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We study the cosmology on the Friedmann-Lemâıtre-Robertson-Walker (FLRW) background in
scalar-vector-tensor theories with a broken U(1) gauge symmetry. For parity-invariant interactions
arising in scalar-vector-tensor theories with second-order equations of motion, we derive conditions
for the absence of ghosts and Laplacian instabilities associated with tensor, vector, and scalar
perturbations at linear order. This general result is applied to the computation of the primordial
tensor power spectrum generated during inflation as well as to the speed of gravity relevant to
the late-time cosmic acceleration. We also construct a concrete inflationary model in which a
temporal vector component A0 contributes to the dynamics of cosmic acceleration besides a scalar
field φ through their kinetic mixings. In this model, we show that all the stability conditions of
perturbations can be consistently satisfied during inflation and subsequent reheating.

I. INTRODUCTION

Despite the tremendous progress of observational cosmology over the past two decades, there are several unsolved
issues in theoretical cosmology. The observations of Cosmic Microwave Background (CMB) [1] and supernovae type
Ia [2] have shown that our Universe exhibited two stages of cosmic acceleration: inflation and dark energy. Moreover,
we know that dark matter played a crucial role for the large-scale structure formation [3]. The existing problems of
inflation, dark energy, and dark matter imply that there may be some extra degrees of freedom (DOFs) beyond the
paradigms of standard model of particle physics and General Relativity (GR) [4].

A scalar field φ can be a natural candidate for addressing such problems. In theories aiming to unify quantum field
theory and GR, the scalar field can generally have direct couplings to gravity. A dilaton field arising in string theory
is one of such examples, in which case there is a nonminimal coupling of the form F (φ)R with the Ricci scalar R [5].
One can also consider a derivative interaction in which the field kinetic energy −∂µφ∂µφ/2 is directly coupled to R [6].
In such cases, however, the theories generally contain derivatives higher than second order, so they are plagued by the
problem of so-called Ostrogradski instabilities [7]. It is possible to keep the equations of motion up to second order
by adding counter terms in the Lagrangian to eliminate higher-order derivatives [8]. The most general scalar-tensor
theories with second-order equations of motion are dubbed Horndeski theories [9–11], which have been widely applied
to the construction of viable models of inflation and dark energy [12–21].

A vector field Aµ can also be the source for cosmic acceleration. If the vector field coupled to gravity respects the
U(1) gauge symmetry as well as the Lorentz invariance, it is not possible to construct nontrivial derivative interactions
such as those appearing in scalar Horndeski theories [22]. The vector field with a broken U(1) symmetry (including
a massive Proca field) allows Galileon-type derivative and nonminimal couplings to gravity. Unlike scalar-tensor
theories, there are also new interactions arising from intrinsic vector modes [23]. Most general vector-tensor theories
with second-order equations of motion are dubbed generalized Proca (GP) theories [23–25]. The applications of GP
theories to dark energy [26–29] and spherically symmetric objects [30–35] were extensively performed in the literature.

It is possible to unify Horndeski and GP theories in the form of scalar-vector-tensor (SVT) theories. In Ref. [36], the
action of SVT theories with second-order equations of motion was constructed by keeping the U(1) gauge symmetry or
by abandoning it. In the gauge-invariant setup the longitudinal component of a vector field Aµ does not propagate, so
a scalar field φ is the only scalar propagating DOF besides two transverse vector modes and two tensor polarizations
[36]. In this case, two of present authors found a new type of hairy black hole solutions in a static and spherically
symmetric background [37] (see also Refs. [38, 39]), which are stable against odd-parity perturbations under certain
bounds of coupling constants [40].

If we try to apply SVT theories to cosmology, the U(1) invariant theories do not allow the existence of a time-
dependent vector field relevant to the dynamics on the FLRW background. In this case, the vector field needs to be
promoted to a non-abelian gauge field with a broken SU(2) symmetry [41, 42], which we will not consider in this
paper. In SVT theories with broken U(1) gauge invariance, the time-dependent temporal vector component A0(t) can
play a role for the background cosmology besides a scalar field φ(t) [36]. It is of interest to apply such new theories
to the dynamics of inflation and dark energy. In particular, there are six propagating DOFs (two scalars, two vectors,
and two tensors) in SVT theories with broken U(1) symmetry, so we need to study whether any of the propagating
DOFs are plagued by instability problems.
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In this paper, we derive conditions for the absence of ghosts and Laplacian instabilities of linear cosmological pertur-
bations in the presence of most general U(1) broken SVT interactions with second-order equations of motion and with
parity invariance. In Sec. II, we revisit the action of U(1) broken SVT theories and obtain the background equations
of motion on the flat FLRW spacetime. In Sec. III, we compute the second-order action of tensor perturbations and
apply it to the speed of gravitational waves relevant to the late-time cosmic acceleration and to the calculation of the
primordial tensor power spectrum generated during inflation. In Secs. IV and V, we obtain conditions for avoiding
ghosts and Laplacian instabilities of vector and scalar perturbations by deriving their second-order actions. In Sec. VI,
we construct a concrete inflationary model in the framework of SVT theories and show that all the stability conditions
can be consistently satisfied during inflation and reheating. Sec. VII is devoted to conclusions. Throughout the paper,
we use the natural unit in which the speed of light c is equivalent to 1.

II. U(1) BROKEN SVT THEORIES AND BACKGROUND EQUATIONS OF MOTION

In Ref. [36], the action of SVT theories with broken U(1) symmetry was constructed by unifying Horndeski theories
with GP theories. In this paper, we focus on new interactions arising in SVT theories with second-order equations of
motion and apply them to the cosmological dynamics on the flat FLRW background. The U(1) broken SVT theories
consist of a vector field Aµ and a scalar field φ, both of which have direct couplings to gravity.

A. SVT theories with broken U(1) symmetry

We define a field strength Fµν of the vector field Aµ, its dual F̃
µν , and a symmetric tensor Sµν , as

Fµν = ∇µAν −∇νAµ , F̃µν =
1

2
EµναβFαβ , Sµν = ∇µAν +∇νAµ , (2.1)

where ∇µ represents a covariant derivative operator, and Eµναβ is the anti-symmetric Levi-Civita tensor satisfying

the normalization EµναβEµναβ = −4!. While neither Fµν nor F̃µν affects the cosmological background dynamics with
a purely temporal component, this is not the case for Sµν . We introduce another tensor for convenience in form of
an effective metric constructed from possible combinations of gµν , Aµ, and ∇µφ, i.e.,

Ghn

µν = hn1(φ,Xi)gµν + hn2(φ,Xi)∇µφ∇νφ+ hn3(φ,Xi)AµAν + hn4(φ,Xi)Aµ∇νφ , (2.2)

where gµν is the four-dimensional spacetime metric, and

X1 = −1

2
∇µφ∇µφ , X2 = −1

2
Aµ∇µφ , X3 = −1

2
AµA

µ , (2.3)

with i = 1, 2, 3. As we will see below, Ghn

µν appears in the fifth-order Lagrangian of SVT theories1, so that the subscript
n represents n = 5. The new action arising in SVT theories with broken U(1) symmetry is given by [36]

SSVT =

∫

d4x
√−g

6
∑

n=2

Ln , (2.4)

with the Lagrangians

L2 = f2(φ,X1, X2, X3, F, Y1, Y2, Y3) ,

L3 = f3(φ,X3)g
µνSµν + f̃3(φ,X3)A

µAνSµν ,

L4 = f4(φ,X3)R + f4,X3
(φ,X3)

[

(∇µA
µ)2 −∇µAν∇νAµ

]

,

L5 = f5(φ,X3)G
µν∇µAν − 1

6
f5,X3

(φ,X3)
[

(∇µA
µ)3 − 3∇µA

µ∇ρAσ∇σAρ + 2∇ρAσ∇γAρ∇σAγ

]

+ Mµν
5 ∇µ∇νφ+Nµν

5 Sµν ,

L6 = f6(φ,X1)L
µναβFµνFαβ +Mµναβ

6 ∇µ∇αφ∇ν∇βφ+ f̃6(φ,X3)L
µναβFµνFαβ +Nµναβ

6 SµαSνβ , (2.5)

1 As was pointed out in Ref. [36], the explicit dependence on all the hnj functions needs an additional caution, since an arbitrary
dependence on a general background will introduce dynamics for the temporal component of the vector field. In order for this not to
happen, the dependence of Mµν

5 would need to be restricted to X1 and similarly the dependence of Nµν
5 to X3 and so on. We leave

them here as general functions since the background symmetries are not oblivious to this fact, but for a more general background this
would need to be taken into account.
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where R and Gµν are the Ricci scalar and the Einstein tensor, respectively, and f4,X3
= ∂f4/∂X3, f5,X3

= ∂f5/∂X3.
The double dual Riemann tensor Lµναβ is defined by

Lµναβ =
1

4
EµνρσEαβγδRρσγδ , (2.6)

where Rρσγδ is the Riemann tensor. We also used the following notations:

F = −1

4
FµνF

µν , Y1 = ∇µφ∇νφF
µαF ν

α , Y2 = ∇µφAνF
µαF ν

α , Y3 = AµAνF
µαF ν

α , (2.7)

which correspond to the interactions arising from pure vector modes.
The 2-rank tensors Mµν

5 and Nµν
5 in L5, which encode intrinsic vector interactions, are given by

Mµν
5 = Gh5

ρσ F̃
µρF̃ νσ , Nµν

5 = Gh̃5

ρσ F̃
µρF̃ νσ , (2.8)

where the functions h5j and h̃5j (j = 1, 2, 3, 4) appearing in Gh5
ρσ and Gh̃5

ρσ are functions of φ and X1, X2, X3. The

Lagrangian L6 also corresponds to the interactions of intrinsic vector modes. The 4-rank tensors Mµναβ
6 and Nµναβ

6

are defined by

Mµναβ
6 = 2f6,X1

(φ,X1)F̃
µν F̃αβ , Nµναβ

6 =
1

2
f̃6,X3

(φ,X3)F̃
µν F̃αβ . (2.9)

The functions f3, f̃3, f4, f5, f̃6 depend on φ and X3, whereas f6 has the dependence of φ and X1. The function f2
contains the dependence of φ,X1, X2, X3, F, Y1, Y2, Y3. In f2, we do not take into account the parity-violating term
F̃ = −FµνF̃

µν/4 from [36].
The action of GP theories (which is given by Eqs. (2.2)-(2.6) of Ref. [28]) can be recovered by using the corre-

spondence φ → 0, X1,2 → 0, X3 → X,Y1,2 → 0, Y3 → Y , f2 → G2(X,F, Y ), 2f3 → G3(X), f̃3 → 0, f4 → G4(X),

f5 → G5(X), h5j → 0, h̃51 → −g5(X)/2, h̃52, h̃53, h̃54 → 0, f6 → 0, and 4f̃6 → G6(X) in the action (2.4).
We note that the full action of SVT theories with second-order equations of motion is given by S = SSVT + SST,

where SST is the action of scalar-tensor Horndeski theories with the Lagrangians (2.1)-(2.4) of Ref. [11]. Since we are
interested in the effect of new interactions SSVT on the cosmological dynamics, we focus on U(1) broken SVT theories
given by the action (2.4). In such theories, there are six propagating DOFs in total (two tensors, two vectors, and
two scalars) on the flat FLRW background. In Secs. III-V, we study the propagation of tensor, vector, and scalar
perturbations in turn. In Sec. VI, we apply our U(1) broken SVT theories to the inflationary cosmology.

B. Background equations of motion

To derive the equations of motion on the flat FLRW background, we begin with the line element

ds2 = −N2(t)dt2 + a2(t)δijdx
idxj , (2.10)

where N(t) is the lapse and a(t) is the scale factor. We also consider the configuration of a time-dependent scalar
field φ(t) and a vector field Aµ(t) given by

Aµ(t) = (A0(t)N(t), 0, 0, 0) , (2.11)

where A0(t) is a time-dependent temporal vector component. The quantities F, Y1, Y2, Y3 vanish on the spacetime
metric (2.10), so they do not contribute to the background equations of motion. Moreover, the Lagrangian L6 and
the interactions proportional to Mµν

5 and Nµν
5 in L5 do not affect the background cosmology either. The quantities

X1, X2, X3 are given, respectively, by

X1 =
φ̇2

2N2
, X2 =

φ̇A0

2N
, X3 =

A2
0

2
, (2.12)

where a dot represents a derivative with respect to t. We compute the action (2.4) on the spacetime metric (2.10)
and vary it with respect to N , a, φ, and A0. Setting N = 1 at the end, we obtain the following equations of motion
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on the flat FLRW background:

6f4H
2 + f2 − φ̇2f2,X1

− 1

2
φ̇A0f2,X2

+ 6H
(

φ̇f4,φ −HA2
0f4,X3

)

+ 2A0H
2
(

3φ̇f5,φ −A2
0Hf5,X3

)

= 0 , (2.13)

2f4

(

2Ḣ + 3H2
)

+ f2 + 2Ȧ0A
2
0

(

f3,X3
+ f̃3

)

+ 2φ̇A0f3,φ + 2
(

φ̈+ 2Hφ̇
)

f4,φ − 2A0

[

A0(2Ḣ + 3H2) + 2Ȧ0H
]

f4,X3

+2φ̇Ȧ0A0f4,X3φ + 2φ̇2f4,φφ − 4HA2
0

(

Ȧ0A0f4,X3X3
+ φ̇f4,X3φ

)

+
[

2A0

(

Hφ̈+ Ḣφ̇
)

+ φ̇
(

2HȦ0 + 3H2A0

)]

f5,φ

−HA2
0

[

2A0

(

Ḣ +H2
)

+ 3Ȧ0H
]

f5,X3
+Hφ̇A2

0

(

2Ȧ0 −HA0

)

f5,X3φ +HA0

(

2φ̇2f5,φφ − Ȧ0A
3
0Hf5,X3X3

)

= 0,(2.14)
(

f2,X1
+ φ̇2f2,X1X1

+ φ̇A0f2,X1X2
+

1

4
A2

0f2,X2X2

)

φ̈+ 3Hf2,X1
φ̇− f2,φ + φ̇2f2,X1φ − 6

(

Ḣ + 2H2
)

f4,φ

+

[

1

2
f2,X2

+
1

2
φ̇2f2,X1X2

+ 2f3,φ − 3H2f5,φ +A0

(

φ̇f2,X1X3
+

1

4
φ̇f2,X2X2

− 6Hf4,X3φ

)

+
A2

0

2

(

f2,X2X3
− 4f̃3,φ − 6H2f5,X3φ

)

]

Ȧ0 +

[

1

2
φ̇f2,X2φ +

3

2
Hf2,X2

+ 6Hf3,φ − 6A0H
2f4,X3φ

−3H
(

2Ḣ + 3H2
)

f5,φ −A2
0H

3f5,X3φ

]

A0 = 0 , (2.15)

2
(

f2,X3
+ 6H2f4,X3

− 6Hφ̇f4,X3φ

)

A0 − 2
(

6Hf3,X3
+ 6Hf̃3 + 2φ̇f̃3,φ − 3H3f5,X3

+ 3H2φ̇f5,X3φ

)

A2
0

+12H2f4,X3X3
A3

0 + 2H3f5,X3X3
A4

0 +
(

f2,X2 + 4f3,φ − 6H2f5,φ
)

φ̇ = 0 , (2.16)

where H = ȧ/a is the Hubble expansion rate. As we observe in Eqs. (2.15) and (2.16), the scalar field φ and the
temporal vector component A0 are coupled to each other in a non-trivial way. From Eq. (2.16), we find that A0

depends not only on H but also on φ and φ̇. In GP theories, A0 depends solely on H and hence there exists a
de Sitter solution characterized by constant A0 and H [27, 28]. In SVT theories, this structure is broken by the
interaction between φ and A0, which we need to take into account.
If A0 is the dominant source for the background dynamics relevant to cosmic acceleration, the nonvanishing time

derivative φ̇ leads to the deviation from de Sitter solutions characterized by constant A0. On the other hand, if the
energy density of φ dominates over that of A0, the cosmological dynamics of φ is subject to modifications by the
existence of A0. If we apply this scenario to the early Universe, the modification induced by A0 affects the dynamics
of inflation and primordial power spectra of perturbations generated during inflation. If the energy densities of φ and
A0 are comparable to each other, there is the possibility for realizing “multi-field” inflation driven by the two fields,
even though one of them will play the role of an auxiliary field. It would be also possible to apply the above scenario
to the dynamics of dark energy and possibly to dark matter [36].

III. TENSOR PERTURBATIONS

We derive the second-order action of tensor perturbations for the SVT theories given by the action (2.4). Let us
consider the linearly perturbed line element of intrinsic tensor modes:

ds2t = −dt2 + a2(t) (δij + hij) dx
idxj , (3.1)

where the tensor perturbation hij obeys the transverse and traceless conditions ∇jhij = 0 and hi
i = 0.

A. Second-order action

Expanding the action (2.4) up to quadratic order in hij and integrating it by parts, the second-order action of
tensor perturbations yields

S(2)
t =

∫

dtd3x
a3qt
8
δikδjl

[

ḣij ḣkl −
c2t
a2

(∂hij)(∂hkl)

]

, (3.2)

where the symbol ∂ represents the spatial partial derivative, and

qt = 2f4 − 2A2
0f4,X3

+A0φ̇f5,φ −HA3
0f5,X3

, (3.3)

c2t =
2f4 −A0φ̇f5,φ − Ȧ0A

2
0f5,X3

2f4 − 2A2
0f4,X3

+A0φ̇f5,φ −HA3
0f5,X3

. (3.4)
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The terms associated with the tensor mass like δikδjlhijhkl vanish on account of the background Eq. (2.14). The
quantity ct corresponds to the propagation speed of gravitational waves on the FLRW background. As we will see in
Sec. III C, there are two polarized states for tensor perturbations, both of which have the same propagation speed ct.
The existence of additional matter minimally coupled to gravity does not affect the value of c2t given above. The values
of qt and c2t derived in generalized Proca theories [27, 28] can be recovered by using the correspondence f4 → G4,

f5 → G5, A0 → −φ, X3 → X , and φ̇→ 0. Under the two conditions

qt > 0 , c2t > 0 , (3.5)

there are neither ghost nor Laplacian instabilities in the tensor sector.

B. Application to the speed of gravity in late-time cosmology

If we apply SVT theories to the late-time cosmology, there is a tight bound −3 × 10−15 ≤ ct − 1 ≤ 7 × 10−16

constrained from the the gravitational wave event GW170817 [43] together with the gamma-ray burst GRB 170817A
[44]. From Eq. (3.4), the SVT theories realizing the exact value ct = 1 need to satisfy the following conditions:

f4(φ,X3) = f4(φ) , f5(φ,X3) = constant . (3.6)

This mean that f4 does not contain the X3 dependence and that f5 depends on neither φ nor X3. This property is
similar to what happens in scalar-tensor theories with the replacement X3 → −∇µφ∇µφ/2 [45]. As expected, the

couplings f2, f3, f̃3, f6, f̃6 and h5j , h̃5j do not modify the tensor propagation speed. If one is willing to apply SVT
theories to the late-time cosmology, one has to bear in mind the restriction of (3.6) and include the presence of matter
fields. Otherwise, for applications to inflation, this restriction can be lifted. We will mostly consider the second option
here and do not take into account matter fields.

C. Tensor power spectrum generated during inflation

If we apply SVT theories to inflation, we do not need to impose the conditions (3.6). The structure of the second-
order action (3.2) is of the same form as that derived in Refs. [14, 15] for Horndeski theories, so it is straightforward
to compute the primordial tensor power spectrum generated during inflation. We express hij in terms of the Fourier
series, as

hij(x, τ) =

∫

d3k

(2π)3/2
eik·x

∑

λ=+,×

[

hλ(k, τ)aλ(k) + h∗λ(k, τ)a
†
λ(−k)

]

e
(λ)
ij (k) , (3.7)

where τ =
∫

a−1dt is the conformal time, k is the coming wavenumber, and λ = +,× denote the two polarization

states. The polarization tensors e
(λ)
ij (k) obey transverse and traceless conditions kje

(λ)
ij = δije

(λ)
ij = 0 together with

the normalization δikδjle
(λ)
ij (k)e

∗(λ′)
kl (k) = δλλ′ . The annihilation and creation operators aλ(k) and a†λ(k

′) satisfy

the commutation relation [aλ(k), a
†
λ′(k′)] = δλλ′δ(3)(k − k

′). The primordial power spectrum per unit logarithmic
wavenumber interval is given by

Ph(k, τ) =
k3

2π2

(

|h+(k, τ)|2 + |h×(k, τ)|2
)

. (3.8)

We introduce a canonically normalized field vλ(k, τ), as

vλ(k, τ) = z hλ(k, τ) , z =
a

2

√
qt . (3.9)

Varying the action (3.2) with respect to hij , each Fourier component obeys

v′′λ +

(

c2tk
2 − z′′

z

)

vλ = 0 , (3.10)

where a prime represents a derivative with respect to τ . We consider a quasi de Sitter background on which the
variations of H, qt, ct are small such that |Ḣ/H2| ≪ 1, |q̇t/(Hqt)| ≪ 1, and |ċt/(Hct)| ≪ 1, with the relation
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τ ≃ −(aH)−1. Then, the leading-order contribution to z′′/z is given by 2(aH)2. For the modes deep inside the tensor
sound horizon (c2t k

2 ≫ a2H2), the solution corresponding to the Bunch-Davies vacuum is given by vλ = e−ictkτ/
√
2ctk.

On using the de Sitter approximation z′′/z ≃ 2τ−2, the solution to Eq. (3.10) recovering vλ = e−ictkτ/
√
2ctk in the

asymptotic past is

vλ(k, τ) =
i+ ctk|τ |√
2(ctk)3/2|τ |

e−ictkτ . (3.11)

Then, the solution to hλ long after the tensor sound horizon crossing reduces to hλ(k, 0) = i
√

2/qtH/(ctk)
3/2. From

Eq. (3.8), the leading-order primordial power spectrum Pt(k) ≡ Ph(k, 0) yields

Pt(k) =
2H2

π2qtc3t
. (3.12)

Since the perturbations hλ are frozen right after the tensor sound horizon crossing, it is sufficient to evaluate the value
(3.12) at the moment ctk = aH . In GR, we have qt =M2

pl and c
2
t = 1, where Mpl is the reduced Planck mass, so the

tensor power spectrum (3.12) reduces to Pt(k) = 2H2/(π2M2
pl). This is modified in SVT theories due to the changes

of qt and c
2
t . We note that the next-to-leading order tensor power spectrum can be also computed along the line of

Refs. [46–48].

IV. VECTOR PERTURBATIONS

For perturbations in the vector sector, we take the perturbed line element in the flat gauge:

ds2v = −dt2 + 2Vidtdx
i + a2(t)δijdx

idxj , (4.1)

where Vi is the vector perturbation obeying the transverse condition ∇iVi = 0. At linear order in perturbations, the
transverse condition translates to ∂iVi = 0, where ∂i ≡ ∂/∂xi. The temporal and spatial components of Aµ associated
with the intrinsic vector sector are expressed in the form

A0 = A0(t) , Ai = Zi(t, x
i) , (4.2)

where Zi is the intrinsic vector perturbation satisfying ∂iZi = 0.
For the practical computation, we will consider the vector components Vi = (V1(t, z), V2(t, z), 0) and Zi =

(Z1(t, z), Z2(t, z), 0), which automatically satisfy the transverse conditions mentioned above. Expanding Eq. (2.4)
up to quadratic order in perturbations and using the background Eqs. (2.13) and (2.16), the resulting second-order
action in the vector sector yields

S(2)
v =

∫

dtd3x

2
∑

i=1

[

aqv
2
Ż2
i − 1

2a
α1(∂Zi)

2 − a

2
α2Z

2
i +

1

2a
α3(∂Vi)(∂Zi) +

qt
4a

(∂Vi)
2

]

, (4.3)

where

qv = f2,F + 2φ̇2f2,Y1
+ 2φ̇A0f2,Y2

+ 2A2
0f2,Y3

− 4H
(

φ̇h51 + 2A0h̃51

)

+ 8H2
(

f6 + f̃6 + φ̇2f6,X1
+A2

0f̃6,X3

)

, (4.4)

α1 = f2,F − 4Ȧ0h̃51 + 8
(

H2 + Ḣ
)(

f6 + f̃6

)

− 2φ̈ h51 +H

[

2φ̇
(

φ̇2h52 − h51 + 4φ̈f6,X1

)

−A0

{

4h̃51 − 2φ̇2
(

h54 + 2h̃52

)

− 8Ȧ0f̃6,X3

}

+ 2φ̇A2
0(h53 + 2h̃54) + 4A3

0h̃53

]

, (4.5)

α2 = f2,X3
+ 4Ḣf4,X3

− 2
(

Ȧ0 + 3HA0

)(

f̃3 + f3,X3

)

− 2φ̇A0f̃3,φ + 2H(3Hf4,X3
+ 3HA2

0f4,X3X3
+ 2A0Ȧ0f4,X3X3

−φ̇f4,X3φ) +H
(

HȦ0 + 2ḢA0 + 3H2A0

)

f5,X3
+H2A0

(

HA2
0f5,X3X3

+A0Ȧ0f5,X3X3
− 2φ̇f5,X3φ

)

, (4.6)

α3 = −2A0f4,X3
−HA2

0f5,X3
+ φ̇f5,φ , (4.7)

where qt is defined by Eq. (3.3).
Varying the second-order action (4.3) with respect to Vi, it follows that

∂2 (α3Zi + qtVi) = 0 . (4.8)
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This is integrated to give Vi = −α3Zi/qt, where we set the integration constant 0. Substituting this relation into
Eq. (4.3), we obtain

S(2)
v =

∫

dtd3x

2
∑

i=1

aqv
2

[

Ż2
i − c2v

a2
(∂Zi)

2 − α2

qv
Z2
i

]

, (4.9)

where

c2v =
2α1qt + α2

3

2qtqv
. (4.10)

This result shows that there are two dynamical fields Z1 and Z2 in the vector sector with the same propagation speed
cv. Varying the action (4.9) with respect to Zi, the equation of motion of vector perturbations in Fourier space is
given by

Z̈i +

(

H +
q̇v
qv

)

Żi +

(

c2v
k2

a2
+
α2

qv

)

Zi = 0 , (4.11)

where the term m2
v = α2/qv corresponds to the vector mass squared. In the limit that c2vk

2/a2 ≫ m2
v, the mass term

is irrelevant to the dynamics of vector perturbations, so there are neither ghost nor Laplacian instabilities under the
conditions

qv > 0 , c2v > 0 . (4.12)

From Eq. (4.4), we find that the functional dependence f2(F, Y1, Y2, Y3) as well as the functions h51, h̃51, f6, f̃6
themselves affect the no-ghost condition of vector perturbations. The value of qv derived in GP theories [28] can be

recovered by using the correspondence φ̇→ 0, X3 → X , Y3 → Y , A0 → −φ, f2 → G2, h̃51 → −g5(X)/2, f6 → 0, and

4f̃6 → G6(X) in Eq. (4.4). Since Eq. (4.10) contains qt, α1, α3, the vector propagation speed is also affected by the

dependence of f4(X3), f5(φ,X3) and the functions h52, h̃52, h53, h̃53, h54, h̃54.
If we apply SVT theories to inflation, the evolution of Zi is different depending on the mass term m2

v. If the
condition m2

v ≫ H2 is satisfied during inflation, the vector perturbation is subject to strong suppression for the
modes c2vk

2/a2 < m2
v (analogous to what happens for tensor perturbations in a Lorentz-violating massive gravity

scenario studied in Ref. [49]). If m2
v ≪ H2, then the vector perturbation is not suppressed even after the vector

horizon crossing (c2vk
2/a2 < H2). We leave the detailed analysis for the computation of the primordial vector power

spectrum generated during inflation as a future work.

V. SCALAR PERTURBATIONS

For scalar perturbations, we consider the linearly perturbed line-element in the flat gauge:

ds2s = −(1 + 2α) dt2 + 2∂iχdt dx
i + a2(t)δijdx

idxj , (5.1)

where α and χ are scalar metric perturbations. We write the components of the vector field in the form

A0 = −A0(t) + δA , Ai = ∂iψ , (5.2)

where δA is the perturbation of the temporal vector component A0, and ψ is the longitudinal scalar perturbation.
The scalar field φ is decomposed into the background and perturbed parts, as

φ = φ0(t) + δφ , (5.3)

where, in the following, we omit the subscript “0” from the background value of φ.
We expand the action (2.4) up to quadratic order in scalar perturbations α, χ, δA, ψ, δφ. In doing so, we use the

background Eqs. (2.13) and (2.16) to eliminate the terms f2 and f3,φ. Then, the second-order action for scalar
perturbations can be expressed as

S(2)
s =

∫

dtd3x
(

Lφ
s + LGP

s

)

, (5.4)
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where

Lφ
s = a3

[

D1
˙δφ
2
+D2

(∂δφ)2

a2
+D3δφ

2 +

(

D4
˙δφ+D5δφ+D6

∂2δφ

a2

)

α−
(

D6
˙δφ−D7δφ

) ∂2χ

a2

+
(

D8
˙δφ+D9δφ

)

δA+D10 δφ
∂2ψ

a2

]

, (5.5)

and

LGP
s = a3

[

(

w1α− w2
δA

A0

)

∂2χ

a2
− w3

(∂α)2

a2
+ w4α

2 −
(

w3
∂2δA

a2A0
− w8

δA

A0
+ w3

∂2ψ̇

a2A0
+ w6

∂2ψ

a2

)

α

−w3
(∂δA)2

4a2A2
0

+ w5
δA2

A2
0

+
{

w3ψ̇ − (w2 −A0w6)ψ
} ∂2δA

2a2A2
0

− w3
(∂ψ̇)2

4a2A2
0

+ w7
(∂ψ)2

2a2

]

. (5.6)

The coefficients D1,··· ,10 and w1,··· ,8 are given in Appendix. The Lagrangian Lφ
s arises from the scalar perturbation

δφ. The other Lagrangian LGP
s has the similar structure to that in GP theories [27]. In GP theories, the coefficient

w8 is related to w1 and w4, as w8 = 3Hw1 − 2w4 [27], while, in the present case, this relation is modified to

w8 = 3Hw1 − 2w4 − φ̇D4 by the presence of the scalar field φ. The effect of intrinsic vector modes on scalar
perturbations appears only through w3 = −2A2

0qv, where qv is given by Eq. (4.4).

Since there are no time derivatives of α, χ, δA in Eqs. (5.5) and (5.6), these fields are non-dynamical. On the
other hand, the perturbations ψ and δφ correspond to the dynamical fields in the scalar sector. The field ψ is the
longitudinal scalar component of vector field associated with the breaking of U(1) gauge symmetry, whereas the
perturbation δφ arises from the scalar field φ. Varying the action (5.4) with respect to α, χ, δA, we obtain the three
constraint equations in Fourier space:

D4
˙δφ+D5δφ+ 2w4α+ w8

δA

A0
+
k2

a2

(

w3
ψ̇

A0
+ w6ψ −D6δφ− 2w3α− w1χ+ w3

δA

A0

)

= 0 , (5.7)

D6
˙δφ−D7δφ− w1α+ w2

δA

A0
= 0 , (5.8)

D8
˙δφ+D9δφ+ w8

α

A0
+ 2w5

δA

A2
0

− k2

a2
1

A0

(

w3

2

ψ̇

A0
+
A0w6 − w2

2

ψ

A0
− w3α− w2χ+

w3

2

δA

A0

)

= 0 . (5.9)

We solve Eqs. (5.7)-(5.9) for α, χ, δA and eliminate these variables from the action (5.4). Then, the second-order
action of scalar perturbations can be expressed in the form

S(2)
s =

∫

dtd3xa3
(

~̇X t
K ~̇X − k2

a2
~X t
G ~X − ~X t

M ~X − ~X t
B ~̇X

)

, (5.10)

where K, G, M , B are 2× 2 matrices, and ~X is defined by

~X t = (ψ, δφ) . (5.11)

In the small-scale limit, the leading-order contributions to the matrix M do not contain the k2 terms. We shift the
k2 terms appearing in B to the matrix components of G after integrating them by parts. Then, in the k → ∞ limit,
the components of K and G are given, respectively, by

K11 =
w2

1w5 + w2
2w4 + w1w2w8

A2
0(w1 − 2w2)2

,

K22 = D1 +
D6

w1 − 2w2

(

D4 +
w4 + 4w5 + 2w8

w1 − 2w2
D6 + 2A0D8

)

,

K12 = K21 = − 1

2A0(w1 − 2w2)

[

w2D4 +
w1(4w5 + w8) + 2w2(w4 + w8)

w1 − 2w2
D6 +A0w1D8

]

, (5.12)
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and

G11 = Ė1 +HE1 −
4A2

0

w3
E2

1 − w7

2
,

G22 = Ė2 +HE2 −
2A0

w2
D7E3 −

4A2
0

w3
E2

3 −D2 ,

G12 = G21 = Ė3 +HE3 −
4A2

0

w3
E1E3 +

w2

2A0(w1 − 2w2)
D7 +

D10

2
, (5.13)

where we introduced

E1 =
w6

4A0
− w1w2

4A2
0(w1 − 2w2)

, E2 = − D2
6

2(w1 − 2w2)
, E3 =

w2D6

2A0(w1 − 2w2)
. (5.14)

In order to ensure the absence of scalar ghosts, the kinetic matrix K must be positive definite. In other words,
the determinants of principal sub-matrices of K need to be positive. Thus, we require the following two no-ghost
conditions:

K11 > 0 or K22 > 0 , (5.15)

qs ≡ K11K22 −K2
12 > 0 . (5.16)

In the small-scale limit, the dispersion relation following from the action (5.10) with frequency ω is given by

det

(

ω2
K − k2

a2
G

)

= 0 . (5.17)

Introducing the scalar sound speed cs as ω
2 = c2sk

2/a2, the above dispersion relation leads to the two scalar propagation
speed squares:

c2s1 =
K11G22 +K22G11 − 2K12G12 +

√

(K11G22 +K22G11 − 2K12G12)2 − 4(K11K22 −K2
12)(G11G22 −G2

12)

2(K11K22 −K2
12)

, (5.18)

c2s2 =
K11G22 +K22G11 − 2K12G12 −

√

(K11G22 +K22G11 − 2K12G12)2 − 4(K11K22 −K2
12)(G11G22 −G2

12)

2(K11K22 −K2
12)

. (5.19)

For the absence of Laplacian instabilities, we require that

c2s1 > 0 , c2s2 > 0 . (5.20)

From Eqs. (5.15)-(5.16), the functions f3, f̃3, f4, f5 as well as the functional dependence of X1, X2, X3 in f2 affect no-
ghost conditions of scalar perturbations. Since the matrix components G11, G22, G12 contain the term w3 = −2A2

0qv,
the propagation speeds cs1 and cs2 are affected by intrinsic vector modes.
If we apply SVT theories to “multi-field” inflation driven by the background field φ(t) and the auxiliary field A0(t),

both δφ and ψ contribute to the curvature perturbation R [50]. In such cases, the separation between adiabatic
and isocurvature perturbations is useful for the computation of primordial scalar power spectrum generated during
inflation [51]. The resulting power spectra of curvature and isocurvature perturbations as well as their correlations
depend on the models of inflation [52], so the observational prediction of SVT theories relevant to CMB temperature
anisotropies deserves for separate detailed analysis in future.

VI. APPLICATION TO A CONCRETE MODEL OF INFLATION

Let us apply the U(1) broken SVT theories to the background dynamics of inflation and reheating as well as to the
stability conditions in these epochs. We consider the following model

f2 = F +X1 − V (φ) + βmMX2 + βAM
2X3 ,

f4 =
M2

pl

2
+ βGX3 , (6.1)

where V (φ) is a scalar potential, M is a constant having a dimension of mass (of order the Hubble expansion rate

during inflation), and βm, βA, βG are dimensionless coupling constants. The other functions f3, f̃3, f5, h5j , h̃5j , f6, f̃6
in the action (2.4) are taken to be 0.
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A. Background dynamics

For the above model, the background Eqs. (2.13)-(2.16) reduce, respectively, to

3M2
plH

2 =
1

2
φ̇2 + V − 1

2
βAM

2A2
0 + 3βGH

2A2
0 , (6.2)

(

2Ḣ + 3H2
)

(

M2
pl − βGA

2
0

)

= −1

2
φ̇2 + V − 1

2
βmMφ̇A0 −

1

2
βAM

2A2
0 + 4βGHȦ0A0 , (6.3)

φ̈+ 3Hφ̇+ V,φ +
1

2
Mβm

(

Ȧ0 + 3HA0

)

= 0 , (6.4)

A0 = − βmM

2(βAM2 + 6βGH2)
φ̇ . (6.5)

As we see in Eqs. (6.4) and (6.5), the nonvanishing coupling βm induces a mixing between the scalar derivative φ̇
and the temporal vector component A0. If βm = 0, then the system reduces to the single-field slow-roll inflation with
A0 = 0. During the inflationary stage in which H is nearly constant, the ratio A0/φ̇ stays nearly constant. This
property also holds for the case in which the condition |βAM2| ≫ |6βGH2| is satisfied.
To study the dynamics of inflation, it is convenient to define the following slow-roll parameters [50]:

ǫ ≡ − Ḣ

H2
, ǫV ≡

M2
pl

2

(

V,φ
V

)2

, η ≡ φ̈

Hφ̇
, (6.6)

whose orders are less than 1 during inflation. Substituting Eq. (6.5) and its time derivative into Eq. (6.3) and using
Eq. (6.2) to eliminate V , we find that ǫ can be expressed as

ǫ =
φ̇2(βAM

2 + 6βGH
2)[144β2

GH
4 + 2βGH

2M2{24βA − (3 + 2η)β2
m}+ βAM

4(4βA − β2
m)]

2H2[4M2
pl(βAM

2 + 6βGH2)3 + β2
mβGM

2(18βGH2 − βAM2)φ̇2]
. (6.7)

We employ the approximation that the three slow-roll parameters defined in Eq. (6.6) are smaller than the order
1. From Eqs. (6.4) and (6.5), it follows that

φ̇ ≃ − 4V,φ(βAM
2 + 6βGH

2)

3H(4βAM2 + 24βGH2 − β2
mM

2)
. (6.8)

Substituting Eq. (6.5) into Eq. (6.2), the ratio between the vector kinetic energy KA = −βAM2A2
0/2+3βGH

2A2
0 and

the scalar kinetic energy Kφ = φ̇2/2 is given by

KA

Kφ
=
M2(6βGH

2 − βAM
2)

4(6βGH2 + βAM2)2
β2
m . (6.9)

In the following, we assume that β2
m is at most of the orders |βG| and |βA|, in which case KA does not exceed Kφ.

Then, the scalar potential V dominates over the other terms on the r.h.s. of Eq. (6.2) during slow-roll inflation, so the

Hubble expansion rate can be estimated as H ≃
√

V/3/Mpl. We substitute this relation and Eq. (6.8) into Eq. (6.7)
and neglect the slow-roll parameters η and ǫV relative to 1 in the end. This process leads to

ǫ ≃ ǫV

[

1 +
β2
mM

2M2
pl

4(βAM2M2
pl + 2βGV )

]

, (6.10)

where we employed the approximation that |βm| ≪ 1 and picked up the leading-order contribution of βm to ǫ. For
βm = 0, we have ǫ ≃ ǫV as in standard slow-roll inflation, but the presence of the coupling βm leads to ǫ 6= ǫV . If
βAM

2M2
pl + 2βGV > 0, then ǫ is larger than ǫV . In this case, the mixing between φ̇ and A0 effectively leads to the

faster evolution of inflaton, so inflation tends to be less efficient for a given potential V (φ).
To confirm the above analytic estimation, we consider the α-attractor model given by the potential [53]

V (φ) =
M2M2

pl

2α2
c

(

1− e−αcφ/Mpl

)2

, (6.11)

where αc is a positive constant. The Starobinsky inflation [54] corresponds to αc =
√
6/3 in the Einstein frame [55].

Inflation occurs for αcφ/Mpl ≫ 1, in which regime the potential is nearly constant: V (φ) ≃ M2M2
pl/(2α

2
c). Then,
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FIG. 1. (Left) Evolution of φ̇ and A0 (normalized by MMpl and Mpl respectively) during inflation and reheating for the
potential (6.11) with αc =

√
6/3. We choose the coupling constants βm = 0.5, βA = 0.3, and βG = 0.1 with the initial

conditions φ = 5.5Mpl and φ̇ = −9.0 × 10−3MMpl. For the consistency with Eqs. (6.2) and (6.5), the initial values of H and
A0 are chosen to be H = 0.4944M and A0 = 5.0374 × 10−3Mpl. (Right) Evolution of the number of e-foldings N for the case
shown in the left panel (plotted as a solid line). The dotted line corresponds to the case βm = 0 and αc =

√
6/3 (i.e., standard

Starobinsky inflation) with the same initial conditions of φ and φ̇ as those used in the left panel.

the Hubble expansion rate during inflation Hinf is related to the mass M , as Hinf ≃M/(
√
6αc). For αc = O(1), Hinf

is of the same order as M . The system enters the reheating stage for |αcφ/Mpl| . 1, during which the potential is
approximately given by V (φ) ≃M2φ2/2.

In the left panel of Fig. 1, we show the numerical solutions to φ̇ and A0 versus Mt for the Starobinsky potential
(αc =

√
6/3) with the couplings βm = 0.5, βA = 0.3, and βG = 0.1. The initial conditions of φ, φ̇, and A0 are

chosen to be consistent with Eqs. (6.2) and (6.5). As estimated from Eq. (6.5), the ratio between A0 and φ̇ stays

nearly constant (A0/Mpl ≃ −0.56 φ̇/(MMpl)) during inflation. In the reheating stage, the term 6βGH
2 starts to be

negligible relative to βAM
2 due to the decrease of H . Then, the amplitude of A0 decreases in the same way as that

of φ̇ according to the relation A0/Mpl = −[βm/(2βA)] φ̇/(MMpl) = −0.83 φ̇/(MMpl). In the left panel of Fig. 1, we

can confirm that φ̇ and A0 slowly evolve during inflation with the relation mentioned above and that they oscillate
during reheating with the asymptotic behavior A0/φ̇ = constant.

In the right panel of Fig. 1, the number of e-foldings N = ln a from the onset of inflation is plotted for the model
parameters and initial conditions same as those used in the left panel. We also show the evolution of N for βm = 0,
i.e., Starobinsky inflation with A0 = 0. For βm = 0.5, the value of N reached at the end of inflation is smaller than
that for βm = 0 about by 14 %. This is consistent with the fact that the slow-roll parameter (6.10) for βm = 0.5 can
be estimated as ǫ ≃ 1.14ǫV . Thus, the nonvanishing coupling βm leads to the smaller amount of inflation due to the
additional evolution of A0 besides φ̇.

B. Stability conditions

For the model (6.1), the quantities qt and c
2
t are given, respectively, by

qt =M2
pl −

β2
mβGM

2φ̇2

4(βAM2 + 6βGH2)2
, c2t = 1 +

2β2
mβGM

2φ̇2

4(βAM2 + 6βGH2)2M2
pl − β2

mβGM
2φ̇2

, (6.12)



12

where we used Eq. (6.5) to express A0 in terms of φ̇. Then, the stability conditions (3.5) of tensor perturbations
translate to

− 4
(

βAM
2 + 6βGH

2
)2
M2

pl ≤ β2
mβGM

2φ̇2 < 4
(

βAM
2 + 6βGH

2
)2
M2

pl . (6.13)

For vector perturbations, we have

qv = 1 , c2v = 1 +
2β2

mβ
2
GM

2φ̇2

4(βAM2 + 6βGH2)2M2
pl − β2

mβGM
2φ̇2

, (6.14)

so the no-ghost condition is automatically satisfied. Under the conditions (6.13), there are no Laplacian instabilities
of vector perturbations.

For scalar perturbations, the quantity K22 defined in Eq. (5.12) is given by

K22 =
1

2
, (6.15)

and hence the latter condition of Eq. (5.15) is always satisfied. The other no-ghost condition translates to

qs =
[

β2
mβGM

2
{

(β2
m − 4βA)M

2 + 72βGH
2
}

φ̇2 − 4M2
pl(βAM

2 + 6βGH
2)2
{

(β2
m − 4βA)M

2 − 24βGH
2
}

]

×
[

4(6βGH
2 + βAM

2)2M2
pl − β2

mβGM
2φ̇2
]

/

[

16
{

4(6βGH
2 + βAM

2)2M2
pl − 3β2

mβGM
2φ̇2
}2
]

> 0 . (6.16)

If βG = 0, then the condition (6.16) translates to βA > β2
m/4. To satisfy this inequality, it is necessary to have βA > 0,

which means that the mass squared of the vector field Aµ is positive.
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FIG. 2. Evolution of qt, qv , qs (left) and c2t , c
2
v, c

2
s2 (right) for the same model parameters and initial conditions as those used in

the left panel of Fig. 1. Note that qt and qs are normalized by M2
pl and M2, respectively.

In addition to Eq. (6.15), we also have G22 = 1/2 and K12 = G12 for the model (6.1). Substituting them into
Eqs. (5.18)-(5.19), it follows that one of the scalar propagation speed squares reduces to

c2s1 = 1 , (6.17)
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while the other is given by c2s2 = (G11 − 2K2
12)/(K11 − 2K2

12) = 1 + (G11 −K11)/(2qs). More explicitly, the latter is
expressed as

c2s2 = 1 +
1

2qs(M2
pl − 3βGA2

0)
2

[

2βG(M
2
pl − 3βGA

2
0)(M

2
pl − βGA

2
0)Ḣ + 8β2

GM
2
plHA0Ȧ0

+32β4
GH

2A4
0 − βmβ

2
GMA3

0φ̇− 2β2
G(4M

2
plH

2 + φ̇2)A2
0

]

. (6.18)

Let us derive an approximate expression of c2s2 for the coupling β2
m smaller than the order 1. Eliminating the terms

Ḣ , Ȧ0, A0 in Eq. (6.18) by using the background equations of motion, we find

c2s2 = 1− 2βGφ̇
2

(βAM2 + 6βGH2)M2
pl

+O(β2
m) . (6.19)

Since φ̇2 is smaller than the orders H2M2
pl and M2M2

pl during inflation, the condition c2s2 > 0 can be satisfied for

|βG| . |βA|.
In Fig. 2, we show the evolution of qt, qv, qs and c2t , c

2
v, c

2
s2 for the same model parameters and initial conditions as

those used in the left panel of Fig. 1. As estimated from Eq. (6.12), the quantity qt is close to M2
pl during inflation

and reheating with a small deviation induced by the time variation of φ. In the numerical simulation of Fig. 2, the
quantity qs also remains positive with qv = 1. Hence there are no ghosts of tensor, vector, and scalar perturbations.
As we observe in the right panel of Fig. 2, the deviations of c2t and c2v from 1 are smaller than the order 0.1, so there

are no Laplacian instabilities of tensor and vector perturbations. The scalar propagation speed squared c2s2 deviates

from 1 in the transient regime from inflation to reheating. This comes from the fact that φ̇2 reaches a maximum
around the end of inflation. In the numerical simulation of Fig. 2, the peak value of |φ̇| is about 0.435MMpl with
φ ≃ 0.255Mpl and the Hubble expansion rate H ≃ 0.187M around Mt ≃ 116, in which case the analytic estimation
(6.19) gives c2s2 ≃ 0.88. This exhibits good agreement with the minimum value of c2s2 seen in Fig. 2. After the onset
of reheating, the term 6βGH

2 becomes negligible relative to βAM
2, and hence c2s2 approaches to 1 according to the

relation c2s2 ≃ 1− 2βGφ̇
2/(βAM

2M2
pl) with the damped oscillation of φ̇. Thus, the scalar perturbations are free from

Laplacian instabilities for the model parameters used in Fig. 2.

VII. CONCLUSIONS

In this paper, we have studied cosmological implications of SVT theories with nonlinear derivative scalar and
vector-field interactions and nonminimal couplings to gravity [36]. In Sec. II, we obtained the background equations
of motion on the flat FLRW spacetime for U(1) broken SVT theories given by the action (2.4). The time-dependent
scalar field φ(t) as well as the temporal vector component A0(t) contribute to the background cosmological dynamics
relevant to the physics of cosmic acceleration. The U(1) broken SVT theories contain six propagating DOFs– two
scalar modes, two transverse vector modes, and two tensor polarizations.
In Sec. III, we derived conditions for the absence of ghosts and Laplacian instabilities in the tensor sector. The

two polarized states of tensor perturbations have the propagation speed ct given by Eq. (3.4). Applying these results
to the late-time cosmology, we showed that the functions f4 and f5 are restricted to be of the form (3.6) for the
realization of ct equivalent to that of light. We also computed the leading-order primordial power spectrum of tensor
perturbations generated during inflation, see Eq. (3.12).
In Sec. IV, we considered the vector perturbations Zi and Vi arising from the spatial part of Aµ and the shift Vi in

the metric, respectively, and obtained their second-order actions of the form (4.3). On using the equation of motion
for the non-dynamical field Vi, the final action (4.9) of vector perturbations contains two propagating fields Z1 and
Z2 with the same propagation speed squared c2v given by Eq. (4.10). In the small-scale limit where the vector-field
mass squared is irrelevant to the dynamics of perturbations, there are neither ghost nor Laplacian instabilities under
the conditions (4.12).
In Sec. V, we derived the quadratic action of scalar perturbations by considering metric perturbations α, χ in

the flat gauge, scalar perturbations δA, ψ arising from the temporal and spatial components of Aµ respectively, and
the scalar-field perturbation δφ. After integrating out the non-dynamical fields α, χ, δA, the action of dynamical
perturbations ψ and δφ is expressed in the form (5.10). In the small-scale limit, the no-ghost conditions of scalar
perturbations are given by Eqs. (5.15) and (5.16). We also derived the two different propagation speed squares c2s1
and c2s2, both of which need to be positive to avoid small-scale Laplacian instabilities. We found that intrinsic vector
modes do not affect no-ghost conditions of scalar perturbations, but they can modify the values of c2s1 and c2s2.
In Sec. VI, we constructed a concrete model of inflation in the framework of SVT theories characterized by the

functions (6.1). The nonvanishing coupling βm gives rise to a kinetic mixing between φ̇ and A0, so that the amount
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of inflation is modified due to the change of the slow-roll parameter ǫ = −Ḣ/H2. This property was numerically
confirmed for the inflaton potential of the α-attractor model, see Fig. 1. We also showed that, under certain bounds
of the coupling constants βm, βG, βA, this model can satisfy all the no-ghost and stability conditions of tensor, vector,
and scalar perturbations during inflation and reheating.
It will be of interest to compute inflationary observables relevant to CMB temperature anisotropies for the model

proposed in this paper. In particular, the contribution of vector perturbations to CMB temperature anisotropies is
one of distinguished features of SVT theories. The coupling between the scalar and vector fields can also modify
observational predictions of standard slow-roll inflation, e.g., the scalar spectral index and the tensor-to-scalar ratio.
Moreover, it will be interesting to apply SVT theories to dark energy and estimate observables associated with the
background and perturbations. These issues are left for future works.
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Appendix A: Coefficients in the second-order action of scalar perturbations

The coefficients D1,··· ,10 and w1,··· ,8 appearing in Eqs. (5.5)-(5.6) are given by

D1 =
1

2

(

f2,X1
+ φ̇2f2,X1X1

+ φ̇A0f2,X1X2
+
A2

0

4
f2,X2X2

)

,

D2 = −1

2
f2,X1

,

D3 = (3f4,φφ + 3HA0f5,φφ) Ḣ − 1

2

(

f2,X1φ + φ̇2f2,X1X1φ + φ̇A0f2,X1X2φ +
A2

0

4
f2,X2X2φ

)

φ̈

+
H3A0(9f5,φφ +A2

0f5,X3φφ)

2
+ 3H2

[

2f4,φφ +A2
0f4,X3φφ +

Ȧ0(f5,φφ +A2
0f5,X3φφ)

2

]

−3H

[

φ̇

2
f2,X1φ +

A0(f2,X2φ + 4f3,φφ)

4
−A0Ȧ0f4,X3φφ

]

− φ̇2(2f2,X1φφ + Ȧ0f2,X1X2φ)

4

− φ̇A0

4

[

f2,X2φφ +
Ȧ0(4f2,X1X3φ + f2,X2X2φ)

2

]

− Ȧ0

(

f3,φφ −A2
0f̃3,φφ +

f2,X2φ +A2
0f2,X2X3φ

4

)

+
f2,φφ
2

,

D4 = −φ̇3f2,X1X1
− φ̇2A0f2,X1X2

2
− φ̇

(

f2,X1
−A2

0f2,X1X3

)

+ 3H2A0

(

f5,φ −A2
0f5,X3φ

)

+ 6H
(

f4,φ −A2
0f4,X3φ

)

+
A0(f2,X2

+A2
0f2,X2X3

+ 4f3,φ − 4A2
0f̃3,φ)

2
,

D5 = H3A3
0

(

f5,X3φ +A2
0f5,X3X3φ

)

+ 3H2
[

φ̇A0

(

f5,φφ −A2
0f5,X3φφ

)

+ 2
(

f4,φ +A4
0f4,X3X3φ

)

]

+6H
[

φ̇
(

f4,φφ −A2
0f4,X3φφ

)

−A3
0

(

f̃3,φ + f3,X3φ

)]

+ 2φ̇A0

(

f3,φφ −A2
0f̃3,φφ

)

− φ̇2f2,X1φ +A2
0f2,X3φ + f2,φ ,

D6 = −2 (f4,φ +HA0f5,φ) ,

D7 = −H2A0

(

3f5,φ +A2
0f5,X3φ

)

− 2H
(

f4,φ + 2A2
0f4,X3φ − φ̇A0f5,φφ

)

+ φ̇ (f2,X1
+ 2f4,φφ) +

A0(f2,X2
+ 4f3,φ)

2
,

D8 = −2φ̇D1 +D4 + 3HD6

A0
,

D9 = −D5

A0
− 2H3A2

0f5,X3φ + 6H2

(

φ̇f5,φφ +
f4,φ −A2

0f4,X3φ

A0

)

+
6Hφ̇f4,φφ

A0
+

2f2,φ − 2φ̇2f2,X1φ − φ̇A0f2,X2φ

2A0
,
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D10 = −2Ḣf5,φ −H2
(

3f5,φ +A2
0f5,X3φ

)

− 2HA0

(

2f4,X3φ + Ȧ0f5,X3φ

)

− 2Ȧ0f4,X3φ + 2f3,φ +
f2,X2

2
, (A1)

and

w1 = −H2A3
0

(

f5,X3
+A2

0f5,X3X3

)

− 2H
[

φ̇A0

(

f5,φ −A2
0f5,X3φ

)

+ 2f4 + 2A4
0f4,X3X3

]

,

−2φ̇
(

f4,φ −A2
0f4,X3φ

)

+ 2A3
0

(

f̃3 + f3,X3

)

,

w2 = w1 + 2Hqt − φ̇D6 ,

w3 = −2A2
0qv ,

w4 = −H
3A3

0(9f5,X3
−A4

0f5,X3X3X3
)

2
− 3H2

(

2f4 + 2A2
0f4,X3

+A4
0f4,X3X3

−A6
0f4,X3X3X3

)

+
3H2φ̇A0(f5,φ + 4A2

0f5,X3φ −A4
0f5,X3X3φ)

2
− 3Hφ̇

(

2f4,φ − 4A2
0f4,X3φ +A4

0f4,X3X3φ

)

+3HA3
0

[

f̃3 + f3,X3
−A2

0

(

f̃3,X3
+ f3,X3X3

)]

− φ̇A0

[

3f3,φ −A2
0

(

f̃3,φ + f3,X3φ

)

+A4
0f̃3,X3φ

]

+
1

2

[

φ̇4f2,X1X1
+ φ̇2

(

f2,X1
− 2A2

0f2,X1X3

)

+A4
0f2,X3X3

− 3φ̇A0f2,X2

2

]

,

w5 = w4 −
3H(w1 + w2)

2
− 3H2φ̇A3

0f5,X3φ + 3Hφ̇
(

f4,φ − 2A2
0f4,X3φ

)

+ 2φ̇A0

(

f3,φ −A2
0f̃3,φ

)

+
φ̇

2

[

φ̇A2
0

(

2f2,X1X3
+

1

4
f2,X2X2

)

− φ̇3f2,X1X1
+A3

0f2,X2X3
− φ̇f2,X1

+A0f2,X2

]

,

w6 = −2w1 − w2 − 2φ̇D6 + 8Hf4
A0

,

w7 = −2Ḣ (2f4,X3
+HA0f5,X3

)−H2

[

φ̇(3f5,φ +A2
0f5,X3φ)

A0
+ Ȧ0

(

f5,X3
+A2

0f5,X3X3

)

]

−4H
(

φ̇f4,X3φ +A0Ȧ0f4,X3X3

)

+ 2Ȧ0

(

f̃3 + f3,X3

)

+
φ̇(4f3,φ + f2,X2

)

2A0
,

w8 = 3Hw1 − 2w4 − φ̇D4 . (A2)
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