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Abstract

The complete proof of cutting rules needed for proving perturbative unitarity of quantum

field theories usually employs the largest time equation or old fashioned perturbation the-

ory. None of these can be generalized to string field theory that has non-local vertices. In

arXiv:1604.01783 we gave a proof of cutting rules in string field theory, which also provides

an alternative proof of cutting rules in ordinary quantum field theories. In this note we illus-

trate how this works for the box diagram of φ4 field theory, avoiding the contributions from

anomalous thresholds.
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1 Introduction and summary

Cutkosky’s diagrammatic analysis shows that the discontinuities of a Feynman diagram across

the ‘normal threshold’ singularities produce the result needed for unitarity of the S-matrix

[1, 2]. However typically a Feynman diagram possesses many other Landau singularities e.g.

anomalous thresholds at one loop [3,4] and more complicated singularities at higher loop, and

there are discontinuities associated with these singularities as well. A recent discussion on

these may be found in [5, 6]. For this reason the standard approach to proving the cutting

rules needed for unitarity makes use of indirect methods e.g. the largest time equation [7, 8]

or old fashioned perturbation theory [9] based on time ordered diagrams. A recent analysis

along similar line, suitable for dealing with vertices with finite number of time derivatives, can

be found in [10]

Unfortunately these approaches are not suitable for proving the cutting rules for the Feyn-

man diagrams arising in string field theory, since the vertices are non-local, not only in space

but also in time, involving exponentials of quadratic functions of momenta. For this reason

in [11] we developed a different approach to proving the cutting rules in such theories based

on direct analysis of Feynman diagrams.1 Although originally developed for string field the-

ory, this approach also gives an alternative, diagrammatic proof of cutting rules in ordinary

quantum field theories. Another approach to proving unitarity in local theories by directly

dealing with momentum space Feynman diagrams was suggested in [13]. We suspect that this

approach is closely related to the one described in [11], but the precise relation is not clear at

present.

1There have been two recent papers [6, 12] on unitarity of non-local field theories of the kind that arise in
string field theory, but both seem to only focus on the analysis of discontinuity across normal thresholds.
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Since [11] gave an iterative proof of the cutting rules to all orders in perturbation theory, the

analysis was necessarily somewhat abstract. In this paper we complement the analysis of [11]

by showing how the method works for establishing the cutting rules for the box diagram that

appears in the computation of one loop eight point amplitude in φ4 field theory. We emphasize

however that the purpose of this note is not to prove unitarity of the box diagram for which

there are many derivations. The goal is to illustrate how the iterative all order diagrammatic

proof of the cutting rules given in [11] works for the box diagram.

The rest of the paper is organized as follows. In section 2 we discuss some general issues

that arise while trying to prove unitarity of amplitudes written as momentum space integrals.

In section 3, which is the main body of the paper, we show how the method developed in [11]

is used to prove cutting rules for the box diagram of φ4 field theory. This proof assumes the

validity of cutting rules for connected and disconnected tree diagrams. For completeness, in

section 4 we give a proof of cutting rules for tree diagrams, again by making use of the general

method described in [11].

2 The issues

In this section we shall briefly discuss the issues that plague the proof of unitarity directly

in momentum space. The singularities of a Feynman diagram are associated with Landau

singularities where the integrand has poles due to certain number of internal propagators going

on-shell and furthermore the integration contour over loop momenta are pinched, i.e. it is not

possible to move away from the poles by deforming the integration contour in the complex loop

momentum plane. At such singularities, the integral typically has a branch cut, leading to a

discontinuity of the amplitude across the branch cut. In [1] Cutkosky gave a general formula

for computing the discontinuity across a given threshold singularity. If a certain number of

propagators go on-shell at a singularity, then the discontinuity in the amplitude from the

corresponding branch cut is computed by replacing the i/(−k2 − m2 + iǫ) factor in each of

these propagators by 2πδ(−k2 −m2).

Let us consider a singularity where the on-shell internal propagators are such that together

they can be interpreted as an intermediate state in the original amplitude, e.g. if the set

consists of the propagators carrying momenta ℓ and pA + pB − ℓ in Fig. 1. (We are assuming

that the incoming particles come from the left and the outgoing particles move to the right.)

Branch points associated with such singularities are known as normal thresholds. In this case
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the discontinuity computed from Cutkosky’s formula can be regarded as a product of two on-

shell amplitudes, integrated over the phase space of the intermediate states. Therefore this

looks similar to a contribution to −i T †T = −i T †|n〉〈n|T that is needed for unitarity of the

T-matrix – related to the S-matrix via S = 1− i T . Such contributions are usually represented

as cut diagrams, where the cut is a single line that divides the diagram into a left half and a

right half, with the cut propagators representing the on-shell propagators.

While this goes a long way towards proving unitarity of the theory, there are some missing

ingradients:

1. A given Feynman diagram may have singularities other than normal threshold, e.g. if

the propagators carrying momenta ℓ, ℓ + pC and pA − ℓ in Fig. 1 were on-shell at the

singularity. Such singularities are known as anomalous thresholds. Cutkosky’s formula

can still be used to compute the discontinuity across such branch points; however in this

case the on-shell states cannot collectively be regarded as an intermediate state in the

sum −i T †|n〉〈n|T .

2. In computing −i T † T we need to reverse the signs of iǫ in the propagators of the ampli-

tude to the right of the cut so that it represents a matrix element of T †. This does not

follow from Cutkosky’s formula for discontinuity.

While for any specific graph one can do a more detailed analysis taking into account all these

effects, the general proof of unitarity based on this approach becomes cumbersome. These

problems were overcome in [7, 8] where a different proof of unitarity was given based on the

‘largest time equation’. An alternative proof was given in [9] based on the old fashioned

perturbation theory. However unlike Cutkosky’s original analysis, which did not depend on

the detailed structure of the vertices as long as they do not introduce additional singularities

at finite momentum, the analysis of [7–9] requires working in coordinate space where at least

for the time coordinate the propagator and vertices are expressed in the position space instead

of the momentum space. Unfortunately for string field theory, for which the vertices are

exponentials of quadratic functions of momenta, there is no convenient representation of the

vertices in the coordinate space. Therefore the analysis of [7–9] do not apply.

This difficulty was overcome in [11] that expressed T − T † as a sum over cuts diagrams by

working directly in momentum space. Furthermore the part of the contribution to the right

of the cut was shown to be hermitian conjugated, representing a contribution to T †. This

method is well-suited for string field theory and other non-local theories, but also for ordinary
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quantum field theories with local vertices, giving an alternative proof of unitarity. In the next

two sections we shall illustrate how this works for the box diagram and tree diagrams in φ4

theory.

3 Unitarity of the box diagram

Usually in φ4 theory with interaction term −(λ/4!)
∫
dDxφ4 one takes the propagator of mo-

mentum k to be −i/(k2+m2−iǫ) and the vertex to be −iλ/4!. Furthermore in the computation

of the T-matrix we have an overall factor of i. However, as in [11], we shall use a slightly dif-

ferent but equivalent convention where for computation of the T-matrix we use the following

rules:

1. The propagator of momentum k is given by 1/(−k2 −m2 + iǫ).

2. The vertex is given by λ/4!.

3. For each loop integral we have a factor of i.

4. If the diagram has nc disconnected components then we have a factor of i1−nc .

We shall drop the overall momentum conserving delta function (2π)Dδ(D) (
∑

i pi), associated

with each connected component, from the expressions for the amplitudes. The space-time

dimension D = d + 1 will be chosen such that the box diagram of Fig. 1 has no ulltra-violet

divergence. This requires D ≤ 7.

With this convention the contribution of the box diagram shown in Fig. 1 to the T-matrix

is given by,

I(pA, pB, pC , pD) =
i

2
λ4

∫
dDℓ

(2π)D
{−ℓ2 −m2 + iǫ}−1 {−(ℓ+ pC)

2 −m2 + iǫ}−1

{−(pA − ℓ)2 −m2 + iǫ}−1 {−(pA + pB − ℓ)2 −m2 + iǫ}−1 . (3.1)

pA, pB, pC and pD denote net external momenta entering the vertices. In this convention an

outgoing particle will have negative p0. Since each of pA, pB, pC and pD receives contribution

from two incoming or outgoing external states, they can be space-like or time-like and arbi-

trarily large in magnitude. Therefore all the singularities that can appear in the box diagram

can be present here. In particular by taking pA to be a large time-like momentum we can
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ℓ →

↑ (pA − ℓ)

(pA + pB − ℓ) →

↑ (ℓ+ pC)

pA

pB

pC

pD

Figure 1: The box diagram of the eight point amplitude in φ4 theory. The external momenta
pA, pB, pC , pD entering at the four vertices are taken to be positive if ingoing.

mimick the case of a massive external particle above the threshold of production of a pair of

φ particles – this is the situation in which the anomalous threshold is commonly discussed.2

Our goal will be to compute the quantity

D ≡ I(pA, pB, pC , pD)− I(−pA,−pB,−pC ,−pD)
∗ , (3.2)

that represents a contribution to T−T †. We write down the expression for I(−pA,−pB,−pC ,−pD)
∗

by taking the complex conjugate of (3.1) and changing the signs of all the external momenta.

Making a change of variables ℓ → −ℓ in the resulting expression, we have

I(−pA,−pB,−pC ,−pD)
∗ = −

i

2
λ4

∫
dDℓ

(2π)D
{−ℓ2 −m2 − iǫ}−1 {−(ℓ + pC)

2 −m2 − iǫ}−1

{−(pA − ℓ)2 −m2 − iǫ}−1 {−(pA + pB − ℓ)2 −m2 − iǫ}−1 . (3.3)

This gives

D =
i

2
λ4

∫
ddℓ

(2π)d

∫
dℓ0

2π

[
{−ℓ2 −m2 + iǫ}−1 {−(ℓ+ pC)

2 −m2 + iǫ}−1

{−(pA − ℓ)2 −m2 + iǫ}−1 {−(pA + pB − ℓ)2 −m2 + iǫ}−1

+{−ℓ2 −m2 − iǫ}−1 {−(ℓ + pC)
2 −m2 − iǫ}−1

{−(pA − ℓ)2 −m2 − iǫ}−1 {−(pA + pB − ℓ)2 −m2 − iǫ}−1
]
. (3.4)

2In fact we do not even need to assume in our analysis that the external momenta are on-shell.
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Unitarity of the S-matrix demands that T − T † must be equal to −i T †T . This translates

to the cutting rules which tell us that D is given by the sum over all cuts of the box diagram,

with the following rules for evaluating a cut diagram:

1. A cut must divide the diagram into the left half and the right half, with the convention

that the incoming particles come from the left and the outgoing particles travel to the

right.

2. A cut propagator corresponds to the replacement:

P (k) ≡
1

−k2 −m2 + iǫ
⇒ Pc(k) ≡ −2 π i δ(−k2 −m2) θ(k0) , (3.5)

where k denotes the momentum flowing along the propagator from the left side of the

cut to the right side. The −i factor in the expression for Pc may seem unfamiliar, but in

our convention this combines with the factor of i from loop integral to give the correct

integration measure over the phase space.

3. The part of the amplitude to the right of the cut is replaced by its hermitian conjugate

– involving complex conjugation and reversal of the signs of all external momenta.

4. Cut on an external line has no effect.

5. If a cut diagram has nL disconnected components on the left of the cut and nR discon-

nected components on the right of the cut, then it should be multiplied by an additional

factor of (−1)nR−1. This factor is needed to ensure that cutting rules lead to the unitarity

relation T − T † = −i T †T [11].

We shall first prove that for fixed ~ℓ in (3.4), the contribution to D from the ℓ0 integral

vanishes unless the integration contour is pinched between two singularities.3 For this we

deform the ℓ0 integral to ∞ in the lower half plane for the first term inside the square bracket

in (3.4) and to ∞ in the upper half plane for the second term in the square bracket in (3.4),

picking up residues from the poles that the contour passes through during the deformation.

Since the poles of the first term are complex conjugates of the poles in the second term, we

pick residues from exactly the same set of poles with iǫ replaced by −iǫ. Furthermore in the

first term the poles are traversed in the clockwise direction while in the second term the poles

3As in [11], we shall only allow deformations of loop energy integration contour into the complex plane, but
keep the integration contours for spatial components of the loop momenta always along the real axes.
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are traversed in the anti-clockwise direction. As long as there are no nearby poles, we can set

ǫ = 0 while evaluating these residues. In this case their contributions exactly cancel. This

argument breaks down if the contours are pinched since the residues diverge as ǫ → 0, and we

have to carefully take the limit to see if there is any left-over contribution after we combine

the results of the two terms.4

The pinch singularities occur when a pair of poles in the ℓ0 plane approach the integration

contour from the opposite sides. Therefore in the ~ℓ space they occur on a subspace of codi-

mension 1 or higher (if more than two poles approach the same point). We shall call this the

pinched subspace. We shall focus on the integration over a small region R in the ~ℓ space which

has non-zero intersection with the pinched subspace. We denote by R′ the image of R under
~ℓ → −~ℓ, and consider the quantity

DR = A− A∗ , (3.6)

where

A =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
{−ℓ2 −m2 + iǫ}−1 {−(ℓ+ pC)

2 −m2 + iǫ}−1

{−(pA − ℓ)2 −m2 + iǫ}−1 {−(pA + pB − ℓ)2 −m2 + iǫ}−1 , (3.7)

and A∗ is obtained from A by

1. replacing R by R′,

2. reversing the signs of all the external momenta, and

3. complex conjugation.

We shall prove that DR is given by the sum over cuts of the contributions to A. The full

cutting rule is then obtained by adding the contributions from each small region R of this

type.

In this section we shall prove the cutting rule for DR assuming that it holds for all tree

diagrams – including disconnected ones. This analysis will follow closely the one given in

section 5.2.3 of [11] for one vertex irreducible diagrams. In the next section we shall describe

the proof of cutting rules for connected and disconnected tree diagrams.

4For string field theory the ℓ0 integration contour for both terms have their ends fixed at ±i∞ [11]. However
a similar cancellation occurs for these contours as well. In this case bad behaviour in some directions at ∞
prevents us from deforming the contours to ∞, but the relevant contours can be deformed to each other.
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1 2

3 4

ℓ
ℓ+ pC

pA − ℓ
pA + pB − ℓ

Figure 2: The reduced diagram of Fig. 1 associated with R when at the pinch all propagators
are nearly on-shell and the energies carried by the propagators lie in the range (3.8). The
internal lines are drawn in a way so that at the pinch energy flows from the left to the right
along each of the propagators.

Now for ~ℓ ∈ R a certain number of propagators become nearly on-shell when ℓ0 takes

the value where its integration contour is nearly pinched. Since for small R, ℓ0 lies within a

small range at the pinch, we can assign definite signs to the energies carried by each internal

propagator at the pinch. We shall now associate with the region R a reduced diagram that is

obtained from the original diagram by shrinking to points all propagators that are not nearly

on-shell near the pinch. Furthermore we shall draw the nearly on-shell propagators such that

energy flows from left to right near the pinch. For definiteness, and to consider a situation of

maximal complexity, we shall consider a region R for which all four internal propagators are

nearly on-shell at the pinch, and5

ℓ0 > 0, ℓ0 + p0C > 0, p0A − ℓ0 > 0, p0A + p0B − ℓ0 > 0 , (3.8)

at the pinch. The corresponding reduced diagram is shown in Fig. 2. We have dropped the

external legs from this diagram to avoid cluttering. We also number the propagators carrying

momenta ℓ, ℓ+ pC , pA − ℓ and pA + pB − ℓ by 1, 2, 3 and 4 respectively. It is easy to see that

the corresponding integral for A∗, after making a change of integration variable ℓ0 → −ℓ0, will

be pinched at the same value of ℓ0.

Let us denote by P (k) the propagator with momentum k:

P (k) ≡
1

−k2 −m2 + iǫ
=

1

k0 −
√
~k2 +m2 + iε

1

k0 +
√
~k2 +m2 − iε

, (3.9)

where ε is positive for positive ǫ. Therefore we can express (3.7) as

A =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
P (ℓ)P (ℓ+ pC)P (pA − ℓ)P (pA + pB − ℓ) . (3.10)

5A similar analysis can be carried out for all other reduced diagrams.
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1 2

3 4

=

1

1
2

3 4

Figure 3: Representation of A(1). On the left hand side the vertical line through propagator 1
represents that it is a cut propagator. On the right hand side this is made explicit by replacing
the cut propagator by a pair of external lines – one outgoing and one incoming.

Since the pinch is assumed to occur at the positive values of ℓ0, ℓ0+p0C , p
0
A−ℓ0 and p0A+p0B−ℓ0,

the relevant poles of the propagators that take part in pinching the contour, are at

ℓ0 =

√
~ℓ2 +m2 − iε, ℓ0 = −p0C +

√
(~ℓ+ ~pC)2 +m2 − iε,

ℓ0 = p0A −

√
(~pA − ~ℓ)2 +m2 + iε, ℓ0 = p0A + p0B −

√
(~pA + ~pB − ~ℓ)2 +m2 + iε . (3.11)

Note that at the pinch the poles from the propagators 1 and 2 are in the lower half ℓ0 plane

while the poles from the other propagators are in the upper half ℓ0 plane. Therefore while

deforming the ℓ0 contour to the lower half plane, we shall pick up residues from the poles of

the propagators 1 and 2 at the pinch. For this reason the set {1, 2} will play a special role in

our analysis.

We now define

P ′(k) ≡
1

k0 −
√
~k2 +m2 − iε

1

k0 +
√
~k2 +m2 − iε

= P (k)− Pc(k) , (3.12)

where

Pc(k) ≡ −2 π i δ(−k2 −m2) θ(k0) , (3.13)

is the cut propagator. It follows from (3.12) that

P (ℓ)P (ℓ+ pC) = P ′(ℓ)P ′(ℓ+ pC)+Pc(ℓ)P (ℓ+ pC)+P (ℓ)Pc(ℓ+ pC)−Pc(ℓ)Pc(ℓ+ pC) . (3.14)

Using this in (3.10) we can express A as

A = Â+ A(1) + A(2) − A(12) , (3.15)

where

Â =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
P ′(ℓ)P ′(ℓ+ pC)P (pA − ℓ)P (pA + pB − ℓ) , (3.16)

10



1 2

3 4

=

1
2

3 4

2

Figure 4: Representation of A(2).

1 2

3 4

=
1 2

3 4

2

1

Figure 5: Representation of A(12).

A(1) =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
Pc(ℓ)P (ℓ+ pC)P (pA − ℓ)P (pA + pB − ℓ) , (3.17)

A(2) =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
P (ℓ)Pc(ℓ+ pC)P (pA − ℓ)P (pA + pB − ℓ) , (3.18)

A(12) =
i

2
λ4

∫

R

ddℓ

(2π)d

∫
dℓ0

2π
Pc(ℓ)Pc(ℓ+ pC)P (pA − ℓ)P (pA + pB − ℓ) . (3.19)

In writing (3.17)-(3.19) we have used the notation of [11] in which A(i1···in) is obtained from A by

replacing the i1, · · · in-th propagators by cut propagators. The diagrammatic representations of

A(1), A(2) and A(12) have been shown in Fig. 3-5 with the thick vertical line across a propagator

representing a cut propagator Pc. We emphasize that these are not yet cut diagrams as the

cut does not divide the graph into a left half and a right half, and we neither reverse the

momenta not complex conjugate any part of the graph. Instead these should be regarded as

tree amplitudes since a cut propagator can be regarded as a pair of incoming and outgoing

lines with identical momentum. By a similar manipulation we can express A∗ as

A∗ = Â∗ + A(1)∗ + A(2)∗ − A(12)∗ . (3.20)

We now note that in the expression (3.16) for Â the relevant poles in the ℓ0 plane, responsible

for the pinch in the original amplitude A, are all in the upper half plane, since in the locations
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of the poles of the integrand, the signs of the iε in the first line of (3.11) are reversed. Therefore

the ℓ0 contour is not pinched, and by our previous argument,

Â− Â∗ = 0 . (3.21)

On the other hand, since A(1), A(2) and A(12) are tree amplitudes, and since we are assuming

that cutting rules hold for tree amplitudes, A(1)−A(1)∗, A(2)−A(2)∗ and A(12)−A(12)∗ are given

by sum over cuts of the tree diagrams. This gives, in the notation of [11]:

A(1) − A(1)∗ = A
(1)
1 + A

(1)
2 + A

(1)
12 , A(2) −A(2)∗ = A

(2)
1 + A

(2)
2 + A

(2)
21 ,

A(12) − A(12)∗ = A
(12)
1 + A

(12)
2 + A

(12)
12 + A

(12)
21 . (3.22)

Here A
(i1···in)
j1···jm

for 1 ≤ ik ≤ 2, 1 ≤ jk ≤ 2 represents sum over all cuts of A(i1···in) satisfying the

following properties:

1. The cut can be viewed as a cut of the original graph contributing to the amplitude A.

2. The cut crosses the j1, · · · jm’th propagators in the set {1, 2} and possibly other propa-

gators outside the set {1, 2}.

On the other hand A
(i1···in)
i1j

describes sum over cuts of A(i1···in) which pass through the j-th

and i1-th propagators in the set {1, 2} and possibly other propagators outside the set {1, 2},

but which are not regular cuts of the original amplitude A since, viewed in the context of

the original graph, the i1-th propagator carries energy across the cut in the wrong direction.

Explicit diagrammatic representation of all the terms on the right hand side of (3.22) has been

given in Figs. 6-15. In particular Figs. 8, 11, 14 and 15 describe contributions to A
(1)
12 , A

(2)
21 ,

A
(12)
12 and A

(12)
21 respectively. As is clear from the right hand sides of these figures, these are

perfectly good cuts of the tree amplitude A(i1···in), even though the left hand sides of these

figures show that they are not valid cuts of A.

We shall now write down a few identities following from the simple observation that a

propagator cut twice has the same expression as the propagator cut once, since the cut passing

through an external line has no effect. Therefore we have

A
(1)
2 = A

(12)
2 , A

(2)
1 = A

(12)
1 , A

(1)
12 = A

(12)
12 , A

(2)
21 = A

(12)
21 . (3.23)

These identities can be verified by explicitly examining the equalities of Figs. 7 and 13, 9 and

12, 8 and 14, and Figs. 11 and 15. Using (3.15), (3.20), (3.21), (3.22) and (3.23) we now get

A−A∗ = A
(1)
1 + A

(1)
2 + A

(1)
12 + A

(2)
1 + A

(2)
2 + A

(2)
21 −A

(12)
1 − A

(12)
2 −A

(12)
12 − A

(12)
21

= A
(1)
1 + A

(2)
2 . (3.24)
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The diagrammatic representation of the right hand side, given by the sum of the left hand sides

of Fig. 6 and Fig. 10, is shown in Fig. 16. We now see that this is precisely given by the sum of

all possible cuts of the reduced diagram shown in Fig. 2. In particular possible contributions

from anomalous thresholds, represented by Fig. 7 and Fig. 9, cancel with the contributions

from Figs. 13 and 12 and do not appear in the final expression. These cancellations are special

cases of the general results described in eqs.(5.26)-(5.33) of [11].

We end this section with a few remarks:

1. Our analysis automatically includes other reduced diagrams that are obtained by con-

tracting one or more propagators in Fig. 2. We simply have to set to zero all terms where

the corresponding propagator is replaced by a cut propagator. For example if we take

the triangle diagram obtained by contracting the propagator 3 in Fig. 2, the final answer

for A− A∗ will include sum over only the second and third diagrams in Fig. 16.

2. This does not cover all the cases however. An example is shown in Fig. 17 where at the

pinch poles on the same side come from non-adjacent propagators. We can analyze this

by repeating the analysis, with the role of the momenta ℓ and ℓ+pC in (3.14) now played

by ℓ and ℓ − pA − pB. The rest of the analysis proceeds as before, with the role of the

set {1, 2} played by the set {1, 4}. The final result for A− A∗, according to the general

result of [11], will be given by A
(1)
1 +A

(4)
4 +A

(14)
14 , which is simply the sum over all cuts of

Fig. 17. (The corresponding contribution A
(12)
12 was not present in the previous example

since Fig. 2 has no cut that passes through both propagators 1 and 2.)

3. In our analysis we have assumed that for a given R, the ℓ0 contour has a single pinch

point to which two or more poles approach. We can also have more than one pinch on the

ℓ0 contour, with two or more poles approaching each pinch point. Since after we factorize

each propagator as in (3.9), each denominator factor is linear in ℓ0 and has a single zero,

different denominator factors must be responsible for different pinches. Therefore we

can divide the denominators into different sets, with the first set S1 responsible for the

first pinch, the second set S2 responsible for the second pinch and so on. Different pinch

points will have different reduced diagrams associated with them, since the list of singular

propagators and the direction of energy flow through these propagators will depend on

the pinch.

We can now carry out the analysis by first treating the product of denominators in the set

S1 as in (3.14). The main difference will be that now the ℓ0 contour in Â is still pinched

13



+ = +

Figure 6: Contributions to A
(1)
1 . The figure on the left hand side expresses it as a sum of cut

diagrams of the original graph, with the propagator 1 replaced by the cut propagator. The
right hand side shows this as a sum of cuts of a tree diagram in which the propagator 1 is
replaced by a pair of incoming and outgoing lines. We have not shown the external states of
the original amplitude A in any of the diagrams.

+ = +

Figure 7: Contributions to A
(1)
2 . Unless cancelled, this would represent contributions from

anomalous threshold.

due to the other set of denominators belonging to S2, S3, · · · etc. The other terms contain

delta functions that force ℓ0 to be at the first pinch and therefore the denominators in

the other sets remain finite. These terms can be analyzed as before. We can now analyze

Â by decomposing the second set of denominators, belonging to the set S2, as in (3.9)

and repeat the analysis. We continue this till we reach a stage where we have a sum of

terms where in one term the contour is not pinched (the analog of Â) and in the other

terms the delta-function fixes ℓ0 at a pinch. The final result will then be given by the

sum of cuts of all the reduced diagrams corresponding to all the pinches.

14



=

Figure 8: Contribution to A
(1)
12 . In the left hand side the cut seems to cross the propagator

1 of the original diagram in the reverse direction so that it appears as if the energy of the
propagator 1 flows from the right of the cut to the left of the cut. However since the propagator
1 is already on-shell, the correct representation of the diagram is on the right hand side where
it is represented as the cut of a tree diagram. In this representation there is nothing unusual.

+ = +

Figure 9: Contributions to A
(2)
1 .

+ = +

Figure 10: Contributions to A
(2)
2 .
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=

Figure 11: Contributions to A
(2)
21 .

+ = +

Figure 12: Contributions to A
(12)
1 .

+ = +

Figure 13: Contributions to A
(12)
2 .

=

Figure 14: Contributions to A
(12)
12 .
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=

Figure 15: Contributions to A
(12)
21 .

+ + +

Figure 16: Complete contribution to A− A∗.

1

4
2

3

ℓ

ℓ− pA − pB
−pC − ℓ

pA − ℓ

Figure 17: A reduced diagram in which non-adjacent propagators 1 and 4 have poles on
the same side at the pinch. At the pinch the energy flows from left to right in each of the
propagators. In the figure the momenta are labelled so that they flow from left to right.

17



p →

(a)

p →

(b)

Figure 18: (a) A tree diagram in φ4 theory with six external lines and one internal propagator.
In drawing this we have made an exception to our conventions and have drawn the external
lines. The internal line has energy p0 flowing from the left to the right. (b) Cut diagram of
(a).

4 Unitarity of tree diagrams

Since the proof of cutting rules for the box diagram assumed the validity of cutting rules for

connected and disconnected tree diagrams, we shall prove the cutting rules for tree diagrams

in this section. The analysis is a straightforward application of sections 5.2.2 and 5.3 of [11].

We begin with the simple diagram shown in Fig. 18(a) with p0 > 0. Its expression is given

by

A = λ2 (−p2 −m2 + iǫ)−1 . (4.1)

Therefore

A− A∗ = λ2 (−p2 −m2 + iǫ)−1 − λ2 (−p2 −m2 − iǫ)−1 = λ2 (−2π i) δ(−p2 −m2) . (4.2)

On the other hand the cut diagram shown in Fig. 18(b) has the same expression. (We can

drop the θ(p0) term from the cut propagator since p0 has been chosen to be positive.) This

proves the cutting rule for Fig.18(a).

Next we shall prove the cutting rules for any connected tree amplitude assuming that it

holds for all connected tree amplitudes with at least one less vertex. For this we follow closely

the analysis of section 5.2.2 of [11] of ‘one vertex reducible’ diagrams. Let P be any vertex of

the amplitude to which at least two internal lines are connected. Then the general form of the

diagram can be represented as in Fig. 19(a), with each of the blobs U and D describing some

connected tree diagram. If AU and AD are the amplitudes associated with the tree diagrams

U and D respectively, then the full amplitude A is given by6

A = λ−1AU AD , (4.3)

6Note that some of the external lines of U at P are internal lines of D and some of the external lines of
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U

D

P

(a)

U

D

P

(b)

Figure 19: (a) Schematic representation of a generic connected tree diagram in which the blobs
U and D themselves are connected tree diagrams. (b) Example of such a generic connected
tree diagram.

where the λ−1 factor accounts for the fact that both AU and AD includes a factor of λ from

the vertex P whereas in A we have only one factor of λ from the vertex. Therefore

A−A∗ = λ−1 {AU AD −A∗
U A∗

D} . (4.4)

Now since AU and AD are themselves connected tree amplitudes with less number of vertices

than A, AU−A∗
U and AD−A∗

D are given by sum over cut diagrams of U and D. We divide each

of these cut diagrams into two classes: ∆UR and ∆UL will denote the sum over cut diagrams

of U for which the cut passes on the left and right of P respectively, and similarly ∆DR and

∆DL will denote the sum over cut diagrams of D for which the cut passes on the left and right

of P respectively. Therefore we have

AU − A∗
U = ∆UL +∆UR , AD − A∗

D = ∆DL +∆DR . (4.5)

Using (4.5) and some trivial rearrangement of terms we can express (4.4) as

A−A∗ = λ−1 {A∗
U ∆DL +∆UL∆DL +∆ULA

∗
D −∆UR∆DR + AU∆DR +∆URAD} . (4.6)

This can be verified e.g. by expressing both sides in terms of A∗
U , A

∗
D, ∆UR, ∆UL, ∆DR and

∆DL. The diagrammatic representations of the six terms in (4.6) have been shown in Fig. 20.

D at P are internal lines of U . Therefore they are generically off-shell. This does not have any effect on our
analysis since the validity of cutting rules does not require the external lines to be on-shell.
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U

D

U

D

U

D

U

D

U

D

U

D

✫✪
✬✩

✫✪
✬✩✫✪
✬✩

✫✪
✬✩✫✪
✬✩

✫✪
✬✩✫✪
✬✩

✫✪
✬✩✫✪
✬✩

✫✪
✬✩✫✪
✬✩

✫✪
✬✩

Figure 20: Diagrammatic representation of the six terms in (4.6). These can also be interpreted
as cuts of Fig. 19(a).

B

C

✧✦
★✥

✧✦
★✥

Figure 21: Schematic representation of a tree amplitude with at least two disconnected com-
ponents. The blobs B and C represent tree amplitudes which themselves may have additional
disconnected components.

Special attention should be paid to the minus sign of the fourth term on the right hand side

of (4.6). This is compatible with the fourth term in Fig. 20 due to the (−1)nR−1 factor that

multiplies each cut diagram, nR being the number of disconnected components on the right of

the cut. If we denote by nUR and nDR the number of disconnected components on the right

of the cut in U and in D, then the product of the cut diagrams of U and D carries a factor

of (−1)nUR−1+nDR−1. On the other hand the fourth cut diagram of Fig. 20 carries a factor of

(−1)nUR+nDR−1. The two differ by a sign showing that the fourth diagram of Fig. 20 is indeed

given by −λ−1∆UR∆DR.

We now note that the six cut diagrams of Fig. 20 exhaust all possible cuts of the diagram

19(a). This shows that A − A∗ is indeed given by the sum over all cut diagrams of A in

accordance with the cutting rules.

Finally we turn to the proof of cutting rules for disconnected tree diagrams following the

analysis of section 5.3 of [11]. Again the proof will proceed via induction, namely we shall

prove the result assuming that it holds for diagrams with less number of vertices. For this let

us suppose that the graph contains two pieces B and C that are disconnected from each other.
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B

C

B

C

(a) (b) (c)

B

C

(d) (e)

B

C

B

C

B

C

(f) (g)

✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥✧✦
★✥

✧✦
★✥

Figure 22: Diagrammatic representation of the seven terms in (4.8). These can also be inter-
preted as cuts of Fig. 21.

This has been shown in Fig. 21. B and C themselves may be disconnected graphs, but each

will contain less number of vertices and therefore satisfy cutting rules. Denoting by B and

C the expressions for the amplitudes associated with the graphs B and C, we have the full

amplitude A given by

A = −i B C , (4.7)

where the factor of −i arises due to the fact that the total number of disconnected components

of A is equal to the sum of the number of disconnected components of B and of C, and therefore

due to the (i)1−nc factor in the expression for the amplitude with nc disconnected components,

the product BC has one more factor of i compared to A. This gives

A−A∗ = −i (B C +B∗C∗)

= −iB∗ C − iB C∗ + i (B −B∗) (C − C∗) + i (B −B∗)C∗ − i(B − B∗)C

+i B∗ (C − C∗)− i B (C − C∗) . (4.8)

The second step is the result of trivial algebraic manipulation. The seven terms in (4.8) can be

diagrammatically represented as the seven cut diagrams shown in Fig. 22. The additional minus

signs in the contributions from Fig 22(c), (d) and (f), given respectively by the third, fourth

and sixth terms in (4.8), account for the fact that if nR denotes the number of disconnected

components to the right of the diagram, then the sum of nR − 1 for the component diagrams

differ from (nR − 1) of the full diagram by 1.

We now note that the seven terms in Fig. 22 are in one to one correspondence with the

cuts of A. This proves the validity of the cutting rule for the disconnected amplitude A.
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