect
relations between g, h, and elements of the factor base by applying the descent
algorithm on g®h? for a few uniformly random exponents a and 3. That proves
Theorem [[.1] for d > 23. To remove the condition on d, suppose that d < 22, and
let d’ < 44 be the smallest multiple of d larger than 22. Let I’ be an irreducible
factor of I in F & [z]. The DLP can be solved in expected time ¢lo82(des 1) +0(d")

g'°e2 W) in F  [2]/(I'), and therefore also in the subfield Fya[xz]/(I).

2. THE ACTION OF PGLy ON 27 — x

As already mentioned, a crucial fact behind degree two elimination is that a
polynomial of the form az9t! 4+ 829 4+ vya + § has a high chance to split completely
over its field of definition. This fact is closely related to the action of 2 x 2 matrices
on such polynomials.

Definition 2.1. We denote by x the action of invertible 2 x 2 matrices on univariate
polynomials defined as follows:

(a Z) x f(z) = (cx + d)dee T f (ax_—i—b) |

c cx+d

Consider the F,-vector subspace V spanned by 2971, 29 z, and 1 in Fy[z]. The
above action induces an action of the group PGLs on the projective space P(V),
which we also write x. Parameterizing the polynomials in P(V) as az?™t + 329 +
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~vx + 9, let S be the quadratic surface in P(V) defined by the equation ad = (.
This surface is the image of the morphism

Y :PLx P — P(V): (a,b) — (z —a)(z — b)%.

Note that to avoid heavy notation, everything is written affinely, but we naturally
have ¥ (00, b) = (z — b)?, ¥(a,00) = x — a and (00, 00) = 1. More generally, we
say that f(x) € V has a root of degree n at infinity if f is of degree ¢+ 1 —n. Now,
the following lemma shows that apart from the surface .S, the polynomials of P(V)
form exactly one orbit for PGLs.

Lemma 2.2. We have P(V)\ S = PGLy x (27 — x).

Proof. First notice that both S and P(V')\ S are closed under the action of PGLs.
In particular, PGLg x (7 —z) C P(V)\ S. Let f(z) € P(V)\ S. Suppose by
contradiction that f(z) has a double root r € P!, and let g € PGLy be a linear
transformation sending 0 to 7. The polynomial g * f(z) has a double root at 0, so
has no constant or linear term, and must be of the form az?t! + 829, so it is in S,
a contradiction. Therefore f(x) has ¢ + 1 distinct roots. Let g € PGLg send 0, 1
and oo to three of these roots. Then, g f(x) has a root at 0 and at oo so is of the
form Bz? 4 vz, and since it also has a root at 1, it can only be z? — x. O

This result implies that most polynomials of P(V') are of the form g x (27 — z),
which splits completely over the field of definition of the matrix g.

3. THE ROLE OF TRAPS

Consider a finite field extension k/F of degree m. Let @ be an irreducible
quadratic polynomial in k[z] coprime to hi. Let a; and as be the roots of @ in Fq.
The degree two elimination aims at expressing ) modulo hyx? — hg as a product
of linear polynomials. To do so, we study a variety PlQ C P(V) parameterizing
polynomials that can possibly lead to an elimination of @ (i.e., such that @ divides
the right hand side of (ILI)). In this section, we define Pg, and show how the
notion of traps and good polynomials determine how it intersects the surface S
from Lemma

Recall that V is the Fy-vector subspace V spanned by x4%1, 2% z, and 1 in Fy[z].
Consider the linear map

1 — 1,

__ i — X
3.1 V — Fl2][h7 Y ’
(3.1) ® qlzl[hy ] 4 s ho /i,

it — xho/hl.

We want Pb to parameterise the polynomials f € V such that ¢(f) is divisible by Q.

For any P € F,[z] coprime with hy, write op = 7p 0 ¢ where 7p : F,[z][h] '] —

F,[z]/P is the canonical projection. We can now define P, as

(3.2) Py = P(ker ¢q).
The variety Py, is the intersection of the two planes P(ker ¢, q,) and P(ker ¢, _q,).

Lemma 3.1. If Q is not a degenerate trap, then |(Pg N S)(F,)| =2, and these
two points are of the form ¥ (a1,b1) and (az,bs), with a1 # as and by # bs.
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Proof. For a € {a1, a2}, we have

P(ker p,_o) NS =19 ({a} x P}) Uy (Pl X {Z—?(a)l/‘ID .

Since the polynomial @ is irreducible, we have a; # as. Furthermore, assuming
that @ is not a degenerate trap, we have Z—‘l)(al) ¢ k, and thereby Z—‘l)(al) + Z—‘l)(ag).
Therefore Pg, NS is equal to

Pker,—q,) NP(ker p,_q,) NS = {1/1 (ah Z_(l)(%)l/q> Y. (a27 Z_fl)(al)l/q> } .
(]

In particular, when @ is not a degenerate trap, PlQ is exactly the line passing
through the two points s1 = t(a1,b1) and s2 = ¥(asz,ba). We get a k-isomorphism
P! — PlQ : o — $1 — asg. For this reason the two points s; and s play a central
role in the rest of the analysis, and the following proposition shows that they behave
nicely when @ is a good polynomial.

Proposition 3.2. Suppose Q is a good polynomial. Then, (PbﬁS)(Fq) = {s1, 82},
where s1 = (x —a1)(x — b1)?, and s3 = (x — a2)(x — b2)?, and the roots a1, as, by
and by are all distinct.

Proof. From Lemma B} we can write (Pg N S)(F,) = {s1,s2} with a1 # ay and
b1 # by. If a1 = by or as = by, then Q divides x%h; — hg, a trap of level 0. Now,
suppose a1 = by (the case as = by is similar). Since a; and as are the two roots
of @, and Q divides (z — a1)(ho — aih1), then ay is a root of hg — alhy. We get

dm+1

that ho(az2) = aihi(az2), so az is a root of hyxd — ho, a trap of level dm. O

4. IRREDUCIBLE COVERS OF PlQ

In this section we suppose that @ is a good polynomial, and we consider the
polynomials s; = (x —ay)(z—b1)? and s3 = (& —as)(x — b2)? as defined in Proposi-
tion3.2] where a1, az, b1 and by are all distinct. Consider the variety Pb from (B2)).

Recall that our goal is to prove that a significant proportion of the polynomials
of PlQ (k) splits completely over k. As mentioned in Section[IT], our method consists
in constructing a morphism C' — PlQ where C' is an absolutely irreducible curve
defined over k, such that the image of any k-rational point of C' is a polynomial
that splits completely over k. The absolute irreducibility is crucial as it implies
that C has a lot of k-rational points. The idea is to consider the algebraic set

C = {(u,71,r2,73) | the r;’s are three distinct roots of u} C P}Q x P! x P! x P!,
and the canonical projection C' — PIQ.
Proposition 4.1. If (u,r1,r2,73) € C(k), then u splits completely over k.

Proof. Suppose that (u,71,72,73) is a k-rational point of C'. From Lemma [2Z2] we
get u = g (9 — x) where g is the matrix g € PGLa(k) sending the three points
71,72 and r3 to 0, 1 and oco. In particular, the set of roots of u is g=!(P'(F,))
which are all in P! (k). O
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In the rest of this section, we prove that C is absolutely irreducible (Proposi-
tion [6]). The strategy is the following. Instead of considering directly C, which
encodes three roots for each polynomial of P}, we start with the variety

X ={(u,r) | u(r) =0} C PG x P,
which considers a single root for each polynomial. We can then “add” roots by
considering fibre products. Recall that given two covers v : Z — Y and p: Z' —

Y, the geometric points of the fibre product Z xy Z’ are pairs (z,2’) such that
v(z) = p(z'). In particular, the fibre product over the projection X — PlQ is

X Xpy, X ={((u1,m1), (uz,r2)) | u1(r1) = 0,uz(re) = 0,u1 = uz}
=~ {(u,r1,72) | u(ry) = 0,u(re) = 0}.

This product X Xpy, X contains a trivial component, the diagonal, corresponding

to triples (u,r,r). The rest is referred to as the non-trivial part, and we prove that
it is an absolutely irreducible curve (Corollary[£3)). Iterating this construction, the
fibre product (X Xpy, X)xx (X Xpy, X) (over the projection X xpy X — X to the
first component) encodes quadruples (u,71,r2,73). Therefore the curve C naturally
embeds into the non-trivial part of this product. We prove that this non-trivial part
is itself an absolutely irreducible curve (Lemma [43]).

Instead of the projection X — PlQ, we work with an isomorphic cover 6. It is
easy to see that the canonical projection X — P! is an isomorphism, with inverse
7+ (s2(r)s1 — s1(r)s2,7). Through the isomorphisms X = P! and P}Q =~ pl
this projection is isomorphic to the cover 6 in the following commutative diagram
(where, again, the morphisms are written affinely for convenience):

(u,r) ————u

(u,r) X P $1— sy
b |
T pi— % .p! a

r—— s1(r)/s2(r).

For convenience, consider 6 as a cover X; — Xy where Xg = X; = P'. As a
first step, we study the induced fibre product X; x x, X1. It contains the diagonal
A1, isomorphic to X;. We wish to show that Y2 = X; xx, X7 \ Ay is absolutely
irreducible. The second step consists in showing that X5 xx, Xo \ Ay is also
absolutely irreducible, where X5 is a desingularisation of Y5 and A, is the diagonal.
The following lemma provides a general method used in both steps.

Lemma 4.2. LetY and Z be two absolutely irreducible, smooth, complete curves
over k, and consider a covern: Z — Y. If there exists a point a € Z such that n is
not ramified at a and #(n~*(n(a))) =2, then Z xy Z \ A is absolutely irreducible,
where A is the diagonal component.

Proof. By contradiction, suppose that Z xy Z \ A is not absolutely irreducible,
and can be decomposed as two components AU B. Let pr : Z xy Z — Z be
the projection on the first factor. Since Z xy Z is complete, both A and B are
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complete, so we have pr(A) = pr(B) = pr(A) = Z. Observe that pr—!(a) consists
of #(n~*(n(a))) = 2 points, so one of them must belong to two of the components
A, B and A. That point must therefore be singular in Z Xy Z, contradicting the
fact that 7 is not ramified at a (recall that a point (21, 22) € Z Xy Z is singular if
and only if 7 is ramified at both z; and z2). O

Corollary 4.3. The curve Yo = X1 X x, X1\ A1 is absolutely irreducible.

Proof. First observe that 6 is ramified only at b; and bs (as can be verified from the
explicit formula 6(r) = s1(r)/s2(r)). In particular, it is not ramified at a;. Since
£(071(0(a1))) = #{a1, b1} = 2, we apply Lemma 2 O

Lemma 4.4. The desingularisation morphism v : Xo — Ya is a bijection between
the geometric points.

Proof. 1t is sufficient to prove that for any singular point P on Y3, and ¢ : Yy — Ys
the blowing-up at P, the preimage ¢ ~1(P) consists of a single smooth point. Up to
a linear transformation of X; = P!, we can assume that s; and s, are of the form
s1(z) = (x — 1)a? and sz2(x) = x — a, for some a # 0,1. The intersection A of the
curve Y, with the affine patch A2 € P! x P! is then defined by the polynomial

Flz,y) = s1(x)s2(y) — s1(y)sa(x)  al(z—1)(y —a) —yi(y —1)(z — a)

r—=y r—y

It remains to blow up A at the singularity (0,0) (which corresponds to (b1,b1)
through the linear transformation), and check the required properties. This is
easily done following [Har77, Ex. 4.9.1], and we include details for the benefit of
the reader. Let v : Z — A? be the blowing-up of A? at (0,0). The inverse image
of A in Z is defined in A? x P! by the equations f(r,y) = 0 and ty = xu (where t
and u parameterize the factor P1). It consists of two irreducible components: the
blowing-up A of A at (0,0) and the exceptional curve 1 ~1(0,0). Suppose t # 0,
so we can set ¢ = 1 and use u as an affine parameter (since f is symmetric, the
case u # 0 is similar). We have the affine equations f(z,y) = 0 and y = zu, and
substituting we get f(x,zu) = 0, which factors as

(x — D(zu—a) —wi(zu — 1)(z — a)
1—u '

fz,zu) = 2771

The blowing-up A is defined on t = 1 by the equations g(z,u) = f(z,zu)/z9"" =0
and y = zu. It meets the exceptional line only at the point w = 1, which is
non-singular. ([l

The projection X; xx, X1 — X; on the first component induces another cover
0y : X2 — X4, through which we build the fibre product Xo X x, X5. As above, it
contains a diagonal component A, isomorphic to Xs.

Lemma 4.5. The curve Y3 = Xo X x, X2\ Ag is absolutely irreducible.

Proof. Let v : Xo — Y5 be the bijective morphism from Lemma A4l Since 6, is
only ramified at b; and by, the cover 6 is ramified at most at the points v~ (b;, b;)
and v~1(a;,b;) (for i € {1,2}). In particular, it is not ramified at v=1(b1,a1). Since
#0571 (02(v1 (b1, a1)))) = #{v7 (b1, a1), v (b1, b1)} = 2, we apply Lemma B2

O

Proposition 4.6. The curve C is absolutely irreducible.
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Proof. Let v : Xo — Y3 be the morphism from Lemma 4l It is an isomorphism
away from the singularities of Y3, so

C —Ys: (u,r1,r2,73) —> (1/_1(7“1,7“2),1/_1(7“1,7“3))

is a morphism. It is an embedding, and the result follows from Lemma (.5 ([l

5. COUNTING SPLIT POLYNOMIALS IN PIQ

Recall that we wish to prove Proposition by showing that PlQ(k) contains a
lot of polynomials that split into good polynomials over k. The results of Section E
allow us to prove in Theorem [B.1] that a lot of polynomials in PlQ(k) do split. We
then show in Proposition [5.2] that all these polynomials are coprime, which implies
that bad polynomials cannot appear too often.

Theorem 5.1. Let k/F a be a field extension of degree m, and Q be a good irre-
ducible quadratic polynomial in k[x] coprime to hyi. If dm > 23, there are at least
#k/2q* polynomials in P}Q that split completely over the field k.

Proof. Let © : Y3 — PlQ be the cover resulting from the composition of the succes-
sive covers of Section [4 Let S3 = @‘1(P}2 N S). The embedding C — Y3 from
Proposition has image Y3 \ S3. The morphism

p:Ys > PLx P x P! (ufl(rl,rg),ufl(m,rg)) — (r1,72,73)

restricts to an embedding of Y3 \ S3. Let A be the intersection of u(Y3) with the
affine patch A3. The curve A is a component of the (reducible) curve defined by
the equations 0(r1) = 6(r2) and 6(r1) = 6(r3). Therefore A is of degree at most
4(q + 1)%. If B is the closure of A in P3, then [Bac96, Th. 3.1] shows that

[#B(k) — #k — 1] < 16(q + 1)*\/#F.

Since Y3 is complete, p(Y3) is closed, so all the points of B\ A are at infinity, and
there are at most deg(B) < 4(q + 1)? of them. Also, at most 2(¢> — ¢) points of B
are in 11(S3) (because #S = 2 and O is of degree ¢> — q). Therefore

#O(k) = #(Y3 \ S5)(k) > #k +1 - 16(q + 1)*/F#k — 4(q + 1)* — 2(¢* — q).

Since ¢ > 2 and dm > 23, we get #C(k) > #k/2. From Proposition 4.1 and the
fact that the map © is ¢® — ¢ to one, we get that at least #k/2¢> polynomials in
Pb split completely over k. ([

Let ¢ be the morphism defined in (B.1]).

Proposition 5.2. Suppose Q) is a good polynomial. For any two distinct polyno-
maals f and g in PlQ(Fq), we have ged(f, g) =1 and ged(hip(f), hip(g)) = Q.

Proof. Let s1 and s2 be as in Proposition B2l They have no common root. Since f
and g are distinct, all the polynomials of P¢, are of the form a f+8g for (a : §) € P'.
Then, if r is a root of f and g, r is a root of all the polynomials of Pb. In particular,
it is a root of both s; and s3, a contradiction. This shows that ged(f, g) = 1.
Similarly, if a polynomial h divides hip(f) and h1p(g), it must also divide both
hlga(sl) = (.I - al)(ho - btllhl), and hl(p(Sg) = (.I - ag)(ho - bghl) Since h,o — b({hl
and ho — bih; are coprime, h must divide Q. O
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Proof of Proposition As discussed in Section [I11] it is sufficient to prove
that a uniformly random element of PlQ(k:) has a good probability to lead to an
elimination into good polynomials. A polynomial f € Pb (k) leads to an elimination
into good polynomials if f splits completely over k into good linear polynomials,
and ¢(f) is itself a good polynomial.

Let A be the set of polynomials of PlQ(k) that split completely over k. From
Theorem [5.1] A contains at least ¢? /2 elements. Trap roots 7 occurring in A
dn+1

or ¢(A) must be roots of hix? — hg, or of hja? — ho for n | m/2, or satisfy

Z—‘IJ(T) € Fim/2. There are at most ¢“%" 3 such trap roots. From Proposition 5.2,

any trap root can only occur once in A and in p(A). So there are at most 2¢“%+3
polynomials in A for which trap roots appear. Therefore the number of elements
in A leading to a good reduction is at least

1 gms dm 1 _ _ 1 _

— . dm —9 2+3>_ dm 3_4dm8>_dm3

54 q 25 (q ¢t > 747"
using dm > 23. Since P}Q (k) contains ¢+ 1 elements, the probability of a random
element to lead to a good elimination is 1/0(¢?). O
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