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RECONSTRUCTION OF GENERAL ELLIPTIC K3 SURFACES FROM

THEIR GROMOV–HAUSDORFF LIMITS

KENJI HASHIMOTO AND KAZUSHI UEDA

Abstract. We show that a general elliptic K3 surface with a section is determined
uniquely by its discriminant, which is a configuration of 24 points on the projective line.
It follows that a general elliptic K3 surface with a section can be reconstructed from its
Gromov–Hausdorff limit as the volume of the fiber goes to zero.

1. Introduction

Let f, g ∈ C[z, w] be homogeneous polynomials of degree 8 and 12 respectively, and
define a polynomial h of degree 24 by

h = f 3 + g2.(1.1)

We show the following in this paper:

Theorem 1.1. If f and g are general, then the decomposition of h into the sum of a

cube and a square is unique, up to the obvious ambiguity of multiplication by a cubic and

a square root of unity.

Note that the corresponding problem in number theory has non-unique solutions in
general. There are three solutions

13 + 42 = 23 + 32, 13 + 82 = 43 + 12, 23 + 92 = 43 + 52(1.2)

for positive integers less than 100, and

13 + 322 = 43 + 312 = 53 + 302 = 103 + 52(1.3)

is the smallest integer which can be written as the sum of a cube and a square in more
than two ways. An elliptic curve of the form

y2 = x3 + n(1.4)

for a non-zero integer n is known as a Mordell curve, and has been studied for many
years.

The decomposition over the function field is not unique if f and g are not general. For
example, for homogeneous polynomials u and v of degree 4, one has

4(uv)3 + (uv(u− v))2 = 03 + (uv(u+ v))2.(1.5)

An elliptic K3 surface with a section has a Weierstrass model

y2 = 4x3 − g8(z, w)x− g12(z, w)(1.6)

in P(4, 6, 1, 1), where g8(z, w) and g12(z, w) are homogeneous polynomials in z and w of
degree 8 and 12 respectively. The discriminant is given by

∆ = g38 − 27g212,(1.7)

which is a homogeneous polynomial of degree 24. The decomposition problem asks if g8
and g12 can be reconstructed from ∆. Our interest in this problem comes from mirror
symmetry. It is shown in [GW00, GTZ16] that a sequence of Kähler–Einstein metrics on
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an elliptic K3 surface with a fixed diameter converges in the Gromov–Hausdorff topology
to a sphere with a Monge–Ampère structure with singularities, if the volume of the fiber
goes to zero. Since the complement of the discriminant of the elliptic K3 surface as a
punctured Riemann sphere can be reconstructed as the conformal class of the smooth
part of the limit metric, Theorem 1.1 allows the reconstruction of (the Jacobian of) a
general elliptic K3 surface from the Gromov–Hausdorff limit.

This paper is organized as follows: In Section 2, we associate an auxiliary elliptic
surface X of general type with a polynomial h = f 3 + g2 ∈ C[z, w] of degree 24. In
Section 3, we show that the Picard number of X is 4 if f and g are very general. In
Section 4, we give a proof of Theorem 1.1. In Section 5, we discuss the relationship with
mirror symmetry for K3 surfaces.
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2. An elliptic surface

Let h ∈ C[x, y] be the homogeneous polynomial of degree 24 defined by homogeneous
polynomials f, g ∈ C[z, w] of degree 8 and 12 respectively as in (1.1). Let further X be
the hypersurface of degree 24 defined by

(2.1) y2 = −x3 + h

in the weighted projective space P(8, 12, 1, 1) = ProjC[x, y, z, w], where the variables x,
y, z, and w are of degree 8, 12, 1, and 1 respectively. The variety X has a quotient
singularity of type C2

/〈

1
4
(1, 1)

〉

at [x : y : z : w] = [−1 : 1 : 0 : 0] coming from the

ambient space. The exceptional divisor σ0 of the minimal resolution X → X is a (−4)-
curve. The zw-projection π : X 99K P1 induces an elliptic fibration π : X → P1 such that
σ0 is a section.

Let e be a smooth fiber of π, which is the total transform of a hyperplane section of
X . The sublattice U of PicX generated by e and σ0 is the hyperbolic unimodular lattice
of rank 2.

Note that KX = OX(2e). Any section σ of π has self-intersection −4 since

(2.2) Nσ/X = Oσ (Kσ −KX |σ) = Oσ(−2− 2) = Oσ(−4).

If σ does not intersect σ0, then one has σ2 = −4, σ · σ0 = 0, and σ · e = 1, so that

τ(σ) := σ − σ0 − 4e(2.3)

satisfies τ(σ)⊥U and τ(σ)2 = −8.
2



The elliptic fibration π has six sections

σ1 : (x, y) = (f, g),

σ2 : (x, y) = (ζ3f, g),

σ3 : (x, y) = (ζ23f, g),

σ4 : (x, y) = (f,−g),
σ5 : (x, y) = (ζ3f,−g),
σ6 : (x, y) = (ζ23f,−g)

(2.4)

disjoint from σ0, where ζk := exp
(

2π
√
−1/k

)

for a positive integer k. Let M be the
sublattice of PicX generated by τi := τ(σi) for i = 1, . . . , 6.

Lemma 2.1. The pair (τ1, τ2) is an ordered basis ofM with the Gram matrix

(

−8 4
4 −8

)

.

Proof. It follows from

σ1 · σ4 = deg g = 12(2.5)

that

(τ1 + τ4)
2 = 0(2.6)

and hence

τ1 + τ4 = 0(2.7)

since U⊥ ⊂ PicX is negative definite by the Hodge index theorem. Similarly, it follows
from

σ1 · σ2 = σ2 · σ3 = σ1 · σ3 = deg f = 8(2.8)

that

(τ1 + τ2 + τ3)
2 = 0(2.9)

and hence

τ1 + τ2 + τ3 = 0.(2.10)

One also has τ2 + τ5 = τ3 + τ6 = τ4 + τ5 + τ6 = 0, so that {τ1, τ2} is a basis of M . It also
follows from (2.8) that

τ1 · τ2 = 4,(2.11)

and Lemma 2.1 is proved. �

3. The Picard number of X

Let ρ(X) be the Picard number of X . We prove the following in this section:

Proposition 3.1. For very general f and g, one has ρ(X) = 4.

Proof. Let Y be the family of elliptic surfaces over SpecC[a, b] obtained as the simulta-
neous minimal resolution of the quotient singularity coming from the ambient space of
the family of hypersurfaces of P(8, 12, 1, 1) defined by (1.1), (2.1), and

f = aw8, g = w
(

z11 + bw11
)

(3.1)

as in the beginning of Section 2. One has

h = f 3 + g2 = w2
(

z11 − a′w11
) (

z11 − b′w11
)

,(3.2)
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where a′, b′ ∈ C are defined by

(3.3) a′ + b′ = −2b, a′b′ = a3 + b2.

The discriminant of the elliptic fibration is given by h2, which is a configuration of (not
necessarily distinct) 24 double points. The family Y is not isotrivial, since the config-
uration depends on the parameter, even after quotienting out the PGL(2,C)-action. A
general member Y of this family has a singular fiber of Kodaira type IV at [z : w] = [1 : 0],
consisting of three lines meeting at one point, so that one has

ρ(Y ) ≥ 4 + 2 = 6.(3.4)

Since the discriminant is of degree 48, the topological Euler number of Y is 48, which
implies that the second Betti number of Y is given by 48− 2 = 46. Since Y is a weighted
projective hypersurface, the Griffiths–Dwork method (see e.g. [Dol82]) shows

H2,0(Y ) =
2

⊕

i=0

CΩi,(3.5)

where

Ωi = ResY

(

ziw2−i8xdy ∧ dz ∧ dw − 12ydx ∧ dz ∧ dw + · · ·
x3 + y2 − h

)

(3.6)

for i = 0, 1, 2. Hence the Z/33Z-action generated by

α : [x : y : z : w] 7→ [ζ3x : y : z : w],(3.7)

β : [x : y : z : w] 7→ [x : y : ζ11z : w](3.8)

satisfies

α∗Ωi = ζ3Ωi, β∗Ωi = ζ i+1
11 Ωi.(3.9)

Let V be the irreducible representation of Z/33Z over Q with eigenvalues
{

ζj33
}

(j,33)=1
.

One has dimV = φ(33) = 20, where φ is Euler’s totient function. It follows from (3.9)
that H2(Y,Q) contains V ⊕k for some k ≥ 1. If k = 1, then H2,0(Y ) does not depend
on the parameters a and b, which contradicts the non-isotriviality of the family Y and
the local Torelli theorem for elliptic surfaces [Kĭı78, Cha84, Sai83, Klo04]. Hence one has
k = 2, which implies

(3.10) ρ(Y ) ≤ 46− dimV ⊕2 = 6,

so that ρ(Y ) = 6 for very general Y .
Now let X be the elliptic surface defined by very general f and g, so that any singular

fiber is of type II and ρ(X) ≤ 6. (For example, if we put f = z8, g = w12, then we have
h = z24 + w24. This implies that all roots of h are pairwise distinct for general f and
g.) Assume ρ(X) = 6 for a contradiction. Then there is a deformation of X to Y such
that H2,0(X) ⊂ V ⊕2 ⊗ C under the induced identification H2(X ;Z) = H2(Y ;Z), which
implies PicX = Pic Y . Let d be a (−2)-vector in Pic Y coming from the singular fiber of
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type IV. The Riemann–Roch theorem shows

χ(OX(d)) := h0(OX(d))− h1(OX(d)) + h2(OX(d))(3.11)

=
1

2
d.(d−KX) +

1

12
(K2

X + c2(X))(3.12)

=
1

2
d2 +

1

12
c2(X)(3.13)

= −1 +
48

12
(3.14)

= 3,(3.15)

so that either d or KX − d = −d + 2e is effective. Since d is orthogonal to e and every
singular fiber of X is irreducible, the divisor d must be a multiple of e, which contradicts
d2 = −2 and e2 = 0.

Next assume for a contradiction that ρ(X) = 5. Then PicX ⊗ Q is generated over Q
by U , M and δ with α∗δ = δ. By the theory of elliptic surfaces [Shi90], the Mordell–Weil
group of X is isomorphic to
(3.16)

Pic(X)/(U + (the lattice generated by irreducible components of singular fibers)).

Hence the class δ corresponds to an α-invariant section different from σ0. Such a section
is given by x = 0 and y = ψ for a homogeneous polynomial ψ in z and w of degree 12
satisfying ψ2 = h. The existence of a square root ψ of h contradicts the assumption that
f and g are very general, and ρ(X) = 4 is proved. �

Remark 3.2. In the published version of this paper, the authors have cited only [Kĭı78,
Cha84, Sai83] for the local Torelli theorem for elliptic surfaces. Kloosterman pointed
out that the results in these papers are not strong enough to deduce the local Torelli
theorem for the family Y , but [Klo04, Theorems 1.1 and 3.3] are. He also pointed out
that Theorem 1.1 follows from the proof of [HL02, Proposition 2.1].

4. Proof of the main theorem

We prove Theorem 1.1 in this section. We first prove the uniqueness of the decompo-
sition for very general f and g. For any elements ϕ and ψ in C[z, w] of degrees 8 and 12
satisfying

(4.1) h = ϕ3 + ψ2,

the section σ defined by (x, y) = (ϕ, ψ) does not intersect σ0, so that τ(σ) ∈ U⊥ ⊂ PicX .
For very general f and g, one has ρ(X) = 4, and hence τ(σ) ∈ M ⊗ Q. Recall that the

Gram matrix of the ordered basis (τ1, τ2) of M is

(

−8 4
4 −8

)

. By a direct computation,

one can see that there are no elements ρ ∈M ⊗Q such that ρ.M ⊂ Z and ρ2 = −8 other
than τ1, . . . , τ6, and the uniqueness of the decomposition follows from the fact that the
Mordell–Weil group of X is naturally isomorphic to Pic(X)/U ∼= (M ⊗Q) ∩ Pic(X).

In order to prove the uniqueness of the decomposition for general f and g, let S and
T be the subspaces of C[z, w] consisting of homogeneous polynomials of degrees 8 and 12
respectively, and define a subscheme Z of (S × T )2 by

(4.2) Z :=
{

((f, g), (ϕ, ψ)) ∈ (S × T )2
∣

∣ f 3 + g2 = ϕ3 + ψ2
}

.

The uniqueness of the decomposition for very general f and g implies that the first
projection Z → S × T, which is a morphism of schemes, is generically six-to-one. Hence
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the first projection is six-to-one outside of a Zariski closed subset, and Theorem 1.1 is
proved.

5. Mirror symmetry

It is conjectured by Strominger, Yau, and Zaslow [SYZ96] that any Calabi–Yau mani-
fold has a special Lagrangian torus fibration, and the mirror manifold is obtained as the
dual special Lagrangian torus fibration. This picture has been refined in [GW00, KS01]
to the conjecture that the Calabi–Yau metric with the diameter normalized to one con-
verges in the Gromov–Hausdorff topology to a Monge–Ampère manifold with singularities
as one approaches a large complex structure limit. Here, a Monge–Ampère manifold with

singularities is a manifold B with a subset Bsing of Hausdorff codimension 2 such that
B \ Bsing has a tropical affine structure (i.e., an atlas whose transformation functions
are in GLn(Z)⋉Rn) and a Monge–Ampère metric (i.e., a Riemannian metric of Hessian

form gij =
∂2K

∂xi∂xj in the affine coordinate satisfying det
(

(gij)i,j

)

= constant). A Monge–

Ampère manifold comes with a dual pair of affine structures, and mirror symmetry should
interchange them.

In the case of a K3 surface, a special Lagrangian torus fibration can be turned into
an elliptic fibration by a hyperKähler rotation. It is shown in [GW00, GTZ16] that a
sequence of Calabi–Yau metrics on an elliptic K3 surface with a fixed diameter converges
in the Gromov–Hausdorff topology to a sphere with a Monge–Ampère structure with
singularities as the volume of the fiber goes to zero. The limit sphere B can naturally
be identified with the base P1 of the elliptic K3 surface, and the discriminant Bsing of
the Monge–Ampère structure can be identified with the discriminant of the elliptic K3
surface. Under this identification, the Monge–Ampère metric g on B \Bsing is written as

g = Im (τ 1τ2) dz ⊗ dz,(5.1)

where z is the holomorphic local coordinate on the base P1 and (τ1, τ2) are the periods,
along a symplectic basis, of the relative holomorphic one-form λ on the elliptic fibration
dual to dz with respect to the holomorphic volume form of the K3 surface. It follows that
the complex structure of the base P1 minus the discriminant can be reconstructed from
the limit metric, up to the choice of an orientation. Note that the metric (5.1) depends
only on the Jacobian fibration, so that one can assume that the elliptic K3 surface has a
section. It follows from Theorem 1.1 that a general elliptic K3 surface with a section can
be reconstructed from the limit metric up to complex conjugation.
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