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EDGE AND FANO ON NETS OF QUADRICS

ALESSANDRO VERRA

Abstract. In a number of papers by Edge, and in a related paper by Fano,
several properties are discussed about the family of scrolls R ⊂ P

3 of degree
8 whose plane sections are projected bicanonical models of a genus 3 curve C.
This beautiful classical subject is implicitely related to the moduli of semistable
rank two vector bundles on C with bicanonical determinant. In this paper such
a matter is reconstructed in modern terms from the modular point of view. In
particular, the stratification of the family of scrolls R by SingR is considered
and the cases where R has multiplicity ≥ 3 along a curve are described.

1. Introduction

In a series of five papers, sharing the name Notes on a Net of Quadric Surfaces,
Edge was gathering in a unique scientific work the fundamentals of the theory
of nets of complex projective quadric surfaces and of their classification, from the
point of view of Invariant Theory. These papers, appeared between 1937 and 1942,
go far beyond the basic properties and, somehow, interestingly relate to modern
theory of vector bundles on curves and their associated moduli spaces.

A standard projective invariant of a general net N of quadrics of P
d−1 is its

discriminant, that is the degree d plane curve C ⊂ N parametrizing singular
quadrics. As is well known, the locus in P

d of the singular points of the quadrics
parametrized by C is a smooth model of C embedded by ωC ⊗ θ, where θ is a non
effective theta characteristic on C. Moreover N can be uniquely reconstructed
from the pair (C, θ) up to projective equivalence. This follows from a classical
result of A. C. Dixon on the representations of the equation of a plane curve as a
determinant of a symmetric matrix of linear forms, see [4] and [2] p. 187.

In his Notes Edge studies net of quadrics in P
3, therefore he deals with plane

quartics C and their non effective theta characteristics. The most beautiful geom-
etry behind a net of quadric surfaces, and its connections to the theory of rank two
vector bundles on the discriminant quartic C, is specially revealed in his paper
III: The Scroll of Trisecants of the Jacobian curve, [7]. This paper studies the
embedding of C in P

3 defined by the line bundle ωC ⊗ θ and, in particular, the
scroll RC,θ, union of the trisecant lines to C.

RC,θ is a classical object of study from several points of view. For instance it is
related to theta characteristics on plane quartics, to the Scorza map and to bilinear
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Cremona transformations, cfr. [2] chapters 5, 6 and 7. However, to proceed with
order and motivate the title of our note, let us continue by saying that Fano proved
to be an attentive reader of Edge’s Notes. In particular he wrote Su alcuni lavori
di W. L. Edge where, not without some criticism, RC,θ and nets of quadrics are
considered as very special cases of a more general situation, [10].

His point of view is that RC,θ should be considered as a special member of a
wider family of octic scrolls R in P

3, which deserves to be investigated. This is the
family of the scrolls R in P

3 whose smooth minimal model is the projectivization
of a rank two vector bundle E over C with bicanonical determinant.

In these pages we discuss the content of Fano’s paper and its special connections
to nets of quadrics and Edge’s work. Of course never the word ’vector bundle’
appears in the writings of both Edge and Fano. However Fano’s point of view and
their study of octic scrolls R should be considered as a picture ’ante litteram’ of the
moduli space of semistable vector bundles of rank two and bicanonical determinant
on a smooth non hyperelliptic curve C of genus 3. Actually this picture admits
several generalizations nowadays in the literature, cfr. [1, 12, 16, 18].

What makes the difference between a general R and RC,θ? How to describe
the specializations of SingR? And how to recover from RC,θ a net quadrics? We
are going to follow closely the geometric ideas of Edge and Fano, in order to
describe their beautiful answers in modern terms. We partially rebuild and prove
by modern tools Fano’s comments and results as follows.

Let E be a globally generated, stable rank two vector bundle with bicanonical
determinant on a non hyperelliptic curve C of genus 3 and let E be its dual span,
that is the dual of the Kernel of the evaluation H0(E)⊗OC → E. Let R ⊂ P

3 be
the scroll defined by the tautological map of E:

Theorem 1.1. Let the Jacobian of C be of Picard number one. Then a component
of SingR has multiplicity m ≥ 3 iff one of the following conditions holds.

m = 3 One has E ≃ E ≃ TP2|C ⊗ θ, θ is a non effective theta characteristic. R

is the scroll of trisecant lines to SingR and this is C embedded in P
3 by |ωC ⊗ θ|.

m = 4 E is strictly semistable. SingR is a rational normal cubic in P
3. More-

over each line in R is bisecant to SingR.

2. Quadrics through the bicanonical curve C in P
5

Fano’s point of view is well represented by the title of this section. To describe
it let us consider the bicanonical embedding C ⊂ P

5 of a smooth plane quartic
and its ideal sheaf IC|P5. Then, as is well known, we have a unique embedding

C ⊂ V ⊂ P
5

where V is a Veronese surface. In particular the net of conics of V cuts on C the
canonical linear system |ωC|. Furthermore the ideal of C is generated by quadrics
and C is a quadratic section of V . We fix the notation B for the moduli space
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of semistable rank two vector bundles E → C of bicanonical determinant and [E]
for the moduli point of E. Let P

6 := |IC|P5(2)|, a natural rational map

γ : B → P
6,

generically finite of degree two, is provided by the next construction, see [1]. Let
[E] ∈ B be a stable and general point, then E is globally generated and h0(E) = 4.
Moreover the evaluation map ev for global sections defines the exact sequence

0→ E
∗
→ H0(E)⊗OC

ev
→ E → 0

so that E is stable. Let f : P → P
3 := PH0(E)∗ be the tautological map of the

projectivization P of E and let R := f(P). It is also known that, for a general
point [E], the rational map f : P→ R is a birational morphism. Notice that

R =
⋃

x∈C

Rx

where Rx := PE∗
x and E∗

x ⊂ H0(E)∗ is the linear embedding induced by evx. Then
the next property is a standard conclusion for a general [E].

Lemma 2.1. R is an octic scroll in P
3 whose general plane section is a linear

projection of the bicanonical model of C. Moreover h0(OR(1)) = h0(E) = 4.

Furthermore the determinant map det : ∧2H0(E) → H0(ω⊗2
C ) is surjective for

such an [E]. On the other hand let us consider the Plücker embedding

G ⊂ P
5 := P(∧2H0(E)∗)

of the Grassmannian of lines of P3 = PH0(E)∗. The next lemma also follows.

Lemma 2.2. The bicanonical embedding of C factors through the map sending x

to the parameter point of the line Rx and the Plücker embedding of G.

Let E∗ be the universal bundle of G and let

0→ E
∗
→ H0(E)⊗OG → E → 0

be the exact sequence of the universal and quotient bundles. These vector bundles
are uniquely defined, via Serre’s construction, by the two connected components
of the Hilbert scheme of planes in the quadric G. Moreover one has E ⊗ OC ≃ E

and E ⊗OC ≃ E. Using this we can finally define the above mentioned map γ.

Definition 2.3. γ : B → P
6 is the map sending [E] ∈ B to the quadric G.

The fibre of γ at G consists of two points, labeled by the spinor bundles E and
E of G. Fano was of course aware of the relations between quadrics G through the
bicanonical model of C and the corresponding moduli space of octic scrolls R in
P
3 whose minimal desingularization is the projectivization of a stable E. Edge is

aware as well but, in his investigations on net of quadrics, he is only considering
those special scrolls which are associated to nets of quadrics. Fano has a list of
three cases of scrolls R with special properties: (a), (b), (c). Cases (a) and (b)
concern special features of SingR and (a) involves nets of quadrics. Case (c) is



4 ALESSANDRO VERRA

of different nature, though related to (a) and (b), and concerns Lüroth quartics.
Since our principal interest is here SingR we treat only cases (a) and (b).

In order to describe special properties of R it is natural to observe that SingR
is non empty. One expects a curve of double points having finitely many triple
points, triple for R as well. This is in some sense Fano’s starting point. A simple
vocabulary translates these properties of R in properties of G with respect to the
varieties of bisecant lines and of trisecant planes to C. This is useful to understand
the special cases and intimately related to the modern description of the theta map
for the moduli space B. We address this matter in the next sections.

3. The theta map γ : B → P
6 and the Coble quartic

As is well known one has PicB ≃ Z[L], where L is ample. In the case of a smooth
plane quartic we are considering, the linear system |L| defines an embedding

B ⊂ P
7.

B is a quartic hypersurface which is well known as a Coble quartic, [16]. The
map defining this embedding is known as the theta map of B. It is useful for our
purposes to describe it as follows. Let Θ := C [2] be the 2-symmetric product of C,
embedded in J2 := Pic2C by the Abel map, sending d ∈ C [2] to OC(d). In other
words Θ is just the natural Theta divisor

{L ∈ J2 | h0(L) = 1}.

In particular Θ is a symmetric Theta divisor, which is invariant by the involution
ι : J2 → J2 sending L to ωC ⊗ L−1. As is well known a natural identification

P
7 := |2Θ|

can be fixed, so that the embedding of B in |2Θ| can be described as follows. Let
[E] ∈ B then there exists a unique divisor ΘE ∈ |2Θ| such that

SuppΘE := {L ∈ J2 | h0(E ⊗ L−1) ≥ 1},

we will say that ΘE is the theta divisor of E. It is well known that

B = {ΘE | [E] ∈ B}.

In particular let [Eo] := [ωC ⊕ ωC ]. Then [Eo] is a semistable point of B and
ΘEo

= 2Θ. Now consider the standard exact sequence

0→ OJ2(Θ)→ OJ2(2Θ)→ OΘ(2Θ)→ 0.

Passing to the associated long exact sequence, it follows that the restriction map

ρ : |2Θ| → P
6 := PH0(OΘ(2Θ))

is the linear projection of center [Eo]. We fix the notation E[k] for the standard
vector bundle of rank k, over the k-symmetric product C [k], whose fibre at d ∈ C [k]

is Ed := E ⊗Od. Let us recall that C is assumed to be non hyperelliptic and that
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C [2] is identified to the theta divisor Θ ⊂ J2 via the Abel map. Then let us
consider the map of vector bundles

ev[2] : H0(E)⊗OC[2] → E[2]

defined by the evaluation of global sections. It is well known that the degeneracy
scheme of ev[2] is the restriction of ΘE to Θ. Moreover such a restriction is a curve
if [E] 6= [Eo]. Assuming this we fix the following

Definition 3.1. The degeneracy curve BE of E is the restriction of ΘE to Θ.

Putting for simplicity BE = B we finally consider the correspondence

I := {(d, z) ∈ Θ× P
5 | z ∈ ℓd},

where ℓd is the line spanned by the degree 2 effective divisor d ⊂ C ⊂ P
5. Let

Θ
α

←−−− I
β

−−−→ P
5

be the projection maps of I and let G be the smooth quadric defined as above by
the vector bundle E. Then the next property is satisfied, [1] 4.22.

Lemma 3.2. G is the unique quadric of P5 whose strict transform by β is α∗B.

More geometrically the strict transform by β of the linear system of quadrics
|IC|P5(2)| coincides with the pull back of |OΘ(2Θ)| by α. Then, after the natural
identification of these two linear systems, the next theorem follows.

Theorem 3.3. The map γ : B → P
6 factors through the embedding of B in |2Θ|

via the theta map and the linear projection ρ : |2Θ| → P
6.

See [1, 16]. It is now useful to summarize more informations from the literature
on the embedding B ⊂ |2Θ| and the linear projection γ : B → P

6 of center [Eo].
Let us briefly recall that:

◦ B is embedded as the unique quartic hypersurface, the Coble quartic of C,
which is singular along the Kummer variety of the curve C

K(C) := {[E] ∈ B | [E] = [ωC(e)⊕ ωC(−e)], OC(e) ∈ Pic0(C)}.

◦ K(C) is SingB, moreover it is the locus of strictly semistable points of B.
Each point of K(C) has multiplicity two for B.

◦ [E] = [ωC(e)⊕ ωC(−e)] if and only if E fits in an exact sequence

0→ ωC(e)→ E → ωC(−e)→ 0.

In order to describe γ notice that a stable point [E] satisfies h1(E) = 0 and
hence h0(E) = 4. Indeed we have H1(E) = Hom(E, ωC) by Serre duality, therefore
h1(E) ≥ 1 implies that [E] is strictly semistable. Notice that a point [E] ∈ K(C)
satisfies h0(E) ≥ 5 iff [E] = [Eo], with Eo = ωC⊕ωC . As is well known the divisor
ΘEo

is just 2Θ. In particular the map γ : B → P
6 of the Coble quartic is the linear

projection from its double point [Eo] and a rational double covering. Let

ι : B → B
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be its associated birational involution, since now we assume [E] 6= [Eo]. Let ℓ be
the line joining [Eo] to [E], then exactly one of the following cases is possible:

(1) ℓ ⊂ B,
(2) ℓ · B = 3[Eo] + [E] and ι([E]) = [Eo],
(3) ℓ · B = 2[Eo] + [E] + [ι(E)] and ι([E]) 6= [Eo].

Now assume that E is globally generated, then the usual sequence

0→ E
∗
→ H0(E)⊗OC

ev
→ E → 0

is exact and either E is stable or [E] = [Eo]. Hence ι is regular at [E] and
[E] = ι([E]). Let P and P be the projectivizations of E and E, then we have
their tautological models R ⊂ P

3 and R ⊂ P
3∗. It is easy to see that, since the

determinant of E is bicanonical, these are embedded as dual surfaces:

R =
⋃

x∈C

Rx,

where Rx ⊂ P
3∗ denotes the pencil of planes through the line Rx of R. Let

G = γ([E]), since [E] 6= [E0] we have h0(E) = 4 and G can be constructed from
H0(E) as in [1] section 2.

We recall this construction for a general [E]: for such an [E] the determinant
map ∧2H0(E)→ H0(ω⊗2

C ) is an isomorphism. Consider the natural pairing

∧2H0(E)× ∧2H0(E)→ ∧4H0(E)

and the quadratic form qE induced by it on the space P
5 = PH0(ω⊗2

C )∗. By
definition G is the zero locus of qE. Notice also that G is the Plücker embedding
of the Grassmannian of lines of PH0(E)∗. Moreover C is embedded in G so that
E∗ is the restriction to C of the universal bundle.

Let σ2,0 be the family of planes of G which are dual of the planes in P
3, then

each P ∈ σ2,0 corresponds to some point [s] ∈ P
3 so that P · C is the scheme of

zeroes of s ∈ H0(E). In the same way let σ1,1 be the family of planes of G which
are parametrizing the lines through a point of P3, then each P ∈ σ1,1 corresponds
to a point [s] ∈ PH0(E) and P · C is the scheme of zeroes of s ∈ H0(E).

Let us also recall that C ⊆ V ∩ G, where V is the unique Veronese surface
containing C. The next theorem characterizes the locus of points [E] such that E
is globally generated and ι([E]) = [Eo].

Theorem 3.4. Let E be stable and globally generated, then V is contained in G

if and only if ι([E]) = [Eo].

Proof. We have E] = ι([E]). Let Sec V be the cubic hypersurface equal to the
union of the planes Π spanned by the conics of V . Assume V ⊂ G, it is easily

seen that T = G∩Sec V is union of planes Π. Now Z := Π·C is a canonical divisor.
Since degZ = 4 and E is stable it follows that Z is the scheme of zeroes of some
s ∈ H0(E). Hence E is strictly semistable and it follows [E] = [Eo]. Conversely
let [E] = [Eo], then there exists a plane Π as above in G so that Z = Π · C is a
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canonical divisor. But then we have Z ⊂ B ⊂ Π ⊂ G, where B is a conic of V .
Then G contains C ∪ B and hence contains V by counting the degrees. �

Theorem 3.5. Let E be stable and globally generated then R is an octic scroll.

Proof. Since E is globally generated, the tautological map τ : P → R is a mor-
phism. Assume degR ≥ 2, then either R is a quartic scroll or a quadric and its
minimal desingularization is the projectivization of a vector bundle F → A, where
A is a smooth integral curve of genus 1 or 0.

Notice that E = π∗F , where π : C → A is a 2 : 1 cover if degR = 4 or a 4 : 1
cover if degR = 2. We claim that F is not stable. But then E is not stable and
this contradiction implies the statement. The claim is clear if R is a quadric. If
R is a quartic then R has a singular curve and hence F admits linear subbundles
of degree two. Then F is not stable. �

We assume from now the property that E is stable and globally generated,
which is the case to be considered.

4. Theta divisor of E and singularities of R

Now we want to study the degeneracy curve B = Θ · ΘE and to see how B is
related to the singular locus of the scroll R defined by E. Notice that we have

OΘ(B) ≃ OΘ(
∑

(xi + C)− δ) ∈ PicΘ

cfr. [1] 4.7, where
∑

xi is a bicanonical divisor and our notation is fixed as follows.
We set (x+ C) := {d ∈ Θ | x ∈ Supp d}. Moreover 2δ is the class of the diagonal
∆ := {2x ∈ Θ, x ∈ C} and δ defines a natural 2 : 1 cover C × C → Θ.

Lemma 4.1. B is a smooth, integral curve of genus 19 intersecting transversally
a general curve (x+ C) at six points.

Proof. Since the restriction ρ : |2Θ| → |OΘ(2Θ)| is surjective, a general [E] ∈ B
defines a general curve B = Θ ·ΘE ∈ |OΘ(2Θ)|. Since this is ample and base point
free, B is smooth and integral. Finally notice that |OJ2(2Θ)| is base point free
and that its restriction to C [2] is |B|. Hence the restriction to x+C of |B| is also
base point free, which implies that a general B is transversal to x+ C. �

We denote by Pd the fibre of P→ C at d ∈ Θ, then we have

Pd ⊂ PE∗
d .

If d = x + y and x 6= y then Pd is the union of the skew lines Px,Py in the
3-dimensional space PE∗

d . In what follows we assume that B is smooth, then
h0(E(−d)) = 1 for any d ∈ B. Note that the evaluation ed : H0(E) → Ed

defines a linear map of 3-dimensional spaces pd : PE∗
d → P

3. Let d ∈ B, since
h0(E(−d)) = 1 it follows that the tautological map τ |Pd : Pd → P

3 fails to be an
embedding exactly along a 0-dimensional subscheme

sd ⊂ Pd
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which is contracted by τ to a singular point of R. This defines a morphism

σ : B → SingR

sending d ∈ B to the point pd(sd). If d = x+ y with x 6= y then σ(d) = Rx ∩ Ry.
A more delicate question concerns the stratification of the family of scrolls R

according the properties of σ and, in particular, according to its possible degrees.
In [10] Fano considers this problem and its special cases. Let us discuss something
useful about. Let n : P → R be the normalization and p : P → C the projection
map. Assume o ∈ SingR and consider the divisor p∗n

∗o = x1 + · · ·+ xk. As usual
let [E] = ι([E], according to our convention we have

Po · C = x1 + · · ·+ xk,

where Po is the plane in G parametrizing all the lines through the point o.

Lemma 4.2. For every divisor d ⊂ x1 + · · ·+ xk one has h0(F (−d)) ≥ 1.

The proof follows immediately from the above remarks. Assume now that σ is
not birational, then we have k ≥ 3 distinct lines of the scroll R, say

Rx1 . . . Rxk
,

passing through a general point o ∈ SingR. Let Po ⊂ G be the plane parametrizing
the lines through o, then x1 . . . xk are in Po. Since IC|P5 is generated by quadrics
no three of these points are collinear. Since E is stable and globally generated,
we know that either E is stable or [E] = [Eo]. Therefore we have k ≤ 4 and the
equality holds iff [E] = [E0]. The next statement is known more in general. We
introduce a proof for completeness and to study its exceptions.

Theorem 4.3. σ : B → SingR is birational onto its image for a general [E] and
SingR is an integral curve of multiplicity two for R.

Proof. Consider the open set U := {t ∈ C [3] | h0(ωC(−t)) = 0} and

Q := {(t, G) ∈ U × P
6 | Pt ⊂ G}.

Since C is generated by quadrics the projection p : Q → U is a P
3-bundle. The

fibre of p at t is the linear system of all quadrics through C ∪ Pt. Let q : Q→ P
6

be the second projection. Since Q is irreducible of dimension 6 the fibre of q at a
general t is a finite set. Hence the smooth quadric G associated to [E] contains a
finite set of planes Pt. Since E and E are stable, no plane in G of the same ruling
of Pt is k-secant to C for k ≥ 4. Let o ∈ SingR then at most two lines Rx, Ry of
R contain o. Hence σ−1(o) = {x+ y} and σ : B → SingR is birational. �

Actually the surjectivity of q : Q→ P
6 is well known, see e.g. [13]. Equivalently

the set of planes Pt, considered above, is finite and not empty for a general [E].
Thi set is strictly related to the scheme of triple points of R. To study this scheme
of triple points of R let us consider E and the map of vector bundles

ev[3] : H0(E)⊗OC[3] → E[3].
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The degeneracy scheme of this map is expected to be of codimension three. It is
essentialy the parameter space for the locus of points of multiplicity three in R.

Definition 4.4. The degeneracy scheme of ev[3] is the triple locus TE of E.

TE has dimension zero for a general [E]. The count of the length of TE is of
course possible, both by classical and modern methods. Notice that, for a general
E, the curve σ(B) = SingR is the curve of double points of R having degree 18
and geometric genus 19. Counting multiplicities the length of TE is the number of
triple points of R and of σ(B) as well. This can be computed via Cayley-Zeuthen
formulae, see [2] 10.4.7 and 10.4.9, as Fano does:

Lemma 4.5. If E is general then R has eight triple points.

As it has been already emphasized, it is not forbidden that TE be a curve in
special cases: even when E is stable. This leads to the list of specializations
considered by Fano and to the beautiful interplay with nets of quadrics considered
by Edge. We reconstruct this matter in the next section, via Coble quartic and
modern tools from the theory of vector bundles on curves and their moduli.

5. Specializations: Scorza correspondence and nets of quadrics

When the morphism σ : B → SingR is not birational? In what follows we keep
the assumption that E is stable and globally generated. Under this assumption
the next result, already pointed out by Fano, reveals beautiful geometry.

Theorem 5.1. Let σ : B → SingR be not birational, then two cases may occur:

(a) ι([E]) 6= [Eo]: σ has degree 3 and SingR is the sextic embedding of C defined
by ωC ⊗ θ, where θ is a non effective theta on C.

(b) ι([E]) = [Eo]: σ has degree 4 and SingR is a rational normal cubic.

Moreover these are the only cases if the Jacobian of C has Picard number one.

Some remarks are in order. At first notice that R is not a cone: indeed this
implies h0(E ⊗ ω−1

C ) ≥ 1 and E unstable. As was remarked before, ι is the
birational involution of the Coble quartic B, induced by the projection from [Eo] ∈
SingB.

Lemma 5.2. Let [F ] = ι([E]) then [F ] 6= [Eo] ⇒ F is stable.

Proof. Let [F ] be not stable, then [F ] ∈ SingB and the line containing the distinct
points [Eo], [E], [F ] is in B. Hence E is not globally generated: a contradiction. �

Since R is not a cone, a point o ∈ SingR defines on C the divisor

p∗n
∗(o) := x1 + · · ·+ xk.

We can start our proofs of cases (a) and (b), adding something more, which is due
in order to reveal some nice properties appearing.

◦ Proof and more geometry on case (a)
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We assume here that F is stable. Then we have k ≤ 3 for any o ∈ SingR and
we already know that h0(F (p∗n

∗o)) ≥ 1. Finally we consider the reduced curve

Γk ⊂ SingR

which is union of the irreducible components of SingR having multiplicity k for R.
We assume that σ is not birational, which implies that Γ3 is not empty. Actually
Γ3 is the support of the triple locus TE of E, defined in 4.4. Let

a : Γ3 → Pic3(C)

be te map sending to := p∗n
∗o to OC(T − o)). Let τ ∈ Pic2(C) and

τ + C := {τ(x), x ∈ C} ⊂ Pic3(C).

Assume that Pic3(C) has Picard number one. Then the next theorem is the key
to describe geometrically the case we are considering.

Theorem 5.3. The image of a is τ + C, for a non effective τ ∈ Pic2(C).

Proof. We claim that a(Γ3) · (x+Θ) has length ℓ ≤ 3 for x general. This implies

ℓ = 3, since the numerical class of a(Γ) is in Z[Θ
2

2
]. Then, by Matsusaka criterion

[14], a(Γ) is τ + C for some τ ∈ Pic2C. Finally τ is not effective: otherwise
we would have h0(F (−a − b − x)) ≥ 1, where a, b ∈ C are fixed points and
τ ≃ OC(a + b). Since R is not a cone it follows Ra = Rb := L. Let ox = L ∩ Rx,
then we have a rational map f : C → L such that f(x) = ox. Since F is stable f

is injective: a contradiction.
To prove the claim consider the normalization n : P → R and the projection

p : P→ C. Let ax : C → Pic2(C) be the Abel map sending y to OC(x+ y). Since
degOx+C(B) = 6 the lenght of bx := a∗xB is 6. Let Bx := p∗bx · n

∗ SingR and
Γx = Rx · SingR, we have the diagram

Γx
n

←−−− Bx
p

−−−→ bx

Since x is general and σ birational, we can assume that p : Bx → bx is biregular.
Otherwise we would have a length two divisor d embedded in Bx · Py for some
y ∈ Supp bx. Since σ is an embedding on d, this implies σ(Rx) = σ(Ry) and finally
Rx ⊂ SingR, which is impossible for x. Now consider n : Bx → Γx. Since F is
stable, n contracts a scheme d ⊂ Bx to a point iff h0(F (−x−d)) ≥ 1 and deg d = 2
that is iff n(d) ∈ Γ3. Since deg bx = 6 it follows that n contracts at most 3 disjoint
schemes d. Hence a(Γ) · (x+Θ) has length ℓ ≤ 3. �

Once established a(Γ3) = τ + C we can reconstruct ΘE = ΘF from τ + C and
hence the curve B. It is well known that the cohomology class of the divisor

Tτ := {τ(x− y), (x, y) ∈ C × C} ⊂ Pic2(C),

is twice the class of the theta divisor. The same is true for the difference divisor

C − C := {N ∈ Pic0(C), |N ≃ OC(x− y), (x, y) ∈ C × C}.
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This is actually the theta divisor in Pic0(C) of a special rank two vector bundle
on the quartic model C ⊂ P

2, namely TP2|C(−1). Indeed the Euler sequence

0→ OC(−1)→ H0(ωC)⊗OC → TP2|C(−1)→ 0

implies, tensoring by OC(x− y) and passing to the long exact sequence, that

C − C = {N ∈ Pic0(C) | h0(TP2|C ⊗N−1) ≥ 1}.

Let BJ be the moduli space of semistable vector bundles on C of degree 8 and
PJ → Pic0(C) the P

6-bundle with fibre at e the linear system |OΘ(2(Θ+e)|. Then
the map γ : B → |2Θ| immediately extends to the rational double covering

γJ : BJ → P
6
J ,

where, for a general [U ] ∈ BJ , the element γJ([U ]) is the curve ΘU · Θ and ΘU

is the theta divisor in Pic2(C) defined by the vector bundle U . The involution
ιJ : BJ → BJ , induced by γJ , is defined again by the standard exact sequence

0→ U
∗
→ H0(U)⊗OC

ev
→ U → 0.

Let Eτ := TP2|C ⊗ τ−1, then Eτ is stable. Notice that Tτ is the 2-Theta divisor
associated to Eτ . This just follows because the condition N ≃ τ(x−y) is equivalent
to h0(Eτ ⊗N−1) ≥ 1. In particular it follows that γJ([Eτ ]) = Tτ .

Theorem 5.4. The vector bundles Eτ , E and F are isomorphic and τ is a non
effective theta characteristic on C.

Proof. For a general τ , and hence for any τ , it is easy to check that

Tτ ·Θ = {d ∈ Θ | d+ y ∈ |τ(x)|, (x, y) ∈ C2} = {d ∈ Θ | h0(F (−d)) ≥ 1} = B.

Then [Eτ ] is in the fibre of γJ : BJ → P
6
J at B and it is isomorphic to E or F .

This implies ω⊗3
C ⊗ τ−2 ≃ detEτ ≃ ω⊗2

C and hence that τ is a theta characteristic.
Finally it is well known that ι([Eτ ] = [Eτ ], which implies the statement. �

More in general let [E] ∈ BJ , where E is stable and globally generated and
Pic2(C) has Picard number one. The same arguments used above imply that:

R has multiplicity ≥ 3 along a curve ⇔ E ≃ TP2|C ⊗ τ−1

where R is tautological model of P = P(T ∗
P2|C ⊗ τ) and τ satisfies h0(τ) = 0. We

cannot avoid to sketch very briefly the classical properties of R, cfr. [2] 5.5 and 6.
Keeping our notation, we have the following description. Consider the curves:

◦ TE = {t ∈ C [3] | t ∈ |τ(x)| for some x ∈ C},
◦ B = {d ∈ Θ | d ⊂ t, for some t ∈ TE}.

Notice that, since h0(τ) = 0, TE is biregular to C via the map t→ OC(t− τ).
Let t = a + b+ c ∈ TE. Since E = F = Eτ , we know that h0(Eτ (−t)) ≥ 1 and

hence that the lines Ra, Rb, Rc intersect in one point ot := Ra ∩ Rb ∩ Rc. Let

f : C → P
3
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be the map t → ot: it turns out that f is the embedding defined by ωC ⊗ τ . Its
image Γ is a curve of degree 6 and multiplicity 3 for R. On the other hand we
know that, for a general E, SingR is instead a double curve of degree 18. This
implies, for degree reasons, that f(C) = Sing Γ. Recall also that, for every x, the
scheme (x+C) ·B has length 6 and defines in C a divisor bx =

∑
1...3 yi + zi such

that, up to reindexing, h0(Eτ (−x− yi − zi)) = 1, 1 ≤ i ≤ 3. Equivalently the line
Rx of R is trisecant to the curve Γ. Under the previous assumptions we conclude
that:

E ≃ TP2|C ⊗ τ−1 ⇔ R is the scroll of the trisecant lines to Γ
.

Of course, as very well considered by Edge in his series of papers, if τ is a non
effective theta characteristic the Γ is the locus of the singular points of the net of
quadrics defined by the pair (C, τ). Notice also that the trisecant locus TE of this
case gives rise to the well known and interesting Scorza’s correspondence

S(θ) = {(x, y) ∈ C × C | h0(θ(x− y)) = 1}

and its related topics, see [3].

Proof and geometric description of case (b)
Now we are left to discuss the case [E0] = ι([E]). This means that that the line

joining [E0] to [E] is an inflexional tangent to B at [E0] not contained in B, see
section 3. Let us conclude very briefly by this case, which is remarked by Fano
in [10] as an additional case to Edge’s analysis of nets of quadrics. Actually it
representative of the net of quadrics whose base locus is a rational normal cubic.
Since [Eo] = [ω2

C ], it follows that F = E, fits in an exact sequence

0→ ωC → F → ωC → 0.

Moreover we know from theorem that the quadric G defines by [E] has rank six,
since F and E are not isomorphic. With our conventions G is the Grassmannian
of lines of P3 = PH0(E)∗ and the ruling of the dual of the planes of P3 corresponds
to the planes of class σ2,0. A non zero section s ∈ H0(E) defines a plane P of this
class and its scheme of zeroes P · C has always ≤ 3. Furthermore we know from
theorem 3.4 that G contains the Veronese V surface already considered. Also we
know that the secant variety Sec V of V cuts on G a threefold T which is union
of planes P ⊂ G. Each P contains a conic of V and P · C is a canonical divisor.
Since its degree is 4, it follows that the planes P have the opposite class σ1,1. Asnis
well known the class of V in G is then 3σ2,0 + σ1,1. Equivalently the point of V
parametrize the bisecant lines to a skew cubic

Γ ⊂ P
3.

Each point o ∈ Γ defines the plane P o parametrizing the lines through o. The
cone of vertex o containing Γ is parametrized by a conic B ⊂ V ., moreover it is
now clear that bo := B · C is a canonical divisor of C. Counting multiplicities, bo
parametrizes four lines in the scroll R passing through the point o. This explains,
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up to further details, why R has multiplicity four along Γ and completely describes
this scroll.

To conclude, let us say that papers of Edge and Fano we discussed in this
article, though dedicated to important and known classical topics, still are rich of
arguments to be investigated. Our note is a small contribution to support this
point of view.
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