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Abstract

The aim of this paper is to show that using some natural curve arrangements in

algebraic surfaces and Hirzebruch-Kummer covers one cannot construct new examples of

ball-quotients, i.e., minimal smooth complex projective surfaces of general type satisfying

equality in the Bogomolov-Miyaoka-Yau inequality.
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1 Introduction

In his pioneering papers [4, 7], Hirzebruch constructed some new examples of algebraic

surfaces which are ball-quotients, i.e., algebraic surfaces for which the universal cover is the

2-dimensional unit ball. Alternatively, these are minimal smooth complex projective surfaces

of general type satisfying equality in the Bogomolov-Miyaoka-Yau inequality [9]:

K2
X 6 3e(X),

where KX denotes the canonical divisor and e(X) is the topological Euler characteristic. The

key idea of Hirzebruch, which enabled constructing new examples of ball-quotients, is that one

can consider abelian covers of the complex projective plane branched along line arrangements

[1]. The same idea was used by the author in [11], where the main result tells us that for d-

configurations of curves (configurations of smooth irreducible curves in the complex projective

plane, each irreducible component has the same degree d > 2, and all intersection points are

transversal) the associated Hirzebruch-Kummer construction in most cases does not provide

new examples of ball-quotients. On the other side, it is worth pointing out that Hirzebruch’s
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idea can be also investigated from a different point of view focusing on H-indices, and we refer to

[13, Section 4] for details. Looking at Hirzebruch’s construction, one might hope that suitably

adapted it can yield new examples of ball-quotients coming from certain curve arrangements in

algebraic surfaces. That was a hope of F. Hirzebruch and his research group in the 1980s when

several PhD theses were written. For instance, a nice project was conducted by Bruce Hunt [8],

where he considered a 3-dimensional analog of Hirzebruch’s construction. However, it turned

out that using hyperplane arrangements in the three dimensional complex projective space

one cannot construct new examples of ball-quotients using the so-called Fermat covers. It is

worth pointing out that in [1, Kapitel 5] the authors provided a list of the so-called weighted line

arrangements leading to ball-quotients via good abelian covers, for an outline in English we refer

to [6]. Our idea is to extend investigations of Hirzebruch’s school to a larger class of surfaces

and curve arrangements hoping that this would lead to new examples of ball-quotients. In the

first part of the paper, we apply Hirzebruch’s construction to rational section arrangements

in Hirzebruch surfaces and we show that it is not possible to construct new examples of ball-

quotients. Let us point out here that by Hirzebruch surfaces we mean classical ones and these

surfaces have nothing to do with the resulting surfaces in Hirzebruch’s construction. As we will

be able to observe, the reason behind the claim is purely combinatorial, so our problem does

not touch the question whether a certain section arrangement can be geometrically realized.

In the second part, we present a general result which tells us that smooth algebraic surfaces

W with KW nef and effective and certain curve arrangements coming from ample and effective

linear systems do not provide new examples of ball-quotients. At last, we provide an improved

version of [11, Theorem 4.2] which shows that there is in fact no d-configuration such that the

associated Hirzebruch-Kummer cover leads to a new example of ball-quotients.

We briefly present the main construction due to Hirzebruch focusing on the case of rational

curves in Hirzebruch surfaces – this was done in detail, for instance, in the master thesis

by S. Eterović [3]. However, since Hirzebruch’s construction is the Swiss Army Knife in our

toolbox, we decided to present a concise introduction to this topic. The whole theory which

stands behind this paper can be found in the classical textbook [1], a general construction of

abelian covers for algebraic varieties can be found in [10]. It is worth mentioning that a similar

construction to those discovered by Hirzebruch was also performed in [12]. Finally, we would

like warmly encourage the reader to look at fantastic lecture notes by F. Catanese [2], where

the author in Section 4 is presenting a topological side of Hirzebruch-Kummer covers in the

case of line arrangements (and more).

We work exclusively over the complex numbers.
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2 Hirzebruch-Kummer covers and Hirzebruch surfaces

Let us denote by Fe the e-th Hirzebruch surface. The Picard group of Fe is generated by Γ

and F with Γ2 = −e, Γ.F = 1, and F 2 = 0. In this and the next section, we will consider only

rational section arrangements that we are going to define right now.

Definition 2.1. Let C = {C1, ..., Ck} with Ci ∈ |(e + 1)F + Γ| and k > 5. We say that C is a

rational section arrangement if:

• all curves Ci are irreducible and smooth;

• all intersection points are transversal;

• all singular points of C have multiplicities strictly less than k − 2.

Let us emphasize that the name of these arrangements comes from the fact that all irre-

ducible components are smooth rational curves. Now we introduce the following combinatorial

notion. We denote by tr = tr(C) the number of r-fold points, i.e., points where exactly r curves

from C intersect, and additionally for i ∈ {0, 1, 2} we define

fi = fi(C) =
∑

r>2

ritr.

We start with the following combinatorial result in the spirit of [3, Lemma 13.1].

Lemma 2.2. For a rational section arrangement C one has f0 > e + 6.

Proof. Suppose that f0 < e + 6. Then by the combinatorial equality

(e + 2)(k2 − k) =
∑

r>2

r(r − 1)tr 6 (k − 3)(k − 4)f0 < (k − 3)(k − 4)(e + 6).

This leads to

(e + 2)(3k − 6) < 2(k − 3)(k − 4).

Since k 6 f0 < e+ 6, where the first inequality is a consequence of [15, Remark 7.4], we obtain

k − 4 6 e + 2 <
2(k − 3)(k − 4)

3k − 6
.

Thus

0 <
−k(k − 4)

3k − 6

and since k > 5 we arrive at a contradiction.
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Now we are going to provide a short outline of Hirzebruch’s construction. This can be

done, of course, in a general setting, but we believe that it would not lead to confusion once

we explain this construction using a particular example. Given a rational section arrangement

C, denote by si the section defining Ci ∈ C, and consider the following morphisms:

f : Fe ∋ x → (s0(x) : ... : sk−1(x)) ∈ P
k−1;

p : Pk−1 ∋ (x0 : ... : xk−1) → (xn
0 : ... : xn

k−1) ∈ P
k−1 with n > 2.

Now we define the fiber product X := {(x, y) ∈ Fe × P
k−1 : f(x) = p(y)} which is a normal

surface, and we obtain a morphism π : X → Fe whose branch locus is C. After the resolution of

singularities ρ : Y → X we obtain a smooth projective surface which is called the Hirzebruch-

Kummer cover of order nk−1 and exponent n > 2. Notice that q ∈ X is a singular point iff the

multiplicity of π(q) is greater equal to 3. Let us denote by τ : Z → Fe the blowing-up along

all singular points of C such that their multiplicities are greater equal to 3, then there exists

a morphism σ : Y → Z such that πρ = τσ. Let p = π(q) be a singular point of C having

multiplicity > 3, and let us denote by Ep the exceptional curve in Z over p. Now we are ready

to compute the Chern numbers. Since this procedure is well-studied (for instance [1, 11]), we

present this part in a rather sketchy way. It is easy to compute the second Chern number of Y

(please notice that e(Ci) = 2):

e(Y )/nk−3 = n2(4 − 2k + f1 − f0) + 2n(k − f1 + f0) + f1 − t2.

Now we want to compute the first Chern number of Y , which is equal to c21(Y ) = nk−1D2 with

D = τ ∗
(

KFe
+

n− 1

n
C

)

+
∑

p

(

2n− 1

n
−

n− 1

n
rp

)

Ep,

where C = C1 + ... + Ck, rp denotes the multiplicity of a singular point p ∈ Sing(C), i.e.,

the number of curves from C passing through p, and the above sum goes through all essen-

tial singularities of C, i.e., those singular points which have multiplicity > 3. Quite tedious

computations, with make use of the combinatorial equality (e + 2)(k2 − k) = f2 − f1, lead to

c21(Y )/nk−3 = n2(8 − (e + 6)k + 3f1 − 4f0) + 4n(k − f1 + f0) + (e + 2)k + f1 − f0 + t2.

Now our aim is to show that for n > 2, k > 5, and e > 2, the Kodaira dimension of Y is

non-negative, which will allow us to use the Bogomolov-Miyaoka-Yau inequality – this part is

also in the spirit of [3]. However, we need to assume additionally the following property:

(•) in C one can find exactly four sections intersecting only at double and triple points.

First of all, observe that D can be written as

D = (e + 2)F +
∑

p

apEp +
∑

j

bjC
′

j ,



5

where C
′

j = τ ∗Cj −
∑

p∈EssSing(C)∩Cj
Ep is the strict transform of Cj , and the crucial thing is

that the coefficients ap and bj are non-negative, namely

ap >
2n− 1

n
−

3

2
, bj >

n− 1

n
−

1

2
.

Let us emphasize directly that in the case of ap’s we rigorously used the fact that we can find

four sections in C not intersecting along quadruple points. The above considerations allow us to

conclude that D can be written as a linear combination of effective divisors with non-negative

coefficients. Additionally, it is easy to see that D.Ep > 0, and we need to show that if n > 2

and e > 2 one has D.C
′

j > 0. Observe that

D.C
′

j = −e− 4 +
n− 1

n
k(e + 2) −

∑

p∈Cj ,rp>3

(

n− 1

n
(rp − 1) − 1

)

.

Using the following combinatorial count

(e + 2)(k − 1) =
∑

p∈Sing(C)∩Cj

(rp − 1)

we obtain

∑

p∈Cj ,rp>3

(

n− 1

n
(rp − 1) − 1

)

=
∑

p∈Cj ,rp>3

(

n− 1

n
(rp − 1)

)

− #|p ∈ Cj : rp > 3|

=
n− 1

n
(e + 2)(k − 1) − #|p ∈ Cj : rp > 3| −

n− 1

n
#|p ∈ Cj : rp = 2|.

This leads to

D.C
′

j > −2 −
e + 2

n
+

n− 1

n
#|p ∈ Cj : rp > 2|.

Since #|p ∈ Cj : rp > 2| > e + 6 we get D.C
′

j > 0.

Now we are allowed to use the Bogomolov-Miyaoka-Yau inequality. Let us define the fol-

lowing Hirzebruch polynomial:

HC(n) =
3e(Y ) − c21(Y )

nk−3
= n2(4 + ek + f0) + 2n(k − f1 + f0) + 2f1 − 4t2 + f0 − (e + 2)k,

and by the previous considerations, if C is a rational section arrangement with k > 5 satisfying

additionally (•), n > 2, and e > 2, then HC(n) > 0. If we can find a section arrangement C
′

with (•) such that HC′(n0) = 0 for some n0 > 2, then the associated Hirzebruch-Kummer cover

is a ball-quotient.

3 Rational section arrangements in Hirzebruch surfaces

In this section, we check whether there exists a rational section arrangement C such that

the associated Hirzebruch-Kummer cover Y is a ball-quotient. It turns out that the answer is
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negative. In order to observe this phenomenon, we will use the theory of constantly branched

covers which was developed in [1]. Let us recall some facts from [1, Section 1.3]. We know that

if Y is a ball-quotient, then all irreducible components of the (reduced) ramification divisor

σ∗(C̄), where C̄ is the total transform of C in Z, must satisfy prop(E) = 2E2 − e(E) = 0. In

particular, each irreducible component C of σ∗Ep satisfies C2 = −nrp−2 and

prop(C) = nrp−2((rp − 2)(n− 1) − 4). (1)

The condition prop(C) = 0 leads to

(n− 1)(rp − 2) = 4,

and the following pairs are admissible (we have the following order of listing: (n, rp)):

(5, 3), (3, 4), (2, 6).

It means that Y can be a ball-quotient if one of the following conditions is satisfied:

• tr = 0 for r 6= 2, 3 and n = 5,

• tr = 0 for r 6= 2, 4 and n = 3,

• tr = 0 for r 6= 2, 6 and n = 2,

The above considerations suffice to conclude that we cannot construct new examples of ball-

quotients for n ∈ {3, 5}. Let us compute HC(3) and HC(5). After a moment we see that:

HC(3) = 36 + 8ek + 4k − 4f1 + 16f0 − 4t2 > 0,

HC(5) = 100 + 24ek + 8k + 36f0 − 8f1 − 4t2 > 0.

Consider the case n = 3 and C having only double and quadruple points. If the associated

Hirzebruch-Kummer cover Y is a ball-quotient, then in particular

0 = HC(3) = 9 + (2e + 1)k + t2 > 0,

a contradiction. Similarly, if n = 5 and C has only double and triple points, then Y is a

ball-quotient if

0 = HC(5) = 25 + (6e + 2)k + 4t2 + 3t3 > 0,

a contradiction.

Now we need to consider the case n = 2. We have

HC(2) = 16 + 3ek + 2k + 9f0 − 2f1 − 4t2 > 0.
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If there exists a rational section arrangement C′ having only double and sixfold points such that

the associated Hirzebruch-Kummer cover is a ball-quotient, then

16 + (3e + 2)k + t2 = 3t6,

We need to find some constraints on the number of double and sixfold points of C′. Here we

can use in fact a general statement from Section 4 (positivity of the canonical divisor in this

place does not play any role). In order to avoid repetitions, let us briefly conclude that using

formulae (6) with a = e + 2 and b = −e− 4 we finally obtain

−8 = (e + 1)k,

a contradiction.

Theorem 3.1. There does not exist any section arrangement C ⊂ Fe with e > 2 such that the

associated Hirzebruch-Kummer cover is a ball-quotient.

Our choice of curves that we applied in Hirzebruch-Kummer’s construction in Section 2 and

Section 3 is not accidental. In the next section, we are going to give some evidence that we

should not expect to obtain new examples of ball-quotients using curves of positive genera.

4 Curve arrangements in surfaces with nef and effective canonical divisor

In this section, we consider only pairs (W,C), where W is an algebraic surface and C an

arrangement of curves, admitting Hirzebruch-Kummer covers. We assume that our surface W

is smooth, complex, and projective such that KW is nef and effective. We will keep the same

notation as in Section 2.

Definition 4.1. Assume that the linear system |A| is effective for a certain ample line bundle

A on Z and denote by C1, ..., Ck ∈ |A| smooth irreducible curves. We say that C = {C1, ..., Ck}

is a regular arrangement of curves if

• all intersection points are transversal;

• there is no point where all curves from C meet.

Let us recall that for such configurations the following combinatorial identities hold:

a(k2 − k) =
∑

r>2

(r2 − r)tr, (2)

a(k − 1) =
∑

p∈Sing(C)∩Cj

(rp − 1), (3)



8

where a = A2 and Cj ∈ C is fixed. Moreover, we define b := KW .Cj, and obviously b > 0.

Now we consider the abelian cover of W branched along a regular arrangement C, which can

be viewed, according to the previous sections, as the minimal desingularization Y of the fiber

product W ×Pk−1 P
k−1. We can compute the Chern numbers of Y , namely

c2(Y )/nk−3 = n2(e(W ) + (a + b)k + f1 − f0) + n(−(a + b) − 2f1 + 2f0) + f1 − t2;

c21(Y )/nk−3 = n2(K2
W + (a + 2b)k + 3f1 − 4f0) + 2n(−(a + b)k − 2f1 + 2f0) + ak + f1 − f0 + t2.

Let us observe that c21(Y ) = nk−1K2 with

K = τ ∗(KW ) +
∑

EP +
n− 1

n

(

∑

EP + τ ∗C −
∑

rPEP

)

,

where C = C1 + ... + Ck, which shows that K is effective. It means that we are allowed to use

the Bogomolov-Miyaoka-Yau inequality for any n > 2. Let us define the following Hirzebruch

polynomial:

HC(n) =
3c2(Y ) − c21(Y )

nk−3
= n2(3e(W ) −K2

W + (2a + b)k + f0) + n(−(a + b)k − 2f1 + 2f0)

− ak + 2f1 + f0 − 4t2. (4)

Now we would like to check whether there exists a regular arrangement C such that the

associated Hirzebruch-Kummer cover provides a new example of ball-quotients. We need to

consider cases for n ∈ {2, 3, 5}. We can start with n = 3. For brevity, let us denote by

δ(W ) := 3e(W ) −K2
W . We see that HC(3) = 0 leads to

9

4
δ(W ) +

(

7

2
a +

3

2
b

)

k + t2 + t3 =
∑

r>5

(r − 4)tr,

and if there exists a regular arrangement with double and quadruple points providing a ball-

quotient, then

0 =
9

4
δ(W ) +

(

7

2
a +

3

2
b

)

k + t2 > 0,

a contradiction.

Similarly, if n = 5, then HC(5) = 0 leads to

25

4
δ(W ) + (11a + 5b)k + 4t2 + 3t3 + t4 =

∑

r>5

(2r − 9)tr,

and if there exists a regular configuration with only double and triple points providing a ball-

quotient, then

0 =
25

4
δ(W ) + (11a + 5b)k + 4t2 + 3t3 > 0,

a contradiction.



9

Now we need to deal with the case n = 2. The condition HC(2) = 0 leads to

4δ(W ) + (5a + 2b)k + t2 + 3t3 + t4 =
∑

r>5

(2r − 9)tr,

and if there exists a regular configuration C having double and sixfold points providing a ball-

quotient, then

4δ(W ) + (5a + 2b)k + t2 = 3t6. (5)

We need to find combinatorial constraints on the number of double and sixfold points for

such regular arrangements. This can be done using an extended version of deviations from

proportionality – see for instance [11] for details. It means that we need to investigate the

condition prop(Dj) = 0 with Dj = σ∗(C ′

j), where C ′

j is the strict transform of Cj ∈ C under

the blowing-up τ . This gives

0 = prop(Dj) = nk−3(prop(Cj) + (n− 1)(rj − e(Cj)) − 2γj),

where rj denotes the number of singular points in Cj, γj denotes the number of essential

singular points, i.e., those with multiplicities > 3, and rj,2 denotes the number of double points

(altogether rj = γj + rj,2).

For n = 2, we have only double and sixfold points, and we need to use the conditions

prop(C) = 0 and prop(Dj) = 0 simultaneously. These two conditions lead us to

rj,6 + rj,2 =
a(k − 1) − 8a− 4b

3
.

It is worth pointing out that during computations we have used (3). Since

∑

j

rj,r = rtr,

we obtain the following formula:

2t2 + 6t6 = f1 = k ·
a(k − 1) − 8a− 4b

3
.

Combining this with the combinatorial equality (2), we can find constraints on t2 and t6, namely:

t2 =
ak2 − 21ak − 10bk

12
, t6 =

ak2 + 3ak + 2bk

36
. (6)

Plugging these values to (5), we obtain

0 < (3a + b)k = −4δ(W ) 6 0

a contradiction.

We have shown the following theorem.
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Theorem 4.2. Let W be a smooth complex projective surface with KW nef and effective, and

C a regular arrangement of k > 5 curves. Then the associated Hirzebruch-Kummer cover is

never a ball-quotient.

It is natural to wonder whether the assumption for curves being members of effective and

ample linear systems is optimal. Let us recall the following example which can be found in [5].

Example 4.3. We consider A = T × T an abelian surface which is the product of two elliptic

curves with complex multiplication. We consider the arrangement L1 = {F1, F2,△, G}, where

F1, F2 are two fibers, △ is the diagonal, and G is the graph of complex multiplication. It is easy

to observe that these four curves intersect exactly at one quadruple point, and the Hirzebruch-

Kummer cover of A branched along L1 provides a surface Y for which we have c21(Y ) = 3e(Y ),

so we obtained a ball-quotient.

5 Addendum to [11, Theorem 4.2]

In this addendum, we would like to improve one of the author’s results from [11]. Before

we present the improvement, we recall one definition from [11] in order to keep the coherence

with the mentioned article.

Definition 5.1. An arrangement C = {C1, ..., Ck} ⊂ P
2 is called d-configuration if

• all curves Ci are smooth of degree d > 2;

• all intersection points are transversal;

• tk = 0.

Now our aim is to show the following theorem (cf. [11, Theoerm 4.2]).

Theorem 5.2. There does not exist any d-configuration of curves in P
2 with d > 3 such that

the associated Hirzebruch-Kummer cover is a ball-quotient.

Proof. In order to prove the theorem, we need to exclude the last remaining combinatorial case

from [11], namely n = 2 and d-configurations with d > 3 having the following combinatorics:

t2 =
dk(dk − 21d + 30)

12
, t6 =

dk(dk + 3d− 6)

36
.

Suppose that C as above leads to a ball-quotient Y . Then

0 = 3e(Y ) − c21(Y ) = (5d2 − 6d)k + t2 − 3t6.

This gives

(5d2 − 6d)k +
dk(dk − 21d + 30)

12
= 3 ·

dk(dk + 3d− 6)

36
,
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which leads to

36d(d− 1) = 0,

a contradiction.

Remark 5.3. Very recently Professor Fabrizio Catanese informed me that Mara Neusel in

her Diplomarbeit (unpublished) was working on the problem of the existence of ball-quotients

constructed via Hirzebruch-Kummer covers of the complex projective plane branched along

arrangements of conics.
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PL-00-656 Warszawa, Poland.

E-mail address: piotrpkr@gmail.com


	1 Introduction
	2 Hirzebruch-Kummer covers and Hirzebruch surfaces
	3 Rational section arrangements in Hirzebruch surfaces
	4 Curve arrangements in surfaces with nef and effective canonical divisor
	5 Addendum to [Theorem 4.2]Pokora

