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COLLAPSING K3 SURFACES AND

MODULI COMPACTIFICATION

YUJI ODAKA AND YOSHIKI OSHIMA

Abstract. This note is a summary of our work [OO], which pro-
vides an explicit and global moduli-theoretic framework for the
collapsing of Ricci-flat Kähler metrics and we use it to study es-
pecially the K3 surfaces case. For instance, it allows us to discuss
their Gromov-Hausdorff limits along any sequences, which are even
not necessarily “maximally degenerating”. Our results also give a
proof of Kontsevich-Soibelman [KS04, Conjecture 1] (cf., [GW00,
Conjecture 6.2]) in the case of K3 surfaces as a byproduct.

1. Introduction

Our paper [OO] is a sequel to a series by the first author [Od14,
Od16], which compactified both the moduli space of compact Riemann
surfaces Mg(g ≥ 2) and that of principally polarized abelian varieties
Ag. In each case, as we actually expect an analogue for any moduli of
general polarized Kähler-Einstein varieties with non-positive scalar cur-
vatures, we introduce and study two similar (non-variety) compactifica-

tions of the moduli space M, which we denote by MGH
and MT

. The

former MGH
is the Gromov-Hausdorff compactification with respect

to rescaled Kähler-Einstein metrics of fixed diameters and the latter

“tropical geometric compactification” MT
should dominate the former

MGH
as its boundary ∂MT

encodes more structure of the Gromov-
Hausdorff limits (collapses) rather than just distance structure. For

a precise definition of MGH
we employ the same definition as [Od14,

§2.3], [Od16, §2.2].1 For MT
, we have a case by case definition for only

particular classes of varieties. Here, we recall the structure theorem of

Ag

GH
from [Od16, Theorems 2.1 2.3 and Corollary 2.5].

Theorem 1.1 ([Od16]). Ag can be explicitly compactified as Ag

GH

whose boundary parametrizes all flat (real) tori Ri/Zi of diameter 1
where 1 ≤ i ≤ g. Once we attach the rescaled flat Kähler metric in

1However, its compactness is unknown at least to the authors in higher dimen-
sional negative scalar curvature case.
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the principal polarization with diameter 1 to each abelian variety, the

parametrization of metric spaces on whole Ag

GH
is continuous with re-

spect to the Gromov-Hausdorff distance.

In the above case, we simply set Ag

T
:= Ag

GH
. On the other hand, in

the analogue for Mg [Od14], we distinguish Mg

GH
and Mg

T
, where the

boundaries of Mg

GH
(resp., Mg

T
) parametrize metrized graphs (resp.,

metrized graphs with integer weights on the vertices). We refer the
details to [Od14].
Our [OO] contains the followings.

(i) We first apply the Morgan-Shalen type compactification for
general Hermitian locally symmetric spaces and identify it with
one of the Satake compactifications ([Sat60a], [Sat60b]).

(ii) We partially prove that the boundary of the Satake compacti-
fication of the type which appears in (i) parametrizes collapses
of abelian varieties and Ricci-flat K3 surfaces. This gives a
generalisation of some results in [GW00], [Tos10], [GTZ13],
[GTZ16], [TZ17] for the K3 surface case. For instance, a proof
of the conjecture of Kontsevich-Soibelman [KS04, Conjecture
1] (see also Gross-Wilson [GW00, Conjecture 6.2]), which is re-
lated to the Strominger-Yau-Zaslow mirror symmetry [SYZ96],
for the case of K3 surfaces directly follows from our description
of collapsing. We also give a conjecture for higher dimensional
hyperKähler varieties.

Now we move on to a more detailed description.

2. General Hermitian symmetric domain

Let G be a reductive algebraic group over Q, G = G(R), K (one of)
its maximal compact subgroup, and D := G/K, which we suppose to
have a Hermitian symmetric domain structure. We moreover assume
D is irreducible so that G is simple as a Lie group. Suppose that Γ
is an arithmetic subgroup of G(Q), which acts on D. Hence we can
discuss Hermitian locally symmetric space Γ\D.
Satake [Sat60a], [Sat60b] constructed compactifications of Riemann-

ian locally symmetric spaces G/K associated to irreducible projective
representations τ : G → PGL(C) satisfying certain conditions. They
are stratified as:

Γ\DSat,τ
= Γ\D ⊔

⊔

P

(Γ ∩Q(P ))\MP/(K ∩MP ).
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Here, P runs over all the µ(τ)-connected rational parabolic subgroups,
P = NPAPMP denotes the Langlands decomposition, and Q(P ) is the
µ(τ)-saturation of P . We are particularly interested in the case when
τ is the adjoint representation τad.
On the other hand, given any toroidal compactification [AMRT75]

for Γ\D, we can apply the Morgan-Shalen type compactification to it
as [Od16, Appendix] (following [MS84, BJo17]). The Morgan-Shalen

type compactification Γ\DMSBJ
obtained in this way is independent of

the cone decomposition for the toroidal compactification [Od16, A.13,
A.14].
We now compare these two compactifications.

Theorem 2.1. Let Γ\D be a locally Hermitian symmetric space.
Consider its toroidal compactification and the associated (generalised)

Morgan-Shalen compactification Γ\DMSBJ
. Then this is homeomorphic

to the Satake compactification (Γ\D)
Sat,τad

for the adjoint representa-
tion τad of G.

In the following we make an “elementary” but important observation
on a rationality phenomenon of the limits along one parameter holo-
morphic family, which we expect to fit well with the recent approach
to extend the theta functions in [GS12] etc.

Proposition 2.2. Suppose U ⊂ U
hyb

(X ) is a Morgan-Shalen-
Boucksom-Jonsson compactification associated to an arbitrary dlt
stacky pair (X ,D) of boundary coefficients 1 ([Od16]) with U := X \D,
its coarse moduli space U → U . Then for any holomorphic morphism
∆∗ := {z ∈ C | 0 < |z| < 1} → U which extend to ∆ := {z ∈ C | |z| <
1} → X , it induces a continuous map ∆ → U

hyb
(X ), i.e., the limit

exists. Furthermore, such possible limits in ∆(D) are characterized as
points with rational coordinates.

Corollary 2.3 (corollary to Theorem 2.1 and Proposition 2.2). Take
an arbitrary holomorphic map f : ∆∗ → Γ\D, which extends to a map
to a toroidal compactification of Γ\D. Then f also extends to a map

∆ → Γ\DSat,τad
where 0 is sent to a point with rational coordinates,

i.e., a point in the dense subset (C(F )∩U(F )⊗Q)/Q>0 ⊂ C(F )/R>0.

This is partially proved in the case of Ag in [Od16] by using degen-
eration data in [FC90].

Remark 2.4. Although we assume that G is simple in this section,
our Morgan-Shalen type compactification construction [Od16, Appen-
dix] still works for non-simple G. Thus, our construction also gives a
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new Satake-type compactification for non-simple G, e.g., of the Hilbert
modular varieties.

3. Abelian varieties case

We identify our tropical geometric compactification Ag

T
([Od16]) of

Ag with the adjoint type Satake compactification.

Theorem 3.1. There are canonical homeomorphisms between the three
compactifications

Ag

T ∼= Ag

Sat,τad ∼= Ag

MSBJ
,

extending the identity on Ag.

The second canonical homeomorphism is a special case of Theorem
2.1 and the first is essentially reduced to matrix computations.
In [OO], we also give a purely moduli-theoritic reexplanation of the

structure theory of one parameter degenerations of abelian varieties in
[Mum72], [FC90], after the above Theorem 3.1 as follows.

Theorem 3.2. Take a holomorphic maximally degenerating family of
principally polarized abelian varieties π : (X ,L) → ∆. Consider the
rescaled Gromov-Hausdorff limit B(X ,L) of diameter 1 as in Theo-
rem 1.1 ([Od16]) and its discrete Legendre transform B̌(X ,L) ([GS11],
[KS04]).
Then we can enhance the underlying integral affine structure of

B̌(X ,L) as K-affine structure (in the sense of [KS04, §7.1]) naturally
via the data of π. Furthermore, such K-affine structure recovers π up
to an equivalence relation generated by base change (replace t by ta with
a ∈ Q>0).

4. Moduli of Algebraic K3 surfaces

4.1. Satake compactification. Let F2d be the moduli space of polar-
ized K3 surfaces of degree 2d possibly with ADE singularities. Its struc-
ture is known as follows. Let ΛK3 := E8(−1)⊕2⊕U⊕3 be the K3 lattice
and fix a primitive vector λ2d with (λ2d, λ2d) = 2d and Λ2d := λ⊥

2d. The
complex manifold

Ω(Λ2d) := {[w] ∈ P(Λ2d ⊗ C) | (w,w) = 0, (w, w̄) > 0}.
has two connected components. We choose one component and denote
by DΛ2d

. Let O(ΛK3) denote the isomorphism group of the lattice ΛK3

preserving the bilinear form and set

Õ(Λ2d) := {g|Λ2d
: g ∈ O(ΛK3), g(λ2d) = λ2d}.
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The group Õ(Λ2d) naturally acts on Ω(Λ2d). We define Õ+(Λ2d) to be

the index two subgroup of Õ(Λ2d) consisting of the elements preserving
each connected component of Ω(Λ2d). Then it is well-known that

F2d ≃ Õ+(Λ2d)\DΛ2d
≃ Õ(Λ2d)\Ω(Λ2d).

Let F2d
Sat,τad

(or simply F2d
Sat

in our papers) be the Satake compacti-
fication of F2d corresponding to the adjoint representation of O(2, 19).
It decomposes as

F2d
Sat

= F2d ⊔
⋃

l

F2d(l) ⊔
⋃

p

F2d(p),

where l runs over one-dimensional isotropic subspaces of Λ2d ⊗Q, and
p runs over two-dimensional isotropic subspaces of Λ2d ⊗ Q. Also, we
simply define the tropical geometric compactification of F2d as this

F2d
Sat

. The boundary component F2d(l) is given as

F2d(l) = {v ∈ (l⊥/l)⊗ R | (v, v) > 0}/ ∼ .

Here v ∼ v′ if g · v = cv′ for some g ∈ Õ+(Λ2d) and c ∈ R×. We

have F2d(l) = F2d(l
′) if g · l = l′ for some g ∈ Õ+(Λ2d) and F2d(l) ∩

F2d(l
′) = ∅ if otherwise. Since (l⊥/l)⊗R has signature (1, 18), there is

an isomorphism

{v ∈ (l⊥/l)⊗ R | (v, v) > 0}/R×

≃ O(1, 18)/O(1)× O(18)

and hence F2d(l) is an arithmetic quotient of O(1, 18)/O(1)× O(18).
The other component F2d(p) is a point and F2d(p) = F2d(p

′) if and only
if g · p = p′ for some g ∈ Õ+(Λ2d). Therefore, if we take representatives
of l and p from each equivalence class, we get a finite decomposition:

F2d
Sat

= F2d ⊔
⊔

l

F2d(l) ⊔
⊔

p

F2d(p).

4.2. Tropical K3 surfaces. In our paper, what we mean by trop-
ical polarized K3 surface is a topological space B homeomorphic to
the sphere S2, with an affine structure away from certain finite points
Sing(B), with a metric which is Mongé-Ampere metric g with respect to
the affine structure on B \ Sing(B). Studies of such object as tropical
version of K3 surfaces are pioneered in well-known papers of Gross-
Wilson [GW00] and Kontsevich-Soibelman [KS04].
Here we assign such tropical K3 surface to each point in the boundary

component F2d(l) as follows. Let l be an oriented one-dimensional
isotropic subspace of Λ2d⊗Q. Write e for the primitive element of l such
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that R>0e agrees with the orientation of l. Take a vector v ∈ (l⊥/l)⊗R

such that (v, v) > 0. Write [e, v] for the corresponding point in F2d(l).
Then there exists a (not necessarily projective) K3 surface X and a
marking αX : H2(X,Z) → Λ with

• αX(H
2,0) ⊂ Rλ+

√
−1Rv,

• α−1
X (e) is in the closure of Kähler cone.

The pair (X,αX) is unique up to isomorphisms.
Let L be a line bundle on X such that αX([L]) = e. Then we get

an elliptic fibration f : X → B(≃ P1). Take a holomorphic volume
form Ω on X such that αX([ReΩ]) = λ. The map f is a Lagrangian
fibration with respect to the symplectic form ReΩ. Hence it gives an
affine manifold structure on B \ ∆, where ∆ denotes the finite set of
singular points. Similarly, the imaginary part ImΩ gives another affine
manifold structure on B \∆.
We endow the base space B with the McLean metric on the base

B ([ML98]), where we regard f as special Lagrangian fibration after
hyperKähler rotation. A straightforward calculation shows that this
coincides with the “special Kähler metric” gsp introduced and studied
in [DW96, Hit96, Freed99] and appears as the metric on P1 in [GTZ16].
We rescale the metric to make its diameter 1 and denote this obtained
tropical K3 surface by Φalg([e, v]).

Remark 4.1. Recall the concepts of the class of metric (metric class)
and the radiance obstruction of Mongé-Ampére manifolds B with sin-
gularities. They are introduced in [KS04] and discussed in [GS06]

in more details. We denote them by k(B) ∈ H1(B, i∗Λ̃
∨ ⊗ R) and

c(B) ∈ H1(B, i∗Λ), respectively. Here, Λ is the affine structure as
a Zdim(B)-local system in tangent bundle T (B \ ∆), −∨ denotes −’s
dual local system, Λ̃∨ is local system of affine functions. In partic-
ular, we naturally have a morphism of local systems f : Λ̃∨ → Λ∨

which induces f∗ : H
1(B, i∗Λ̃

∨) → H1(B, i∗Λ
∨). It is also easy to see

that, if we slightly change the definition of the metric class, to ex-
tract its “linear” part as f∗k(B). Then, it naturally recovers the data
v ∈ (e⊥ ⊗ R/Re) i.e., we have f∗k(Φalg([e, v])) = [v], under the nat-
ural identification H1(Φalg([e, v]), i∗Λ

∨ ⊗ R) →֒ (e⊥ ⊗ R/Re) which
comes from the Leray spectral sequence applied to the elliptic fibration
X ։ Φalg([e, v]) in §4.2. Our results in [Od16] and Theorem 3.1 for Ag

can be re-interpretted similarly (but with weight 1).

Remark 4.2. Yuto Yamamoto [Yam] has some ongoing interesting work
which seems to be related to our works, where he constructs a sphere
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with an integral affine structure from the tropicalization of an anti-
canonical hypersurface in a toric Fano 3-fold, and computes its radiance
obstruction.

4.3. Gromov-Hausdorff collapse of K3 surfaces. For a point
in F2d we have a corresponding polarized K3 surface (X,L),
equipped with a natural Ricci-flat metric. For [e, v] ∈ F2d(l)
we defined in a previous section Φalg([e, v]). For a point in
F2d(p) we assign a (one-dimensional) segment, which we denote
by Φalg(F2d(p)). Let us normalize these metric spaces so that

their diameters are one. We thus obtained a map Φalg : F2d
Sat →

{compact metric spaces with diameter one}. Here, we associate
Gromov-Hausdorff distance to the right hand side (target space) and
denote it by CMet1.

Conjecture 4.3. The map

Φalg : F2d
Sat → CMet1

given above is continuous.

We would like to simply set the tropical geometric compactification of

F2d as F2d
T
:= F2d

Sat
. Indeed, if Conjecture 4.3 holds, we get a contin-

uous map F2d
Sat → F2d

GH
and we also observe that each F2d(l) encodes

affine structure of the limit tropical K3 surface as well. (This answers
a question of Prof. B. Siebert in 2016 to the first author, regarding if
one can associate tropical affine structure to limit of any collapsing se-
quence). So far, we have partially confirmed the conjecture. The case
of (A1-singular flat) Kummer surfaces, with 3-dimensional moduli, are
easily reduced to [Od16]. More generally, we have proved the following.
In particular, the conjecture 4.3 holds at least away from finite points.

Theorem 4.4. The map Φalg is continuous on F2d
Sat\(⋃pF2d(p)). It is

continuous also when restricted to the boundary ∂F2d
Sat

= F2d
Sat \F2d.

The proof of the former half of the statements involves some symmet-
ric space theory, hyperKähler geometry, algebraic geometry of moduli,
and a priori analytic estimates. The estimates heavily depends on
[Tos10, GW00, GTZ13, GTZ16, TZ17] and their extensions. One non-
trivial part of the extension is, for instance, to make many of the C2-
estimations in op.cit following methods of [Yau78] locally uniform with
respect to a family of elliptic K3 surfaces even along degenerations to
orbifolds.
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During our work, we learnt that Kenji Hashimoto, Yuichi No-
hara, Kazushi Ueda [HNU] also studied the Gromov-Hausdorff col-
lapses along certain 2-dimensional subvariety of F2d, i.e., the mod-
uli of E⊕2

8 ⊕ U(⊕〈−2〉)-polarized K3 surfaces. Moereover, a result of
Hashimoto and Ueda [HU] implies that the restriction of Φalg to the
boundary is a generically two-to-one map. We appreciate their gentle
discussion with us.
Theorem 4.4 (resp., Conjecture 4.3) combined with Proposition 2.2

determines the Gromov-Hausdorff limits of Type III (resp., Type II)
one parameter family of Ricci-flat algebraic K3 surfaces, which solves
a conjecture of Kontsevich-Soibelman [KS04, Conjecture 1], Todorov,
and Gross-Wilson (cf., e.g., [Gross12, Conjecture 6.2]) in the K3 sur-
faces case.
In the next section, we discuss collapsing of general Kähler K3 sur-

faces, which are not necessarily algebraic.

5. Moduli of Kähler K3 surfaces

It is known (cf., [Tod80], [Looi81], [KT87]) that the moduli space
of all Einstein metrics on a Kähler K3 surfaces (including orbifold-
metrics) has again a structure of the locally Riemannian symmetric
space:

O(ΛK3)\SO0(3, 19)/(SO(3)× SO(19)),

which we denote by MK3. An enriched version encoding also complex
structures of the K3 surfaces is

R>0 × (O(ΛK3)\SO0(3, 19)/(SO(2)× SO(19))).

Roughly speaking, this is a union of Kähler cones of ADE K3 surfaces
with marking of the minimal resolutions.
Thus we can again compare a Satake compactification of MK3 with

the Gromov-Hausdorff compactification. Inside the Satake compactifi-
cation for the adjoint representation, we consider an open locus (a par-
tial compactification of MK3) MK3 ⊔MK3(a), where MK3(a) denotes
the 36-dimensional boundary stratum corresponding to an isotropic ra-
tional line l = Qe in ΛK3⊗Q, with primitive integral generator e, which
are unique up to O(ΛK3). Then for each point p = 〈e, v1, v2〉 in strata
MK3(a), we consider the marked (possibly ADE) K3 surface Xp with
period 〈v1, v2〉. Then it is known that there is an elliptic K3 surface
structure on Xp with the fiber class e. Then we define Φ(p) as its base
biholomorphic to P1 with the McLean metric, which only depends on
〈v1, v2〉. Similarly to the projective case Theorem 4.4, [OO] proves that
for non-algebraic situation:
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Theorem 5.1. The map

Φ: MK3 ⊔MK3(a) → CMet1

given above is continuous. Here, we put the Gromov-Hausdorff topology
for the right hand side.

In [OO], we further explicitly define an extension to the whole

Satake compactification Φ: MK3
Sat → CMet1, and conjecture that

this is still continuous with respect to the Gromov-Hausdorff topol-
ogy. For the boundary strata other than MK3(a), we assign flat tori
Ri/Zi (i = 1, 2, 3) modulo (−1)-multiplication. We show that Φ re-
stricted to the closure of the locus which parametrizes R4/Z4 modulo
±1, that includes those boundary strata, is continuous. Furthermore,
we also prove the restriction of Φ to the closure ofMK3(a) is continuous
by using Weierstrass models.

6. Higher dimensional case

We expect that our results for K3 surfaces naturally extend to higher
dimensional compact hyperKähler manifolds. Let us focus on algebraic
case in this notes. We set up as follows. Fix any connected moduliM of
polarized 2n-dimensional irreducible holomorphic symplectic manifolds
(X,L) whose second cohomology H2(X,Z) is isomorphic (as a lattice)
to Λ. By [Ver13, Mark11] ([GHS13, Theorem 3.7]), it is a Zariski
open subset of a Hermitian locally symmetric space of orthogonal type
Γ\DM .
Then (a rough version of) our conjecture for algebraic case (in [OO])

is as follows:

Conjecture 6.1. There is a continuous map Ψ (call “geometric real-

ization map”) from the Satake compactification (M ⊂)Γ\DM

Sat,τad
with

respect to the adjoint representation to the Gromov-Hausdorff compact-
ification of M , extending the identity map on M . The (b2(X) − 4)-

dimensional boundary strata of Γ\DM

Sat,τad
parametrize via Ψ the pro-

jective space Pn with special Kähler metrics in the sense of [Freed99]
and the metric space parametrized by 0-dimensional cusps are all home-
omorphic to the closed ball of dimension n.

At the moment of writing this notes, the authors have only succeeded
in proving that (M ⊂)Γ\DM is the moduli of polarized symplectic va-
rieties with continuous (non-collapsing) weak Ricci-flat Kähler metrics,
and making some progress on the necessary algebro-geometric prepa-
rations in particular for the case of K3[n]-type.
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Remark 6.2 (Calabi-Yau case). In [OO], we also propose an extension
of Conjecture 4.3 for general Calabi-Yau varieties under some technical
conditions, although there are much fewer evidences in that case.
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