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Absence of radiative corrections in
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Abstract

We prove that all connected n-point Green functions of four-dimensional topological Yang-
Mills theories quantized in the (anti-)self-dual Landau gauges are tree-level exact, i.e. there
are no radiative corrections in this gauge choice.

1 Introduction

Topological Yang-Mills theories are, essentially, background independent gauge theories which only
depend on global degrees of freedom [1, 2, 3, 4]. The first ideas about topological solutions from
self-dual Yang-Mills equations go back to [5], where topological solutions known as instantons
were used to explain the U(1) problem in non-Abelian theories [6]. Another interesting four-
dimensional theory is the so-called Donaldson-Witten topological quantum field theory, which can
be taken as a tool to compute the Donaldson topological invariants [1, 7, 8]. Related to the latter,
it was discussed in [2] that Donaldson-Witten’s theory can be recovered from a particular gauge
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fixing of an action which is a pure topological invariant. The gauge fixing of four-dimensional
topological gauge theories was also investigated in [9]. The particular choice of (anti-)self-dual
Landau gauges ((A)SDLG) was first studied in [10]. The renormalizability of the theory quantized
in this gauge was investigated in [10, 11], where the algebraic renormalization technique [12, 13]
was employed. It was verified that, due to the rich set of Ward identities in this gauge, there
is only one independent renormalization parameter. Moreover, all propagators were shown to be
tree-level exact (as well as all 1PI two-point Green functions). In particular, it was proven that
the gauge propagator and the vacuum polarization vanish to all orders of perturbation theory, see
[11].

The aim of the present paper is to improve the understanding of quantum four-dimensional
topological Yang-Mills theory in the (A)SDLG. Specifically, we show that all connected n-point
Green functions are tree-level exact, i.e. that all connected n-point Green functions of the theory
do not receive any radiative corrections. For what follows, the fact that the gauge field propagator
vanishes to all orders in perturbation theory and concepts of BRST cohomology are pivotal.

This work is organized as follows: In Section 2 we provide an overview of four-dimensional
topological Yang-Mills theories quantized in the (A)SDLG. Section 3 is devoted to the proof of
the tree-level exactness of all connected n-point Green functions and, finally, Section 4 contains
our final considerations.

2 Topological gauge theories at the (anti-)self-dual Lan-

dau gauges

Topological Yang-Mills theories1 in four-dimensional Euclidean spacetime2 can be defined by a
topological invariant action, S0[A], where Aa

µ is the gauge field algebra-valued in a semi-simple Lie
group G. As discussed in [10], a topological Yang-Mills theory carries three independent gauge
symmetries, namely,

δAa
µ = Dab

µ α
b + αa

µ , (2.1)

δF a
µν = −gfabcαbF c

µν +Dab
µ α

b
ν −Dab

ν α
b
µ , (2.2)

δαa
µ = Dab

µ λ
b , (2.3)

where Dab
µ = δab∂µ − fabcAb

µ is the covariant derivative in the adjoint representation of G, F a
µν =

∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν is the field strength and g is the coupling parameter. The parameters

αa
µ, αa and λa are G-valued gauge parameters. Thus, in order to quantize the theory, three gauge

constraints are needed. The BRST quantization will be employed for this purpose.

1 It is worth mentioning that the action S0(A) encompasses a wide range of topological gauge theories. The
Pontryagin action is the most common case because it can be defined for all semi-simple Lie groups. Nevertheless,
other cases can also be considered. For instance, Gauss-Bonnet and Nieh-Yang topological gravities can be
formulated for orthogonal groups [14].

2 In this work, we consider flat Euclidean spacetime. Although the topological action is background independent,
the gauge-fixing term entails the introduction of a background. Ultimately, background independence is recovered
at the level of correlation function due to BRST symmetry [2, 3, 4].
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The BRST procedure [2, 12, 13] starts by promoting the gauge parameters to ghost fields:
αa

µ → ψa
µ, αa → ca, and λa → φa, and in the definition of a nilpotent BRST symmetry,

sAa
µ = −Dab

µ c
b + ψa

µ ,

sca =
g

2
fabccbcc + φa ,

sψa
µ = gfabccbψc

µ +Dab
µ φ

b ,

sφa = gfabccbφc . (2.4)

In (2.4), ca, ψa
µ and φa are, respectively, the Faddeev-Popov ghost field, the topological ghost field

and the bosonic ghost field, while s is the nilpotent BRST operator.

The gauge choice we employ in this work is the (anti-)self-dual Landau gauges [10, 11], defined
by

∂µA
a
µ = 0 ,

F a
µν ± F̃ a

µν = 0 ,

∂µψ
a
µ = 0 , (2.5)

where F̃ a
µν ≡ 1

2
ǫµναβF

a
αβ is the dual field strength. To enforce such constraints, three BRST

doublets are needed:

sc̄a = ba , sba = 0 ,

sχ̄a
µν = Ba

µν , sBa
µν = 0 ,

sφ̄a = η̄a , sη̄a = 0 , (2.6)

where χ̄a
µν and Ba

µν are (anti-)self-dual fields, according to the the positive (negative) sign in the
second condition in (2.5). In (2.6), the fields ba, Ba

µν and η̄a are the Lautrup-Nakanishi fields which

implement the gauge conditions (2.5) while c̄a, χ̄a
µν and φ̄a are the Faddeev-Popov, topological

and bosonic anti-ghost fields, respectively. For completeness, the quantum numbers of all fields
are displayed in Table 1.

Field A ψ c φ c̄ b φ̄ η̄ χ̄ B

Dim 1 1 0 0 2 2 2 2 2 2

Ghost no 0 1 1 2 -1 0 -2 -1 -1 0

Table 1: Canonical dimension and ghost number of the fields.

The complete gauge fixing action in the gauge (2.5) takes the form

Sgf = s

∫
d4z

[
c̄a∂µA

a
µ +

1

2
χ̄a

µν

(
F a

µν ± F̃ a
µν

)
+ φ̄a∂µψ

a
µ

]

=
∫
d4z

[
ba∂µA

a
µ +

1

2
Ba

µν

(
F a

µν ± F̃ a
µν

)
+ (η̄a − c̄a) ∂µψ

a
µ + c̄a∂µD

ab
µ c

b+

−
1

2
gfabcχ̄a

µνc
b

(
F c

µν ± F̃ c
µν

)
− χ̄a

µν

(
δµαδνβ ±

1

2
ǫµναβ

)
Dab

α ψ
b
β + φ̄a∂µD

ab
µ φ

b+

+ gfabcφ̄a∂µ

(
cbψc

µ

)]
. (2.7)
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The full action S[Φi], for all fields Φi ≡ {A,ψ, χ̄, c, c̄, φ, φ̄, η, η̄, B, b}, is then composed by a sum
of a topological invariant term and a BRST-exact one,

S = S0 + Sgf . (2.8)

The action (2.8) has a few interesting quantum properties [11]:

• It is renormalizable to all orders in perturbation theory. Moreover, due to the rich set of
Ward identities displayed by the action (2.8), the most general counterterm carries only one
independent renormalization parameter, denoted by a:

Σc = a

∫
d4x

(
Ba

µνF
a
µν − 2χ̄a

µνD
ab
µ ψ

b
ν − gfabcχ̄a

µνc
bF c

µν

)
. (2.9)

• All propagators are tree-level exact, which means that, in the (A)SDLG, they do not receive
radiative corrections.

• In particular, the gauge field propagator vanishes exactly in the (A)SDLG:

〈Aa
µA

b
ν〉(p) = 0 . (2.10)

In the following, we collect the Feynman rules derived from (2.8). The relevant propagators
are represented by3:

〈AA〉 = , 〈cc̄〉 = , 〈χ̄ψ〉 = , 〈Ab〉 = ,

〈η̄ψ〉 = , 〈AB〉 = , 〈φφ̄〉 = . (2.11)

The relevant vertexes are represented by:

B

A

A
,

χ̄

A

c
,

A

ψ

χ̄

,
A

c

c̄
,

A

φ̄

φ

,
φ̄

ψ

c

,

A

χ̄

A

c

. (2.12)

In principle we do not have to include the gauge propagator in (2.11) – which is null – but this
will be necessary to visualize the tree-level exactness of the theory, since such a propagator, as
discussed later on, is required to close loops, leading to vanishing diagrams at the quantum level.

3 From (2.7), a c̄ψ mixed propagator also seems to be relevant. However, this term can easily be eliminated by a
trivial-Jacobian redefinition of the η̄ field given by η̄ → η̄ + c̄.
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3 Absence of radiative corrections

To show that the action (2.8) defines a theory free of radiative corrections, it is convenient to split
the argumentation into propositions.

Proposition 1. Any connected loop diagram containing an internal A-leg vanishes unless the
branch generated by the A-leg ends up in external B- or b-legs.

Proof. To prove this proposition, we must consider a combination of two facts: 1) 〈AA〉 = 0 to all
orders and 2) the gauge field only propagates through the non-vanishing mixed propagators 〈BA〉
and 〈bA〉. Hence, from an internal A-leg arising from an arbitrary vertex, denoted by a black dot,

, we only have two possibilities: and . In the same way, the fields B and b only
propagate through A. Graphically, we now have and . Nonetheless, the former
is not at our disposal since there is no vertex containing b, vide (2.12). The latter, on the other
hand, must be a BAA vertex since it is the only one containing B. Thus, an internal A-leg in any
loop diagram will propagate to B and the latter will end up in a BAA vertex,

. (3.1)

Applying the above reasoning for the two newly created A-legs, we end up with two more BAA
vertexes and four A-legs. Since the number of A-legs only increases, we can continue this process
ad infinitum leading to a cascade effect of exponential proliferation of A-legs:

...

· · ·

· · ·

... .

(3.2)

There are three possibilities here: 1) trying to close a loop in the diagram 3.2 requires an 〈AA〉
internal propagator, which would result in a vanishing diagram; 2) to consider external A-legs,
which also requires a 〈AA〉 propagator, resulting in a vanishing diagram and; 3) one could consider
that all remaining A-legs end up in external B- or b-legs.

We should note that all vertexes, except one, present in (2.8) contain at least one A-leg,
therefore the cascade effect always occur for these cases. The only exception is the vertex φ̄cψ.
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Corollary 1.1. In a connected loop diagram, any branch arising from the vertex φ̄cψ results in a
vanishing diagram unless this branch ends up in external B- or b-legs.

Proof. Let us start with the vertex of interest, i.e. φ̄cψ. To construct a loop diagram from this
three-vertex we have to propagate it to another vertex. The φ̄-leg could only propagate to the
vertex φ̄Aφ through 〈φ̄φ〉; the c-leg only to c̄Ac through 〈c̄c〉 and; the ψ-leg to the vertexes χ̄Aψ,
χ̄cA or χ̄cAA through 〈ψχ̄〉 (〈η̄ψ〉 is not considered because there is no vertex containing η̄).
Graphically, the possibilities of completing the legs arising from this vertex are

, , . (3.3)

But all possible branches contain at least one remaining A-leg. By evoking Proposition 1, the
proof is completed.

Corollary 1.2. Any connected loop diagram containing a (Φi 6= {B, b})-external leg vanishes.

Proof. There are two steps toward this proof: 1) consider the external leg joined to a vertex
containing an A field. In this case, A is an internal leg. Thus, Proposition 1 takes place and
the graph either vanishes or generates a branch with external B- or b-legs and no loop can be
constructed; 2) now, consider the external leg joined to a vertex not containing A, i.e. the vertex
φ̄cψ. The field φ̄ only propagates through 〈φ̄φ〉, c through 〈c̄c〉, and ψ only through 〈χ̄ψ〉 or 〈η̄ψ〉.
For this reason, it is impossible to propagate the vertex φ̄cψ to another vertex φ̄cψ. In other
words, from the vertex φ̄cψ, we should necessarily propagate it to the vertexes containing an A

field. Now, Corollary 1.1 takes place and the graph, again, either vanishes or generates a branch
with external B- or b-legs and no loop can be constructed.

Proposition 2. Any connected n-point function of the form 〈B(x1)B(x2)...b(xn−1)b(xn)〉 vanishes.

Proof. Due to (2.6), and the fact that expectation values of any BRST-exact terms vanish. One
can write these n-functions as BRST-exact correlators, namely

〈BBB . . . bb〉 = 〈sχ̄BB . . . bb〉 = 〈s(χ̄BB . . . bb)〉 = 0 , (3.4)

and
〈BBB . . . bb〉 = 〈BB . . . sc̄b〉 = 〈s(BBB . . . c̄bb)〉 = 0 , (3.5)

which vanish due to BRST-invariance.

Proposition 3. All connected n-point Green functions are tree-level exact.
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Proof. Let us take a connected loop diagram with n external legs with arbitrary fields Φi. From
Corollary 1.2, if there is at least one field different from B or b, the graph either vanishes or is a
tree-level graph. Then, there remains the possibility of a graph with n external legs formed by
B or b fields. In this case Proposition 2 takes over and the Green function 〈BB . . . bb〉 vanishes,
meaning that this Green function is zero and receive no radiative corrections. Hence, all connected
n-point Green functions are tree-level exact.

4 Conclusions

In this work we have considered four-dimensional topological Yang-Mills theories quantized in
the (anti-)self-dual Landau gauges [1, 7, 8, 2, 10, 11], which is renormalizable to all orders in
perturbation theory [10, 11]. This particular gauge choice displays a rich set of symmetries, which
implies on a counterterm containing only one independent renormalization parameter, see [11].
Moreover, the gauge propagator vanishes to all orders.

The fact that the gauge propagator vanishes exactly was employed to show the main result of
this paper: All connected n-point Green functions of four-dimensional topological gauge theories
quantized in the (anti-)self-dual Landau gauges are tree-level exact. This means that, in this gauge,
the theory remains “classical” because there are no radiative corrections to be considered. This
is a very interesting, yet subtle, result. The subtlety lives on the fact that the theory is not finite
(there is a non-trivial counterterm to be included in order to absorb the divergences of the theory
[11]) but the divergences are canceled out due to the vanishing of the gauge propagator which is
always needed in order to close a loop diagram or due to the BRST symmetry.

It is worth mentioning that the topological gauge theory considered here is essentially of the
Donaldson-Witten type [1] formulated in a different gauge choice [2]. Since Donaldson-Witten
theory is related to N = 2 Wess-Zumino supersymmetric theory via a twist [15], it could be
interesting to understand the corresponding supersymmetric theory in different gauge choices
such as the (A)SDLG. Specifically, the consequences of the absence of radiative corrections in the
(A)SDLG could imply in some interesting features of its supersymmetric counterpart. Moreover,
supersymmetric formulations of the BRST transformations (2.4) and (2.6), as in for instance
[16, 17], could also enlighten such investigation.
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