
ar
X

iv
:1

80
5.

00
85

2v
2 

 [
he

p-
th

] 
 1

1 
Se

p 
20

18

The cosmological constant in Supergravity
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Abstract

We propose a supersymmetrisation of the cosmological constant in ordinary N = 1
supergravity that breaks supersymmetry spontaneously by a constant Fayet-Iliopoulos
(FI) term associated to a U(1) symmetry. This term is a variation of a new gauge
invariant FI term proposed recently, which is invariant under Kähler transformations
and can be written even for a gauged R-symmetry on top of the standard FI contribu-
tion. The two terms are the same in the absence of matter but differ in its presence.
The proposed term is reduced to a constant FI-term up to fermion interactions that
disappear in the unitary gauge in the absence of any F-term supersymmetry breaking.
The constant FI term leads to a positive cosmological constant, uplifting the vacuum
energy from the usual anti-de Sitter supergravity to any higher value.

1 Introduction

It is well known that the cosmological constant Λ in supergravity is highly constrained.
For given gravitino mass term m3/2, there is a lowest value of Λ = −3m2

3/2 corresponding

to the anti de Sitter (AdS) supergravity, describing a massless spin-3/2 spinor in AdS [1].
It is obtained in the absence of matter fields by a constant superpotential. Uplifting this
value breaks supersymmetry and can be done in principle dynamically by minimising a
scalar potential. Supersymmetry breaking then occurs by a vacuum expectation value
(VEV) of an F-auxiliary component of a chiral superfield containing the goldstino.

In the absence of matter, one could still break supersymmetry by a VEV of a D-
auxiliary component of a vector superfield which requires the addition of a constant Fayet-
Iliopoulos (FI) contribution [2]. This can be done only when the vector superfield gauges
the R-symmetry, under which the chiral compensator of N = 1 supergravity becomes
charged [3, 4]. A constant superpotential is however forbidden in that case, since it must
be charged under R-symmetry, and there is no explicit gravitino mass term, although
supersymmetry is broken in de Sitter (dS) space. In the presence of matter, a charged
superpotenial can be written but then supesymmetry is also broken by the VEV of a chiral
multiplet upon minimisation of the corresponding scalar potential. Thus, the cosmologi-
cal constant cannot be added as an independent parameter in supergravity for arbitrary
breaking scale (gravitino mass).
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An exception to the above situation is when supersymmetry is non-linearly realized
by introducing a constrained goldstino superfield X satisfying the nilpotent condition
X2 = 0 [5, 6, 7]. This eliminates the scalar component (sgoldstino) in terms of the goldstino
bilinear and the scalar potential (in the absence of matter) becomes an arbitrary constant
uplifting the minimal value Λ = −3m2

3/2 [7]. However in this case supersymmetry is not
spontaneously broken in a linear way and the number of bosonic and fermionic degrees of
freedom are not equal, invalidating in particular the usual ultraviolet properties of N = 1
supergravity and of its low energy softly broken supersymmetric theory.

Recently, a new FI term was proposed that allows an arbitrary uplifting of the vacuum
energy in the absence of matter fields [8, 9].5 It does not require gauging the R-symmetry
and in the unitary (super)gauge of massive gravitino, it is reduced to just an additive
positive constant to Λ. In the presence of matter, however, it leads to an additional field-
dependent contribution to the scalar potential. Moreover, it breaks the invariance of the
standard two-derivative supergravity action under Kähler transformations.

In this work, we propose a modification/generalisation of this FI term that has the
following properties: (1) it can be written independently whether the corresponding U(1)
gauges or not the R-symmetry; (2) in the absence of matter fields and in the case of an
ordinary (non-R) U(1), it coincides with the one proposed in [8]; (3) in the case of a U(1)R,
it can be written on top of the standard constant FI term; (4) in the presence of matter
fields the action is invariant under Kähler transformations and its bosonic contribution is
always a constant FI term that uplifts in particular the vacuum energy by an arbitrary
positive constant.

The outline of the paper is the following. In Section 2, we review the new FI term
and its properties. In Section 3, we present a modification/generalisation that is invariant
under Kähler transformations. In Section 4, we compute its bosonic contribution to the
standard supergravity action. Section 5 contains some concluding remarks. Finally, we
have two appendices; Appendix A contains useful formulae used in the text, while in
Appendix B we compute the fermionic part of the supergravity action.

2 Review and definitions

In [8] a new FI term has been proposed of the form

LFI = −ξ
[

S0S̄0
w2w̄2

T (w̄2)T̄ (w2)
(V )D

]

D

, (1)

where we put the Planck mass to 1, and ξ is a constant parameter. We use the conventions
of [1, 11]. Here S0 = (s0, PLΩ0, F0) and S̄0 =

(

s̄0, PRΩ0, F̄0

)

are the chiral (and anti-chiral)
compensator fields with (Weyl,Chiral) weights (1, 1) and (1,−1) respectively, and V is a
real (vector) supermultiplet with weights (0, 0) and components V = (v, ζ,H, Aµ, λ,D),
where the first three components are zero in the Wess-Zumino gauge v = ζ = H = 0. The
linear projection (V )D has weights (2, 0) and is defined by

(V )D = (D, /Dλ, 0, DbF̂ab, − /D /Dλ, −�
CD). (2)

The chiral (and anti-chiral) multiplets w2 (and w̄2) are given by

w2 =
λ̄PLλ

S2
0

, w̄2 =
λPRλ̄

S̄2
0

, (3)

5Another approach to the new FI term was proposed in [10].
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where the components of λ̄PLλ are6

λ̄PLλ =
(

λ̄PLλ ;
√
2PL

(

− 1

2
γ · F̂ + iD

)

λ ; 2λ̄PL /Dλ+ F̂− · F̂− −D2
)

, (4)

where the self-dual and anti-self-dual tensors are defined by

F̂±
µν =

1

2

(

F̂µν ± ˜̂
Fµν

)

,
˜̂
Fµν = −1

2
iǫµνρσF̂

ρσ, (5)

and the definitions of the covariant field strength F̂ and the covariant derivative /Dλ can
be found in Appendix A. The conformal d’Alembertian is given by �

C = ηabDaDb. Note
that w2 has weights (1, 1), w̄2 has weights (1,−1), and λ̄PLλ has weights (3, 3).

The chiral (and anti-chiral) projection operators T (and T̄ ) are defined in [12, 11]. In
particular if C is a general (unconstrained) multiplet of weights (ω, ω − 2) given by

C =
(

C,Z,H,K,Ba,Λ,D
)

, (6)

then T (C) has weights (ω + 1, ω + 1) and is given by

T (C) =
(

− 1

2
K,−1

2

√
2iPL( /DZ +Λ),

1

2
(D +�

CC + iDaBa)
)

. (7)

The resulting chiral multiplet T (C) has weights (ω + 1, ω + 1). The operation T acting
on a chiral multiplet X = (φ, PLχ,F ) vanishes, i.e. T (X) = 0, while its action on an
anti-chiral multiplet X̄ =

(

φ̄, PRχ, F̄
)

of weights (1,−1) is defined as

T (X̄) =
(

F̄ , /DPRχ,�
C φ̄
)

. (8)

For more information, the reader is referred to Appendix A.1. In rigid supersymmetry,
this corresponds to the usual chiral (and anti-chiral) projection operators D̄2 (and D2).

For simplicity, we assume a constant gauge kinetic function. The kinetic terms for the
gauge multiplet are given by

Lkin = −1

4

[

λ̄PLλ
]

F
. (9)

The extension to a non-trivial gauge kinetic function is given in [9].
The operation [ ]F acts on a chiral multiplet X = (φ, PLΩ, F ) with weights (3, 3),

giving [11]7

[X]F = e

[

F +
1√
2
ψ̄µγ

µPLΩ+
1

2
φψ̄µγ

µνPRψν

]

+ h.c. . (10)

Note that this already contains the Hermitian conjugate. The operation [ ]D acts on a
real multiplet C = (C, ζ,H, vµ, λ,D) of weights (2, 0), giving [11]

[C]D =
1

2
e

[

D − i

2
ψ̄ · γγ∗λ− 1

3
CR(ω) +

1

6
(Cψ̄µγ

µρσ − iζγρσγ∗)R
′
ρσ(Q)

+
1

4
ǫabcdψ̄aγbψc

(

vd −
1

2
ψ̄dζ

)]

. (11)

6Note that in this notation the field strength superfield Wα is given by W
2 = λ̄PLλ, and (V )D corre-

sponds to D
α
Wα.

7 Note that the definitions of [ ]F and [ ]D below do not involve the spacetime integral
∫
d
4
x, which

appears in the corresponding expressions in [11].
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Here ψ is the gravitino, and R(ω) and R′
ρσ(Q) are the graviton and gravitino curvatures.

The Lagrangian contains a term

LFI/e = −ξs0s̄0D. (12)

After the auxiliary field D is integrated out with the contribution from the kinetic term
D2/2 taken into account, the scalar potential contains a term proportional to ξ2,

VFI =
ξ2

2
(s0s̄0)

2 . (13)

In the absence of additional matter fields, one can use the Poincaré gauge s0 = s̄0 = 1,
resulting in a constant D-term contribution to the scalar potential. However, when matter
fields are included, the Einstein frame gauge gives s0 = s̄0 = eK/6 fixing the conformal
symmetry, leading to a field dependent FI contribution to the scalar potential:

VFI =
ξ2

2
e2K/3. (14)

The implications of such a term to inflation have been studied in [13, 9].
In the presence of matter fields the FI term (1) is not invariant under Kähler trans-

formations. The purpose of this paper is to construct a term, similar to eq. (1), invariant
under Kähler transformations. As a consequence, the contribution to the scalar potential
will no longer depend on e2K/3 as in eq. (14).

3 Kähler invariant generalization of the new FI term

In this section we find a generalization of the new FI term in eq. (1) that is invariant under
Kähler transformations in the presence of matter multiplets. For simplicitly, we denote
generically the chiral multiplets by X. The standard N = 1 supergravity Lagrangian is
given by

LX = −3
[

S0S̄0e
−K/3

]

D
+
[

S3
0W

]

F
, (15)

for a Kähler potential K(X, X̄) and a superpotential W (X). A Kähler transformation
with parameter J(X) is given by

K(X, X̄) → K(X, X̄) + J(X) + J̄(X̄),

W (X) →W (X)e−J(X),

S0 → S0e
J(X)

3 . (16)

It is clear that LX in eq. (15) is invariant under Kähler transformations. However, the
new FI term proposed in [8] and given in eq. (1) is not.

In [8] it is suggested that a Kähler invariant generalization can be found by making
the FI constant field dependent, i.e. ξ = ξ(X, X̄). However, T̄ (w2) is not Kähler covariant
since the conformal compensator S0 transforms under Kähler transformations. Thus,
under a Kähler transformation, w2 transforms as w2 → w2e−2J/3 while T̄ (w2e−2J/3) 6=
T̄ (w2)e−2J/3. Instead, in this paper we keep ξ constant, and modify the new FI term by
requiring the compensator fields S0 and S̄0 to appear in the new FI term only through the
Kähler invariant combination S0S̄0e

−K/3.
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First, recall that the operators T and T̄ should act on multiplets with weights (ω, ω−2)
and (ω, 2−ω) respectively. We therefore want to replace w̄2 with a multiplet proportional
to λPRλ̄ with weights (ω, ω− 2). Since λPRλ̄ is Kähler invariant and has weights (3,−3),
we should multiply it with the Kähler invariant combination S0S̄0e

−K/3 of weights (2, 0)
to obtain a multiplet of weights (ω, ω − 2). Indeed

w̄′2 = (S0S̄0e
−K/3)mλPRλ̄ (17)

has weights (2m+ 3,−3). Thus, (2m+ 3,−3) = (ω, ω − 2) can be solved for ω = −1 and
m = −2, and one can define a Kähler invariant combination w̄′2 with weights (−1,−3),

w̄′2 =
λ̄PRλ

(S0S̄0e−K/3)2
. (18)

The resulting T (w̄′2) has weights (0, 0). Similarly, one can construct T̄ (w′2) with weights
(0, 0), where

w′2 =
λ̄PLλ

(S0S̄0e−K/3)2
. (19)

By the same arguments, the new FI contribution to the Lagrangian has the form

LFI,new = −ξ
[

(S0S̄0e
−K/3)k

(λ̄PLλ)(λPRλ̄)

T (w̄′2)T̄ (w′2)
(V )D

]

D

. (20)

The operation [ ]D is defined only on a multiplet with weights (2, 0), from which it follows
that k = −3.

We conclude that the new FI term is given by

LFI,new = −ξ
[

(S0S̄0e
−K/3)−3 (λ̄PLλ)(λPRλ̄)

T (w̄′2)T̄ (w′2)
(V )D

]

D

, (21)

with w′2 and w̄′2 defined in eqs. (18) and (19) that are invariant under Kähler transforma-
tions and have the correct Weyl and Chiral weights. It remains to be shown in the next
section that this indeed leads to a constant D-term contribution to scalar potential.

4 A constant FI contribution to the scalar potential

In this section we calculate the (purely) bosonic contributions to the D-term scalar poten-
tial of the Lagrangian

L = LX + Lkin + LFI,new, (22)

with the matter contributions LX given by eq. (15), the gauge kinetic terms Lkin given by
eq. (9), and the new FI term LFI,new defined in eq. (21).

For compactness, we put the fermions to zero, and postpone the treatment of the
fermion couplings to Appendix B. The purely bosonic contributions to λ̄PLλ are

λ̄PLλ =
(

0, 0, F− ·F− −D2
)

, (23)
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while the purely bosonic contributions to w′2 are given by8

w′2 =

(

0, 0, 2
(

s0s̄0e
−K/3

)−2
(D2 − F− ·F−), 0,

0, 0, 4
(

s0s̄0e
−K/3

)−2 (
D2 − F− ·F−

)

(

F̄0

s̄0
−
Kφ̄F̄

3

)

)

. (24)

The bosonic contributions to the anti-chiral projection T̄ (w′2) are

T̄ (w′2) =

(

(

s0s̄0e
−K/3

)−2 (
F− ·F− −D2

)

, 0,

2
(

s0s̄0e
−K/3

)−2 (
D2 − F− ·F−

)

(

F̄0

s̄0
−
Kφ̄F̄

3

)

)

. (25)

Here the chiral multiplet X is defined as X = (φ, PLχ,F ) and Kφ = ∂φK.
Next, we notice that the real multiplet

R = (S0S̄0e
−K/3)−3 (λ̄PLλ)(λ̄PRλ)

T (w̄′2)T̄ (w′2)
(26)

is a function of chiral multiplets Zα = X,S0, λ̄PLλ, T (w̄
′2) and their anti-chiral counter-

parts Z̄ ᾱ. Its components are

R =
(

R, 0, − 2RαF
α, iRαDµZ

α − iRᾱDµZ̄
ᾱ, 0,

2Rαβ̄

(

−DµZ
αDµZ̄ β̄ + FαF̄ β̄

)

)

, (27)

where Rα = ∂R
∂Zα and all fields are replaced by their lowest components. Note also that

obviously fermionic contributions are ignored in eq. (27). As a result, the components of
R only with bosonic fields are given by

R =
(

0, 0, 0, 0, 0, 2s0s̄0e
−K/3

)

. (28)

It follows that the contribution to the new FI term Lagrangian eq. (21) is given by

LFI,new/e = −ξs0s̄0e−K/3D. (29)

In the Einstein frame gauge s0 = s̄0 = eK/6, this becomes a constant FI term

LFI,new/e = −ξD. (30)

We therefore conclude that the Lagrangian of the U(1) gauge field sector is

(Lkin + LFI,new) /e = −1

4
FµνF

µν +
1

2
D2 − ξD + fermions, (31)

which results in a constant FI contribution to the scalar potential. However, the terms
in the denominator of eq. (21) are proportional to D2 − F− · F− and D2 − F+ · F+ (see

8Note that w′2 has seven components since w′2 is neither real nor chiral. As for w̄′2, its third component
vanishes and instead the fourth one becomes the complex conjugate of the third one of w′2.
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eq. (25)). The new FI term is therefore local only if 〈D〉 is non-vanishing. The theory
becomes ill-defined as ξ → 0, as was the case in [8], since in this limit 〈D〉 = 0.

However, in contrast with the term proposed by [8], the term proposed in eq. (21) is
manifestly Kähler and Weyl invariant. While both terms can be easily extended to include
charged matter fields, only eq. (21) is consistent with matter fields that are charged under
a gauged R-symmetry, as a consequence of its Kähler invariance.

Therefore, while in [9], the new FI term of [8] could only be added on top of the
the usual FI contribution in the Kähler frame where the gauge symmetry is not an R-
symmetry, the new FI term in eq. (21) is consistent with the usual FI contribution in any
Kähler frame, resulting in two constant contributions to the D-term contribution in the
scalar potential.

A few remarks are in order:

• Firstly, notice that one could also obtain a constant FI contribution to the D-term
by making the substitution S0 → S0e

−K/6 and S̄0 → S̄0e
−K/6 in eq. (1), giving

LFI,c = −ξ
[

S0S̄0e
−K/3 w2

c w̄
2
c

T (w̄2
c )T̄ (w

2
c )
(V )D

]

D

, (32)

with

w2
c =

λ̄PLλ

S2
0e

−K/3
. (33)

The resulting Lagrangian indeed contains the term ξS0S̄0e
−K/3D which results in a

constant FI term in the Einstein frame gauge. However, this term is not invariant
under Kähler transformations eqs (16) since T (w̄2

c ) does not transform covariantly,
and we therefore do not analyse this term further.

• Secondly, note that in the absence of matter fields (and therefore K(X, X̄) = 0), w2

defined in eq. (3) and w′2 defined in eq. (19) are related by

w′2 = S̄−2
0 w2. (34)

By using the property of the anti-chiral projection operators that for an anti-chiral
field Z̄ and a multiplet C,

T̄ (Z̄C) = Z̄T̄ (C), (35)

we find that

T̄ (w′2) = S̄−2
0 T̄ (w2), (36)

and similarly

T (w̄′2) = S−2
0 T (w̄2). (37)

As a result, in the absence of matter fields, our proposed FI term in eq. (20) is
identical to the one proposed in [8] and given in eq. (1).9

9We thank A. Van Proeyen for bringing our attention to this.
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5 Conclusions

In summary, in this work, we proposed a supersymmetrisation of the cosmological constant
in N = 1 supergravity, arising from a constant FI term associated to an abelian gauge
symmetry as in global supersymmetry. In contrast to the standard FI term which requires
the gauging of R-symmetry, it can be written for any U(1). It is obtained by a variation of
a new FI term proposed recently in a way that is invariant under Kähler transformations,
leading to just a constant FI term up to fermion contributions that disappear in the unitary
gauge in the absence of any F-term supersymmetry breaking.

Since a generalisation of such ‘new’ FI terms is not unique and may in general involve
new field dependent functions10, an interesting question is whether they can arise in the
effective supergravity of string compactifications and what their form is. An obvious
application of the proposed term is that it uplifts the vacuum energy with a positive
contribution, allowing to realise ‘realistic’ models of moduli stabilisation and inflation
based on the KKLT mechanism [16] without the need of introducing anti-D3 branes,
using a U(1) factor of ‘effective’ 3-branes gauge group whose gauge coupling is fixed by
the ten-dimensional dilaton [17, 18].
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A Useful formulas

A.1 The chiral projection and complex multiplets

This Appendix is based on [11]. The operation T acts on a complex multiplet C with
weights (Weyl,Chiral) = (ω, ω− 2), producing a chiral multiplet with the first component
−1

2K. In particular if C is a general (complex) multiplet given by

C =
(

C,Z,H,K,Ba,Λ,D
)

, (38)

then T (C) has weights (ω+1, ω+1) and is given in eq. (7), repeated here for convenience11

T (C) =
(

− 1

2
K,−1

2

√
2iPL( /DZ +Λ),

1

2
(D +�

CC + iDaBa)
)

. (39)

The anti-chiral projector T̄ (C) acts on a multiplet of weights (ω, 2 − ω) and results in an
anti-chiral multiplet of weights (ω + 1,−ω − 1) with lowest component −1

2H.
The restriction of C = C is real produces a real multiplet. This also implies that the

Chiral weight c = 0. Moreover, Z = η and Λ = λ are Majorana (PRZ)C = PLZ, and
K = H̄, while Bµ = Bµ and D = D are real,

C =
(

C, ζ,H, H̄, Bµ, λ,D
)

. (40)

10 It is worth noting that shortly after submitting this paper, several attempts in this direction have
been made. See for example [14] and [15].

11 The three-component notation of chiral/anti-chiral multiplets will be defined shortly.
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For a real multiplet, we usually abbreviate H̄. The chiral projector T can only act on a
real multiplet of weights (2, 0).

A chiral multiplet is obtained by the restrictions

PRZ = 0, K = 0, Bµ = iDµC, Λ = 0, D = 0, (41)

and is given by

X =
(

X,−i
√
2PLχ,−2F, 0, iDµX, 0, 0

)

. (42)

Similarly an antichiral multiplet is given by

X̄ =
(

X̄, i
√
2PRχ, 0,−2F̄ ,−iDµX̄, 0, 0

)

. (43)

However, the chiral multiplet in eq. (42) is usually denoted as X = (X,PLχ,F ), while
the anti-chiral multiplet X̄ = (X̄, PRχ, F̄ ). A chiral multiplet has equal chiral and Weyl
weights c = ω, and an anti-chiral multiplet has c = −ω. As a result, T can only act on an
anti-chiral multiplet of weights (1,−1) and is given by

T (X̄) =
(

F̄ , /DPRχ,�
CX̄
)

. (44)

A.2 Covariant derivatives

The definitions of /Dλ and the covariant field strength F̂ab can be found in eq. (17.1) of
[1], which reduce for an abelian gauge field to

F̂ab = e µ
a e

ν
b

(

2∂[µAν] + ψ̄[µγν]λ
)

= Fab + e µ
a e

ν
b ψ̄[µγν]λ,

Dµλ =

(

∂µ − 3

2
bµ +

1

4
wab
µ γab −

3

2
iγ∗Aµ

)

λ−
(

1

4
γabF̂ab +

1

2
iγ∗D

)

ψµ. (45)

Here, e µ
a is the vierbein, with frame indices a, b and coordinate indices µ, ν. The fields

wab
µ , bµ, and Aµ are the gauge fields corresponding to Lorentz transformations, dilatations,

and TR symmetry of the conformal algebra respectively, while ψµ is the gravitino. The
covariant derivatives of other fields can be found in eq. (4.6) of [11].

A.3 Multiplication laws

Given a set of (complex) multiplets Ci, one can construct a new multiplet C̃ = f(Ci) with
components

C̃ = f,

Z̃ = fiZi,

H̃ = fiHi − 1

2
fijZ̄iPLZj,

K̃ = fiKi − 1

2
fijZ̄iPRZj ,

B̃µ = fiBi
µ +

1

2
ifijZ̄iPLγµZj ,

Λ̃ = fiΛ
i +

1

2
fij

[

iγ∗ /Bi
+ PLKi + PRHi − /DCi

]

Zj − 1

4
fijkZiZ̄jZk,

D̃ = fiDi +
1

2
fij
(

KiHj − Bi · Bj −DCi · DCj − 2Λ̄iZj − Z̄i /DZj
)

− 1

4
fijkZ̄i

(

iγ∗/Bj
+ PLKj + PRHj

)

Zk +
1

8
fijklZ̄iPLZjZ̄kPRZ l. (46)

9



For the multiplication laws involving real and (anti-)chiral multiplets, see section 5 of [11].
The bar on spinors are always the Majorana conjugate, χ̄ = χT Ĉ, where Ĉ is the charge
conjugation matrix satisfying ĈγµĈ

−1 = −γTµ . We use this conjugate even if the spinor is
not Majorana. This is the convention in [11].

A.4 Components

For convenience, we here summarise the multiplets in the seven-component notation. The
multiplet R is made up of the following multiplets

X = (φ, − i
√
2PLχ, − 2F, 0, + iDµφ, 0, 0), (47)

S0 = (s0, − i
√
2PLΩ0, − 2F0, 0, + iDµs0, 0, 0), (48)

λ̄PLλ = (λ̄PLλ, − i
√
2PLΛ, 2D

2
−, 0, + iDµ(λ̄PLλ), 0, 0), (49)

(V )D = (D, /Dλ, 0, 0, DbF̂ab, − /D /Dλ, −�
CD), (50)

and their charge conjugates. The chiral multiplet w′2 is defined by eq. (3).

B Fermion couplings

This appendix presents the fermionic terms in the new FI contribution (21) up to the
quadratic order in fermions. Concerning the fermion couplings, the contribution to the
Lagrangian from (21) is given by [1]

LFI,new/e = −ξ
2

[

(R)DD −DbF̂ab(R)aB − (R̄)λ /Dλ− 1

2
iDψ · γγ∗(R)λ + . . . ,

]

, (51)

which is obtained by applying eq. (11) to the definition LFI,new/e = −ξ[R·(V )D]D with

R = (S0S̄0e
−K/3)−3 (λ̄PLλ)(λ̄PRλ)

T (w̄′2)T̄ (w′2)
, (52)

and (V )D given by eq. (2). We therefore need the Bµ, λ, and D components of R. Since
we are interested in terms with two fermions in the new FI contribution, we need terms
with up to two fermions for (R)B, (R)D, and terms with one fermion for (R)λ. It therefore
turns out that we need terms with up to two fermions for the lowest component of T (w̄′2),
terms with one fermion for the fermionic (i.e. second) component of T (w̄′2), and terms
with no fermions for the F -component of T (w̄′2). Let us denote these component fields by

T (w̄′2) = (CT , PLχT , FT ). (53)

Their explicit forms are given by

∆2CT = −[(D2
+)0f + X̄2f ], (54)

∆2PLχT = PL

[

− /D0fΛ1f + 2

(

/D0fs0
s0

− Kφ /D0fφ

3

)

Λ1f −
2Kφ(D

2
+)0f

3
χ

]

, (55)

∆2FT =

(

2

s0
F0 −

2Kφ

3
Fφ

)

(D2
+)0f , (56)

where the subscript 2f indicates the two-fermion parts of the relevant term, and the same
definition applies to the subscripts 0f , 1f. We also introduced the following symbols for
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compactness of the formulae,

Kφ =
∂K(φ, φ̄)

∂φ
, (57)

∆ = s0s̄0e
−K/3, (58)

PLΛ =
√
2PL

(

− 1

2
γ ·F̂ + iD

)

λ, (59)

D2
− = D2 − F̂− ·F̂− − 2λ̄PL /Dλ. (60)

Note that ∆ = 1 under the Einstein frame gauge s0 = s̄0 = e−K/6. The symbol X2f is
minus the two-fermion part of the lowest component of T (w̄′2),

X2f = −(F̂− ·F̂−)2f − 2λ̄PL( /Dλ)1f + 2

(

F0

s0
− KφF

3

)

λ̄PLλ+
2

3
Kφχ̄PLΛ1f . (61)

Combining these results, we find that the components of R we need are given by

(R)Bµ = ∆
i

(D2
−)0f(D

2
+)0f

Λ̄1fPLγµΛ1f , (62)

(R)λ = ∆ ·
√
2i

[

PRΛ1f

(D2
+)0f

− PLΛ1f

(D2
−)0f

]

, (63)

(R)D =
2∆

(D2
−)0f

[(

3F0

s0
−KφF − ∆2FT

(D2
+)0f

)

λ̄PLλ+ Λ̄1fPL

(

Kφχ+
∆2

(D2
+)0f

χT

)]

+ h.c.

+ 2∆

(

(D2
−)2f − X2f

(D2
−)0f

+
(D2

+)2f − X̄2f

(D2
+)0f

− Λ̄1f( /DΛ)1f
2(D2

−)0f(D
2
+)0f

)

, (64)

where we only kept two-fermion contributions in (R)Bµ, (R)D and one-fermion contribu-
tions in (R)λ. Note also that (D2

−)0f = D2 − F− ·F−.
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