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POLES OF THE COMPLEX ZETA FUNCTION OF A PLANE CURVE

GUILLEM BLANCO

Abstract. We study the poles and residues of the complex zeta function fs of a plane
curve. We prove that most non-rupture divisors do not contribute to poles of fs or roots
of the Bernstein-Sato polynomial bf (s) of f . For plane branches we give an optimal set of
candidates for the poles of f s from the rupture divisors and the characteristic sequence
of f . We prove that for generic plane branches fgen all the candidates are poles of f s

gen.
As a consequence, we prove Yano’s conjecture for any number of characteristic exponents
if the eigenvalues of the monodromy of f are different.

1. Introduction

Let k be either R or C and let ϕ(x) ∈ C∞
c (kn) be an infinitely many times differentiable

function with compact support. Define the archimedean zeta function f s of a non-constant
polynomial f(x) ∈ k[x1, . . . , xn] as the distribution

(1.1) 〈f s, ϕ〉 =

∫

kn
|f(x)|δsϕ(x) dx,

for s ∈ C, Re(s) > 0, where δ = 1 if k = R and δ = 2 if k = C. In the 1954 edition
of the International Congress of Mathematicians, I. M. Gel’fand [31] posed the following
problem: first, determine whether f s is a meromorphic function of s with poles forming
several arithmetic progressions; second, study the residues at those poles. The problem
is solved for some specific polynomials having simple singularities in the book of Gel’fand
and Shilov [32], by regularizing the integral in Equation (1.1). It is not after Hironaka’s
resolution of singularities [36, 37], that Bernstein and S. I. Gel’fand [11], and independently
Atiyah [3], give a positive answer to Gel’fand’s first question. Both results use resolution
of singularities to reduce the problem to the monomial case, already settled in [32], and
give a sequence of candidates poles for f s from the resolution data.

A different approach to the same problem is considered by Bernstein [9, 10], who devel-
ops the theory of D-modules and proves the existence of the Bernstein-Sato polynomial
bf (s) of f and its functional equation,

(1.2) P (s) · f s+1 = bf (s) f
s,

with P (s) ∈ D[s] being a differential operator. The existence of the Bernstein-Sato
polynomial in the local case is due to Björk [12]. The global bf(s) is equal to the least
common multiple of all the local Bernstein-Sato polynomials bf,p(s), p ∈ kn, see [54]. The
Bernstein-Sato polynomial coincides with the b-function in the theory of prehomogeneous
vectors spaces developed by Sato [64, 63] in the 1960s, hence the name. The rationality
of the roots of the Bernstein-Sato polynomial is established by Malgrange [52] for isolated
singularities and by Kashiwara [42] in general, using resolution of singularities. One
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2 G. BLANCO

verifies, using the functional equation in Equation (1.2) and integration by parts, that
the poles of f s are among the rationals s = α − k, with bf (α) = 0 and k ∈ Z≥0. Loeser
[49] shows the equality between both sets for reduced plane curves and isolated quasi-
homogeneous singularities.

In this paper we examine the original questions of Gel’fand and we use resolution of
singularities to study the possible poles and the residues of the complex zeta function of
general plane curves, generalizing the ideas and results of Lichtin in [47, 48]. The main
results of this work are the following:

• For any candidate pole σ of f s, we give a formula for its residue expressed as an
integral along the exceptional divisor associated to σ, see Proposition 5.4.

• In Theorem 5.10, we prove that most non-rupture divisors do not contribute to
the poles of f s, and consequently to the roots of bf (s).

This result answers, for reduced plane curves, a question raised by Kollár [45] on which
exceptional divisors contribute to roots of the Bernstein-Sato polynomial. It is already
well-known that, for plane curves, non-rupture divisors do not contribute to topological
invariants such as the eigenvalues of the monodromy [1, 56], the jumping numbers [65], or
the poles of Igusa’s local zeta functions [50]. For irreducible plane curves, we use Teissier’s
monomial curve [68] associated to the semigroup of f to refine our previous results:

• In Theorem 6.7, we obtain an optimal set of candidates for the poles of f s in terms
of the rupture divisors, the characteristic sequence, and the semigroup of f .

• From this, in Theorem 6.8, we prove that if fgen is generic among all plane branches
with fixed characteristic sequence (in the sense that the coefficients of a µ-constant
deformation are generic), all the candidates are indeed poles of f s

gen.
• As a consequence, in Corollary 6.9, we prove a conjecture of Yano [73] about the
b-exponents of a plane branch for any number of characteristic exponents under
the assumption that the eigenvalues of the monodromy of f are pairwise different.

Both the roots of bf (s) and the poles of f s are related to the local geometry of f . By
a series of results of Malgrange [52, 53], first in the isolated singularity case and later
in general, for every root α of bf (s), the value exp (2πiα) is an eigenvalue of the local
monodromy at some point of f−1(0) and every eigenvalue is obtained in this way. For
an isolated singularity these results imply that the degree of bf (s) is at most the Milnor
number. Therefore, in general, every pole σ of the archimedean zeta function f s has that
exp(2πiσ) is an eigenvalue of the monodromy at some point of f−1(0). Barlet [4] proves
that all eigenvalues are obtained in this way if k = C. Moreover, Barlet [6] shows that if
the monodromy action in the q–th cohomology group of the Milnor fiber at some point
of f−1(0) has an eigenvalue exp (−2πiα) with a k× k Jordan block, then f s has a pole at
−q − α, α ∈ [0, 1), of order at least k.

A non-archimedean version of the zeta function of a polynomial f can be defined by
a p-adic version of the integral in Equation (1.1). These zeta functions over the p-adic
fields are usually called Igusa’s local zeta functions. They were first studied by Igusa in
[38, 39], where he proves that they are rational functions. The theory of Igusa’s zeta
functions is vast and has many connection with Singularity and Number Theory. For
instance, Igusa’s local zeta functions are related to the number of solutions of f modulo
pm. In [40], Igusa conjectures that if s is a pole of a p-adic zeta function of f , Re(s) is
a root of bf (s). This conjecture is proved by Loeser for plane curves [50] and for many
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non-degenerate singularities [51]. There is a version of this conjecture for the monodromy
instead of the Bernstein-Sato polynomial. By the results of Malgrange, the former implies
the later. Little more is known in this case, see the work of Artal Bartolo, Cassou-Noguès,
Luengo and Melle Hernández [7] on quasi-ordinary singularities, Bories and Veys [14] on
non-degenerate surface singularities, and Budur, Mustaţǎ and Teitler [20] on hyperplane
arrangements. These two conjectures imply the same sort of conjectures for the topological
zeta function introduced by Denef and Loeser [29], for which more cases are known. The
reader is referred to the classical reports of Denef [28] and Igusa [41], and the references
therein for the concrete definitions, results and conjectures in the theory of Igusa’s zeta
functions. A survey of Meuser [55] includes the more recent developments.

There are many singularity invariants related to the poles of f s and the roots of bf (s).
The log-canonical threshold of f [45] is minus the largest pole of f s and the largest root of
bf (s) and it sets the maximal region of holomorphy of the integral in Equation (1.1). For
isolated singularities, it coincides with the complex singularity index, a concept that dates
back to Arnold [2]. Using resolution of singularities, one defines the multiplier ideals and
the associated jumping numbers [30]. The log-canonical threshold appears as the smallest
jumping number. The opposites in sign to the jumping numbers in (0, 1] are always roots
of the Bernstein-Sato polynomial [30], see also [21]. The spectral numbers [66, 67] are
a set of logarithms of the eigenvalues of the monodromy constructed using the mixed
Hodge structure of the cohomology of the Milnor fiber. In the isolated singularity case
the spectral and jumping numbers in (0, 1] coincide, for non-isolated singularities see [19].
Furthermore, for isolated singularities the opposites in sign to the spectral numbers are
poles of f s, [49].

There exist algorithms to compute the Bernstein-Sato polynomial bf (s) for arbitrary
polynomials f , see [58, 57, 46]. However, even computationally, determining the roots of
bf (s) is a hard problem. For bounds on the roots and their multiplicities see the results
of Saito [61]. For candidates for the roots, we refer to the result of Kashiwara [42] and
a refinement given by Lichtin [48]. Very few formulas for the Bernstein-Sato polynomial
are known. If f is smooth at p ∈ kn, then bf,p(s) = s + 1. Hence, if f is everywhere
smooth, then bf (s) = s + 1 and the converse is also true, [16]. The monomial case is
obtained by a straightforward computation. Yano worked out many interesting examples
in [72]. For isolated quasi-homogeneous singularities, see [52, 72]. For isolated semi-quasi-
homogeneous singularities, see [60, 15]. The case of hyperplane arrangements has been
studied by Walther [71] and Saito [62].

The case of plane curves has attracted a lot of attention, see [73, 43, 44, 23, 24, 25,
35, 17]. It is well-known that the roots of the Bernstein-Sato polynomial, hence the poles
of f s, can change within a deformation with constant Milnor number of a plane curve,
see, for instance, the examples in [43, 44]. This contrasts with the fact that the spectral
numbers and, therefore, the monodromy eigenvalues and the jumping numbers, remain
constant in a deformation with constant Milnor number, [69]. For irreducible plane curve
singularities, there is a conjecture of Yano [73] asserting that if the plane branch is generic
among those with fixed characteristic sequence, the so-called b-exponents, see definition
in Section 2.3, are constant and depend only on the characteristic sequence. In addition,
Yano conjectures a closed formula for the b-exponents. This conjecture has been verified by



4 G. BLANCO

Cassou-Noguès [25] for a single characteristic exponent. Recently, Artal Bartolo, Cassou-
Noguès, Luengo and Melle Hernández [8] proved Yano’s conjecture for plane branches
with two characteristic exponents and monodromy with different eigenvalues.

This paper is organized as follows. In Section 2, we first review the classical results
on the regularization and analytic continuation of f s for a general complex polynomial
f . We then focus on the connection with the Bernstein-Sato polynomial and its basic
properties, specially for isolated singularities. Yano’s conjecture is presented at the end.
In Section 3, we present all the relevant results about the characteristic sequence and
the semigroup of a plane branch. Then, we introduce Teissier’s monomial curve and its
deformations. Throughout Section 4 we review the results on resolution of singularities of
plane curves that will be needed in the following sections. Section 5 deals with the poles
and the formulas for the residues along an exceptional divisor of the complex zeta function
of a general plane curve, specially the case of non-rupture exceptional divisors. In the
last section, we focus on irreducible plane curves and the optimal sequence of candidates
coming from their rupture divisors. Finally, we work on the generic case and we prove
Yano’s conjecture.

Acknowledgments. The author would like to thank his advisors, Maria Alberich-
Carramiñana and Josep Àlvarez Montaner, for the fruitful discussions, the helpful com-
ments and suggestions, and the constant support during the development of this work.

2. Analytic continuation of complex powers

In this section, we will review the basic results on regularization of complex powers ap-
pearing in the book of Gel’fand and Shilov [32]. We will see how resolution of singularities
is used to construct the analytic continuation of the complex zeta function of an arbitrary
polynomial f ∈ C[z1, . . . , zn]. The Bernstein-Sato polynomial [10] is presented next and
it is used to construct the analytic continuation of f s in a different way. In order to
state Yano’s conjecture [73], we introduce the equivalent definition of the Bernstein-Sato
polynomial for isolated singularities by Malgrange [52] in terms of the Brieskorn lattice.

2.1. Regularization of complex powers. We will take the set of test functions of com-
plex variable as the set of smooth, compactly supported functions ϕ : Cn −→ C. The space
of such functions is denoted by C∞

c (Cn). Alternatively, we can consider the larger space of
test functions consisting of Schwartz functions. From the analytic continuation principle
one deduces that there are no holomorphic compactly supported functions. Therefore,
any ϕ ∈ C∞

c (Cn) has an holomorphic an antiholomorphic part, i.e. ϕ = ϕ(z, z̄).

Let f(z) ∈ C[z1, . . . , zn] be a non-constant polynomial. We define a parametric family
of distributions of complex variable f s : C∞

c (Cn) −→ C given by

(2.1) 〈f s, ϕ〉 :=

∫

Cn

ϕ(z, z̄)|f(z)|2sdzdz̄,

which is well-defined for any s ∈ C with Re(s) > 0. The dependence of f s on the
parameter s is holomorphic as we can differentiate under the integral symbol to obtain
another well-defined distribution, namely

d

ds
〈f s, ϕ〉 =

∫

Cn

ϕ(z, z̄)|f(z)|2s log |f(z)|2dzdz̄ =
〈df s

ds
, ϕ

〉
, Re(s) > 0.
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The distribution f s or the function 〈f s, ϕ〉 are usually called the complex zeta function of
f . This name goes back to I. M. Gel’fand [31]. In [32], it is shown how one can obtain
the analytic continuation of 〈f s, ϕ〉 by regularizing the integral in Equation (2.1), for
some classes of polynomials. The concept of regularization is better understood after the
following example.

If one takes the function z−3/2, in general, its integral 〈z−3/2, ϕ〉 against a test function
ϕ(z, z̄) will diverge. However, if ϕ(z, z̄) vanishes at zero, the integral converges. Any
distribution whose action on the elements of C∞

c (C) vanishing at zero coincides with the
action of z−3/2 is a regularization of z−3/2. The regularization of a function with algebraic
singularities is unique up to functionals concentrated in the zero locus, see [32, I.1.7]. For
a fixed s ∈ C, the canonical regularization of the function zs, in the sense that it is the
most natural, is presented in the following proposition.

Proposition 2.1 ([32, B1.2], Gel’fand-Shilov regularization). For any m ∈ Z≥0, the
regularization of the distribution zs : C∞

c (C) −→ C is given by

〈zs, ϕ〉 =

∫

|z|≤1

[
ϕ(z, z̄)−

m−1∑

k+l=0

ϕ(k,l)(0, 0)
zkz̄l

k!l!

]
|z|2sdzdz̄

+

∫

|z|>1

ϕ(z, z̄)|z|2sdzdz̄ − 2πi

m−1∑

k=0

ϕ(k,k)(0, 0)

(k!)2(s+ k + 1)
, Re(s) > −m− 1,

(2.2)

where ϕ(i,j) := ∂i+jϕ/∂zi∂z̄j . Hence, zs has poles at s = −k−1 for k ∈ Z≥0 with residues

Res
s=−k−1

zs = −
2πi

(k!)2
δ
(k,k)
0 ,

where δ
(i,j)
0 are the distributional derivatives of the Dirac’s delta function defined by

〈δ
(i,j)
0 , ϕ〉 := (−1)i+jϕ(i,j)(0, 0). Furthermore, in the strip −m − 1 < Re(s) < −m, Equa-

tion (2.2) reduces to

〈zs, ϕ〉 =

∫

C

[
ϕ(z, z̄)−

m−1∑

k+l=0

ϕ(k,l)(0, 0)
zkz̄l

k!l!

]
|z|2sdzdz̄.

For a fixed ϕ ∈ C∞
c (C), Proposition 2.1 gives the meromorphic continuation to the

whole complex plane of the holomorphic function of s defined by the integral 〈zs, ϕ〉. For
any polynomial f , we will talk indistinguishably about the meromorphic continuation or
the (canonical) regularization of its complex zeta function f s.

Remark 2.2. Although in Proposition 2.1 the test function ϕ is assumed to be in C∞
c (C),

the proof of the result only uses the fact that ϕ is infinitely differentiable near 0 and
compactly supported. This means that the same result works for a meromorphic ϕ with
poles away from 0 and compact support. In particular, if ϕ(z, z̄; s) ∈ C∞(U), where U
is a neighborhood of 0, and compactly supported, the poles of 〈zs, ϕ(z, z̄; s)〉 will be the
negative integers Z<0 together with the poles of ϕ(z, z̄; s) in s away from U .

Resolution of the singularities in f ∈ C[z1, . . . , zn] is used in [11] and [3] to reduce
the problem of finding the analytic continuation of f s to the monomial case considered
in Proposition 2.1. Let π : X ′ −→ Cn be a resolution of f with Fπ :=

∑
NiDi the

total transform divisor and Kπ :=
∑

kiEi the relative canonical divisor, and suppose that
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E := Exc(π) =
∑

Ei is the exceptional locus. Let {Uα}α∈Λ be an affine open cover of X ′.
Take {ηα} a partition of unity subordinated to the cover {Uα}α∈Λ. That is, ηα ∈ C∞(Cn)
(not necessarily with compact support),

∑
ηα ≡ 1, with only finitely many ηα being

non-zero at a point of X ′ and Supp(ηα) ⊆ Uα. Then, with a small abuse of notation,

〈f s, ϕ〉 =

∫

X′

|π∗f |2s(π∗ϕ)|dπ|2

=
∑

α∈Λ

∫

Uα

|z1|
2(N1,αs+k1,α) · · · |zn|

2(Nn,αs+kn,α)|uα(z)|
2s|vα(z)|

2ϕα(z, z̄) dzdz̄,
(2.3)

where ϕα := ηαπ
∗ϕ for each α ∈ Λ and uα(0), vα(0) 6= 0. The resolution morphism π being

proper implies that both E and π−1(Supp(ϕ)) are compact sets. Since the singularities of
the integral 〈f s, ϕ〉 are produced by the zero set of f , in order to study the poles of f s, it
is enough to consider a finite affine open cover {Uα}α∈Λ of E consisting of neighborhoods
of points pα ∈ E and such that Supp(ϕ) ⊆ π(∪αUα).

From Equation (2.3) and Proposition 2.1, we see that each divisor Di in the support of
Fπ generates a set of candidate poles of f s, namely

−
ki + 1 + ν

Ni
, ν ∈ Z≥0.

The opposite in sign to the largest pole is the log-canonical threshold lct(f) of f and
sets the maximal region of holomorphy of 〈f s, ϕ〉 for a general ϕ ∈ C∞

c (Cn). This solves
Gel’fand’s first question in [31]. However, nothing is said about the residues of f s at those
poles. Moreover, the set of candidates is usually large compared with the set of roots of
the Bernstein-Sato polynomial or the actual poles of f s.

2.2. The Bernstein-Sato polynomial. Let X be a complex manifold of dimension n
with OX the sheaf of regular functions and DX the sheaf of differentials operators. We
set DX [s] = DX ⊗C C[s], where s is an indeterminate commuting with all differential
operators. Fix f ∈ OX a non-zero regular function on X . The Bernstein-Sato functional
equation [10] asserts the existence of a differential operator P (s) ∈ DX [s] and a non-zero
polynomial b(s) ∈ C[s] such that

(2.4) P (s) · f s+1 = b(s)f s.

Although neither P (s) or b(s) are necessarily unique, all the polynomials b(s) ∈ C[s]
satisfying Equation (2.4) form an ideal. The unique monic generator of this ideal is called
the Bernstein-Sato polynomial bf (s) of f . Everything remains true in the local case, see
[13]. The only two general results about the structure of the roots of the Bernstein-Sato
polynomial are the following.

Theorem 2.3 ([42], [48], Rationality of the roots). Let f ∈ OX be non-constant and let
π : X ′ −→ X be a resolution of f with Fπ =

∑
NiEi and Kπ =

∑
kiEi the resolution and

relative canonical divisors. Then, the roots of bf (s) are among the numbers

−
ki + 1 + ν

Ni
− k,

for ν ∈ {0, . . . , Ni−1} and k ∈ Z≥0. Therefore, all the roots are negative rational numbers.
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As in the case of the candidate poles of the complex zeta function f s, the set of can-
didates provided by Theorem 2.3 is usually larger than the set of roots of bf (s). Indeed,
there are many exceptional divisors of the resolution not contributing to actual poles of
f s or roots of bf (s). Since s = −1 is always a root of bf(s), it is sometimes useful to work

with the reduced Bernstein-Sato polynomial, b̃f (s) := bf (s)/(s+ 1).

Theorem 2.4 ([61]). Let f ∈ OX be non-constant. Then, for any root α of b̃f (s),
α ∈ [−n+ lct(f),−lct(f)]. If mα denotes the multiplicity of α, mα ≤ n− lct(f)− α+ 1.

The bounds in Theorem 2.4 are optimal for isolated quasi-homogeneous singularities.

The Bernstein-Sato functional equation together with integration by parts can be used
to obtain the analytic continuation of f s in a different way.

Proposition 2.5. The complex zeta function f s admits a meromorphic continuation to
C with poles among the rational numbers α− k with bf (α) = 0 and k ∈ Z≥0.

Proof. We can use the functional Equation (2.4) and integration by parts to analytically
continue Equation (2.1) in the following way

〈f s, ϕ〉 =

∫

Cn

ϕ(z, z̄)|f(z)|2sdzdz̄ =
1

b2f (s)

∫

Cn

ϕ(z, z̄)
[
P (s) · f s+1(z)

][
P (s) · f s+1(z̄)

]
dzdz̄

=
1

b2f (s)

∫

Cn

P ∗P ∗(s)
(
ϕ(z, z̄)

)
|f(z)|2(s+1)dzdz̄.

(2.5)

The last term of Equation (2.5) defines an analytic function whenever Re(s) > −1, except
for possible poles at b−1

f (0), and it is equal to 〈f s, ϕ〉 in Re(s) > 0. If a differential operator

has the form P (s) =
∑

β aβ(s, z)(
∂
∂z
)β, we have considered

P (s) :=
∑

β

aβ(s̄, z̄)
( ∂

∂z̄

)β

, P ∗(s) :=
∑

β

(−1)|β|
( ∂

∂z

)β

aβ(z, s),

the conjugate and adjoint operator of P (s), respectively. Iterating the process we get

(2.6) 〈f s, ϕ〉 =
〈f s+k+1,P ∗P ∗(s+ k) · · ·P ∗P ∗(s)(ϕ)〉

b2f (s) · · · b
2
f (s+ k)

, Re(s) > −k − 1,

and the result follows. �

The set of poles of the complex zeta function f s is known to be exactly the set α − k
with bf(α) = 0 and k ∈ Z≥0 for reduced plane curve singularities and isolated quasi-
homogeneous singularities, see [49, Th. 1.9]. Therefore, at least in these cases, the divisors
contributing to poles of the complex zeta function f s are the same divisors that contribute
to roots of the Bernstein-Sato polynomial bf(s). However, even in these cases, it is not
straightforward to relate poles of f s with roots of bf (s). In general, from Theorem 2.4
and Proposition 2.5, one has that,

Corollary 2.6. Every pole σ ∈ [−n + lct(f),−lct(f)] of f s such that σ + k is not a root
of bf(s) for all k ∈ Z>0 is a root of bf(s).
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2.3. Yano’s conjecture. We assume now that f has an isolated singularity at 0 and
we work locally around this point. Let µ := dimC OX,0/〈∂f/∂z1, . . . , ∂f/∂zn〉 be the
Milnor number of f at 0. The Brieskorn lattice, [18] H ′′

f,0 := Ωn
X,0/df ∧ dΩn−1

X,0 , of f
at 0 has a structure of C{t}-module given by the multiplication by f , moreover, it is a
free module of dimension µ and carries a connection ∂t. Malgrange shows in [52] that

if H̃ ′′
f,0 :=

∑
k≥0(∂tt)

kH ′′
f,0 is the saturation of the Brieskorn lattice, then b̃f,0(s) is the

minimal polynomial of the endomorphism

−∂tt : H̃
′′
f,0/tH̃

′′
f,0 −→ H̃ ′′

f,0/tH̃
′′
f,0.

Therefore, the degree of the Bernstein-Sato polynomial of an isolated singularity is at most

µ. If α̃1, . . . , α̃r, r ≤ µ are the roots of b̃f,0, Malgrange also proves that the polynomial∏
j

(
s− exp(2πiα̃j)

)
is a divisor of the characteristic polynomial of the monodromy and

a multiple of the minimal polynomial of the monodromy. Following the terminology
of Yano, the b-exponents of an isolated singularity f are the µ roots α1, . . . , αµ of the

characteristic polynomial of the action of ∂tt on H̃ ′′
f,0/tH̃

′′
f,0.

Yano’s conjecture [73] on the b-exponents of generic irreducible plane curves reads as
follows. Let (n, β1, . . . , βg) be the characteristic sequence of a plane branch with g ≥ 1
being the number of characteristic exponents. With the same notation as in [73] define,

e0 := n, ei := gcd(n, β1, . . . , βi), i = 1, . . . , g,

ri :=
βi + n

ei
, Ri :=

βiei−1 + βi−1(ei−2 − ei−1) + · · ·+ β1(e0 − e1)

ei
,

r′0 := 2, r′i := ri−1 +

⌊
βi − βi−1

ei−1

⌋
+ 1 =

⌊
riei
ei−1

⌋
+ 1,

R′
0 := n, R′

i := Ri−1 + βi − βi−1 =
Riei
ei−1

.

(2.7)

Inspired by A’Campo’s formula [1] for the eigenvalues of the monodromy, Yano defines
the following polynomial with fractional powers in t

(2.8) R
(
(n, β1, . . . , βg), t

)
:=

g∑

i=1

t
ri
Ri

1− t

1− t
1
Ri

−

g∑

i=0

t
r′i
R′

i

1− t

1− t
1
R′

i

+ t,

and proves that R
(
(n, β1, . . . , βn), t

)
has non-negative coefficients. Finally,

Conjecture (Yano, [73]). For generic curves among all irreducible plane curves with
characteristic sequence (n, β1, . . . , βg) the b-exponents α1, . . . , αµ are given by the gener-
ating function R

(
(n, β1, . . . , βn), t

)
. That is,

µ∑

i=1

tαi = R
(
(n, β1, . . . , βg), t

)
.

3. The semigroup of a plane branch and its monomial curve

The characteristic sequence of an irreducible plane curve is a complete topological
invariant. Two germs of a curve are topologically equivalent, if and only if, they have
the same characteristic sequence. Alternatively, one defines the semigroup of a plane
branch from its associated valuation. The aim of this section is to first describe all the
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terminology related to the characteristic sequence and the semigroup of a plane branch
and present the relation between them. Secondly, we will introduce Teissier’s monomial
curve associated to a semigroup and its deformations. The main references for this section
are Zariski’s book [74] and its appendix [68] by Teissier.

3.1. The semigroup of a plane branch. We begin by fixing a germ of a plane branch
f : (C2, 0) −→ (C, 0) with characteristic sequence (n, β1, . . . , βg), n, βi ∈ Z>0. The char-
acteristic sequence can be obtained from the Puiseux parameterization of f . After an
analytic change of variables we can always assume that n < β1 < · · · < βg. Define the
integers ei := gcd(ei−1, βi), e0 := n, with n being the multiplicity of f . Notice that they
satisfy e0 > e1 > · · · > eg = 1 and ei−1 6 | βi.

We set ni := ei−1/ei for i = 1, . . . , g and, by convention, β0 := 0 and n0 := 0. The
integers n1, . . . , ng are strictly larger than 1 and we have that ei−1 = nini+1 · · ·ng for
i = 1, . . . , g. In particular, n = n1 · · ·ng. The fractions mi/n1 · · ·ni, with mi defined as
mi := βi/ei, are the reduced characteristic exponents appearing in the Puiseux series of
f . The tuples (mi, ni) satisfy gcd(mi, ni) = 1 and are usually called the Puiseux pairs.

Let Of be the local ring of f . The Puiseux parameterization of f gives an injection
Of −֒→ C{t}. We denote the t-adic valuation of Of by ν and Γ ⊆ Z≥0 denotes the
associated semigroup

Γ :=
{
ν(g) ∈ Z≥0 | g ∈ Of \ {0}

}
.

Since f is irreducible there exists a minimum integer c ∈ Z>0, the conductor of Γ, such
that (tc) · C{t} ⊆ Of . As a result, any integer in [c,∞) must belong to Γ, which implies
that Z≥0 \ Γ is finite. Since Z≥0 \ Γ is finite, we can find a minimal generating set
〈β0, β1, . . . , βg〉 of Γ, i.e. βi are the minimal integers such that βi 6∈ 〈β0, β1, . . . , βi−1〉,

with β0 < β1 < · · · < βg and gcd(β0, β1, . . . , βg) = 1.

The semigroup generators can be computed from the characteristic sequence in the
following way, see [74, II.3],

(3.1) βi = (n1 − 1)n2 · · ·ni−1β1 + (n2 − 1)n3 · · ·ni−1β2 + · · ·+ (ni−1 − 1)βi−1 + βi,

for i = 2, . . . , g and with β0 = n, β1 = β1. Recursively this can be expressed as

(3.2) βi = ni−1βi−1 − βi−1 + βi, i = 2, . . . , g.

By Equation (3.1), gcd(ei−1, βi) = ei with e0 = β0 = n and ei−1 6 | βi. In the same way as
before, we define the sequence of integers mi := βi/ei which will be useful in the sequel.
The integers mi, i = 1, . . . , g can be obtained recursively using Equation (3.2), namely

(3.3) mi = nini−1mi−1 − nimi−1 +mi, i = 2, . . . , g,

with m0 = 1, m1 = m1. Note that Equation (3.3) implies gcd(mi, ni) = 1 for i = 1, . . . , g.
Finally, we define qi := (βi − βi−1)/ei = mi − nimi−1 for i = 1, . . . , g. Alternatively,
by Equation (3.2), these quantities are qi = (βi − ni−1βi−1)/ei = mi − nini−1mi−1 for
i = 2, . . . , g and q1 = m1 = m1.

The following lemma is a fundamental property of the semigroups coming from plane
branches.

Lemma 3.1 ([68, I.2]). If Γ = 〈β0, β1, . . . , βg〉 is the semigroup of a plane branch, then

niβi ∈ 〈β0, β1, . . . , βi−1〉.
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The property in Lemma 3.1 together with the fact that niβi < βi+1, which follows
directly from βi < βi+1 and Equation (3.2), characterize the semigroups of plane branches.

Proposition 3.2 ([68, I.3.2]). Γ = 〈β0, β1, . . . , βg〉 ⊆ Z≥0 is the semigroup of a plane

branch, if and only if, gcd(β0, β1, . . . , βg) = 1, niβi ∈ 〈β0, β1, . . . , βi−1〉 for i = 1, . . . , g,

and niβi < βi+1, for 1 ≤ i < g.

The conductor c of Γ can be computed as c = ngβg − βg − (n− 1), see [74, II.3]. Com-
bining this formula with Equation (3.2), we get the following formula for the conductor

(3.4) c =

g∑

i=1

(ni − 1)βi − n+ 1.

Finally, we would like to notice that the Milnor number, µ=dimCC{x,y}/〈∂f/∂x, ∂f/∂y〉,
of the branch f coincides with its conductor c, see [22, 6.4]. Therefore, µ can be computed
from a semigroup Γ = 〈β0, β1, . . . , βg〉 using Equation (3.4).

3.2. The monomial curve and its deformations. Let Γ = 〈β0, β1, . . . , βg〉 ⊆ Z≥0

be a semigroup such that Z≥0 \ Γ is finite, that is gcd(β0, . . . , βg) = 1, not necessarily
the semigroup of a plane branch. We use the notations and definitions from Section 3.1.
Following [68], let (CΓ, 0) ⊂ (X, 0) be the curve defined via the parameterization

CΓ : ui = tβi, i ≤ 0 ≤ g,

where X := Cg+1. The germ (CΓ, 0) is irreducible since gcd(β0, . . . , βg) = 1 and its local
ring OCΓ,0 equals

C
{
CΓ

}
= C

{
tβ0 , . . . , tβg

}
−֒→ C{t},

which has a natural structure of graded subalgebra of C{t}.

Theorem 3.3 ([68, I.1]). Every branch (C, 0) with semigroup Γ is isomorphic to the
generic fiber of a one parameter complex analytic deformation of (CΓ, 0).

With extra structure on the semigroup Γ it is possible to obtain equations for (CΓ, 0).

Proposition 3.4 ([68, I.2]). If Γ satisfies Lemma 3.1, the branch (C, 0) ⊂ (X, 0) is a
quasi-homogeneous complete intersection with equations

(3.5) hi := uni

i − u
l
(i)
0
0 u

l
(i)
1
1 · · ·u

l
(i)
i−1

i−1 = 0, 1 ≤ i ≤ g,

and weights β0, β1, . . . , βg, where

niβi = β0l
(i)
0 + · · ·+ βi−1l

(i)
i−1 ∈ 〈β0, . . . , βi−1〉.

Applying the theory of miniversal deformations to the previous results Teissier proves
the following result.

Theorem 3.5 ([68, I.2]). There exists a germ of a flat morphism

p : (XΓ, 0) ⊂ (X × Cτ− , 0) −→ (Cτ− , 0)

consisting on the second projection from XΓ, such that it is a miniversal semigroup con-
stant deformation of (CΓ, 0) with the property that, for any branch (C, 0) with semigroup
Γ, there exists vC ∈ Cτ− such that (p−1(vC), 0) is analytically isomorphic to (C, 0).
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The miniversal deformation in Theorem 3.5 can be made explicit, see [68, I.2]. Consider
the Tjurina module of the complete intersection (CΓ, 0),

T 1
CΓ,0 = Og

X,0

/(
Jh · Og+1

X,0 + 〈h1, . . . , hg〉 · O
g
X,0

)
,

where Jh · Og+1
X,0 is the submodule of Og

X,0 generated by the columns of the Jacobian

matrix of the morphism h = (h1, . . . , hg). Since (C
Γ, 0) is an isolated singularity, T 1

CΓ,0 is

a finite dimensional C–vector space of dimension τ . Moreover, since (CΓ, 0) is Gorenstein,
τ = 2 ·#(Z>0 \ Γ), see [68, Prop. 2.7].

Let φ1, . . . ,φµ be a basis of T 1
X,0. It is easy to see that we can take representatives

for the vectors φr in Og
X having only one non-zero monomial entry φr,i. Since (CΓ, 0)

is quasi-homogeneous, we can endow T 1
X,0 with a structure of graded module in such a

way that using only the elements φ1, . . . ,φτ− with negative weight, XΓ is defined from
Equation (3.5) by

Hi := hi +

τ−∑

r=1

vrφr,i(u0, . . . , ug) = 0, 1 ≤ i ≤ g,

with the weight of φr,i strictly bigger than niβi, see [68, Th. 2.10]. One can check that the
classes of the vectors (u2, 0, . . . , 0), (0, u3, 0, . . . , 0), . . . , (0, 0, . . . , ug, 0) are C–independent

in T 1
CΓ,0. Thus, if Γ is a plane branch semigroup, then niβi < βi+1, 1 ≤ i < g and these

vectors are part of the miniversal semigroup constant deformation of (CΓ, 0).

For Γ = 〈β0, β1, . . . , βg〉 the semigroup of a plane branch, consider the following semi-

group constant deformation of (CΓ, 0)

C : H ′
i := hi − ui+1 = 0, 1 ≤ i ≤ g.

Define f0 := x, f1 := y and set recursively,

(3.6) fi+1 := fni

i − f
l
(i)
0
0 f

l
(i)
1
1 · · · f

l
(i)
i−1

i−1 with niβi = β0l
(i)
0 + · · ·+ βi−1l

(i)
i−1,

for 1 ≤ i ≤ g. Then, we can embedded (C, 0) in the plane in such a way that it has
equation f := fg+1 that looks like
(
· · ·

((
· · ·

((
yn1 − xl

(1)
0

)n2

− xl
(2)
0 yl

(2)
0

)n3

− · · ·
)ni

− xl
(i)
0 · · · f

l
(i)
i−1

i−1

)ni+1

− · · ·

)ng−1

− xl
(g)
0 · · ·f

l
(g)
g−1

g−1 .

This proves the reverse implication in Proposition 3.2.

In the following sections, it will be essential to have a certain semigroup constant
deformation of a plane branch equation, similar to fg+1 in Equation (3.6), in such a way
that any other plane branch with the same semigroup is analytically equivalent to some
fiber of that deformation. From the previous discussion we obtain the following result.

Proposition 3.6. Let Γ = 〈β0, β1, . . . , βg〉 be a plane branch semigroup. Consider, with
the same notation as above,

(3.7) fi+1 = fni

i − λif
l
(i)
0
0 f

l
(i)
1
1 · · · f

l
(i)
i−1

i−1 +
∑

β0k0+···+βiki>niβi

t
(i)
k fk0

0 fk1
1 · · · fki

i ,
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with λi 6= 0, λ1 = 1 for i = 1, . . . , g and the sum being finite. Define,

ft,λ(x, y) := fg+1(x, y; t
(1), . . . , t(g);λ2, . . . , λg).

Then, {ft,λ(x, y)}λ∈Cg−1 is an infinite family of semigroup constant deformations, all hav-
ing semigroup Γ, with the property that any other plane branch with semigroup Γ is ana-
lytically equivalent to a fiber of one element of the family.

Proof. Consider the semigroup constant deformation of the monomial curve (CΓ, 0) from
Theorem 3.5. Since the semigroup Γ is of a plane branch, we can assume that the set
of vectors (u2, 0, . . . , 0), (0, u3, 0, . . . , 0), . . . , (0, 0, . . . , ug, 0) are part of the semigroup con-
stant deformation. XΓ will have equations

C : Hi = hi − vi+1ui+1 +

τ−∑

r=g+1

vrφr,i(u0, . . . , ug) = 0, 1 ≤ i ≤ g.

The embedding dimension of (C, 0) is equal to g + 1 − rk JH(0), see [27, 4.3]. Since all
the monomials in Hi have (non-weighted) degree bigger than 2, except for those in the
vectors (u2, 0, . . . , 0), (0, u3, 0, . . . , 0), . . . , (0, 0, . . . , ug, 0), the rank of the Jacobian is g−1,
if and only if, v2 · · · vg−1 is non-zero. Thus, the embedding dimension of (C, 0) is 2, if and
only if, all v2, . . . , vg−1 are different from zero.

Finally, performing elimination on the variables u2, . . . , ug one obtains a plane branch
equation similar to Equation (3.7) with λi = vn2

2 · · · vni

i 6= 0 and a finite number of defor-
mation monomials with coefficients that are polynomials in the variables vr. Therefore,
there is an inclusion of the parameter space of XΓ into the parameters of the family of
deformations ft,λ. �

We will sometimes drop the dependency on the parameters λ ∈ Cg−1, and denote
just ft(x, y). Although we are considering a finite deformation of ft, we can always
assume that we have deformation terms of high enough order. Adding extra terms to
the summation does not change the facts that the family contains all plane curves up to
analytic isomorphism or that the deformation has constant semigroup.

4. Resolution of plane curve singularities

In this section, we will review some facts about resolution of singularities of plane
curves. In the sequel, a plane curve will be a germ of a mapping f : (C2, 0) −→ (C, 0)
with f(0) = 0. We will make a small abuse of notation and denote also by f an equation
of the germ, assuming it is defined in a small neighborhood U ⊆ C2 of the origin. For
irreducible plane curves f , we will present the notions of toric resolution, maximal contact
elements, and their relation. We will also see how some resolution data can be described
in terms of the semigroup and the characteristic sequence of f . In the last part of this
section, we give equations for the resolution of the elements in the family ft considered
in Proposition 3.6 at the so-called rupture divisors. The majority of the results in this
section are well-known and can be found in the books of Casas-Alvero [22] or Wall [70].

4.1. Resolution of singularities. Let π : X ′ −→ U be the minimal embedded resolution
of the plane curve f . Here, π is birational proper morphism and X ′ is a smooth surface.
We can assume that π is given as a composition of point blow-ups

π : X ′ := Xs+1
πps

−−−→ Xr −→ · · · −→ X1

πp0−−−→ X0 := U ⊆ C2,
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with Xi+1 := BlpiXi, pi ∈ Exc(πpi−1
◦ · · · ◦ πp0) ⊂ Xi for i = 1, . . . , s and p0 := 0. Denote

by E := Exc(π) the exceptional divisor of π. Let K := {p0, p1, . . . , ps} be the set of points
that have been blown-up. Then, {Ep}p∈K is the set of all the irreducible exceptional
components of E. The total transform divisor Fπ and relative canonical divisor Kπ will
have the following expressions

Fπ := Div(π∗f) =
∑

p∈K

NpEp + µ1C̃1 + · · ·+ µtC̃t, Kπ = Div(Jac(π)) :=
∑

p∈K

kpEp,

where C̃1, . . . , C̃t ∈ DivZ(X
′) are the branches of the strict transform of f , that is to say,

C̃1 + · · ·+ C̃t = Div(π−1(f − {0})). The divisor Fπ is a simple normal crossing divisor.

We will distinguish between two types of exceptional divisors. An exceptional divisor
is said to be of rupture type if it intersects three or more divisors in the support of Fπ.
It is said to be non-rupture otherwise. Those exceptional divisors that only intersect one
divisor in the support of Fπ will be called dead-end divisors. They are dead-end points in
the dual graph of the resolution, hence the name.

4.2. Toric resolutions and maximal contact elements. We assume from now on
that f : (C2, 0) −→ (C, 0) is irreducible with semigroup Γ = 〈β0, β1, . . . , βg〉 and we
use the notations from Section 3.1. All plane branches having the same semigroup Γ, or
characteristic sequence, are equisingular, see [22, 3.8]. This means that the combinatorics
of the resolution is the same for all of them and can be determined by the characteristic
sequence.

A classical way to obtain the minimal resolution by point blow-ups of an irreducible
plane curve f from its characteristic sequence (n, β1, . . . , βg) is using Enriques’ theorem,
see [22, 5.5]. We will however take the approach of Oka in [59] and describe the minimal
resolution of f as a composition of toric morphisms. Indeed, there exists a resolution map
π of f that decomposes into g ≥ 1 toric morphisms. For i = 1, . . . , g,

π(i) := π1 ◦ · · · ◦ πi−1 ◦ πi : X
(i) πi−−→ X(i−1) πi−1

−−→ · · ·
π2−−→ X(1) π1−−→ X(0) := U ⊆ C2,

where πi is a toric morphism for a suitable choice of coordinates on X(i−1) and π := π(g).
Each πi resolves one characteristic exponent of the plane branch f in the sense that the
strict transform of f on X(i) has one characteristic exponent less than the strict transform
on X(i−1). In this way, X(i) always contain one extra rupture divisor Epi than X(i−1).
We will denote by Ui, Vi the affine open sets, and by (xi, yi), (zi, wi) the coordinates,
containing the i–th rupture divisor Epi on X(i) after the i–th toric modification πi. In
these coordinates, recalling the definitions of the integers ni, qi from Section 3.1, the toric
morphism is given by

(4.1) πi(xi, yi) =
(
xni

i yaii , xqi
i y

bi
i

)
and πi(zi, wi) = (zcii w

ni

i , zdii wqi
i ),

with ai, bi, ci, di ∈ Z≥0 such that nibi − qiai = 1, qici − nidi = 1 and aiqi + dini = niqi − 1.
These toric morphisms can be thought as a composition of point blow-ups. In the sequel,
we will associate to each plane branch singularity these series of four integers ai, bi, ci, di
for every i = 1, . . . , g. They are determined, although not explicitly, by the semigroup Γ
of f since they depend on the continuous fraction expansion of qi/ni.

If the singularity is still not resolved at X(i), one needs to perform an analytic change
of coordinates around the unique singular point of the strict transform of f on X(i) in
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order for πi+1 to be toric. These new coordinates, let us say (x̄i, ȳi) and (z̄i, w̄i), are such

that π
(i)
∗ ȳi = π

(i)
∗ z̄i is a germ fi : (C

2, 0) −→ (C, 0) that is a maximal contact element of
f in the sense that the intersection of fi and f is, precisely, βi. By construction, each of
these maximal contact elements fi are resolved by the corresponding π(i). In the case of
the plane curves constructed in Section 3.2, the maximal contact element fi coincide with
the elements fi defined in Equation (3.6) and Equation (3.7). For completeness, we will
assume that the (g + 1)–th maximal contact element fg+1 is the curve f itself.

It is easy to see that the semigroup Γi+1 of the maximal contact element fi+1 is

(4.2) Γi+1 = 〈n1n2 · · ·ni, n2 · · ·nim1, . . . , nimi−1,mi〉, for i = 1, . . . , g.

Similarly, its characteristic sequence is given by (n1n2 · · ·ni, n2 · · ·nim1, . . . , nimi−1, mi).
Apart from this numerical data of the maximal contact elements, we are interested in
describing the multiplicities of the total transform and the relative canonical divisor along
the rupture and dead-end divisors in terms of the semigroup Γ. Following the same
notation as above, denote Epi, i = 1, . . . , g the rupture divisors of f . Similarly, denote Eqi

for i = 0, . . . , g the dead-end divisors. It is well-known, see [70, 8.5], that

(4.3) Npi = niβi, kpi +1 = mi+n1 · · ·ni, Nqi = βi, kqi +1 = ⌈(mi +n1 · · ·ni)/ni⌉.

We will end this section with a technical result about the resolution of the elements of
the constant semigroup deformations {ft,λ}λ∈Cg−1. Having constant semigroup means that
all the fibers of all the elements of the family are equisingular. Hence, the toric resolution
of the plane branches in the family ft is the same modulo the coordinates needed at each
X(i). The following proposition describes locally the equations of ft around the rupture
divisors after pulling back by π(i).

Proposition 4.1. Let Epi be the i–th rupture divisor on the surface X(i) and let Ui, Vi be
the corresponding charts containing Epi with local coordinates (xi, yi) and (zi, wi), respec-
tively. Then,

• The equations of the total transform of ft(x, y) are given by

(4.4) x
niβi

i y
aiβi

i u1(xi, yi)f̃t(xi, yi), z
(cini−1mi−1+di)ei−1

i w
niβi

i u2(xi, yi)f̃t(zi, wi),

where u1, u2 are units at any point of Epi.

• The equations f̃t of the strict transform of f are

f̃t(xi, yi) = f̃g+1(xi, yi; t
(1), . . . , t(g)), f̃t(zi, wi) = f̃g+1(zi, wi; t

(1), . . . , t(g)).

• The (i+ 1)–th maximal contact element has equations

f̃i+1(xi, yi) = yi − λi +
∑

β0k0+···+βiki>niβi

t
(i)
k x

ρ
(i)
i+1(k)

i y
A

(i)
i+1(k)

i u
(i)
k (xi, yi), (Ui chart ),

f̃i+1(zi, wi) = 1− λizi +
∑

β0k0+···+βiki>niβi

t
(i)
k z

C
(i)
i+1(k)

i w
ρ
(i)
i+1(k)

i u
(i)
k (zi, wi), (Vi chart ),

(4.5)

where u
(i)
k are units at any point of Epi.
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• The remaining maximal contact elements fj+1, j > i have strict transforms given by
(4.6)

f̃j+1 = f̃
nj

j − λjx
ρ
(i)
j+1(lj)

i y
A

(i)
j+1(lj)

i u
(j)
0 f̃

l
(j)
i+1

i+1 · · · f̃
l
(j)
j−1

j−1 +
∑

β0k0+···+βjkj>njβj

t
(j)
k x

ρ
(i)
j+1(k)

i y
A

(i)
j+1(k)

i u
(j)
k f̃

ki+1

i+1 · · · f̃
kj
j

in the Ui chart, and similarly in Vi. As before, u
(j)
0 , u

(j)
k are units everywhere on Epi

and we denote lj :=
(
l
(j)
0 , l

(j)
1 , . . . , l

(j)
j−1, 0

)
the integers from Proposition 3.4.

Finally, ρ
(i)
j+1, A

(i)
j+1, C

(i)
j+1, j ≥ i, are the following linear forms:

ρ
(i)
j+1(k) =

i∑

l=0

nl+1 · · ·nimlkl + nimi

j∑

l=i+1

ni+1 · · ·nl−1kl − ni · · ·njmi,

A
(i)
j+1(k) = ai

i−1∑

l=0

nl+1 · · ·ni−1mlkl + (aini−1mi−1 + bi)ki

+ aimi

j∑

l=i+1

ni+1 · · ·nl−1kl − aimini+1 · · ·nj ,

C
(i)
j+1(k) = ci

i−1∑

l=0

nl+1 · · ·ni−1mlkl + (cini−1mi−1 + di)ki

+ ni(cini−1mi−1 + di)

j∑

l=i+1

ni+1 · · ·nl−1kl − (cini−1mi−1 + di)ni · · ·nj .

(4.7)

Proof. The results follow from the inductive procedure of applying the toric transforma-
tions from Equation (4.1) to the equations of ft in Proposition 3.6. At each X(i) the ana-

lytic coordinates which make the morphism πi toric are described by ȳi = f̃i+1, x̄i = xiui

in the Ui chart, for some unit ui. The expressions for the linear forms ρ
(i)
j+1, A

(i)
j+1, C

(i)
j+1

follow, recursively, from the relations

ρ
(i)
j+1(k) = niρ

(i−1)
j+1 (k) + qiki + niqi

j∑

l=i+1

ni+1 · · ·nl−1kl − ni · · ·njqi,

A
(i)
j+1(k) = aiρ

(i−1)
j+1 (k) + biki + aiqi

j∑

l=i+1

ni+1 · · ·nl−1kl − aiqini+1 · · ·nj,

C
(i)
j+1(k) = ciρ

(i−1)
j+1 (k) + diki + nidi

j∑

l=i+1

ni+1 · · ·nl−1kl − dini · · ·nj .

�

Following the notations from Proposition 4.1, we will fix, in the sequel, the index i to
denote that we have resolved the singularity up to the i–th rupture divisor on X(i). On
the other hand, the index j will make reference to the j–th maximal contact element. At
any step of the resolution process, one has that 1 ≤ i ≤ j ≤ g.
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Lemma 4.2. Let ρ
(i)
j+1(k), A

(i)
j+1(k), C

(i)
j+1(k) be the linear forms in Proposition 4.1. Then,

A
(i)
j+1(k) + C

(i)
j+1(k) +

j∑

l=i+1

ni+1 · · ·nl−1kl = ρ
(i)
j+1(k) + ni+1 · · ·nj.

Proof. From the relations between ai, bi, ci, di, one can deduce that ai+ci = ni, bi+di = qi.

The result follows from adding A
(i)
j+1 and C

(i)
j+1 and using these relations. �

5. Poles and residues for plane curves

Let f : (C2, 0) −→ (C, 0) be a plane curve not necessarily reduced or irreducible. After
fixing local coordinates x, y, and with a small abuse of notation, let f ∈ C{x, y} be an
equation of the germ, assuming it is defined in a neighborhood U ⊆ C2 of the origin.
Following Section 2.1, define the complex zeta function f s of a local singularity as

(5.1) 〈f s, ϕ〉 :=

∫

U

|f(x, y)|2sϕ(z) dz, for Re(s) > 0,

with ϕ ∈ C∞
c (U) and z := (x, y, x̄, ȳ). The poles of 〈f s, ϕ〉 do not depend on the equa-

tion of the germ or the local coordinates x, y. As discussed in Section 2.1, f s must be
understood in the distributional sense. In this section, we will use the minimal resolution
of singularities of f to study the structure of the residues of f s at any candidate pole
σ. The residue will be expressed as an improper integral along the exceptional divisor
associated to σ. In order to do so, we first present the straightforward generalization of
Proposition 2.1 to the two dimensional case and see how poles of order two might arise.
Finally, we will use the residue formula to prove that most non-rupture divisors do not
contribute to poles of the complex zeta function f s.

5.1. Regularization of monomials in two variables. The result from Proposition 2.1
can be easily generalized to the two dimensional case, mimicking the proof in [32], to see
how poles of order two arise. Let ϕ(z1, z2) ∈ C∞

c (C2) which is, in fact, a function of
z = (z1, z2, z̄1, z̄2), and consider

(5.2) 〈zs11 zs22 , ϕ〉 =

∫

C2

|z1|
2s1|z2|

2s2ϕ(z)dz,

which is absolutely convergent for Re(s1) > −1, Re(s2) > −1 since ϕ has compact support.

Let ∆0 = D1 × D2 be the polydisc formed by the discs of radius one centered at the
origin, i.e. D1 = {|z1| ≤ 1} and D2 = {|z2| ≤ 1}. We can decompose C2 as the disjoint
union

∆0 ∪ (D1 × C \D2) ∪ (C \D1 ×D2) ∪ (C \D1 × C \D2).

Using the notation zk = zk11 zk22 z̄k31 z̄k42 , the integral in Equation (5.2) on the region ∆0 can
be written as
∫

∆0

|z1|
2s1 |z2|

2s2

(
ϕ(z)−

∑

|k|≤m

∂kϕ(0)

∂zk
zk

k!

)
dz −

∑

|k|≤m

∂kϕ

∂zk
(0)

4π2

k!(s1 + k1 + 1)(s2 + k2 + 1)
,

where in the second summation, we have k1 = k3, k2 = k4. The left-hand integral is
holomorphic on the regions Re(s1) > −m− 1,Re(s2) > −m− 1.
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With a small abuse of the notation, let z1 = (z1, z̄1), z2 = (z2, z̄2) and zk11 = z
k1,1
1 z̄

k1,2
1 .

On the region D1 × C \D2, the integral in Equation (5.2) is

∫

D1×C\D2

|z1|
2s1|z2|

2s2

(
ϕ(z)−

∑

|k1|≤m

∂k1ϕ

∂zk11
(0, z2)

zk11
k1!

)
dz1dz2−2πi

∑

|k1|≤m

∫

|z2|>1

|z2|
2s2

∂k1ϕ

∂zk11
(0, z2)dz2

(k1,1!)2(s1 + k1,1 + 1)
,

where in the second sum, k1,1 = k1,2. The left-hand integral is holomorphic in Re(s1) >
−m− 1. By symmetry, a similar expression holds true in the other region, C \D1 ×D2.
On the last region, C\D1×C\D2, the integral in Equation (5.2) is absolutely convergent
for all s1, s2 ∈ C.

From the regularization of zs11 zs22 constructed above we can see that the residue of zs11 zs22
at a simple pole s1 = −k− 1, k ∈ Z>0, i.e. the coefficient of (s+ k+ 1)−1, is given by the
following function of s2

(5.3) Res
s1=−k−1

〈zs11 zs22 , ϕ〉 = −
2πi

(k!)2

∫

C

|z2|
2s2

∂2kϕ

∂zk1∂z̄
k
1

(0, s2) dz2dz̄2.

The residue in Equation (5.3) being a function of s2 implies that Ress1=−k−1 z
s1
1 zs22 will

have a simple pole, as a function of s2, on the poles of order two of zs11 zs22 . Conversely, if
Equation (5.3) is zero for certain s2 = α, the point (s1, s2) = (−k− 1, α) is neither a pole
of order one nor a pole of order two of zs11 zs22 .

5.2. The residue at the poles. Let Ep, p ∈ K be an irreducible exceptional divisor.
We will denote by D1, D2, . . . , Dr ∈ DivZ(X

′) the other prime components (exceptional
or not) of Fπ crossing Ep. By definition, dead-end divisors have only one divisor crossing
them, which will be denoted D1. On the other hand, rupture divisors have at least
three divisors crossing them, i.e. r ≥ 3. In any other case, r = 2. We will denote by
N1, N2, . . . , Nr (resp. k1, k2, . . . , kr) the coefficients of D1, D2, . . . , Dr in Fπ (resp. in Kπ).
Since no confusion arises, we drop the explicit dependence on p ∈ K.

For each Ep, p ∈ K we consider two affine charts Up, Vp containing Ep that arise after
the blow-up of a neighborhood of p in any chart containing p. The origin of the charts
Up, Vp are neighborhoods of opposite points in the projective line Ep. Usually, these points
are the intersection points of Ep with two other components of Fπ which we will assume
to be D1 and D2. For simplicity, if this is not the case, we will set N1, k1 (or N2, k2)
to be zero. The only case in which both N1D1 and N2D2 are zero is when the minimal
resolution π consists of a single blow-up, that is, an homogeneous singularity.

In order to define the complex zeta function f s on X ′, we need to work locally with
coordinates. Accordingly, let (xp, yp), (zp, wp) be the natural holomorphic coordinates of
Up, Vp centered at the origins of both charts which, by construction, are the origin and
the infinity point on a P1

C, or vice versa. The coordinates (xp, yp), (zp, wp) are related at
the intersection Up ∩ Vp by xp = z

κp
p wp, ypzp = 1, and where the integer value κp ∈ Z>0

has a very precise geometric meaning, namely, κp = −Ep ·Ep.

Following the discussion in Section 2.1, each exceptional component Ep contributes
with a sequence of candidate poles to the meromorphic continuation of f s. Indeed, with
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the notations above,
{
σp,ν = −

kp + 1 + ν

Np

∣∣∣∣ ν ∈ Z≥0

}
, p ∈ K.

The set WK := {Up, Vp}p∈K forms a finite affine open cover X ′, which applied to the
construction presented in Section 2.1, Equation (2.3), results in the following proposition.
First, denote by {η1,q, η2,q}q∈K a partition of unity subordinated to the open cover WK .

Proposition 5.1. Using the affine open cover WK , the part of the complex zeta function
f s on Equation (2.3) involving the divisor Ep can be written as the sum of the integrals
over just two affine charts Up, Vp ∈ WK containing Ep, namely

∫

Up

|xp|
2(Nps+kp)|yp|

2(N1s+k1)Φ1(xp, yp; s)η1 dxpdypdx̄pdȳp +

∫

Vp

|zp|
2(N2s+k2)|wp|

2(Nps+kp)Φ2(zp, wp; s)η2 dzpdwpdz̄pdw̄p,

(5.4)

where Φ1(xi, yi; s),Φ2(zi, wi; s) are infinitely many times differentiable at neighborhoods of
the points p1 = Ep ∩D1 and p2 = Ep ∩D2. More precisely,

Φ1 := |u1|
2s|v1|

2(π∗ϕ)|Up
, Φ2 := |u2|

2s|v2|
2(π∗ϕ)|Vp

,

with the elements u1, v1 (resp. u2, v2) being units in the local ring at the points p1 (resp.
p2). Finally, η1 and η2 have compact support and η1|Ep

+ η2|Ep
≡ 1.

Proof. Let us denote by Wp1 ,Wp2 all the elements in WK that contain p1 and p2. By
construction, Wp1 is disjoint from Wp2, since there can be no affine open set containing
both p1 and p2, and the union of Wp1 and Wp2 contains all the charts from WK containing
Ep. Applying Equation (2.3) from Section 2.1, the part of f s on X ′ where the divisor Ep

appears is a sum of the integrals over the affine open sets from Wp1 and Wp2 ,

(5.5)
∑

Uq∈Wp1

∫

Uq

|π∗f |2s|Uq
(π∗ϕ)|Uq

∣∣dπ|Uq

∣∣2 η1,q+
∑

Vq∈Wp2

∫

Vq

|π∗f |2s|Vq
(π∗ϕ)|Vq

∣∣dπ|Vq

∣∣2 η2,q.

Let us see that we can reduce Equation (5.5) to Equation (5.4). The proof is the same
for both summations in Equation (5.5). Since the elements of Wp1 are blow-up charts,
the difference between the union and the intersection of all the elements in Wp1 is a finite
number of lines. Given that a finite number of lines have measure zero, they do not affect
the integral, and we can replace the left-hand summation of Equation (5.5) by

∫

∩Uq

|π∗f |2s|∩Uq
(π∗ϕ)|∩Uq

|dπ|∩Uq
|2η1

This equality is true since |π∗f |2sπ∗ϕ|dπ|2 is a global section on X ′ and it coincides at
the intersection of all the Uq ∈ Wp1. Concerning the partitions of unit, we just set
η1 :=

∑
Uq∈Wp1

η1,q. Finally, by the same argument as before, we can replace ∩Uq∈Wp1
Uq

by any Up ∈ Wp1 yielding Equation (5.4). Notice that, by definition of Wp1 , no other
η ∈ {η1,q, η2,q}q∈K , except for those in η1, has p1 in its support. �

Before presenting the formula for the residue, let us introduce the following rational
numbers associated to a candidate pole σp,ν of an irreducible exceptional divisor Ep, p ∈ K.
They will play an important role in the analysis of the residues.
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Definition 5.2 (Residue numbers). Let σp,ν , ν ∈ Z≥0 be a candidate pole of f
s associated

to an exceptional divisor Ep, p ∈ K intersecting the divisors D1, D2, . . . , Dr ∈ DivZ(X
′).

Define the residue numbers as

(5.6) ǫi,ν := Niσp,ν + ki ∈ Q for i = 1, . . . , r.

For the ease of notation, we will omit the dependence of ǫ1,ν , ǫ2,ν on p ∈ K. The
following relations between ǫ1,ν , ǫ2,ν , . . . , ǫr,ν holds.

Lemma 5.3. For any ν ∈ Z≥0, we have

(5.7) ǫ1,ν + ǫ2,ν + · · ·+ ǫr,ν + κpν + 2 = 0.

Proof. Consider the Q–divisor σp,νFπ +Kπ. Applying the adjunction formula for surfaces
[34, §V.1], (σp,νFπ +Kπ) · Ep = κp − 2, recall κp = −Ep · Ep. On the other hand,

(σp,νFπ +Kπ) · Ep =

r∑

i=0

ǫi,ν − κp(Npσp,v + kp).

Since Npσp,ν + kp = −ν − 1, the result follows. �

A first instance of the numbers ǫi,ν and of Equation (5.7), in the case of rupture divisors
of irreducible plane curves and ν = 0, already appeared in an article of Lichtin [47].

The formula for the residue at a candidate pole σp,ν is presented next. The residue
is expressed as an improper integral, see Remark 5.6 below, along the divisor Ep having
singularities of orders ǫ1,ν , ǫ2,ν , . . . , ǫ1,r at the intersection points of Ep withD1, D2, . . . , Dr.

Proposition 5.4. The residue of the complex zeta function f s at a candidate pole s = σp,ν

is given by

Res
s=σp,ν

〈f s, ϕ〉 =
−2πi

(ν!)2

∫

C

|yp|
2ǫ1,ν

∂2νΦ1

∂xν
p∂x̄

ν
p

(0, yp; σp,ν) dypdȳp (Up chart )

=
−2πi

(ν!)2

∫

C

|zp|
2ǫ2,ν

∂2νΦ2

∂wν
p∂w̄

ν
p

(zp, 0; σp,ν) dzpdz̄p, (Vp chart ).

(5.8)

Proof. Applying Equation (5.3) to Proposition 5.1 with s2 = N1σp,ν + k1 and N2σp,ν + k2,
respectively, we obtain that the residue of f s at s = σp,ν is

Res
s=σp,ν

〈f s, ϕ〉 =
−2πi

(ν!)2

(∫

C

|yp|
2(N1σp,ν+k1)

∂2νΦ1η1
∂xν

p∂x̄
ν
p

(0, yp; σp,ν) dypdȳp

+

∫

C

|zp|
2(N2σp,ν+k2)

∂2νΦ2η2
∂wν

p∂w̄
ν
p

(zp, 0; σp,ν) dzpdz̄p

)
.

(5.9)

The global section |π∗f |2s(π∗ϕ)|dπ|2 restricted to Up, Vp contains Φ1,Φ2. The whole global
section differs only from Φ1,Φ2 by the exceptional part in the total transform |π∗f |2s.
Thus, at the intersection Up ∩ Vp, having that ypzp = 1, wp = x

κp
p yp, one checks that

Φ2(zp, wp; σp,ν) = Φ2(y
−1
p , xκp

p yp; σp,ν)

= |yp|
−2(ǫ3,ν+···+ǫr,ν)Φ2(yp, x

κp

p yp; σp,ν) = |yp|
−2(ǫ3,ν+···+ǫr,ν)Φ1(xp, yp; σp,ν).

Now, deriving both sides with respect to wp and wp and setting wp, w̄p = 0 yields,

∂2νΦ2

∂wν
p∂w

ν
p

(zp, 0; σp,ν) = |yp|
−2(ǫ3,ν+···+ǫr,ν+κpν)

∂2νΦ1

∂xν
p∂x̄

ν
p

(0, yp; σp,ν).
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This, together with Lemma 5.3, shows that the differential forms

|yp|
2ǫ1,ν

∂2νΦ1

∂νxp∂ν x̄p

(0, yp; σp,ν)dyp ∧ dȳp, |zp|
2ǫ2,ν

∂2νΦ2

∂wν
p∂w̄p

(zp, 0; σp,ν)dwp ∧ dw̄p,

define a global section on Ep. As a consequence, it suffices to use zpyp = 1 in either of the
integrals in Equation (5.9), together with the fact that η1|Ep

+ η2|Ep
≡ 1. �

Corollary 5.5. The residue of the complex zeta function f s at s = σp,ν is given, in the
Up chart, by

Res
s=σp,ν

〈f s, ϕ〉 =
−2πi

(ν!)2

∫

|yp|≤R

|yp|
2ǫ1,ν

∂2νΦ1

∂xν
p∂x̄

ν
p

(0, yp; σp,ν) dypdȳp

+
−2πi

(ν!)2

∫

|yp|>R

|yp|
2ǫ1,ν

∂2νΦ1

∂xν
p∂x̄

ν
p

(0, yp; σp,ν) dypdȳp, R > 0,

(5.10)

and analogously for the other chart Vp.

Proof. The function η1 can be chosen continuous and such that its restriction to Ep is
η1 |Ep

≡ 1 in |yp| ≤ R and 0 in |yp| > R. Because zpyp = 1 on the overlap of any two
charts of Ep, η2 |Ep

must be identically 1 in |zp| < 1/R, i.e. |yp| > R, and zero in
the complementary. The results follows now from the proof of the previous proposition.
Indeed, substitute such η1 and η2 in Equation (5.9) and use the fact that the integrand is
a global section on Ep. �

Remark 5.6. The value of the residue Ress=σp,ν
〈f s, ϕ〉must be understood as the analytic

continuation of the functions,

I1(α1, β3, . . . , βr) =

∫

C

|yp|
2α1

∂2νΦ1

∂xν
p∂x̄

ν
p

(0, yp; β3, . . . , βr) dypdȳp,

I2(α2, β3, . . . , βr) =

∫

C

|zp|
2α2

∂2νΦ2

∂wν
p∂w̄

ν
p

(zp, 0; β3, . . . , βr) dzpdz̄p,

at the rational points (ǫ1,ν , ǫ3,ν , . . . , ǫr,ν) and (ǫ2,ν , ǫ3,ν , . . . , ǫr,ν), respectively, as these
points will usually be outside the region of convergence of the integrals defining I1, I2.
For simplicity of the notation, we always present Φ1,Φ2 depending only on a single vari-
able σp,ν , as ǫ3,r, . . . , ǫr,ν are in fact N3σp,ν + k3 = ǫ3,ν , . . . , Nrσp,ν + kr = ǫr,ν .

Finally, we end this section with the following important observation. As in the mono-
mial case 〈zs, ϕ〉 considered in Proposition 2.1, where the residue is interpreted in terms
of the derivatives of the test function ϕ, and consequently, in terms of the Dirac’s delta
function, the same holds true for any f s. The derivatives of Φ1,Φ2 involve deriving π∗ϕ
which, by the product rule of differentiation and the fact that (π∗ϕ)|Ep

= ϕ(0), imply that

(5.11) Res
s=σp,ν

f s ∈
〈
δ
(0,0,0,0)
0

, δ
(1,0,0,0)
0

, δ
(0,1,0,0)
0

, . . . , δ
(ν,ν,ν,ν)
0

〉
C
.

Therefore, the residue of f s at any candidate pole must be also understood as a distribu-
tion in this precise sense. As a consequence, the residue of f s at a candidate pole will be
zero when all the coefficients of the linear combination in Equation (5.11) are zero. In a
similar way, the residue will be non-zero when just one of the coefficients is non-zero.
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5.3. Residues at non-rupture divisors. The exact expression of the residue is quite
involved due to the presence of the ν–th derivative of Φ1 or Φ2. However, from the study
of the derivatives of the factors of Φ1 or Φ2 we will show when the residues at a candidate
σp,ν is zero for a non-rupture exceptional divisor Ep. The proof uses the following technical
results.

Lemma 5.7 (Faà di Bruno’s formula, [26, III.3.4]). Let g, h be infinitely many times
differentiable functions. Then,

(5.12)
dν

dxν
g(h(x)) =

ν∑

k=1

dkg

dxk
(h(x))Bν,k

(
dh

dx
(x),

d2h

dx2
(x), . . . ,

dν−k+1h

dxν−k+1
(x)

)
,

where Bν,k are the partial exponential Bell polynomials

Bν,k(x1, x2, . . . , xν−k+1) :=
∑ ν!

j1!j2! · · · jν−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·

(
xν−k+1

(ν − k + 1)!

)jν−k+1

,

and where the summation takes places over all integers j1, j2, j3, . . . , jν−k+1, such that

j1 + j2 + j3 + · · ·+ jν−k+1 = k,

j1 + 2j2 + 3j3 + · · ·+ (ν − k + 1)jν−k+1 = ν.
(5.13)

For instance, in the chart Up around Ep, we are interested in the situation where
g(x) = xs and h(xp) is equal to u1(xp, yp) from Proposition 5.1, and we set xp = 0 after
deriving. In this case, Equation (5.12) reads as
(5.14)

∂νus
1

∂xν
p

(0, yp) =

ν∑

k=1

(s)k
(
u1(0, yp)

)s−k
Bν,k

(
du1

dxp
(0, yp),

d2u1

dx2
p

(0, yp), . . . ,
dν−k+1u1

dxν−k+1
p

(0, yp)

)
,

where (s)k := s(s− 1) · · · (s− k + 1). And similarly in the other chart Vp.

Proposition 5.8 ([32, I.3.8]). For any α, α′ ∈ C such that α′ − α = n ∈ Z, the analytic
continuation of the sum

In(α) :=

∫

|z|≤R

zα
′

z̄αdzdz̄ +

∫

|z|>R

zα
′

z̄αdzdz̄ for any R > 0.

is zero everywhere, i.e. In(α) ≡ 0.

Proof. Using polar coordinates1

−2i

∫ R

0

∫ 2π

0

r2α+n+1e2πinθdθdr − 2i

∫ ∞

R

∫ 2π

0

r2α+n+1e2πinθdθdr.

However, ∫ 2π

0

e2πinθdθ =

{
0, n 6= 0,

2π, n = 0.

Hence, the result follows if n 6= 0. In the case that n = 0, the first integral defines an
holomorphic function in Re(α) > −1. It can be analytically continued by means of

−4πi

∫ R

0

r2α+1dr = −2πi
R2(α+1)

α + 1
for α 6= −1.

1By definition, zα
′

z̄α := |z|α
′+αei(α

′
−α) arg z, which, for integral α′ −α, is a single valued function of z.
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Similarly, the other integral defines an holomorphic functions in Re(α) < −1, and the
analytic continuation to the whole complex plane is

−4πi

∫ ∞

R

r2α+1dr = 2πi
R2(α+1)

α + 1
for α 6= −1.

Finally, the sum of the analytic continuation of both integrals is identically zero. �

In the following proposition, we generalize a calculation attributed to Cohen appearing
in an article of Barlet [5] and used by Lichtin in [48]. The original result gives a closed
form for the integral in Equation (5.15) in the case R0,0(α, β). We provide a formula for
the general case Rn,m(α, β).

Proposition 5.9. For α, α′, β, β ′ ∈ C, such that α′ − α = n ∈ Z and β ′ − β = m ∈ Z,
the integral

(5.15) Rn,m(α, β) :=

∫

C

zα
′

z̄α(1− λz)β
′

(1− λ̄z̄)βdzdz̄ = R−n,−m(α
′, β ′), λ ∈ C∗,

is absolutely convergent for Re(α′+α) > −2, Re(β ′+β) > −2 and Re(α′+α+β ′+β) < −2.
It defines a meromorphic function on C2 equal to

(5.16) Rn,m(α, β) = −2πiλ−α′−1λ̄−α−1 Γ(α + 1)Γ(β + 1)Γ(γ + 1)

Γ(−α− n)Γ(−β −m)Γ(−γ − n−m)
,

where γ := −α− β − n−m− 2.

Proof. Let us prove first the case m = 0. Since Rn,0(α, β) = R−n,0(α
′, β ′), we can assume

n ∈ Z≥0. Using polar coordinates λz = reiθ, we have that (1−λz)β
′

(1−λ̄z̄)β = |1−λz|2β =
(1− 2r cos θ + r2)β and

Rn,0(α, β) = −2iλ−α′−1λ̄−α−1

∫ 2π

0

∫ ∞

0

r2α+n+1einθ(1− 2r cos θ + r2)βdrdθ.

For simplicity, we can set λ = 1. We have, (1−2r cos θ+ r2)β = (1+ r2)β
(
1−

2r cos θ

1 + r2

)β

and since |2r/(1 + r2)| ≤ 1, we may expand the binomial,
(
1−

2r cos θ

1 + r2

)β

=

∞∑

k=0

(
β

k

)
(−2)krk

(1 + r2)k
cosk θ.

The angular part of the integral is just

∫ 2π

0

einθ cosk θ dθ =





2π

4l

(
2l

l − s

)
, if k = 2l ≥ n = 2s, l ∈ Z≥0, s ∈ Z≥0,

π

4l

(
2l + 1

l − s

)
, if k = 2l + 1 ≥ n = 2s+ 1, l ∈ Z≥0, s ∈ Z≥0,

0, otherwise.

The integral then reads as

R2s,0(α, β) = −4πi

∫ ∞

0

r2α+2s+1(1 + r2)β
∞∑

l=0

(
2l

l − s

)(
β

2l

)
r2l

(1 + r2)2l
dr,
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for n even, and

R2s+1,0(α, β) = 4πi

∫ ∞

0

r2α+2s+2(1 + r2)β
∞∑

l=0

(
2l + 1

l − s

)(
β

2l + 1

)
r2l+1

(1 + r2)2l+1
dr,

for n odd. Using that

(
β

k

)
= (−1)k

Γ(k − β)

Γ(−β)k!
and interchanging the summation and

integral signs,

R2s,0(α, β) =
−4πi

Γ(−β)

∞∑

l=0

Γ(2l − β)

(l − s)!(l + s)!

∫ ∞

0

r2α+2s+2l+1(1 + r2)β−2ldr,

R2s+1,0(α, β) =
−4πi

Γ(−β)

∞∑

l=0

Γ(2l + 1− β)

(l − s)!(l + s + 1)!

∫ ∞

0

r2α+2s+2l+3(1 + r2)β−2l−1dr.

Now, for Re(µ) > 0 and Re(2ν + µ) < 0,
∫ ∞

0

xµ−1(1 + x2)νdx =
1

2
B
(µ
2
,−ν −

µ

2

)
=

1

2
Γ
(µ
2

)
Γ
(
−ν −

µ

2

)
Γ(−ν)−1.

See, for instance, [33, 3.251–2]. For µl = 2(α+ s+ l + 1) and νl = β − 2l,

R2s(α, β) =
−2πi

Γ(−β)

∞∑

l=0

Γ(α + s+ l + 1)Γ(l − α− s− β − 1)

(l − s)!(l + s)!
,

since Re(µl) > 0 and Re(2νl + µl) < 0 for all l ∈ Z≥0. Analogously, for n ≥ 0 odd,
µl = 2(α+ s + l + 2) and νl = β − 2l − 1,

R2s+1,0(α, β) =
−2πi

Γ(−β)

∞∑

l=0

Γ(α + s+ l + 2)Γ(l − α− s− β − 1)

(l − s)!(l + s+ 1)!
.

Since Γ(−k)−1 = 0 for k ∈ Z≥0, we can write

R2s,0(α, β) =
−2πi

Γ(−β)

∞∑

l=0

Γ(α + l + 1)Γ(l − α− 2s− β − 1)

Γ(l − 2s+ 1) l!
,

R2s+1,0(α, β) =
−2πi

Γ(−β)

∞∑

l=0

Γ(α + l + 1)Γ(l − α− 2s− β − 2)

Γ(l − 2s) l!
.

Finally, for Re(c) > Re(a + b),

(5.17)
∞∑

k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
=

Γ(a)Γ(b)

Γ(c)
2F1(a, b; c; 1) =

Γ(a)Γ(b)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

where 2F1(a, b; c; z) is the hypergeometric function. For the last equality see, for instance,
[33, 9.122–1]. For n = 2s, set a = α+ 1, b = −α− β − 2s− 1 and c = −2s+ 1. Similarly,
for n = 2s+ 1, a = α + 1, b = −α− β − 2s− 2 and c = −2s. Then,

R2s,0(α, β) = R2s+1,0(α, β) =−2πi
Γ(α + 1)Γ(−α− β − n− 1)Γ(β + 1)

Γ(−β)Γ(−n− α)Γ(α + β + 2)
.
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For the case where m 6= 0, having proved the result for n ∈ Z, m = 0, we can assume
without loss of generality that m ∈ Z≥0. Keeping λ = 1, notice that

Rn,m(α, β) =

∫

C

zα
′

zα|1− z|2β(1− z)mdzdz =

m∑

j=0

(
m

j

)
(−1)jRn+j,0(α, β).

Hence,

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)

Γ(−β)Γ(α + β + 2)

m∑

j=0

(
m

j

)
(−1)j

Γ(−α− β − n− j − 1)

Γ(−n− j − α)
.

Since the binomial coefficient is zero if j > m, we can consider the infinite sum. Expanding
the binomial coefficient in terms of the Gamma function

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)

Γ(−β)Γ(α + β + 2)Γ(−m)

∞∑

j=0

Γ(j −m)Γ(−α − β − n− j − 1)

Γ(−n− j − α) j!
.

Using the functional equation Γ(z + 1) = zΓ(z) at each term

Rn,m(α, β) =− 2πi
Γ(α + 1)Γ(β + 1)Γ(−α− β − n− 1)Γ(α+ β + n+ 2)

Γ(−β)Γ(α + β + 2)Γ(−m)Γ(−α− n)Γ(α + n+ 1)

·

∞∑

j=0

Γ(j −m)Γ(α + n + j + 1)

Γ(α + β + n+ j + 2) j!
.

Applying Equation (5.17) once again, since Re(β ′ + β) > −2 implies Re(β +m) > −1,

Rn,m(α, β) = −2πi
Γ(α + 1)Γ(β + 1)Γ(−α− β − n− 1)Γ(α+ β + n + 2)Γ(β +m+ 1)

Γ(−β)Γ(α+ β + 2)Γ(−α− n)Γ(α + β + n +m+ 2)Γ(β + 1)
.

And we get the desired result using the functional equation Γ(z + 1) = zΓ(z) once again.
�

It is now possible to prove the following result regarding non-rupture divisors. Recall
that with the notation above, the divisors crossing a non-rupture exceptional divisor Ep

can only be D1, D2, D3, with at least one being non-zero and one being zero.

Theorem 5.10. Let f : (C2, 0) −→ (C, 0) be any plane branch. Let Ep, p ∈ K be a
non-rupture exceptional divisor with sequence of candidate poles σp,ν , ν ∈ Z≥0. Then,

• If D3 = 0,
Res
s=σp,ν

f s = 0, for all ν ∈ Z≥0.

• If D3 6= 0,
Res
s=σp,ν

f s = 0, if ǫ3,ν 6∈ Z.

Proof. Let us first begin with D3 non-zero. In this case, we must also have D1 or D2

non-zero. We can assume, for instance, D1 non-zero.

By the definition of D1, D2, . . . , Dr, if D1 and D3 are non-zero, D3 is the only divisor
crossing Ep in the Vp chart. In the (zp, wp) coordinates this means that us

2(zp, 0)v2(zp, 0)
has the form (1−λyp)

N3s+k3 for some λ ∈ C∗. By Faà di Bruno’s formula in Lemma 5.7 and
Equation (5.14), the ν–th holomorphic and antiholomorphic derivatives of Φ2 at zp, z̄p =
0, s = σp,ν is an algebraic function involving the terms zk

′

p z̄
k
p (1 − λzp)

ǫ3,ν−l′(1 − λ̄ȳp)
ǫ3,ν−l
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with k, k′, l, l′ ∈ Z≥0. Hence, the residue reduces to a finite sum involving the integrals
Rn,m(α, β) from Equation (5.15) which, by Proposition 5.9, are proportional to

Γ(α+ 1)Γ(β + 1)Γ(γ + 1)

Γ(−α− n)Γ(−β −m)Γ(−γ − n−m)
, n,m ∈ Z.

Applying Lemma 5.3 to this situation implies that, ǫ1,ν + ǫ3,ν + κpν + 2 = 0. Notice that
ǫ3,ν 6∈ Z implies ǫ1,ν 6∈ Z. Since the poles of Γ(z) are located at the negative integers,
and Γ(z) has no zeros, Γ(β + 1),Γ(γ + 1),Γ(−β −m)−1,Γ(−γ − n−m)−1 ∈ C∗. Finally,
consider the non-negative integers k, k′ in zk

′

p z̄
k
p above. The quotient Γ(α+1)/Γ(−α− n)

is zero since ǫ2,ν = 0, and α + 1 = k + 1 > 0,−α− n = −α′ = −k′ ≤ 0.

If D3 is zero and Ep is a non-rupture divisor, it may happen that D2 is zero or not. If
D2 is not zero, it must cross Ep in the only point of Vp not in Up. In both cases, in the
chart Up, none of the components us

1, v1 of Φ1 will cross Ep. In the (xp, yp) coordinates this
means that, us

1(0, yp)v1(0, yp) ∈ C∗ for all yp ∈ C. Applying Faà di Bruno’s formula again,
the holomorphic and antiholomorphic derivatives of Φ1 restricted to xp, x̄p = 0 are just
polynomials in yp and ȳp. By Corollary 5.5 and Proposition 5.8, the residue is zero. �

Example 1. There are example where D3 6= 0 and ǫ3,ν ∈ Z and the corresponding σp,ν

has non-zero residue. For instance, f = (y2 − x3)(y − x2)3. Its resolution is given by

Fπ = 5Ep0 + 9Ep1 + 15Ep2 + C1 + 3C2, Kπ = Ep0 + 2Ep1 + 4Ep2.

In this case, Ep1 is a non-rupture exceptional divisor with Ep2 and C2 crossing Ep1 . It
can be checked that σp1,0 = −1/3 is a pole of order two of f s. Here, D1 = Ep2, D3 = C2

and ǫ1,0 = ǫ3,0 = −1.

6. The set of poles of the complex zeta function of a plane branch

In this section, we restrict our study of the poles of the complex zeta function to the
case of plane branch singularities. Through the rest of this work we will fix a plane branch
semigroup Γ = 〈β0, β1, . . . , βg〉 and we stick to the notations of Section 3.1. Instead of
taking any germ f : (C2, 0) −→ (C, 0) with semigroup Γ, we will work with the family
{ft,λ}λ∈Cg−1 presented in Section 3.2. Since this family contains at least one representative
for each analytic type in the equisingularity class of the semigroup Γ, we can give an
optimal set of candidates for the poles of the complex zeta function f s of all plane branches
with semigroup Γ. Furthermore, we will prove that if fgen is generic among all branches
with semigroup Γ (in the sense that the coefficients of a µ-constant deformation are
generic), all the candidates are indeed poles of f s

gen. As a corollary, we prove Yano’s
conjecture under the assumption that eigenvalues of the monodromy are pairwise different.

6.1. Residues at rupture divisors. After Theorem 5.10 in the preceding section, the
only divisors that will contribute to poles of the complex zeta function of a plane branch
will be rupture divisors and the divisor of the strict transform. Following the discussion
in Section 4.2, a singular plane branch will have exactly g ≥ 1 rupture divisors, denoted
Ep1, . . . , Epg , where g is the number of characteristic exponents of ft. This first observation
reduces the list of candidate poles to σi,ν , ν ∈ Z for i = 1, . . . , g contributed by Epi, in

addition to the negative integers corresponding to the strict transform C̃. With the
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notations from Equation (4.3),

σi,ν = −
mi + n1 · · ·ni + ν

niβi

, ν ∈ Z≥0.

We will basically use the same results about the residue presented in Section 5.2. How-
ever, in this case, a better understanding of the total transform around the rupture divisors
is needed. To that end, we will make use of Proposition 4.1. The only thing that will
differ from Section 5.2 is that, instead of computing the residue on the minimal resolution
surface X ′, we proceed inductively and resolve up to the i–th rupture divisor, compute the
residue on X(i) and blow-up up to the (i+ 1)–th rupture divisor. This process simplifies
the notation and fits more naturally with the toric resolutions from Section 4.2.

First of all, we have to analyze the residue numbers from Equation (5.6) in the case of a
rupture divisor of a plane branch. In this case, Equation (5.7) is ǫ1,ν+ǫ2,ν+ǫ3+κpiν+2 = 0,
since rupture divisors of plane branches only have three divisor, D1, D2, D3, crossing
them. Since we will be working on X(i), the divisor previously written as D3 is the strict

transform C̃ of f on X(i) and thus, ǫ3 = eiσi,ν , because Epi · C̃ = ei. Similarly, on the
surface X(i), κpi = −Epi · Epi = 1. Hence,

(6.1) ǫ1,ν + ǫ2,ν + eiσi,ν + ν + 2 = 0.

It is then enough to study the relation of ǫ1,ν , ǫ2,ν , ν ∈ Z≥0 with the semigroup Γ. We
point out that Lichtin [47] studied the residue numbers ǫ1,ν , ǫ2,ν for the case ν = 0. Using
the notations and definitions from Section 3.1,

Proposition 6.1 ([47, Prop. 2.12]). The residue numbers ǫ1,0, ǫ2,0 associated to a rupture
divisor Epi of plane branch are given by

ǫ1,0 + 1 =
1

ni

, ǫ2,0 + 1 =
mi−1 − ni−1mi−1 + n1 · · ·ni−1

mi

.

Corollary 6.2. For any ν ∈ Z≥0, the residue numbers are

ǫ1,ν + 1 = −
ai
ni
ν +

1

ni
, ǫ2,ν + 1 = −

cini−1mi−1 + di
mi

ν +
mi−1 − ni−1mi−1 + n1 · · ·ni−1

mi
.

Proof. The result follows from the definition of ǫ1,ν , ǫ2,ν in Equation (5.6) and using Propo-
sition 6.1 together with the expression of N1 and N2 given in Proposition 4.1. �

Secondly, we focus our attention on the functions Φ1,Φ2 from Proposition 5.1 but
now in the case of the family ft. Around the rupture divisor Epi on X(i), we have that

Φ1,t = |u1|
2s|v1|

2|f̃t|
2s(π(i))∗ϕ |Ui

and Φ2,t = |u2|
2s|v2|

s|f̃t|
2s(π(i))∗ϕ |Vi

. Since the only

factor of Φ1,t,Φ2,t crossing Epi is the strict transform f̃t, by Faà di Bruno’s formula in
Lemma 5.7 applied to the equations in Proposition 4.1, the ν–th derivatives of Φ1,t,Φ2,t

at xp, x̄p = 0, wp, w̄p = 0 with s = σi,ν are a finite sum with summands that look like

yk
′

p ȳ
k
p(yi − λi)

ei(σi,ν−l′)(ȳi − λ̄i)
ei(σi,ν−l), zk

′

p z̄
k
p (1− λizp)

ei(σi,ν−l′)(1− λ̄iz̄p)
ei(σi,ν−l),

with k′, k, l′, l ∈ Z≥0. Therefore, it make sense to consider the order and the degree of
yi, zi in Φ1,t,Φ2,t. On the Ui chart, they will be denoted by

0 ≤ ordyi

∂νΦ1,t

∂xν∂x̄ν
(0, yi; σi,ν) ≤ degyi

∂νΦ1,t

∂xν∂x̄ν
(0, yi; σi,ν),
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and respectively on the Vi chart. By the symmetry of the holomorphic and antiholomor-
phic parts, the orders and degrees are exactly the same if considered with respect to the
conjugated variables ȳi, z̄i. By convention the order and degree of zero are +∞ and 0,
respectively. Let us first present some technical lemmas.

Lemma 6.3. Let f1, . . . , fn ∈ C∞(C2) be functions such that

αν ≤ ordy
∂νfi
∂xν

(0, y), degy
∂νfi
∂xν

(0, y) ≤ βν, for i = 1, . . . , n,

and α, β ∈ Q>0. Then,

αν ≤ ordy
∂ν(f1 · · · fn)

∂xν
(0, y), degy

∂ν(f1 · · · fn)

∂xν
(0, y) ≤ βν,

and,

αν ≤ ordy
∂νf s

1

∂xν
(0, y), degy

∂νf s
1

∂xν
(0, y) ≤ βν for all s ∈ C.

Proof. The first inequalities follow from the general Leibniz rule,

∂ν(f1 · · · fn)

∂xν
(0, y) =

∑

k1+···+kn=ν

(
n

k1, . . . , kn

)
∂k1f1
∂xk1

(0, y) · · ·
∂knfn
∂xkn

(0, y).

Similarly, the second follow from Faà di Bruno’s formula and the definition of the partial
exponential Bell polynomials, see Lemma 5.7 and Equation (5.14). Specifically, they
follow from the second part of Equation (5.13). �

Lemma 6.4. Let f(x, y) ∈ C∞(C2) and let π(x, y) = (xnya, xmyb) with n,m, a, b ∈ Z≥0.
Furthermore, assume that nb−ma ≥ 0. Then,

a

n
ν ≤ ordy

∂ν(f ◦ π)

∂xν
(0, y), degy

∂ν(f ◦ π)

∂xν
(0, y) ≤

b

m
ν for all ν ∈ Z≥0.

Proof. Consider the Taylor expansion of f at the origin of order τ > ν,

f(x, y) =
τ−1∑

i,j=0

∂i+jf

∂xi∂yi
(0, 0)

xi

i!

yj

j!
+Rτ (x, y)x

τyτ ,

where Rτ is the residual. Composing with π, we get

f(π(x, y)) =
τ−1∑

i,j=0

∂i+jf

∂xi∂yi
(0, 0)

xni+mj

i!

yai+bj

j!
+Rτ (x

nya, xmyb)x(n+m)τy(a+b)τ .

At the ν–th derivative of this Taylor polynomial with respect to x and restricted to x = 0,
we must have that ni+mj = ν for some integers i, j ≥ 0. Notice that if there are no such
i, j ≥ 0 the derivative is zero, and the bounds are trivially fulfilled. Finally,

ordy
∂ν(f ◦ π)

∂xν
(0, y) = min

ni+mj=ν
{ai+ bj} ≥ min

j≥0

{
a

n
ν +

(nb−ma)j

n

}
≥

a

n
ν,

degy
∂ν(f ◦ π)

∂xν
(0, y) = max

ni+mj=ν
{ai+ bj} ≤ max

i≥0

{
b

m
ν −

(nb−ma)i

m

}
≤

b

m
ν,

where in the first inequality of each equation used that i = (ν−mj)/n and j = (ν−ni)/m,
respectively. �

Recall the linear forms ρ
(i)
j+1(k), A

(i)
j+1(k), C

(i)
j+1(k) from Proposition 4.1.
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Lemma 6.5. For any ν ∈ Z≥0, we have

ai
ni
ν ≤ min

ρ
(i)
j+1(k)=ν

A
(i)
j+1(k),

cini−1mi−1 + di
mi

ν ≤ min
ρ
(i)
j+1(k)=ν

C
(i)
j+1(k),

max
ρ
(i)
j+1(k)=ν

A
(i)
j+1(k) ≤

aini−1mi−1 + bi
mi

ν + ni+1 · · ·nj, max
ρ
(i)
j+1(k)=ν

C
(i)
j+1(k) ≤

ci
ni
ν + ni+1 · · ·nj .

Proof. For the first inequality, solve for k0 in the constrain ρ
(i)
j+1(k0, . . . , kj) = ν and

substitute in A
(i)
j+1(k). After some cancellations we get

(6.2)
ai
ni
ν + aini−1mi−1ki + biki −

ai
ni
miki =

ai
ni
ν +

ki
ni
,

where in the equality we applied mi = nini−1mi−1 + qi, from Equation (3.3), and that

nibi − aiqi = 1. Since ki ≥ 0, we obtain the lower bound for the minimum of A
(i)
j+1(k)

restricted to ρ
(i)
j+1(k) = ν. The argument for the lower bound for the minimum of C

(i)
j+1(k)

works similarly. Instead, solve for ki in the constrain ρ
(i)
j+1(k0, . . . , ki, . . . , kj) = ν and

substitute in C
(i)
j+1(k). Applying Equation (3.3) when necessary and that qici − nidi = 1,

we obtain

(6.3)
cini−1mi−1 + di

mi

ν +
1

mi

i−1∑

l=0

nl+1 · · ·nimlkl,

which gives again the lower bound since kl ≥ 0. Having obtained the lower bounds for

the minimums of A
(i)
j+1 and C

(i)
j+1 we can use Lemma 4.2 to obtain the upper bounds for

the maximums. Indeed,

A
(i)
j+1(k) + C

(i)
j+1(k) ≤ ρ

(i)
j+1(k) + ni+1 · · ·nj ,

since kl ≥ 0. Hence,

max
ρ
(i)
j+1(k)=ν

A
(i)
j+1(k) ≤ ν + ni+1 · · ·nj − min

ρ
(i)
j+1(k)=ν

C
(i)
j+1(k) =

aini−1mi−1 + bi
mi

ν + ni+1 · · ·nj,

since ai + ci = ni and bi + di = qi. We can argue similarly for the remaining bound. �

All these technical lemmas are used in the proof of the following proposition.

Proposition 6.6. With the notations above, we have that

ai
ni

ν ≤ ordyi
∂2νΦ1,t

∂xν
i ∂x̄

ν
i

(0, yi; σi,ν),
di
qi
ν ≤ ordzi

∂2νΦ2,t

∂wν
i ∂w̄

ν
i

(zi, 0; σi,ν),

degyi
∂2νΦ1,t

∂xν
i ∂x̄

ν
i

(0, yi; σi,ν) ≤
bi
qi
ν + ei, degzi

∂2νΦ2,t

∂wν
i ∂w̄

ν
i

(zi, 0; σi,ν) ≤
ci
ni
ν + ei,

for all ν ∈ Z≥0, and the same bounds hold for the conjugated variables ȳi, z̄i.

Proof. We will do the proof for Φ1,t since the proof for Φ2,t works similarly. Recall that

Φ1,t = |u1|
2s|v1|

2|f̃t|
2s(π(i))∗ϕ|Ui

. By Lemma 6.3, it is enough to prove the bounds for each
holomorphic or antiholomorphic factor. The factors u1, v1, (π

(i))∗ϕ |Ui
are the pull-back

by the toric morphism πi of some invertible elements in the unique point of the total
transform of ft that is not a simple normal crossing on X(i−1). Therefore, by Section 4.2
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and Lemma 6.4, their orders (resp. degrees) with respect to yi are bounded by aiν/ni

(resp. biν/qi). It remains to prove the bounds for the strict transform f̃t.

For the strict transform, consider Proposition 4.1 and proceed by induction from f̃i+1.
Analyzing Equation (4.5), the only part depending on xi is the summation. By Lemma 6.3,
it is enough to show that each factor of each summand fulfills the bounds. By the same

argument as before, the units u
(i)
k satisfy the bounds. On the other hand, Lemma 6.5

assures the bounds for the monomials in xi, yi. The lower-bound for the order is clear.
For the upper-bound on the degree just notice that

aini−1mi−1 + bi
mi

=
aini−1mi−1 + bi
nini−1mi−1 + qi

<
bi
qi
,

since mi = nini−1mi−1 + qi and nibi − qiai = 1. Therefore, we are done for f̃i+1. By
induction, if all f̃k+1, i ≤ k < j satisfy the bounds, so does f̃j+1. To see this, it is just a
matter of applying Lemma 6.3, Lemma 6.4, Lemma 6.5, and the induction hypothesis to
Equation (4.6). �

We are ready to present the main result of this section.

Theorem 6.7. For any plane branch singularity f : (C2, 0) −→ (C, 0) the poles of the
complex zeta function f s are simple and contained in the sets

(6.4)

{
σi,ν = −

mi + n1 · · ·ni + ν

niβi

∣∣∣∣ ν ∈ Z≥0, βiσi,ν , ei−1σi,ν 6∈ Z

}
, i = 1, . . . , g,

contributed by the rupture divisors Epi, together with the negative integers Z<0, contributed

by the strict transform C̃.

Proof. In order to prove this result for any plane branch, it is enough to restrict the
study to the family of ft from Proposition 3.6. By the previous discussion, we only have
to show that the candidates σi,ν such that βiσi,ν , ei−1σi,ν ∈ Z have always residue zero.

The first important observation is that βiσi,ν , ei−1σi,ν ∈ Z, if and only if, ǫ1,ν , ǫ2,ν ∈ Z,
respectively. To see this, consider the definitions ǫ1,ν = N1σ1,ν + k1, ǫ2,ν = N2σ2,ν + k2
from Equation (5.6). Hence, ǫ1,ν , ǫ2,ν ∈ Z, if and only if, N1σi,ν , N2σi,ν ∈ Z, respectively.

By Proposition 4.1, N1 = aiβi and N2 = (cini−1mi−1 + di)ei−1, and the remark follows
because

gcd(niβi, aiβi) = βi gcd(ni, ai) = βi,

since nibi − qiai = 1, and

gcd(niβi, (cini−1mi−1 + di)ei−1) = ei−1 gcd(mi, cini−1mi−1 + di) = ei−1,

since mi = nini−1mi−1 + qi and qici − nidi = 1. The argument to show that the residue
is zero if ǫ1,ν ∈ Z or ǫ2,ν ∈ Z is fundamentally different for each case. Let us begin by the

case where βiσi,ν ∈ Z and ei−1σi,ν 6∈ Z.

In order to study the residues of the candidates σi,ν of the i–th rupture divisor Epi

such that βiσi,ν ∈ Z, we place ourselves in the chart Ui of X
(i) with local coordinates

(xi, yi). The origin of this chart is the intersection point Ep1 ∩ D1. The only point of
the total transform on X(i) that is not a simple normal crossing is the intersection of the
strict transform of ft with Epi, with Epi being the only exceptional divisor at that point.
Therefore, we can apply the formula for the residue in Proposition 5.4 for the Ui chart.
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From the preceding discussion, the derivatives of Φ1,t appearing in the residue formula
are a finite sum of terms that look like yk

′

p ȳ
k
p(yi−λi)

ei(σi,ν−l′)(ȳi−λ̄i)
ei(σi,ν−l). Consequently,

we can reduce the residue to a finite sum of the integrals from Equation (5.15), which, by
Proposition 5.9, are equal to

(6.5) − 2πiλ−α−n−1λ̄−α−1 Γ(α+ 1)Γ(β + 1)Γ(γ + 1)

Γ(−α− n)Γ(−β −m)Γ(−γ − n−m)
, n,m ∈ Z.

As noted earlier, for Epi on X(i) we have that ǫ1,ν + ǫ2,ν + eiσi,ν + ν + 2 = 0. If we are
assuming that ǫ1,ν ∈ Z but ǫ2,ν 6∈ Z, i.e. ei−1σi,ν 6∈ Z, it must happen that eiσi,ν 6∈ Z. This
implies that Γ(β +1),Γ(−β− n),Γ(γ +1),Γ(−γ − n−m) ∈ C∗. However, the remaining
factor, Γ(α + 1)/Γ(−α− n), is always zero, since ǫ1,ν ∈ Z implies that α, α′ ∈ Z,

α + 1 = ǫ1,ν + 1 + k ≥ −
ai
ni
ν +

1

ni
+

ai
ni
ν =

1

ni
> 0,

and −α−n = −α′ < 1, by Corollary 6.2 and Proposition 6.6. This proves that the residue
at the candidate poles σi,ν such that βiσi,ν ∈ Z, ei−1σi,ν 6∈ Z is zero.

We move now to the case where ei−1σi,ν ∈ Z, βiσi,ν 6∈ Z, i.e. ǫ2,ν ∈ Z and eiσi,ν 6∈ Z. For
this case observe that the previous argument, applied to the residue in the Vi chart, only
works for the first rupture divisor. For i = 1, ǫ2,ν + 1 = −d1ν/q1 + 1/q1, since n0, m0 = 0
and m1 = q1. Otherwise, the formula for ǫ2,ν from Corollary 6.2 and the bound for the
order of Φ2,t in Proposition 6.6 do not match. Thus, from now on, we will assume i ≥ 2.

To study the residue at these poles, we consider Ress=σi,ν
f s
t
as a function of λi ∈ C

and we place ourselves in the Vi chart. Since λi is the intersection coordinate of the strict
transform with Epi, if we let λi → 0 or λi → ∞, we are in the situation of a non-rupture
divisor and the residue is zero. By Proposition 5.9 and since ǫ2 ∈ Z, the residue is a
Laurent series on λi, λ̄i 6= 0. Deriving under the integral sign in the formula for the residue
from Corollary 5.5 we increase the order in zi, z̄i of Φ2,t by one unit. Therefore, after
deriving enough times we can assume that in Equation (6.5), α+1 > 0,−α′ ≤ 0, α, α′ ∈ Z.
This implies that the principal part in λi, λ̄i of Ress=σi,ν

f s
t
(λi) must be zero. However,

the same argument is true if we consider the residue as a function of λ−1
i ,λ−1

i . Hence, the
residue is independent of λi, λ̄i. This implies that the residue is zero overall.

It remains to show that the residue is zero in the case that βiσi,ν ∈ Z and ei−1σi,ν ∈ Z.
Both conditions imply that, eiσi,ν ∈ Z. To see that the residue is zero in this situation,
it is just a matter of combining the previous arguments and recalling that the Gamma
function has only simple poles. After deriving with respect to λi in the Vi chart, we can get
Equation (6.5) with α+1 > 0 and −α−n = −α′ ≤ 0, i.e., the factor Γ(α+1)/Γ(−α−n)
is zero. Assume we have derived d′ times with respect to λi, then

α′ = ǫ2,ν + d′ + k′ β ′ = eiσi,ν − eil
′ − eid

′.

Consequently, since ei ≥ 1,

γ + 1 = −α′ − β ′ − 1 = −ǫ2,ν + 1− k′ − eiσi,ν + eil
′ − 2 ≥ ǫ1,ν + ν + 1− k′ + ei

≥ −
ai
ni
ν +

1

ni
+ ν −

ci
ni
ν − ei + ei =

1

ni
> 0,
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by Corollary 6.2 and Proposition 6.6. Similarly, −γ′ − n −m < 1. Therefore, the factor
Γ(γ + 1)/Γ(−γ − n−m) is also zero. Since ei−1σi,ν ∈ Z, the piece, Γ(β + 1)/Γ(−β −m),
has a pole. However, Equation (6.5) is zero because the poles of Γ(z) are simple.

Finally, we need to see that the negative integers, the candidates coming from the

strict transform C̃, are poles. We can argue directly from the definition of f s given in
Equation (5.1). Take 0 6= p ∈ f−1

t
(0)∩U at which the equation ft can be taken as one of

the holomorphic coordinates. Thus, we reduce the problem to the monomial case and, by
Proposition 2.1, the negative integers are simple poles. The poles contributed by rupture
divisors are also simple because they must have ǫ1,ν , ǫ2,ν , eiσi,ν 6∈ Z for all ν ∈ Z≥0. These
conditions imply that Equation (6.5) cannot have a pole and hence, the residue does not
have a pole. By Section 5.1, all the poles of f s are simple. �

We point out that the candidate poles σ1,0 > σ2,0 > · · · > σg,0 are always poles of f s

for any plane branch f as shown by Lichtin in [47, 48].

Example 2. There are examples where the candidate poles of f s that are in the sets
from Equation (6.4) vary in a µ–constant deformations of f . For instance, consider
f = y4−x9 and the µ–constant deformation ft = y4−x9 + tx5y2. For the unique rupture
divisor, the sequence of candidate poles is σ1,ν = −(13 + ν)/36, ν ∈ Z≥0. Taking ν = 2,
σ1,2 = −5/12, ǫ1,2 = −9/4, ǫ2,2 = −4/3, and

Res
s=σ1,2

ft = −16π2σ2
1,2

Γ(ǫ1,2 + 3)Γ(σ1,2)Γ(ǫ2,2 + 2)

Γ(−ǫ1,2 − 2)Γ(−σ1,2 + 1)Γ(−ǫ2,2 − 1)
|t|2δ

(0,0,0,0)
0

.

Therefore, σ1,2 = −5/12 is a pole, if and only if, t 6= 0.

6.2. Generic poles. Studying the residue in terms of the deformation parameters of ft,
we can get open conditions in which a certain candidate pole is indeed a pole, as seen in
Example 2. Recalling Equation (5.11), the first observation is that, in terms of t,

(6.6) Res
s=σi,ν

f s
t
=

ν∑

k′,l′,k,l=0

pk′,l′(t)pk,l(t̄) δ
(k′,l′,k,l)
0

,

with pk′,l′(t) = pk,l(t̄) if k′ = k and l′ = l. The following theorem shows that, actually,
any candidate is a pole in a certain Zariski open set in the deformation space of ft.

Theorem 6.8. For any M1, . . . ,Mg ∈ Z≥0, generic plane branches fgen in the equisingu-

larity class corresponding to the semigroup Γ = 〈β0, β1, . . . , βg〉 satisfy that

(6.7)

{
σi,ν = −

mi + n1 · · ·ni + ν

niβi

∣∣∣∣ 0 ≤ ν < Mi, βiσi,ν , ei−1σi,ν 6∈ Z

}
, i = 1, . . . , g,

are simple poles of the complex zeta function f s
gen.

Proof. By Theorem 6.7, we only have to check the candidates in the sets given in Equa-
tion (6.4). In the case that ν = 0, the residue for the candidates σ1,0 > σ2,0 > · · · > σg,0

does not depend on t and consists only of one of the integrals from Proposition 5.9 which
is non-zero by Proposition 6.1.

Therefore, fix a candidate pole σi,ν with 0 < ν < Mi. It is enough to show that one of
the polynomials pk′,l′(t) on the parameters t in the expression from Equation (6.6) is not
identically zero. Consider the residue formula from Proposition 5.4 in, for instance, the Ui
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chart and recall that Φ1,t = |u1|
2s|v1|

2|f̃t|
2s(π(i))∗ϕ|Ui

. Now, considering Equation (4.5),
we claim that the strict transform has a deformation term

t
(i)
k x

ρ
(i)
i+1(k)

i y
A

(i)
i+1(k)

i u
(i)
k (xi, yi)

for a certain k such that ρ
(i)
i+1(k) = ν. Indeed, this happens since ρ

(i)
i+1(k) = ν is equivalent,

by Equation (4.7), to

n1 · · ·nik0 + n2 · · ·nim1k1 + · · ·+miki = nimi + ν.

But this is an identity in the semigroup Γi+1 of the maximal contact element fi+1, see
Equation (4.2), and such a k always exist because nimi + ν is bigger than the conductor

of Γi+1. The deformation parameter t
(i)
k for such a k can only appear when ft is derived

ν times. By Faà di Bruno’s formula, this implies that the polynomial p0,0(t) in Equa-

tion (6.6) is equal to ζt
(i)
k + · · · , where the dots represents other terms on t not containing

t
(i)
k . The coefficient ζ ∈ C is different from zero since it has the form of Equation (5.16)

and we are assuming that βiσi,ν , ei−1σi,ν 6∈ Z. Hence, the condition p0,0(t) 6= 0 gives a
non-empty Zariski open subset on the deformation space of ft in which σi,ν is a pole.

In the case that there is a resonance between two poles, i.e. σi,ν = σi′,ν′, i 6= i′, we can
always add, if necessary, an extra condition, giving a Zariski open set, which ensures that
the residues do not cancel out. The intersection of all the open sets defines generic plane
branches fgen. �

Consider the sets from Equation (6.7) with Mi = niβi, namely

Πi :=

{
σi,ν = −

mi + n1 · · ·ni + ν

niβi

∣∣∣∣ 0 ≤ ν < niβi, βiσi,ν , ei−1σi,ν 6∈ Z

}
,

for i = 1, . . . , g and define Π :=
⋃g

i=1Πi. An easy computation shows that there are
exactly µ elements in Π, counted with possible multiplicities,

|Π| =

g∑

i=1

niβi − βi−niei + ei =

g∑

i=1

(ni − 1)βi +

g∑

i=1

ei − ei−1 =

g∑

i=1

(ni − 1)βi−n+1 = µ,

using Equation (3.4) in the last equality. The sets Πi are precisely the b-exponents in
Yano’s conjecture from Section 2.3. Indeed, the relation between the notations in Equa-
tion (2.7) and the resolution data in Section 4.2 is clear. Namely, Ri = Npi = niβi, R

′
i =

Nqi = βi, ri = kpi + 1 = mi + n1 · · ·ni and r′i = kqi + 1 = ⌈(mi + n1 · · ·ni)/ni⌉. To see the
equality between the exponents in Equation (2.8) and the set Π is enough to notice that
Ri = Npi = niNqi = niR

′
i and ri = kpi + 1 = ni(kqi + 1) = nir

′
i.

The results of Malgrange [52] and Barlet [4] imply that the elements of Π generate all
the eigenvalues of the monodromy. The characteristic polynomial of the monodromy is a
topological invariant of the singularity, see A’Campo’s formula [1]. Consequently, it can
be computed from the semigroup Γ of f , see [56]. The hypothesis that the eigenvalues of
the monodromy are pairwise different is a condition on the equisingularity class, i.e. on
the semigroup Γ, implying that there are exactly µ different elements in Π.

As a corollary of Theorem 6.8, we can deduce Yano’s conjecture for any number of char-
acteristic exponents if we assume that the eigenvalues of the monodromy are different.
Yano’s conjecture is proved by Cassou-Noguès for plane branches with one characteristic
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exponent in [25]. For two characteristic exponents with different monodromy eigenval-
ues, Yano’s conjecture is proved by Artal Bartolo, Cassou-Noguès, Luengo and Melle
Hernández in [8].

Corollary 6.9. Let Γ = 〈β0, β1, . . . , βg〉 be a semigroup defining an equisingularity class of
plane branches. If the eigenvalues of the monodromy in the equisingularity class associated
to the semigroup Γ are pairwise different, then Yano’s conjecture holds.

Proof. We must check that all the µ different elements of Π are roots of the Bernstein-Sato
polynomial bgen,0(s) of fgen. If σi,ν ∈ Πi is in between −lct(f)−1 and −lct(f), then σi,ν is
automatically a roots of bgen,0(s) by Corollary 2.6. Otherwise, by Corollary 2.6, we must
check that σi,ν + 1 is not a root of bgen,0(s). By contradiction, assume σi,ν + 1 is a root
of bgen,0(s). By [49, Th. 1.9], the roots of the Bernstein-Sato polynomial of a reduced
plane curve can only be of the form σ − k, with k ∈ Z≥0 and σ a pole of f s. Hence, by
Theorem 6.7, σi,ν + 1 = σi′,ν′ ∈ Πi′, i 6= i′. But this is impossible since, as eigenvalues
of the monodromy, they are both equal, contradicting the hypothesis. Finally, by the
definitions in Section 2.3, if the Bernstein-Sato polynomial has exactly µ different roots
they must coincide with the opposites in sign to the b-exponents. �
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