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Abstract

In this paper, we use our previous study of the higher order Bernoulli

numbers B
(l)
n to investigate p-adic properties of Stirling numbers of the

second kind S(n, k). For example we give a new greatly simplified proof

of the formula ν2(S(2
h, k)) = d2(k)− 1 if 1 ≤ k ≤ 2h, and generalize this

result to arbitrary primes p. We also consider the Stirling numbers of

the first kind s(n, k), with new results analogous to those for the Stirling

numbers of the second kind. New mod p congruences for Stirling numbers

of both kinds are also given.
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1 Introduction

The starting point of our investigation was the remarkable formula conjectured

by T. Lengyel [12] that

ν2(S(2
h, k)) = σ2(k)− 1 (1.1)

if 1 ≤ k ≤ 2h, where S(n, k) = Stirling number of the second kind, ν2 =2-adic

valuation, and σ2 = base 2 digit sum = number of base 2 digits.

This formula was conjectured by Lengyel in 1994 and proven by S. De Wan-

nemacker [7] in 2005. De Wannemacker’s proof is quite involved. Furthermore

the proof appears to be only suitable for the prime p = 2.

We were surprised to observe that De Wannemacker’s Theorem is an im-

mediate consequence of our previous study of higher order Bernoulli numbers

and polynomials, primarily of the pole structure, which we developed in a se-

ries of papers in the nineties [1,2,3,4]. The machinery of these papers is valid

for all primes p, and enables us to extend De Wannemacker’s Theorem to odd

primes p without additional effort. We also get a significant improvement of

this theorem, which is new even for p = 2.

Although the connection between higher order Bernoulli numbers and Stir-

ling numbers

S(n, k) =

(

n

k

)

B
(−k)
n−k and s(n, k) =

(

n− 1

k − 1

)

B
(n)
n−k (1.2)

is well known and has been noted in [2, 3], we have not previously pursued this

application in any depth.
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Subsequent to De Wannemacker’s proof, Lengyel used the same methods to

strengthen his original conjecture to prove [13] that

ν2(S(c2
h, k)) = σ2(k)− 1 (1.3)

if c ≥ 1 and 1 ≤ k ≤ 2h.

We will not prove this stronger result in this paper, but we will prove it

in a subsequent paper, along with its generalization to arbitrary primes. If

σ2(c) > 1, these Stirling numbers do not have the “minimum zero property,”

which is the main focus of this paper.

In addition, we have found greatly simplified proofs for other important

results on Stirling numbers of the second kind, e.g. we have a nice proof of

the theorem proven by O-Y. Chan and D. Manna [6, Th. 2.4] that the central

Stirling number S(2k, k) is odd if and only if k is Fibbinary (i.e., the base 2

representation of k has no consecutive ones). We also present a generalization

valid for all primes p, namely we determine when p ∤ S(pk, k), using a simple

analog of the Fibbinary property. We also give a new mod p congruence for

S(pk, k), which contains additional information if p 6= 2.

We have abstracted the role of 2h in De Wannemacker’s Theorem to the

“minimum zero property,” and have used this concept to strengthen the result

of T. Amdeberhan et al [5], conjectured in 2008 and proven by S. Hong et al

[11, Th. 3.2] in 2012, that

ν2(S(2
h + 1, k + 1)) = σ2(k)− 1 if 1 ≤ k ≤ 2h. (1.4)

This is also generalized to all primes, as well as to all “minimum zero cases.”
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In all instances where we have been able to exactly determine νp(S(n, k)), we

have also been able to find simple explicit mod p congruences for ǫp(S(n, k)) =

p−νp(S(n,k))S(n, k), which is the part of S(n, k) prime to p.

In our subsequent paper, we will also consider some cases which are not

“minimum zero cases.” We have tried to incorporate enough material in our

background section to facilitate this extension.

We also consider the Stirling numbers of the first kind s(n, k). The “mini-

mum zero property” now necessitates that k ≤ n < kp in addition to p−1 |n−k.

We use this property to prove an analog of DeWannemacker’s Theorem, that

ν2(s(n, 2
h)) = h− σ2(n − 1) if 2h ≤ n < 2h+1, and we generalize this result to

arbitrary primes.

Similarly we have an analog of the Hong, Zhao and Zhao result for Stirling

numbers of the first kind, that ν2(s(n − 1, 2h − 1)) = ν2(s(n, 2
h)) if 2h ≤ n <

2h+1, which we generalize to all primes and to all “minimum zero cases.”

We have organized this paper so that the new results on the p-adic analysis

of Stirling numbers appear in the early sections, with the preliminaries and

background in the later sections.

2 p-adic analysis of Stirling numbers of the sec-

ond kind

Throughout this paper, p = arbitrary prime and νp = exponential p-adic valu-

ation. We say that r has a zero of order e if νp(r) = e > 0, or a pole of order e
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νp(r) = −e < 0. If νp(r) = 0 then r is a unit. If r 6= 0, then ǫp(r) = p−νp(r)r is

the unit part of r.

The function σp(n) = sum of the base p digits of n plays an important role

in this paper. For p = 2, σ2(n) = the number of base 2 digits in n, which is

sometimes denoted by d2(n). Obviously σp(pn) = σp(n).

The connection between Stirling numbers of the second kind and higher

order Bernoulli numbers is given by

S(n, k) =

(

n

k

)

B
(−k)
n−k (2.1)

Using the standard formula (4.3) for νp
(

n
m

)

, the estimate of Lemma 5.1 for

νp(B
(l)
n ) now translates to

Lemma 2.1. ν(S(n, k)) ≥ ⌈(σ(k)− σ(n))/(p− 1)⌉ if n ≥ k.

This lemma was proven for p = 2 by De Wannemacker ([7, Th. 3]). The

proof he gave is non-trivial, involving Stirling number identities and induction,

and doesn’t appear to extend to odd primes. Lengyel has proven an estimate

for odd primes [13, Theorem 5] that is less precise and never sharp. Note that

since ν(S(n, k)) ∈ N, the estimate in this lemma is equivalent to the estimate

ν(S(n, k)) ≥ (σ(k) − σ(n))/(p− 1).

We define the minimum zero case for S(n, k) as one where the general in-

equality noted at the end of the preceding paragraph is an equality, namely

S(n, k) is a minimum zero case if ν(S(n, k)) = (σ(k)− σ(n))/(p − 1). (2.2)

The concept of minimum zero directly relates to the concept of maximum

pole for higher order Bernoulli polynomials (5.4), which we introduced in [4].
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Combining these definitions with the congruence in Proposition 5.1 for the

higher order Bernoulli numbers, we get the followig theorem, which establishes

a simple, effective binomial coefficient criterion.

Theorem 2.1. The following are equivalent:

(i) S(n, k) is a minimum zero case,

(ii) B
(−k)
n−k (x) has maximum pole.

(iii) r = (n− k)/(p− 1) ∈ N and p ∤
(

−(n+1)
r

)

, i.e., p ∤
(

n+r
r

)

.

Furthermore, in the minimum zero case, we have

ǫ(S(n, k)) ≡ (−1)rǫ(n!/k!)

(

n+ r

r

)

mod p.

Remarks. Since the classical theorems are all p = 2 theorems, it is worth

noting what this theorem says for p = 2. In this case, (iii) simply says
(

n+r
r

)

=

(

n+n−k
n

)

is odd, i.e., that n and n− k have no common base 2 digits.

Corollary 2.1. S(n, k) is a minimum zero case if and only if S(np, kp) is

a minimum zero case. Furthermore, if S(n, k) is a minimum zero case, then

ν(S(n, k) = ν(S(np, kp)) and ǫ(S(n, k)) ≡ ǫ(S(np, kp)) mod p.

Corollary 2.2. With the same notations as in the theorem, if σ(k) = σ(n) then

S(n, k) ≡ (−1)rǫ(n!/k!)

(

n+ r

r

)

mod p.

Remark. This corollary implies that if σ(k) = σ(n) and r = (n− k)/(p− 1),

then p|S(n, k) if and only if p|
(

n+r
r

)

, i.e. if and only if S(n, k) is not a minimum

zero case.
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We can now easily prove an analog of De Wannemacker’s Theorem valid for

all primes p. The following theorem has De Wannemacker’s result as the special

case for p = 2. Even for p = 2, the proof is much simpler than any proofs in the

literature which we know.

Theorem 2.2. Let n = aph with 1 ≤ a ≤ p− 1 and assume that 1 ≤ k ≤ n and

p− 1|n− k. Then S(n, k) is a minimum zero case and

ν(S(n, k)) =
σ(k)− σ(n)

p− 1
=

σ(k) − a

p− 1
.

Proof. If r = (n− k)/(p − 1) then r < ph, so p ∤
(

n+r
r

)

by the Lucas Theorem,

and so we have the minimum zero case by the preceding theorem, giving the

equations of Theorem 2.2.

Corollary 2.3. With the same assumptions, we have

ǫ(S(n, k)) ≡ (−1)r+aha!/ǫ(k!) mod p.

Proof. We have the minimum zero case by Theorem 2.2, and
(

n+r
r

)

≡ 1 mod p

since r and n have disjoint base p representations. Finally, the standard Lemma

4.1 congruence ǫ((aph)!) ≡ (−1)aha! mod p and the congruence in Theorem 2.1

give the desired result.

The next theorem shows that the minimum zero Stirling numbers of the

second kind have certain invariance properties.

Theorem 2.3. Let S(n, k) be a minimum zero case and 0 ≤ b < min{pν(k), pν(n)}.

Let n′ = n+ b and k′ = k + b. Then S(n′, k′) is a minimum zero case and
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(i) ν(S(n′, k′)) = ν(S(n, k)).

(ii) ǫ(S(n′, k′)) ≡ ǫ(S(n, k)) mod p.

Proof. First observe that b is a common bottom segment of the base p repre-

sentations of n′ and k′, and n and k are the respective top segments. We have

n′ − k′ = n − k, so r = (n′ − k′)/(p − 1) = (n − k)/(p − 1). Since the base p

representations of n, k, and n + r are all disjoint from the representation of b,

we have
(

n′+r
r

)

≡
(

n+r
r

)

mod p by the Lucas congruence. Hence, S(n′, k′) is

also a minimum zero case. Since σ(k′) − σ(n′) = σ(k) − σ(n), part (i) is now

established.

For part (ii) consider

(n′!/k′!)/(n!/k!) =
n′!

n!b!

/

k′!

k!b!
=

(

n′

n

)/(

k′

k

)

.

But now the disjointness of n and b implies that
(

n′

n

)

≡ 1 mod p, and similarly

the disjointness of k and b implies that
(

k′

k

)

≡ 1 mod p. Hence ǫ(n′!/k′!) ≡

ǫ(n!/k!) mod p, so by the congruence in Theorem 2.1, we have ǫ(S(n′, k′)) ≡

ǫ(S(n, k)) mod p.

The following corollary, which stregthens DeWannemacker’s Theorem, is a

special case of Theorem 2.3.

Corollary 2.4. Let n = aph with 1 ≤ a ≤ p − 1, and assume that 1 ≤ k ≤ n

and p − 1|n − k. Let n′ = n + b and k′ = k + b, where 0 ≤ b < pν(k). Then

S(n′, k′) is a minimum zero case and

(i) ν(S(n, k)) = ν(S(n′, k′)) = (σ(k)− a)/(p− 1).
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(ii) ǫ(S(n, k)) ≡ ǫ(S(n′, k′)) mod p.

Next we consider the central Stirling numbers S(2k, k), which are close rel-

atives of the Catalan numbers, and are significant for combinatorics. In [6, Th.

2.4], O-Y Chan and D. Manna showed in a non-trivial way that S(2k, k) is odd

if and only if k is Fibbinary, i.e., if the base 2 representation of k has no con-

secutive ones. We give a short proof of this theorem, generalized to all primes

p. The proof given by Chan and Manna for p = 2, considers many parity cases.

To generalize to arbitrary primes p, define S(pk, k) as a p-central Stirling

number and k as p-Fibbinary if the sum of any two consecutive digits of the

base p representation of k is at most p− 1. These concepts clearly specialize to

central Stirling number and Fibbinary number for p = 2.

Theorem 2.4. p ∤ S(pk, k) if and only if k is p-Fibbinary.

Proof. Since if n = pk, then r = (n− k)/(p− 1) = k and σp(n) = σp(k). Hence

S(pk, k) is a minimum zero case iff ν(S(pk, k)) = 0, so p ∤ S(pk, k) iff p ∤
(

pk+k
k

)

.

But by Lucas’ Theorem this is equivalent to the p-Fibbinary condition for k.

Corollary 2.5. If k =
∑

i aip
i is the base p representation, then

S(pk, k) ≡
∏

i

(

ai + ai+1

ai

)

mod p.

Proof. This follows immediately from the Lucas congruence for
(

pk+k
k

)

, with

ǫ((pk)!/k!) ≡ (−1)k mod p.

We now turn to a result conjectured by T. Amdeberhan et al in [5] and
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proven by Hong et al ([8, Th. 3.2]) several years later, namely

ν2(S(2
h + 1, k + 1)) = σ2(k)− 1. (2.3)

We give a proof of this result, which is more general since it works for all

primes p, and replaces the assumption that n = 2h by the weaker assumption

that S(n, k) is a minimum zero case. The proof is also shorter and we believe

more instructive than the one given for the special case p = 2 in [8].

Theorem 2.5. Suppose S(n, k) is a minimum zero case. Then

ν(S(n+ 1, k + 1)) = ν(S(n, k)) and ǫ(S(n+ 1, k + 1)) ≡ ǫ(S(n, k)) mod p.

Proof. By the standard recursion for Stirling numbers of the second kind, we

have

S(n+ 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1)

Hence it will suffice for the first assertion to show that ν((k + 1)S(n, k + 1)) >

ν(S(n, k)), by a standard property of valuations. By Lemma 2.1,

ν(S(n, k + 1)) ≥ ⌈(σ(k + 1)− σ(n))/(p− 1)⌉, so by Lemma 4.2 we have

ν(k + 1) + ν(S(n, k + 1)) ≥ ⌈(ν(k + 1)(p− 1) + σ(k + 1)− σ(n))/(p− 1)⌉

= ⌈(1 + σ(k) − σ(n))/(p− 1)⌉.

But p−1|(σ(k)−σ(n)) by assumption, so this number equals 1+ν(S(n, k)).

The proof of the congruence now follows from (4.10).

Note that simple examples show that S(n+1, k+1) may not be a minimum

zero case in Theorem 2.5. For example, for p = 2, we have S(5, 3) is a minimum
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zero case, since n = 5 and n−k = 2 have no common base 2 digit, i.e., 2 ∤
(

n+r
r

)

.

However, S(6, 4) is not a minimum zero case since now n + r = 6 + 2, which

does have a base 2 carry.

3 p-adic analysis of Stirling numbers of the first

kind

We give some results for Stirling numbers of the first kind s(n, k), which are

analogous to the results for Stirling numbers of the second kind. We believe

they are all new.

We now have the connecting formula

s(n, k) =

(

n− 1

k − 1

)

B
(n)
n−k (3.1)

Our first result, which is analogous to Lemma 2.1, and has essentially the

same proof, is the following.

Lemma 3.1. νp(s(n, k)) ≥ ⌈σ(k−1)−σ(n−1)
p−1 ⌉.

Remarks. In [14] Lengyel gives several striking estimates for the p-adic values

of s(n, k), including νp(s(n, k)) → ∞ as n → ∞ for k fixed. Our methods do

not suffice to yield these results. He also considers the case where n−k is fixed,

and in this case our estimate compares well with his.

References [11, 15] extend the p-adic analysis of Stirling numbers of the

first kind, with [11] making heavy use of the Newton polygon of the horizontal

generating function (x)n.



12

We can define the minimum zero case for s(n, k) by

νp(s(n, k)) = (σ(k − 1)− σ(n− 1)))/(p− 1). (3.2)

Since νp(s(n, k)) ∈ N, this is equivalent to sharpness of the estimate in

Lemma 3.1 and to the maximum pole case for B
(n)
n−k(x), i.e. to ν(B

(n)
n−k) =

−σ(n−k)/(p−1). It is also equivalent to p ∤
(

k−1
r

)

, where r = (n−k)/(p−1) ∈ N.

This last formula points to an essential difference between the Stirling num-

bers of the first and second kinds, namely the minimum zero case here requires

that r ≤ k − 1 since p ∤
(

k−1
r

)

, so k ≤ n < kp is a necessary condition for the

Stirling number s(n, k) to be a minimum zero case. There is nothing comparable

for Stirling numbers of the second kind.

We get the following theorem, essentially by definition.

Theorem 3.1. If r = (n− k)/(p− 1), then in the minimum zero case

ν(s(n, k)) = (σ(k − 1)− σ(n− 1))/(p− 1)

and

ǫ(s(n, k)) ≡ ǫ((n− 1)!/(k − 1)!)

(

k − 1

r

)

mod p.

Corollary 3.1. s(n, k) is a minimum zero case if and only if s(np, kp) is a

minimum zero case. Furthermore, if s(n, k) is a minimum zero case, then

ǫ(s(n, k)) ≡ ǫ(s(np, kp)) mod p.

We have a theorem for Stirling numbers of the first kind analogous to De

Wannemacker’s Theorem, generalized to arbitrary primes.
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Theorem 3.2. Let k have a single base p digit, i.e. k = aph with 1 ≤ a ≤ p−1.

Then the minimum zero case holds for all s(n, k) with k ≤ n < kp such that

p− 1|n− k.

Proof. If r = (n − k)/(p − 1) then clearly r ≤ k − 1 since n − k < k(p − 1)

which implies by Lucas’s Theorem that p ∤
(

k−1
r

)

, since k − 1 = (a − 1)ph +

(p− 1)ph−1 + · · ·+ (p− 1).

Corollary 3.2. With the same assumptions and notations

ν(s(n, aph)) =
a− 1− σ(n− 1)

p− 1
+ h.

and

ǫ(s(n, aph)) ≡ (−1)ah+r−rh
ǫ((n− 1)!)

(a− 1)!

(

a− 1

rh

)

mod p,

where rh is the coefficient of ph in the base p representation of r.

Proof. σ(k− 1) is given in the above proof, namely σ(k− 1) = a− 1+ h(p− 1),

which gives the first part. For the congruence part, use Lemma 4.1 applied to

ǫ(k!) with (k−1)! = k!/k, together with the Lucas congruence with the last line

of the preceding proof, and the fact that
(

p−1
ri

)

≡
(

−1
ri

)

= (−1)ri mod p, for each

digit ri of r, together with σ(r) ≡ r mod p − 1, so σ(r) and r have the same

parity if p 6= 2.

Remark. The presence of h in ν(s(n, aph)) is different from the situation for

ν(S(aph, k)), and illustrates that the Stirling numbers of the first and second

kind have different character.

The special case for p = 2 is particularly simple and is worth noting.
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Corollary 3.3. Let k = 2h. Then if 2h ≤ n < 2h+1, we have

ν2(s(n, k)) = h− σ2(n− 1).

We have an invariance property for Stirling numbers of the first kind analo-

gous to the Stirling numbers of the second kind. The proof is essentially similar,

and we will omit it.

Theorem 3.3. Let s(n, k) be a minimum zero case. Assume that pν(t) > n.

Let n′ = t+ n and k′ = t+ k. Then s(n′, k′) is a minimum zero case and

(i) ν(s(n′, k′)) = ν(s(n, k)).

(ii) ǫ(s(n′, k′)) ≡ ǫ(s(n, k)) mod p.

In this case t is the common top segment of n′ and k′, and n and k are the

respective bottom segments.

The special case when k = aph with 1 ≤ a ≤ p − 1 and pk > n ≥ k and

p− 1|n− k, has the same invariance, which is a strengthening of the analog of

DeWannemacker’s Theorem for Stirling numbers of the first kind.

Finally we prove an analog of the Hong, Zhao and Zhao result for Stirling

numbers of the first kind, also valid for all primes p, and generalized to minimum

zero cases.

Theorem 3.4. Let s(n, k) be a minimum zero case. Then

ν(s(n− 1, k − 1)) = ν(s(n, k)) and

ǫ(s(n− 1, k − 1)) ≡ ǫ(s(n, k)) mod p.
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Proof. This is entirely analogous to the previous proof for the Stirling numbers

of the second kind, now using the basic recursion

s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k).

The rest of the proof is essentially the same as in Theorem 2.5, so we omit

the details.

Observe that s(n− 1, k − 1) may not be a minimum zero case.

4 p-adic preliminaries

We now collect, for reference purposes, some useful standard and elementary

p-adic results.

n ≡ σp(n) mod (p− 1), i.e. p− 1|(n− σp(n)). (4.1)

This paper makes heavy use of standard results on factorials and binomial

coefficients, which we now summarize:

νp(n!) = (n− σp(n))/(p− 1). (4.2)

νp

(

n

m

)

= (σp(m) + σp(n−m)− σp(n))/(p− 1). (4.3)

Remark. From (4.2) and (4.3), it immediately follows that if p−1|n−k then

(

n
k

)

= ǫ(n!/k!)p(n−k)/(p−1)p(σ(k)−σ(n))/(p−1)/(n− k)!.
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It also follows that νp
(

n
m

)

= number of carries for the base p addition of m

and n−m, whence we have the Lucas Theorem that

p ∤

(

n

m

)

iff ni ≥ mi for all base p digits. (4.4)

In fact, the Lucas congruence says

(

n

m

)

≡
∏

i

(

ni

mi

)

mod p. (4.5)

An important special case of the Lucas congruence is that if r and n have

disjoint base p representations then

(

n+ r

r

)

≡ 1 mod p. (4.6)

There is a more subtle congruence discovered by H. Anton in 1869 that if

νp
(

n
m

)

= e and r = n−m then

(−1)e

pe

(

n

m

)

≡
∏ ni!

mi!ri!
mod p (4.7)

where ni,mi, ri are the base p digits of n,m, r respectively. This is a mod p

congruence for ǫp
(

n
m

)

, up to the sign (−1)e.

Since the base p digits of np are the same as those of n shifted one place to

the left, it follows immediately from the Lucas and Anton congruences that

νp

(

np

mp

)

= νp

(

n

m

)

and ǫp

(

np

mp

)

≡ ǫp

(

n

m

)

mod p. (4.8)

If p is understood by the context, we may suppress the p in our notations,

i.e. use ν, σ, ǫ instead of νp, σp, ǫp respectively.

Finally, we make frequent use of the formula

(

−a

r

)

= (−1)r
(

a+ r − 1

r

)

, i.e.

(

−(n+ 1)

r

)

= (−1)r
(

n+ r

r

)

. (4.9)
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By basic properties of valuations, it is clear that ǫ(ab) = ǫ(a)ǫ(b), and

if ν(a) < ν(b), then ν(a+ b) = ν(a) and ǫ(a+ b) ≡ ǫ(a) mod p. (4.10)

Remark. It is worth noting that c/d ≡ 1 mod p if and only if ν(c) = ν(d)

and ǫ(c) ≡ ǫ(d) mod p.

These observations lead immediately to the following lemma. We omit the

proof, which is a straightforward generalization of Wilson’s Theorem and proof.

Lemma 4.1. Assume 1 ≤ a ≤ p− 1. Then

ǫ((aph)!) ≡ (−1)aha! mod p.

It is also well-known and easy to prove that

ǫp((pk)!) ≡ (−1)kǫp(k!) mod p. (4.11)

Finally we conclude with a useful, elementary lemma.

Lemma 4.2. σp(k + 1) = σp(k) + 1 − (p− 1)u where u = νp(k + 1) = number

of consecutive digits at the bottom of the base p representation of k which are

equal to p− 1.

Proof. The effect of adding one to k is to replace the bottom u digits by zeros

and increase the next digit by one.
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5 Background on Stirling numbers and higher

order Bernoulli numbers and polynomials

If n ∈ N and l ∈ Z, the Bernoulli polynomials B
(l)
n (x) of order l and degree n

are defined by

(

t

et − 1

)l

etx =

∞
∑

n=0

B(l)
n (x)

tn

n!
. (5.1)

The higher order Bernoulli numbers are the constant terms B
(l)
n = B

(l)
n (0).

The polynomial B
(l)
n (x) ∈ Q[x] is monic with degree n.

The Stirling numbers of the first kind s(n, k) can be defined by

(x)n =

∞
∑

k=1

s(n, k)xk (5.2)

where (x)n = x(x− 1) · · · (x− (n− 1)) = n!
(

x
n

)

.

The s(n, k) are integers and the sign of s(n, k) is (−1)n−k. The unsigned

Stirling numbers |s(n, k)| count the number of n-permutations with k cycles.

The Stirling numbers of the second kind S(n, k) can be defined combinato-

rially by

S(n, k) = number of partitions of an n-set into k subsets. (5.3)

Remarks. We showed in [1] how to precisely locate the successively increasing

order poles of the coefficients of B
(l)
n (x), arranged from top degree down, which

we call the poles of B
(l)
n (x), and we showed that these poles have a remarkably

regular pattern. The salient features of the pole pattern are that the first pole

has order 1, the next bigger pole has order 2, etc., and that all these first

occurrences appear in codegrees i, where p− 1|i and p ∤
(

n
i

)

.
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Subsequently in [4] we interpreted these results in terms of the Newton

polygon of B
(l)
n (x) and gave a precise, algorithmic, description of the descending

portion of this Newton polygon, which summarizes the pole pattern.

The following lemma was proven in [1], and by a different method, also in [3].

Lemma 5.1.

ν(B(l)
n ) ≥ −⌊σ(n)/(p− 1)⌋.

.

We were also able to prove some general congruences for the higher or-

der Bernoulli numbers B
(l)
n in [3]. We will generally assume that p − 1|n (or

p − 1|n − k for the applications to Stirling numbers S(n, k) and s(n, k)), since

that is simplest. The following proposition is the special case of [3, Th. 1] where

p− 1|n, with some notational changes.

Proposition 5.1. Suppose p− 1|n and let r = n/(p− 1). Then

(−1)nprB(l)
n /n! ≡ (−1)r

(

n+ r − l

r

)

mod p.

Note that since p − 1|n, we can omit the factor (−1)n from the preceding

congruence.

We introduced the concept of maximum pole in [4] for B
(l)
n (x) by

νp(B
(l)
n ) = −σ(n)/(p− 1), (5.4)

which is the theoretical minimum value and obviously is only attainable if p−1|n.

Observe that if p−1|n, this is equivalent to sharpness of the estimate in Lemma
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5.1. In the maximum pole case, B
(l)
n (x) has a pole if n > 0, which is the biggest

pole for all the coefficients of B
(l)
n (x). This occurs when the Newton polynomial

of B
(l)
n (x) is strictly decreasing. By the preceding analysis, there is a maximum

pole iff

r = n/(p− 1) ∈ N and p ∤

(

l − n− 1

r

)

. (5.5)

In the maximum pole case, we have the nontrivial congruences

prB(l)
n /n! ≡ (−1)n

(

l − n− 1

r

)

≡ (−1)r
(

n− l+ r

r

)

mod p. (5.6)
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