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Abstract

In this work we consider kink-antikink and antikink-kink collisions in a modified φ4 model with

a false vacuum characterized by a dimensionless parameter ǫ. The usual φ4 model is recovered

for ǫ = 0. We investigate the ǫ << 1 regime where the kink in the presence of false vacuum can

be understood as a small deformation of the standard kink for the φ4 model. We show that the

attractive interaction between the kink-antikink pair leads to a rich scattering pattern, in some

cases delaying considerably the false vacuum decay.
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I. INTRODUCTION

False vacua play an important role in fundamental physics, in particular in the context

of inflationary models [1–3], electroweak phase transition and baryogenesis [4–8], bubble

collisions [9–15], signals for the possible metastability of Higgs vacuum [16–18] and dark

energy models [19, 20]. Soliton solutions in nonlinear field theory describe localized energy

concentrations which are able to propagate without modifying their shape. They have

large applicability in condensed matter physics [21], optics [22], quantum field theory [23],

nuclear physics [24–26] and cosmology [27–30]. The simplest soliton solutions are the kink

and antikink in (1, 1)-dimensions.

Kink scattering processes in nonintegrable models have intrincate structures. This has

been studied not only in the simple φ4 model [31–40], but also in potentials of higher self-

interaction [41–48] and non-polynomial potentials [49–55]. Further interesting directions of

investigation include the interaction of a kink with an impurity [56–58], kinks in models

of two scalar fields [59–62], multi-kink collisions [63–65], boundary scattering [66, 67] and

models with generalized dynamics [68].

Embedded in higher dimensional spaces, kinks give rise to domain walls and branes [69].

In some cyclic universe scenarios, domain walls were considered as a possibility to generate

the Big Bang conditions [70–73], where planar symmetry is assumed and the dynamics is

effectively (1, 1) dimensional. Solitons are also studied in the context of bubble collisions in

the early universe. In the limit of a high nucleation rate per unit four-volume in comparison

to H4 (where H is the Hubble expansion rate), one can neglect the spacial curvature of the

universe and consider the bubbles as in flat spacetime [74]. In this regime, collisions of two

bubbles have SO(2, 1) symmetry and are described by a (1, 1) dimensional wave equation.

The mechanism of false vacuum decay in scalar field theories is well understood [75, 76].

In particular, for an asymmetric double well potential, domain wall collisions with planar

and SO(2, 1) symmetry were considered in Ref. [77]. Domain wall collision with such high

degree of symmetry can be described as collisions between a kink and an antikink in (1, 1)

dimensions. In this background the effects of small initial planar [77] and nonplanar [78]

small fluctuations were investigated. However, Ref. [77] only provided some examples for

the output of background collisions, with no description of their dependence either with

initial velocity or with the parameter controlling the difference in potential energy between
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the two wells.

The present work intends to fill this gap, with the aim of investigating the kink scattering

and the corresponding false vacuum evolution, considering the situation where the false

vacuum initially occupies the restricted region between the kink-antikink pair and that

where the false vacuum occupies the unbounded region outside the area defined by the

antikink-kink system. We consider symmetric kink-antikink and antikink-kink collisions,

with the pair initially at equal distances from the center of mass and initial velocities with

same modulus. We show how the attractive interaction between the kink and antikink is the

main factor affecting the structure of the scattering and, in some cases, delaying considerably

the complete decay of the false vacuum even in a restricted region around the center of mass

of the kink-antikink pair.

In the next section we review some of the main properties of the φ4 model. The numerical

results are presented in the Sect. III, and we conclude in the Sect. IV.

II. THE MODEL

We consider the action in (1, 1)-dimensions in Minkowski spacetime with a Lagrangian

with standard dynamics

S =

∫

dtdx

(

1

2
∂µφ∂

µφ− V (φ)

)

(1)

and a modified φ4 potential

V (φ) =
λ

4

(

φ2 − M2

λ

)2

− 1

2
ǫ
M3

√
λ
φ, (2)

where ǫ is a dimensionless self-coupling parameter. From here on we will consider ǫ ≥ 0

without loosing generality. For ǫ > 0 the potential has a local minimum at φ = −1 (the false

vacuum), a local maximum at φ = 0 and a global minimum at φ = 1 (the true vacuum).

Here we are interested in the |ǫ| ≪ 1 limit, where the presence of the linear term in Eq. (2)

leads to a small force on the φ4 kink that favors the expansion of the true vacuum region

[81]. For sake of definiteness, we take λ = M2 = 2. In this case equation of motion is given

by

φ̈− φ′′ − 2φ+ 2φ3 − ǫ = 0 (3)
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Linear stability analysis around the static kink solution with φ(x, t) = φK(x)+cos(ωt)η(x, t)

leads to a Schrödinger-like equation:

− η′′ + (−2 + 6φ2

K)η = ω2η. (4)

Static solutions can be found for ǫ = 0, given by the usual φ4 kink φK(x) = tanh(x) and

antikink φK̄(x) = − tanh(x). These solutions, of minimal energy, can also be obtained by

first-order BPS equations [79, 80]. Stability analysis of the φ4 kink have eigenvalues (and

corresponding eigenfunctions) [31]: ω2

0
= 0 (the zero-mode or translational mode) and ω2

1
= 3

(the vibrational mode), followed by a continuum of states with ω2

k = 4 + k2. The existence

of vibrational modes is important for the comprehension of the complex behavior of kink-

antikink scattering. One such effect is known as two-bounces, and it is characterized by a

collision process where the translational energy is stored in the kink-antikink pair during an

amount of time. As a result, the pair, after being scattered, oscillates around the contact

point and retrocede for a second collision. This mechanism was described in the Ref. [33] as

an exchange of energy between the translational and vibrational modes. Despite applicable

in the present case, we remark there are some known exceptions to this mechanism: in the

φ6 model, two-bounces occur even in the absence of a vibrational mode [41]; the presence of

more than one vibrational mode can result in the suppression of two-bounce windows [51].

Also, quasinormal modes can store energy during a collision in the φ4 model [40]. Now back

to our problem for ǫ 6= 0, as far as we know, there are no explicit solutions of the equation

of motion. In particular, corrections φn to the kink field in nth order in ǫ were presented in

Ref. [81], and are described in terms of the basis of eigenfunctions {ηn}.

III. NUMERICAL RESULTS

The kink scattering processes have a strong dependence on whether the initial region with

false vacuum is finite or not. Then in the following we will consider separately kink-antikink

and antikink-kink collisions.
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FIG. 1: False vacuum in an unbounded interval: kink-antikink collisions. Scalar field at the center

of mass, φ(0, t), showing a) the formation of bion state (for v = 0.17), b) two-bounce collision (for

v = 0.1926) and c) one-bounce collision (for v = 0.26). Results are for the φ4 model, corresponding

to ǫ = 0.

A. False vacuum in an unbounded interval: kink-antikink collisions

First of all let us consider a symmetric kink-antinkink collision. We take as initial condi-

tions a φ4 kink with velocity v and a φ4 antikink with velocity −v:

φ(x, 0) = φK(x+ x0, v, 0)− φK(x− x0,−v, 0)− 1, (5)

φ̇(x, 0) = φ̇K(x+ x0, v, 0)− φ̇K(x− x0,−v, 0). (6)

We fixed x0 = 15 as the initial kink position, i.e., the kink solution centered at −x0 and the

antikink at x0. Note that the initial condition is only a solution for ǫ = 0. We apply this

even for ǫ ≪ 1 considering that the system will relax by emitting scalar radiation during

their free propagation toward the collision region. To solve Eq. (3) we use a pseudospectral

method on a grid with 2048 nodes with periodic boundary conditions for φ and φ̇ and we set

the grid boundary at xmax = 200. A sympletic method with the Dirichlet condition imposed

at x = ±xmax was also applied to double check our numerical results. We used a 4th order

finite-difference method with spatial step δx = 0.09 and a 6th order symplectic integrator

with time step δt = 0.04.

We start our analysis by reviewing some aspects of the ǫ = 0 case, corresponding to the

φ4 theory, and well described in the literature [31–40]. Figs. 1a-1c depict three profiles of

scalar field at the center of mass as a function of time, φ(0, t), for different values of the

initial velocity. Initially the point x = 0 is at the vacuum φ = 1. For small velocities, the
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FIG. 2: False vacuum in an unbounded interval: kink-antikink collisions. Number of bounces

versus initial velocity v for (a) ǫ = 0, (b) ǫ = 0.001, (c) ǫ = 0.005 and (d) ǫ = 0.01.

output of the scattering process is a bion state - see an example in Fig. 1a - where the pair

radiates with the scalar field oscillating without a recognizable pattern until, in the long run,

finishing at the vacuum φ = −1. Velocities above a critical velocity vcrit ∼ 0.26 show an

inelastic scattering, where the output field retains the initial value φ = 1 after one bounce,

as in the example of Fig. 1c. We could characterize this inelastic scattering as having Nb = 1

bounces. For smaller velocities with v . vcrit there are some velocity windows where the

scalar field presents two-bounces (then Nb = 2) during the collision process, as shown in

Fig. 1b.

The structure of such two-bounce windows is better visualized in Fig. 2a, which shows the

number of bounces as a function of the initial velocity. As shown in Fig. 1a, bion states have

a large number of oscillations of φ(x, 0). Large values of Nb are not directly represented in

Fig. 2, but there one represent bion states as making frontier with the two-bounce windows.
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FIG. 3: False vacuum in an unbounded interval: kink-antikink collision for ǫ = 0.01 with (a)

v = 0.59, (b) v = 0.54 and (c) v = 0.558. Compare with diagram of Fig.2d. Blue represents the

false vacuum φ = −1 and the true vacuum φ = +1 is represented in green.

Each two-bounce window is labeled by an integer m, the number of oscillations of φ(0, t)

between the bounces. For instance, in Fig. 1b m = 1, meaning that this collision belong to

the first two-bounce window from Fig. 2a.

Now we turn to the effect of ǫ on kink scattering. Figs. 2b-2d show the number of

bounces as a function of the initial velocity for several values of ǫ 6= 0. They show the

inelastic scattering behavior with 1-bounce for v > vcrit, but with vcrit growing with ǫ. This

is a direct effect of the tendency of the false vacuum to decay. One example of 1-bounce

collision is presented in Fig. 3a. We observed an effect that appears only for ǫ 6= 0, that is

the lack of bounces or even bion states for v < v∗: the kink-antikink pair has not enought

energy to encounter at the center of mass before the false vacuum decay.

An example of this effect is shown in Fig. 3b. Also, 2-bounce windows are still present,

but are thinner in velocity for larger values of ǫ. See an example of this in Fig. 3c.

Another interesting aspect of kink-antikink collisions with the growing of ǫ is the ap-

pearing of a two-bounce window of zero order for ǫ & 0.008. An example of such effect is

presented in Fig. 4. There one can see that there is no oscillations of φ(x = 0, t) between

the bounces, meaning that m = 0. The appearing of zero order two-bounce windows was

reported before in models with degenerate vacua in the context of boundary scattering [66]

and in the study of transition .
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FIG. 4: False vacuum in an unbounded interval: kink-antikink collision showing a zero order

(m = 0) two-bounce for ǫ = 0.01 with v = 0.558.

B. False vacuum in a bounded interval: antikink-kink collisions

We take as initial condition a φ4 antikink with velocity v and a φ4 kink with velocity −v:

φ(x, 0) = −φK(x+ x0, v, 0) + φK(x− x0,−v, 0) + 1, (7)

φ̇(x, 0) = −φ̇K(x+ x0, v, 0) + φ̇K(x− x0,−v, 0). (8)

In the context of false vacuum, the output for antikink-kink collisions is much simpler than

the one described above for kink-antikink. This is due to the fact that both the kink-antikink

interaction and the tendency of the false vacuum to decay favor a kink-antikink pair to form.

The output of mechanism is a two-step process: firstly the field bounces around the false

vacuum with low frequency. Then the antikink-kink pair radiates and the field oscillates

in a high-frequency, approaching in the long run to the true vacuum state. This is showed

in Figs. 5a-5d for ǫ = 0.001. Surprisingly larger initial velocities are not more effective

in inducing the process of vacuum decay. On the contrary, with the growing of v the low-

frequency oscillation lasts even more before the decaying process to the false vacuum. It

seems that, with false vacuum, larger initial velocities excite the vibrational state of the kink
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FIG. 5: False vacuum in a bounded interval: antikink-kink collision for ǫ = 0.001 and with (a)

v = 0.1 (upper left), (b) v = 0.25 (uper right), (c) v = 0.4 (lower left), (d) v = 0.6 (lower right).

The figures show slices in the plane (x, t) of the scalar field. Blue represents the false vacuum

φ = −1 and the true vacuum φ = +1 is represented in green.

and antikink in a way that does not occurs for the degenerate vacuum, and the antikink-

kink pair can bounce several times and be even more departed during such low-frequency

oscillations (compare Figs. 5a-5b).

The relation between high- and low-frequency oscillations is more evident in a plot of

the scalar field at the center of mass, φ(0, t), as shown in Figs. 6a-b. There one can see

that for a too low initial velocity the field is not even able to bounce and the high-frequency

process already takes place, as can be see in Fig. 6a for v = 0.1. As an example for larger

velocities we take v = 0.25 as in Fig. 6b. There one can see three low-frequency oscillations

around the false vacuum φ = −1 before the field jumps and acquires the high-frequency
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FIG. 6: False vacuum in a bounded interval: antikink-kink collision. Scalar field at the center of

mass, φ(0, t) as a function of time for ǫ = 0.001 with (a) v = 0.1 and (b) v = 0.25, corresponding

to Figs. 5a-b

oscillations that approach the true vacuum φ = +1. As seen in Figs. 5c-5d, a too larger

initial velocity would require a much longer running time of simulations to see the final high-

frequency decay of the false vacuum. For the values x0 = 15 considered in the simulations,

the pattern of collisions described here is valid up to ǫ ∼ 5×10−3. Larger values of ǫ leads to

a non-recognizable pattern, meaning that the nonlinear coupling for antikink-kink collisions

is already too large.

IV. CONCLUSIONS

In this work we have studied the effect of kink scattering in the false vacuum decay. Kink-

antikink collisions are characterized by two critical velocities, v∗ (not present for degenerate

vacua) and vcrit. For 0 < v < v∗ we have inelastic scattering of the pair without contact.

For v∗ < v < vcrit the scalar field at the center of mass φ(x, 0) can show bion or two-bounce

around the true vacuum. In a diagram in velocities we have the usual structure of bion

states and a sequence of two-bounce windows accumulating around vcrit. For ǫ & ǭ there is

the appearance of zero-order two-bounce windows. For v > vcrit we have inelastic scattering,

and φ(x, 0) presents one-bounce around the true vacuum. Larger choices of initial position

of the kink-antikink pair up to x0 = 25 mean more time for the false vacuum to decay during

the free propagation of the kink-antikink pair, leading to an increasing of v∗ and vcrit
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We found that it is relatively easier for a finite region in a true vacuum to expand through

the false vacuum region, as described here in kink-antikink collisions. This is evident for low

initial velocities, where the kink-antikink pair scatters at non-null distance. In comparison,

it demands considerably more time for a finite region in false vacuum to decay completely to

the true vacuum. We showed this for antikink-kink collisions. That is, the attractive kink-

antikink interaction favors the formation of a long-lived bion state that inhibits the vacuum

decay. The antikink-kink collisions were described in a two-step process with a low-frequency

oscillation around the false vacuum followed by a high-frequency oscillation tending to the

true vacuum in the long run. This two-step process resembles the behavior of what is known

in the literature as false n-bounce-windows. In the end such bounce windows must be false

since the scalar field will not remain in the initial state. We also investigated the effect of

increasing the gap parameter ǫ. For kink-antikink collisions we have the increasing of both

velocities v∗ and vcrit.

For antikink-kink collisions the center of mass belongs to the false vacuum region and we

have a two-step process for decay of the false vacuum: a low-frequency fast decaying bouncing

state, followed by another long-lived high frequency bion state that radiates continuously.

For antikink-kink collisions, the more notable effect of the increasing of ǫ is the reduction

of the maximum separation of the antikink-kink pair during the low-frequency oscillations.

This shows the stronger tendency of the false vacuum to decay. The final state is the same,

with the field oscillating fastly around the true vacuum and radiating.
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