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Wall and Chamber Structure for finite-dimensional

Algebras

Thomas Brüstle, David Smith and Hipolito Treffinger

Abstract

We use τ -tilting theory to give a description of the wall and chamber structure of
a finite dimensional algebra. We also study D-generic paths in the wall and chamber
structure of an algebra A and show that every maximal green sequence in modA is
induced by a D-generic path.

1 Introduction

Cluster algebras were introduced by Fomin and Zelevinski in [18], prompting a lot
of subsequent work on the subject. In particular, there are several representation
theoretic categorifications of cluster algebras, see for instance [13, 12, 20]. More
recently, Adachi, Iyama and Reiten introduced in [1] τ -tilting theory, an extension
of the classical tilting theory that is compatible with the concept of mutation coming
from cluster algebras. In doing so, τ -tilting theory becomes a new categorification of
cluster algebras with the novelty that its process of mutations can be applied to any
finite-dimensional algebra, not only cluster-tilting algebras. Therefore a number of
concepts arising from cluster algebras can now be studied for any algebra from the
τ -tilting perspective.

In [19] Fomin and Zelevinski introduced g-vectors, a set of vectors with integer
entries that parametrize the cluster variables of a given cluster algebra. The first
representation theoretic interpretation of these vectors was given by Dehy and Keller
in [14], and Adachi, Iyama and Reiten adapt them to τ -tilting theory in [1]. Even
if the name g-vector was new, these same vectors have been already considered in
the representation theory of algebras before, in fact Auslander and Reiten studied
them already in 1985 in [4]. Given an algebra A, the set of g-vectors in modA
enjoys many combinatorial properties. For instance, it was proven in [15] that the
g-vectors in modA form a well behaved simplicial complex in Rn, where n is the
number of non-isomorphic simple A-modules. Further properties of g-vectors have
also been studied in different contexts, see for instance [33, 23].

On the other hand, stability conditions were introduced in representation theory
of quivers in seminal papers by Schofield [36] and King [28]. Since then, the study of
rings of quiver semi-invariants by Derksen and Weyman [17] has been expanded to
the context of cluster algebras. The work of Igusa, Orr, Todorov and Weyman [25]
shows that walls in the semi-invariant picture correspond to the c-vectors in cluster
theory. These vectors are also studied in quantum field theory, where they are
interpreted as charges of BPS particles. It turns out that maximal green sequences,
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or more generally, maximal paths in the semi-invariant picture which are oriented in
positive direction [10], give rise to a complete sequence of charges, called spectrum
of a BPS particle, see [9, section 2]. This phenomenon has already been observed
by Seiberg and Witten in their study of N = 2 SUSY with pure gauge group SU(2)
in [37], which yields the wall and chamber structure of the Kronecker quiver. The
moduli space of quantum field theories in this case has two fundamentally different
regions, corresponding to the two possible maximal green paths in the semi-invariant
picture.

The semi-invariant picture of quiver representations has re-appeared in mathe-
matical physics and mirror symmetry as scattering diagrams such as in Kontsevich
and Soibelman’s study of wall crossing in the context of Donaldson-Thomas invari-
ants in integrable systems and mirror symmetry [29]. Later, Gross, Hacking, Keel
and Kontsevich studied in [21] the so-called cluster scattering diagram, proving sev-
eral conjectures on cluster algebras. However, the cluster scattering diagram is an
intrinsically geometric object. Therefore, taking an algebraic approach to the prob-
lem, Bridgeland introduces in [8] the algebraic scattering diagram and shows that
both scattering diagrams are isomorphic if the algebra considered is hereditary.

In order to construct the scattering diagram of an algebra A, Bridgeland uses
the partition of the real space Rn induced by the stability conditions over modA
introduced by King in [28]. This partition of Rn is called the wall and chamber
structure of A.

The aim of this paper is therefore to join the concept of scattering diagrams and
their wall and chamber structure as described in [8] with the combinatorial structure
of the polyhedral fan associated with τ -tilting modules as given in [15], as well as
to investigate maximal green sequences, and their continuous counterparts in the
stability space.

1.1 Content

We recall the notion of stability studied by King [28]: Let A be an algebra whose
Grothendieck group has rank n. Then for any vector θ ∈ Rn, a non-zero module M
is called θ-semistable if its dimension vector [M ] is orthogonal to θ, and 〈θ, [L]〉 ≤ 0
for every submodule L of M . The stability space of an A-module M is then defined
as

D(M) = {θ ∈ Rn : M is θ-semistable}.

The stability space D(M) of M is contained in the hyperplane orthogonal to θ,
but it could have smaller dimension. We say that D(M) is a wall when D(M) has
codimension one. Outside the walls, there are only vectors θ having no non-zero
θ-semistable modules. Removing the closure of all walls we obtain a set

R = Rn \
⋃

M∈modA

D(M)

whose connected components C are called chambers. As connected components of
an open set in Rn, the chambers have dimension n. This decomposition of Rn is
called the wall and chamber structure of the algebra A on Rn.

The first aim of the paper is to study the category of θ-semistable modules. It is
known (see proposition 3.24) that for fixed θ the category of θ-semistable modules
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forms a wide subcategory of modA. Using τ -tilting theory, we are able to give a
more precise statement (see Theorem 3.14):

Theorem 1.1. Let (M,P ) be a τ-rigid pair and let α be a vector in the interior of
the cone of g-vectors defined by (M,P ). Then the category of α-semistable modules
is equivalent to the module category of an algebra C(M,P ). Moreover there are exactly
n− |M | − |P | nonisomorphic α-stable modules, corresponding to the simple C(M,P )-
modules.

Note that this was already shown using similar techniques for the An case in
[26].

We further show in section 3 how the τ -tilting fan introduced by Demonet, Iyama
and Jasso in [15] can be embedded into King’s stability manifold: Each τ -tilting pair
(M,P ) yields a chamber C(M,P ), and one can give a complete description of the walls
adjacent to the chamber C(M,P ):

Theorem 1.2. Let A be a finite-dimensional algebra over an algebraically closed
field. Then there is an injective function C mapping the τ-tilting pair (M,P ) onto
a chamber C(M,P ) of the wall and chamber structure of A. Furthermore, if A is
τ-tilting finite then C is also surjective.

We also define in section 3 a function T which assigns to each chamber C a
torsion class TC, and we show that TC(M,P )

= FacM .

Following [8], we study in section 4 the D-generic paths in the wall and chamber
structure of an algebra A. These are smooth paths crossing one wall at a time and
such that the crossing is transversal, see definition 4.1. Moreover, given a D-generic
path γ : [0, 1] → Rn we associate to γ(t) a torsion class for every t ∈ [0, 1]. This
construction allows to show the following result.

Theorem 1.3. Let A be an algebra. Then every maximal green sequence is induced
by a D-generic path in the wall and chamber structure of A.

We finish section 4 with theorem 4.14 which provides a class of algebras not
admitting a maximal green sequence. These algebras are related to the cluster
algebra of the one-punctured torus, and have been object of intense studies in the
context of cluster algebras, see for instance [30, Example 35], [32] or [15, Theorem
5.17].

We refer to the textbooks [5, 3, 35] for background material.
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2 Preliminaries

We consider a finite dimensional algebra A over a field k of the form A = kQ/I where
Q is a quiver and I an admissible ideal of the path algebra kQ. For an algebraically
closed field k, every finite-dimensional k-algebra is Morita-equivalent to an algebra
of the form kQ/I. We study the category modA of finitely generated modules over
A.

Its Grothendieck group K0(A) is free abelian of finite rank n, where n is the
number of vertices of the quiver Q. In this paper we consider the isomorphism that
assigns to the class [M ] in K0(A) of any A-module its dimension vector. By abuse
if notation [M ] represents both the class of M in K0(A) and its dimension vector.

The τ -tilting theory was introduced by Adachi, Iyama and Reiten in [1], where
τ denotes the Auslander-Reiten translation in modA. It extends classical tilting
theory from the viewpoint of mutation, providing a framework for studying problems
arising from cluster algebras. In this paper the τ -rigid and τ -tilting pairs play a
central role. They are defined as follows.

Definition 2.1. [1, Definition 0.1 and 0.3] Consider an A-module M and a projec-
tive A−module P . The pair (M,P ) is said τ-rigid if:

• HomA(M, τM) = 0;

• HomA(P,M) = 0.

The notion of a τ -rigid pair generalizes the one of a τ -rigid A-module M , which is
given just by the first condition HomA(M, τM) = 0. We say moreover that a τ -rigid
pair (M,P ) is τ-tilting if |M |+ |P | = n, and almost τ-tilting if |M |+ |P | = n− 1.
Here we denote by |X | the number of direct summands of X .

Note that we assume our algebras and modules to be basic, that is, all its inde-
composable direct summands are non-isomorphic. That is, we write a τ -rigid pair
(M,P ) as M =

⊕k
i=1 Mi and P =

⊕t
j=k+1 Pj with all Mi indecomposable and non-

isomorphic, and all Pj indecomposable projective and non-isomorphic, so (M,P ) is
τ -tilting precisely when t = n.

As usual, we denote the right perpendicular category of a module M by

M⊥ = {X ∈ modA : HomA(M,X) = 0}

and, dually,
⊥M = {Y ∈ modA : HomA(Y,M) = 0}.

Recall that, for a given A-module M , the full subcategory FacM of modA is defined
as

FacM = {X ∈ modA : there is an epimorphism M l → X for some l ∈ N}.

Remember that a torsion pair (T ,F) is a pair of full subcategories of mod A such
that :

• HomA(X,Y ) = 0 for every X ∈ T and every Y ∈ F .

• Maximality of T : If X is an A-module with HomA(X,F ) = 0 for all F in F ,
then X belongs to T .

• Maximality of F : If Y is an A-module with HomA(T, Y ) = 0 for all T in T ,
then Y belongs to F .
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Note that a torsion pair automatically satisfies that

• T is closed under quotients and extensions,

• F is closed under submodules and extensions.

We now describe how τ -tilting theory allows to describe all functorially finite
torsion classes of modA in terms of τ -tilting pairs.

Theorem 2.2. [1, Theorem 2.7][6, Theorem 5.10]
Defining Φ(M,P ) = FacM yields a function from τ-rigid pairs to functorially

finite torsion classes. Moreover, Φ is a bijection when restricted to τ-tilting pairs.

Every torsion pair (T ,F) in modA has the following property. For each A-
module N there exists a short exact sequence, referred to as the canonical short
exact sequence for N ,

0 → tN → N → N/tN → 0

with tN ∈ T and N/tN ∈ F . The module tN is unique up to isomorphism, and
is called the trace of N in T . For a τ -rigid pair, the trace of N can be obtained as
follows:

Lemma 2.3. Let (M,P ) be a τ-rigid pair and N an A−module. Then the trace tN
of N with respect to the torsion pair (Fac M,M⊥) can be computed as tN = Imf
where f : M ′ → N is the minimal right addM -approximation of N .

Proof. A morphism f : M ′ → N is called a right addM -approximation of N if
M ′ ∈ addM and for all X ∈ addM the induced map Hom(X, f) is surjective. We
have that tN ∈ FacM by definition, therefore there is a natural number l and an
epimorphism p : M l → tN . This p factors through f because f is the minimal
right addM -approximation of N . Hence tN is isomorphic to a submodule of Imf .
Conversely, Im f is a submodule of N which belongs to FacM , and therefore Im f
is isomorphic to a submodule of tN .

Another important feature of τ -tilting pairs is the fact that every almost τ -tilting
pair can be completed to a τ -tilting pair in exactly two different ways:

Theorem 2.4. [1, Theorem 2.8] Let (M,P ) be an almost τ-tilting pair. Then there
exist exactly two different τ-tilting pairs (M1, P1) and (M2, P2) such that M is a
direct summand of both M1 and M2, and P is a direct summand of P1 and P2. In
that case we say that (M1, P1) and (M2, P2) are a mutation of each other.

We further recall from [1] that in the setting of the previous theorem, one torsion
class covers the other, say FacM = FacM1 ( FacM2. Writing M2 = M ′ ⊕M with
an indecomposable τ -rigid module M ′, we say that M2 is a left mutation of M1.

More generally, one can consider the problem of finding all τ -tilting pairs having
a given τ -rigid pair (M,P ) as a direct summand. This problem was solved by Jasso
in [27] using a procedure that he called τ-tilting reduction. Here we give a brief
summary of that process.

First, by Theorem 2.2 one knows that (M,P ) yields the torsion class FacM . But
there is another torsion class given by (M,P ), namely the class ⊥(τM)∩P⊥. By [1,
Theorem 2.12], these two torsion classes coincide if and only if (M,P ) is a τ -tilting
pair. Moreover, Theorem 2.2 together with [1, Theorem 2.9] implies the existence
of a τ -tilting pair of the form (M ⊕M ′, P ) such that Fac (M ⊕M ′) =⊥ (τM)∩P⊥.
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In the endomorphism algebra B(M,P ) = EndA(M ⊕M ′), there is an idempotent
element e(M,P ) associated to the B(M,P )-projective module HomA(M ⊕M ′,M). We
define the algebra C(M,P ) as the quotient of B(M,P ) by the ideal generated by e(M,P ),
i.e.,

C(M,P ) := B(M,P )/B(M,P )e(M,P )B(M,P ).

Now we are able to state one of the main theorems of [27].

Theorem 2.5. [27, Theorem 3.8] Let (M,P ) be a τ-rigid pair in modA. Then the
functor

HomA(M ⊕M ′,−) : modA → modB(M,P )

induces an equivalence of categories

F : M⊥ ∩ ⊥(τM) ∩ P⊥ → modC(M,P )

between the perpendicular category M⊥ ∩ ⊥(τM) ∩ P⊥ of (M,P ) and the module
category modC(M,P ).

3 Hyperplane arrangements and cone complex

We first describe in this section the wall and chamber structure of Rn induced by the
algebra A, following freely the exposition in [8]. Traditionally, stability conditions
are formulated with respect to a linear form K0(A) ⊗ R ∼= Rn → R. However,
we prefer to draw a stability condition θ and the class [M ] ∈ K0(A) of a module
M ∈ modA in the same picture, therefore we work with vectors θ ∈ Rn. To comply
with the usual notation, we sometimes write θ(M) for the standard inner product
〈θ, [M ]〉 on Rn.

3.1 The wall and chamber structure of an algebra

We recall from King in [28] the notion of stability for modules:

Definition 3.1. [28, Definition 1.1] For θ ∈ Rn, a non-zero module M ∈ modA
is called θ-stable if it is orthogonal to θ, that is, θ(M) = 0, and θ(L) < 0 for
every proper submodule L of M . Moreover, a module M orthogonal to θ is called
θ-semistable if θ(L) ≤ 0 for every submodule L of M .

A central notion in this section is given by the set of all values θ that turn a
given module semistable:

Definition 3.2. The stability space of an A-module M is

D(M) = {θ ∈ Rn : M is θ-semistable}.

It is clear from the above definitions that D(M) is a cone given by intersections
of hyperplanes in Rn. We say the stability space D(M) of M is a wall when D(M)
has codimension one. We refer in this case to D(M) as the wall defined by M .
Not every θ belongs to the stability space D(M) for some nonzero module M , for
instance the vector θ = (1, . . . , 1) is never orthogonal to the dimension vector of a
non-zero module. More generally, none of the vectors having all strictly positive or
all strictly negative entries is orthogonal to any dimension vector. This leads to the
following definition.
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D(S(1))

D(S(1))

D(S(2))

D(P (1))

D(S(2))

Figure 1: Wall and chamber structure for A2

Definition 3.3. Let

R = Rn \
⋃

M∈modA

D(M)

denote the maximal open set of θ having no θ-semistable non-zero modules. Then
a connected component C of R is called a chamber.

We illustrate this wall and chamber structure by the following example.

Example 3.4. Consider the path algebra A2 = kQ of the quiver Q = 1 // 2 . Its
Auslander-Reiten quiver is as follows:

S(2)

P (1)

S(1)

The wall and chamber structure of A2 is illustrated in Figure 1.

Note that, in general there may be infinitely many walls that can even form
dense regions in Rn. We refer to the examples in [33], the example 1.3 in [8], and
the figures in [17], the latter being formulated in the language of Schur roots. It
is observed in [28, 34] that the dimension vector of a θ-stable module is a brick in
modA for every θ ∈ Rn.
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3.2 The simplicial complex of τ-rigid pairs

We describe in this subsection the simplicial complex defined by Demonet, Iyama
and Jasso in [15]. We start by recalling the notion of g-vectors first introduced by
Dehy and Keller in [14] and later adapted to module categories by Adachi, Iyama
and Reiten in [1].

Definition 3.5. Let M be an A-module. Choose the minimal projective presenta-
tion

P1 −→ P0 −→ M −→ 0

of M , where P0 =
n
⊕

i=1

P (i)ci and P1 =
n
⊕

i=1

P (i)c
′
i . Then the g-vector of M is defined

as
gM = (c1 − c′1, c2 − c′2, . . . , cn − c′n).

The g-vector of a τ -rigid pair (M,P ) is defined as gM − gP .

Remark 3.6. Note that the canonical basis of Zn correspond to

{gP (1), . . . , gP (n)}

where A = P (1)⊕ · · · ⊕P (n) is the decomposition of A as a sum of indecomposable
projective A-modules.

The following two results give important properties of the g-vectors of τ -rigid
and τ -tilting pairs. The first of them extends the previous remark to all τ -tilting
pairs.

Theorem 3.7. [1, Theorem 5.1] Let (M,P ) be a τ-tilting pair, and denote the

indecomposable summands as M =
⊕k

i=1 Mi and P =
⊕n

j=k+1 Pj . Then the set

{gM1 , . . . , gMk ,−gPk+1, . . . ,−gPn}

forms a basis for Zn.

Theorem 3.8. [1, Theorem 5.5] Let M and N be two τ-rigid A-modules. Then
gM = gN if and only if M is isomorphic to N .

The following result of Auslander and Reiten [4] yields a homological interpreta-
tion for the inner product of the g-vector of a module M with the dimension vector
[N ] of a module N . For the sake of simplicity, we abbreviate dimk(HomA(M,N))
by homA(M,N).

Theorem 3.9 ([4], Theorem 1.4.(a)). Let M and N be modules over the algebra A.
Then we have

〈gM , [N ]〉 = homA(M,N)− homA(N, τAM)

The following formula is an application of [4, Theorem 1.4] to τ -rigid pairs. It
plays a central role in the remaining part of the paper.

Corollary 3.10. Let (M,P ) be a τ-rigid pair and N be an A-module. Then

〈gM − gP , [N ]〉 = homA(M,N)− homA(N, τAM)− homA(P,N).

Proof. It suffices to apply Theorem 3.9 twice and notice that τP = 0.
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Remark 3.11. Theorem 3.9 shows that for a τ -tilting module M of projective dimen-
sion at most one the inner product 〈gM , [N ]〉 coincides with the Euler-Ringel form
evaluated at the classes [M ], [N ], which is also the skew-symmetric form considered
by Bridgeland in [8].

In the next subsection we will show how the abstract simplicial complex of τ -
tilting pairs introduced in [15] is closely related to the support of the scattering
diagrams introduced in [8]. In order to do that, we need to introduce a piece of
notation.

For a set of linearly independent vectors L = {v1, . . . , vt} in Rn, we consider the
polyhedral cone CL of L as

CL =

{

t
∑

i=1

αivi : αi ≥ 0 for every 1 ≤ i ≤ t

}

.

Its interior is

C
o

L
=

{

t
∑

i=1

αivi : αi > 0 for every 1 ≤ i ≤ t

}

.

Since L is a linearly independent set, the coefficients αi of a vector v =
t
∑

i=1

αivi in

CL are uniquely determined by v, and in particular all of them are non-negative.

Consider now a τ -rigid pair (M,P ) where M =
k
⊕

i=1

Mi and P =
t
⊕

j=k+1

Pj are the

decomposition of M and P as sums of indecomposable modules, respectively. By
Theorem 3.7, their g-vectors are linearly independent, and we consider the polyhe-
dral cone C(M,P ) given by the set of vectors L = {gM1 , . . . , gMk ,−gPk+1, . . . ,−gPt}:

C(M,P ) =







k
∑

i=1

αig
Mi −

t
∑

j=k+1

αjg
Pj : αi ≥ 0 for every 1 ≤ i ≤ t







.

The polyhedral fan of A studied in [15] is the collection of cones C(M,P ). The τ -
tilting pairs yield the n-dimensional cones, which are separated by facets (cones of
codimension one), which are given by the almost τ -tilting pairs. For any τ -rigid

pair (M,P ), the vector α(M,P ) =
k
∑

i=1

αig
Mi −

t
∑

j=k+1

αjg
Pj in C(M,P ) has uniquely

determined non-negative coefficients αi, αj . This yields a linear form on Rn defined
by

〈α(M,P ), [N ])〉 =

k
∑

i=1

αihom(Mi, N)−

k
∑

i=1

αihom(N, τMi)−

t
∑

j=k+1

αjhom(Pj , N).

3.3 From τ-tilting pairs to chambers

We show in this subsection how the polyhedral cone defined by g-vectors can be
embedded into the wall and chamber structure of a given algebra.
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Lemma 3.12. Let (M,P ) be a τ-rigid pair and let α(M,P ) ∈ C(M,P ) be in the cone
defined by (M,P ). Then for every N ∈ modA, the trace tN of N in FacM satisfies

〈α(M,P ), [tN ])〉 ≥ 0.

Moreover the inequality is strict if tN 6= 0 and α(M,P ) lies in the interior C
o

(M,P )
.

Proof. Consider the short exact sequence

0 → tN → N → N/tN → 0

with tN ∈ FacM and N/tN ∈ M⊥. Assuming there exists a non-zero morphism
f : tN → τM from tN to τM , we could compose f with an epimorphism p :
M l → tN from some M l to tN and create a non-zero element g ∈ HomA(M, τM),
contradicting the assumption that M is τ -rigid. Consequently hom(tN, τM) = 0.

Likewise, any morphism f : P → tN factors by projectivity of P through some
epimorphism p : M l → tN . Therefore f = 0 because HomA(P,M) = 0 and thus
homA(P, tN) = 0. This yields

〈α(M,P ), [tN ])〉 =
k

∑

i=1

αihom(Mi, tN)−
k

∑

i=1

αihom(tN, τMi)−
t

∑

j=k+1

αjhom(Pj , tN)

=

k
∑

i=1

αihom(Mi, tN) ≥ 0 .

Moreover, α(M,P ) lies in the interior C
o

(M,P )
precisely when all αi > 0, and tN 6= 0

means that some hom(Mi, tN) is non-zero, since tN belongs to FacM . Thus the
inequality is strict in this case.

Proposition 3.13. Let (M,P ) be a τ-rigid pair and let α(M,P ) ∈ C
o

(M,P )
. Then

N is an α(M,P )-semistable module if and only if N ∈ M⊥ ∩ ⊥(τM) ∩ P⊥.

Proof. Suppose that N ∈ M⊥ ∩ ⊥(τM) ∩ P⊥. Then

hom(M,N) = hom(N, τAM) = hom(P,N) = 0.

Therefore
〈α(M,P ), [N ]〉 = 0

by Corollary 3.10. Moreover, for every submodule L of N we have that hom(M,L) =
0 because hom(M,N) = 0. Likewise hom(P,L) = 0. Then

〈α(M,P ), [L]〉 ≤ −

k
∑

i=1

αihom(L, τAMi) ≤ 0.

Hence N is an α(M,P )-semistable module.
Conversely, suppose that N is an α(M,P )-semistable module, thus

〈α(M,P ), [L]〉 ≤ 0
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for every submodule L of N . In particular

〈α(M,P ), [tN ]〉 ≤ 0

where tN is the trace of N in FacM . But lemma 3.12 implies

〈α(M,P ), [tN ]〉 > 0

when α(M,P ) ∈ C
o

(M,P )
and tN is non-zero, thus we conclude tN = 0. This yields

N ∼= N/tN ∈ M⊥. Moreover, from

0 = 〈α(M,P ), [N ]〉 =

k
∑

i=1

αihom(Mi, N)−

k
∑

i=1

αihom(N, τMi)−

t
∑

j=k+1

αjhom(Pj , N)

we conclude hom(N, τM) = hom(P,N) = 0 since hom(M,N) = 0 and all αi, αj > 0.
Therefore N ∈ M⊥ ∩ ⊥(τM) ∩ P⊥.

The previous result provides a geometric proof for the fact that

M⊥ ∩ ⊥(τM) ∩ P⊥ = 0

when (M,P ) is a τ -tilting pair: We know in this case that the spanning vectors of the
cone C(M,P ) form a basis for Rn, and thus only the zero vector can be orthogonal to
every vector α(M,P ) ∈ C(M,P ). In other words, there is no α(M,P )-stable module.

In general, it is shown in [27] that the full subcategory M⊥ ∩⊥(τM)∩P⊥ of modA
is equivalent to the category of modules modC(M,P ) where the algebra C(M,P ) is
obtained as endomorphism ring of a module M ′ over A such that (M ⊕ M ′, P ) is
τ -tilting, see Theorem 2.5. This allows us to give in the following result the precise
number of α(M,P )-stable modules when (M,P ) is a τ -rigid pair:

Theorem 3.14. Let (M,P ) be a τ-rigid pair and let α(M,P ) be in the interior
C
o

(M,P )
of the cone associated with (M,P ). Then the category of α(M,P )-semistable

modules is equivalent to the module category of the algebra C(M,P ). Moreover there
are exactly rk(K0(A)) − |M | − |P | nonisomorphic α(M,P )-stable modules.

Proof. The first part of the statement follows directly from proposition 3.13 and
Theorem 2.5. Note that rk(K0(C(M,P ))) = rk(K0(A)) − |M | − |P | by construc-
tion of C(M,P ) as explained in section 2. Moreover, the functor F of proposition
2.5 induces a bijection between the isomorphism classes of α(M,P )-stable modules
and the isomorphism classes of simple C(M,P )-modules. Therefore the number of
nonisomorphic α(M,P )-stable modules coincides with the rank of K0(C(M,P )) the
Grothendieck group of modC(M,P ), finishing the proof.

We can now use Theorem 3.14 to relate τ -tilting pairs to chambers:

Proposition 3.15. Let A be a finite-dimensional k-algebra. Then the interior
C
o

(M,P )
of the positive cone associated with a τ-tilting pair (M,P ) defines a chamber

in the wall and chamber structure of A.

Proof. Let (M,P ) be a τ -tilting pair and let α(M,P ) ∈ C
o

(M,P )
. As we discussed

before Theorem 3.14, this implies that the category of α(M,P )-semistable mod-
ules consist only of the zero object. Therefore α(M,P ) belongs to a chamber C.

11



Moreover, every vector in C
o

(M,P )
belongs to the same chamber C because C

o

(M,P )
is

connected. Thus C
o

(M,P )
⊂ C.

For every non-zero vector β(M,P ) in the boundary

∂C(M,P ) = C(M,P )\C
o

(M,P )

of C(M,P ) there exist indices 1 ≤ i ≤ n such that βi = 0. That is, β(M,P ) lies in
a smaller-dimensional cone defined by a τ -rigid pair (M ′, P ′) obtained from (M,P )
by removing summands corresponding to these indices. If every entry of β(M,P ) is
zero, the category of β(M,P )-semistable modules coincides with modA. Otherwise,
some βj is non-zero. In that case, the vector β(M,P ) lies in the interior of a suitable
cone C

o

(M ′,P ′)
. Hence, Theorem 3.14 yields the existence of a β(M,P )-stable module.

This implies C
o

(M,P )
= C.

In view of the previous result, the interior of the positive cone C(M,P ) of a τ -
tilting pair (M,P ) will be referred to as the chamber induced by (M,P ) and denoted
by C(M,P ) := C

o

(M,P )
.

Another immediate consequence of theorem 3.14 is the following.

Corollary 3.16. Let (M,P ) be an almost τ-tilting pair. Then C(M,P ) has codimen-
sion 1 and is included in a wall of the wall and chamber structure of modA.

Proof. The cone C(M,P ) of an almost τ -tilting pair is formed by n − 1 linearly in-
dependent vectors, thus it has codimension 1. Theorem 3.14 guarantees that every
vector α(M,P ) in the interior of C(M,P ) admits an α(M,P )-stable module, thus
intersects no chamber and must be contained in a wall.

We would like to point out that the facets C(M,P ) of the polyhedral fan need not
be walls in the wall and chamber structure: In general one wall D(N) can be made
of more than one facet, see for example the wall D(S(2)) in Figure 2. While the
corollary above shows that the positive cones of almost τ -tilting pairs are included
in a wall D(N), it gives little information about the module N defining that wall.
A method to construct this module explicitly follows from the theory developed in
[1]:

Proposition 3.17. Let (M,P ) be an almost τ-tilting pair. Then C(M,P ) is included
in the wall D(N), where N is constructed as follows: Let (M1, P1) and (M2, P2) be
the two τ-tilting pairs containing M and P as a direct factor. Order them such that
FacM1 ⊂ FacM2, and write M2 = M ′ ⊕M for some τ-rigid module M ′. Then N is
the cokernel of the right addM -approximation of M ′.

Proof. Recall from section 2 that there exists an indecomposable τ -rigid module M ′

such that M2 = M ′ ⊕M . By Lemma 2.3, the short exact sequence induced by the
right add M -approximation is as follows, where tM ′ is the trace of M ′ in Fac M :

0 → tM ′ i
→ M ′ p

→ N → 0

By the properties of torsion pairs we have HomA(M,N) = 0. On the other hand,
HomA(P,M

′) = HomA(M
′, τM) = 0 because (M ⊕M ′, P ) is a τ -tilting pair. The

projectivity of P implies that HomA(P,N) = 0. Moreover, any morphism f : N →
τM induces a morphism fp : M ′ → τM , hence HomA(N, τM) = 0.

12



Since N belongs to M⊥ ∩ ⊥(τM) ∩ P⊥, we know that N is an α(M,P )-stable
module. Hence the positive cone induced by the almost τ -tilting pair (M,P ) is
included in the stability space D(N). Moreover, the positive cone has codimension
1, implying that D(N) is actually a wall.

As a corollary, we get the following result, which completely describes the cham-
ber induced by a τ -tilting pair (M,P ).

Corollary 3.18. Let (M,P ) be a τ-tilting pair. Then (M,P ) induces a chamber
C(M,P ) having exactly n walls {D(N1), . . . ,D(Nn)}. The stable modules {N1, . . . , Nn}
can be obtained from the n almost τ-tilting pairs contained in (M,P ) as described
in Proposition 3.17.

Proof. Suppose that M =
⊕k

i=1 Mi and P =
⊕n

j=k+1 Pj . The fact that (M,P )
induces a chamber follows from Proposition 3.15. Moreover, we know from Proposi-
tion 3.17 that each of the n almost τ -tilting pairs that are direct summand of (M,P )
are included in a wall. Finally, the fact that the D(Ni) are pairwise distinct follows
from the fact that the set of g-vectors {gM1 , . . . , gMk ,−gPk+1, . . . ,−gPt} forms a
basis, as shown in [1, Theorem 5.1].

Remark 3.19. Not every wall is generated by the positive cone of some almost
τ -tilting pair. For instance, take the hereditary algebra of the Kronecker quiver

1 //// 2 and consider the wall D
(

1
2

)

= {λ(1,−1) : λ > 0}. In this case there is

no τ -rigid module M such that gM = (1,−1). Note that the wall D has no adja-
cent chamber, but rather is a limit of walls given by preprojective (or preinjective)
modules.

Also the number of positive cones defined by almost τ -tilting pairs included in

a given wall is not constant. For instance D

(

1
22

)

=

{

λ

(

g
11
222

)

: λ ∈ R≥0

}

while

D(2) =

{

λ

(

g
1
22

)

: λ ∈ R≥0

}

∪

{

λ

(

−g
1
22

)

: λ ∈ R≥0

}

The next example is intended to be an illustration of our previous propositions.

Example 3.20. Consider the wall and chamber structure of the algebra A2 as we did
in Example 3.4. In Figure 2 we can see how positive cones of τ -tilting pairs coincide
with chambers and how positive cones of almost τ -tilting pairs are included in walls
of the wall and chamber structure of A2.

The previous example is a particular case of a more general phenomenon. Fol-
lowing the terminology introduced in [15], we say that an algebra A is τ-tilting finite
if there are only finitely many τ -tilting pairs in modA. In [15, Theorem 5.4], De-
monet, Iyama and Jasso show that the simplicial complex of a τ -tilting finite algebra
is homeomorphic to the (n−1)-dimensional sphere. Therefore we have the following
corollary from the results of this subsection.

Corollary 3.21. Let A be a τ-tilting finite algebra. Then the g-vectors of inde-
composable τ-rigid pairs determine completely the wall and chamber structure of
A.

We conjecture that the result of the corollary holds true for more general cases,
maybe all finite-dimensional algebras. It holds for hereditary algebras of tame type,
since the union of the chambers coming from silting objects has full measure, see

13



C(P (1)⊕P (2),0)C(P (2),P (1))

C(P (1)⊕S(1),0)

C(S(1),P (2))C(0,P (1)⊕P (2))

D(S(1))

D(S(1))

D(S(2))

D(P (1))

D(S(2))

C(P (1),0)

C(P (2),0)

C(0,P (1))

C(0,P (2)) C(S(1),0)

Figure 2: Wall and chamber structure for A2

[22, Theorem 5.1(4)]. Moreover, the work of [10] might extend the conjecture to
cluster-tilted algebras of tame type.

Note that the union of the chambers coming from silting objects has full measure
precisely when the closure of the set of walls has zero measure. This leads to the
following conjecture (which holds for tame quivers by Hille’s result [22]):

Conjecture 3.22. If an algebra is tame, then the closure of the union of all walls
has measure zero.

Since some wild algebras may have the same property, this raises the question of
what it means for an algebra to be τ−tilting tame. We suggest the following more
general definition:

Definition 3.23. We say that an algebra is τ -tilting tame if the closure of the union
of all walls has measure zero.

It would be interesting to characterize these algebras algebraically.

3.4 Torsion classes associated to chambers

As we proved in the last subsection, every τ -tilting pair (M,P ) defines a chamber
C(M,P ) in the wall and chamber structure. In this subsection we associate to a given
chamber C a torsion class TC and we show that TC(M,P )

= FacM if the chamber
C(M,P ) is defined by a τ -tilting pair (M,P ).

14



Recall that Bridgeland associated in [8, Lemma 6.6] a torsion class Tθ and a
torsion free class Fθ to every θ ∈ Rn as follows.

Tθ = {M ∈ modA : 〈θ,N〉 ≥ 0 for every quotient N of M}

Fθ = {M ∈ modA : 〈θ, L〉 ≤ 0 for every submodule L of M}

As a direct consequence of these definitions is the following result.

Proposition 3.24. Let A be an algebra and θ ∈ Rn. Then the category of θ-
semistable modules is a wide subcategory of modA, i.e., is closed under kernels,
cokernels and extensions.

Proof. Let θ ∈ Rn. Then the linearity of the dot product implies that

Tθ ∩ Fθ = {M ∈ modA : 〈θ,M〉 = 0 and 〈θ, L〉 ≤ 0 for every submodule L of M}.

By definition 3.1, we have that Tθ ∩ Fθ is the category of θ-semistable modules.
Hence the category of θ-semistable modules is closed under extensions because both
Tθ and Fθ are closed under extensions.

Now we prove that its is closed under kernels and cokernels. Let M1 and M2 two
θ-semistable modules and let f : M1 → M2 be a morphism of A-modules. If f is
zero or an isomorphism, the result follows at once. Otherwise, consider the following
short exact sequences in modA

0 → ker f → M1 → imf → 0

0 → imf → M2 → cokerf → 0.

Given that M1 is θ-semistable we have that 〈θ, imf〉 ≥ 〈θ, imf〉 = 0. Meanwhile,
〈θ, imf〉 ≤ 〈θ,M2〉 = 0 because M2 is θ-semistable. Consequently 〈θ, imf〉 = 0.
The linearity of the function 〈θ,−〉 : K0(A) ⊗ Rn → R yields 〈θ, ker f〉 = 0 and
〈θ, cokerf〉 = 0.

Moreover, every submodule L of ker f is a submodule of M1, thus 〈θ, L〉 ≤
〈θ,M1〉 = 0. Therefore ker f is θ-semistable. A dual argument shows that cokerf is
also θ-semistable.

As a corollary of the previous result and lemma 3.13 we have the following.

Corollary 3.25. Let (M,P ) be a τ-rigid pair. Then M⊥ ∩ ⊥τM ∩ P⊥ is a wide
subcategory of modA.

Proof. Let (M,P ) be a τ -rigid pair and let α(M,P ) ∈ C
o

(
M,P ). Then lemma 3.13

implies that M⊥ ∩ ⊥τM ∩ P⊥ coincides with the category of α(M,P )-semistable
modules. Moreover, proposition 3.24 implies that M⊥ ∩ ⊥τM ∩ P⊥ is a wide sub-
category of modA.

Now we use the notion of Tθ to define a torsion class for a given chamber.

Lemma 3.26. Let C be a chamber and consider the intersection

TC =
⋂

θ∈C

Tθ

of all Tθ when θ is in C. Then TC is a torsion class.
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Proof. This follows directly from [8, Lemma 6.6] and the fact that an arbitrary
intersection of torsion classes is again a torsion class.

Proposition 3.27. Let (M,P ) be a τ-tilting pair and C(M,P ) its induced chamber.
Then TC(M,P )

= FacM .

Proof. We first show that TC(M,P )
⊆ FacM . The torsion pair (FacM,M⊥) yields

for any N ∈ modA the canonical short exact sequence

0 → tN → N → N/tN → 0

with tN ∈ FacM . The dual of Lemma 3.12 states that 〈θ,N/tN〉 ≤ 0 for every
θ ∈ C(M,P ). Hence N ∈ TC(M,P )

implies that N/tN = 0, that is, N ∈ FacM .
Conversely, if N ∈ FacM , every quotient N ′ of N belongs to FacM because

FacM is a torsion class. Therefore Lemma 3.12 gives that 〈θ,N ′〉 > 0 for every
θ ∈ C(M,P ) and every N ′ 6= 0. Hence, N ∈ Tθ for every θ ∈ C(M,P ), and therefore

N ∈
⋂

θ∈C(M,P)

Tθ = TC(M,P )
.

Remark 3.28. Note that, if a chamber C is induced by a τ -tilting pair (M,P ), then
Tθ = FacM for every θ ∈ C by Theorem 3.14.

Following the terminology introduced in [15] we say that an algebra A is τ-tilting
finite if the number of indecomposable τ -rigid modules is finite (up to isomorphism).

Corollary 3.29. Let A be an algebra. Then the function C mapping a τ-tilting pair
(M,P ) to its corresponding chamber C(M,P ) is injective. Moreover, if A is τ-tilting
finite then C is also surjective.

Proof. This follows directly from the fact that C(M,P ) = FacM and [1, Theorem
2.7]. The moreover part follows from [15, Theorem 1.5]

3.5 A detailed example

During this section, we have illustrated each of our results using the hereditary
algebra of type A2. The simplicity of the module category of this algebra is handy
to provide simple (counter)examples. However, at the same time, its simplicity also
can be misleading when trying to understand the general picture. We therefore
finish this section giving a detailed example of a slightly bigger algebra.

Example 3.30. Let A be the path algebra of the quiver

2

��❃
❃❃

❃❃
❃❃

❃

1

@@��������
3oo

quotiented by the third power of its Jacobson radical. The Auslander-Reiten quiver
of A can be seen in figure 3. Note that every module is represented by its Loewy
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2
3

1
2

3
1

2
3

1
2
3

3
1
2

2
3
1

Figure 3: The Auslander-Reiten quiver of A

series and both copies of 2
3 should be identified, so the Auslander-Reiten quiver of A

has the shape of a cylinder.
Studying the τ -tilting theory of A, is easy to see that there are 12 indecomposable

τ -rigid pairs in modA, since every indecomposable A-module is τ -rigid. What is
less obvious is that this algebra has 20 τ -tilting pairs. In table 1 we give a complete
list of the τ -tilting pairs with their respective basis of g-vectors. Finally, in Figure 4,
one can find the stereographic projection (from the point (1, 1, 1)) of the intersection
of the unit sphere with the wall and chamber structure of A. The g-vectors of the
indecomposable τ -rigid pairs appear as vertices in Figure 4. They are visualized in
three dimensions in [39, Figure 1]. The chambers are labelled Ci where the subindex
i corresponds to the row number of the corresponding τ -tilting pair in Table 1. The
stability space of each indecomposable module has a different color, while the g-

vectors are written in red. Note that the stability spaces D

(

1
2
3

)

, D

(

2
3
1

)

and D

(

3
1
2

)

of
1
2
3
,

2
3
1

and
3
1
2
, respectively, fill up the plane orthogonal to the vector (1, 1, 1). This

plane appears as the circle in Figure 4 with three colors.
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Chamber τ -tilting pair g-vectors

1
(

1
2
3
⊕

2
3
1
⊕

3
1
2
, 0
) {(

1
0
0

)

,
(

0
1
0

)

,
(

0
0
1

)}

2
(

1
2
3
⊕

2
3
1
⊕ 2, 0

) {(

1
0
0

)

,
(

0
1
0

)

,
(

0
1
−1

)}

3
(

1
2
3
⊕

3
1
2
⊕ 1, 0

) {(

1
0
0

)

,
(

0
0
1

)

,
(

1
−1
0

)}

4
(

2
3
1
⊕

3
1
2
⊕ 3, 0

) {(

0
1
0

)

,
(

0
0
1

)

,
(

−1
0
1

)}

5
(

1
2
3
⊕ 1

2 ⊕ 2, 0
) {(

1
0
0

)

,
(

1
0
−1

)

,
(

0
1
−1

)}

6
(

1
2
3
⊕ 1

2 ⊕ 1, 0
) {(

1
0
0

)

,
(

1
0
−1

)

,
(

1
−1
0

)}

7
(

2
3
1
⊕ 2

3 ⊕ 3, 0
) {(

0
1
0

)

,
(

−1
1
0

)

,
(

−1
0
1

)}

8
(

2
3
1
⊕ 2

3 ⊕ 2, 0
) {(

0
1
0

)

,
(

−1
1
0

)

,
(

0
1
−1

)}

9
(

3
1
2
⊕ 3

1 ⊕ 1, 0
) {(

0
0
1

)

,
(

0
−1
1

)

,
(

1
−1
0

)}

10
(

3
1
2
⊕ 3

1 ⊕ 3, 0
) {(

0
0
1

)

,
(

0
−1
1

)

,
(

−1
0
1

)}

11
(

3
1 ⊕ 1,

2
3
1

) {(

0
−1
1

)

,
(

1
−1
0

)

,
(

0
−1
0

)}

12
(

3
1 ⊕ 3,

2
3
1

) {(

0
−1
1

)

,
(

−1
0
1

)

,
(

0
−1
0

)}

13
(

2
3 ⊕ 3,

1
2
3

) {(

−1
1
0

)

,
(

−1
0
1

)

,
(

−1
0
0

)}

14
(

2
3 ⊕ 2,

1
2
3

) {(

−1
1
0

)

,
(

0
1
−1

)

,
(

−1
0
0

)}

15
(

1
2 ⊕ 2,

3
1
2

) {(

1
0
−1

)

,
(

0
1
−1

)

,
(

0
0
−1

)}

16
(

1
2 ⊕ 1,

3
1
2

) {(

1
0
−1

)

,
(

1
−1
0

)

,
(

0
0
−1

)}

17
(

3,
1
2
3
⊕

3
1
2

) {(

−1
0
1

)

,
(

0
−1
0

)

,
(

−1
0
0

)}

18
(

2,
1
2
3
⊕

3
1
2

) {(

0
1
−1

)

,
(

−1
0
0

)

,
(

0
0
−1

)}

19
(

1,
2
3
1
⊕

3
1
2

) {(

1
−1
0

)

,
(

0
−1
0

)

,
(

0
0
−1

)}

20
(

0,
1
2
3
⊕

2
3
1
⊕

3
1
2

) {(

−1
0
0

)

,
(

0
−1
0

)

,
(

0
0
−1

)}

Table 1: The list of τ -tilting pairs in modA
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1
2
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D

(

3
1

)

D

(

2
3

)

D

(

1
2
3

)

D

(

2
3
1

)

D

(

3
1
2

)

C1

C2

C3

C4

C5

C6

C7

C8

C9C10
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C12

C13

C14
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C16

C17

C18

C19C20

Figure 4: The stereographic projection of the wall and chamber structure of A
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4 D-generic paths in the wall and chamber structure

of an algebra

In this section we study paths in the wall and chamber structure of an algebra. Using
the results of the previous section, we show that every maximal green sequence is
induced by a path the wall and chamber structure. As an application we show that
certain algebras do not admit maximal green sequences in their module category.

4.1 Mutations and D-generic paths

The wall and chamber structure of an algebra is part of the scattering diagram of
the algebra. Even if there are multiple scattering diagrams for a given algebra, in
general one is interested only in those which are consistent. The precise definition
of consistency of scattering diagrams is beyond the scope this paper, but it relies
heavily on a particular class of paths.

There are multiple versions of paths defined in the literature, such as the broken
lines in [21] or the straight lines considered by Igusa in [24]. We use here the D-
generic paths defined by Bridgeland in [8] as follows.

Definition 4.1. [8, §2.7] We say that a smooth path γ : [0, 1] → Rn is a D-generic
path if:

1. γ(0) and γ(1) do not belong to the stability space D(M) of a nonzero A-module
M , that is, they are located inside some chambers;

2. If γ(t) belongs to the intersection D(M) ∩ D(N) of two walls, then the di-
mension vector [M ] of M is a scalar multiple of the dimension vector [N ] of
N ;

3. whenever γ(t) is in D(M), then 〈γ′(t), [M ]〉 6= 0.

In other words, a smooth path is D-generic if crosses one wall at a time and the
crossing is transversal.

Note that in Definition 4.1.3 we only ask that 〈γ′(t), [M ]〉 6= 0 for each t such
that γ(t) ∈ D(M) for some nonzero A-module M . We say more precisely that a
crossing is green if 〈γ′(t), [M ]〉 > 0. Otherwise we say that the crossing is red. A
D-generic path is called green if all its crossings are green.

Consider now a set {(M0, P0), (M1, P1), . . . , (Mr, Pr)} of τ -tilting pairs such that
(Mi, Pi) is a mutation of (Mi−1, Pi−1). By Corollary 3.18, each (Mi, Pi) defines a
chamber C(Mi,Pi) in the wall and chamber structure for A. Moreover, Proposition
3.17 ensures that consecutive chambers share a wall. This allows to construct a
piecewise linear path γ : [0, 1] → Rn going in straight lines from the central element
gMi − gPi of the cone C(Mi,Pi) to the next one. The precise definition in parametric
form is as follows:

γ(t) = (1− rt+ i)(gMi − gPi)− (rt − i)(gMi+1 − gPi+1) if t ∈

[

i

r
,
i+ 1

r

]

.

By construction, γ
(

i
r

)

= gMi − gPi ∈ C(Mi,Pi) for every 0 ≤ i ≤ r. In Theorem
4.3, one of the main results of this paper, we show that every finite sequence of
mutations is represented by a D-generic path which is closely related to the path γ
that we just constructed. We first consider the case of one mutation:
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Lemma 4.2. Let (M0, P0) and (M1, P1) be two τ-tilting pairs for the algebra A such
that one is a mutation of the other. Then the path γ : [0, 1] → Rn defined by

γ(t) = (1 − t)(gM0 − gP0) + t(gM1 − gP1) for t ∈ [0, 1]

is a D-generic path in the wall and chamber structure of A that starts in C(M0,P0),
finishes in C(M1,P1) and crosses only one wall. Moreover the crossing is green if and
only if M1 is a left mutation of M0, that is, FacM0 ⊂ FacM1.

Proof. Of course, the point γ(0) = gM0 − gP0 is given by the coordinate vector
α(M0, P0) = (1, . . . , 1) in the cone C(M0,P0) and thus belongs to the interior, likewise
for γ(1) = gM1−gP1 . Thus the property (1) in Definition 4.1 follows from Proposition
3.15.

Because (M1, P1) is a mutation of (M0, P0), there is an almost τ -tilting pair
(M,P ) such that M is a direct factor of M0 and M1 while P is a direct summand of
P0 and P1. We have that C(M0,P0) and C(M1,P1) are neighboring chambers separated
only by C(M,P ), which is contained in the a wall D(N) where N is constructed in
proposition 3.17. Moreover Theorem 3.14 implies the existence of a unique α(M,P )-
stable module S. Hence N and every other module N ′ in the abelian category of
α(M,P )-semistable module has a dimension vector which is a scalar multiple of
S. Therefore, if γ crosses another wall D(N ′), then N ′ is an α(M,P )-semistable
module, hence [N ′] is a scalar multiple of [N ]. This shows condition (2) in Definition
4.1.

As the almost τ -tilting pair (M,P ) is a direct factor of (M0, P0) and (M1, P1),
we can write the g-vectors gM0 − gP0 and gM1 − gP1 of the τ -tilting pairs (M0, P0)
and (M1, P1) as

gM0 − gP0 = (gM − gP ) + g′ (1)

and

gM1 − gP1 = (gM − gP ) + g′′, (2)

where g′ and g′′ are the g-vectors of the complements of (M,P ) in (M0, P0) and
(M1, P1), respectively. This yields the following reformulation of the function γ:

γ(t) = (1 − t)g′ + tg′′ + (gM − gP ) (3)

We therefore have γ′(t) = −g′ + g′′ for every t ∈ [0, 1]. It remains to show that

〈γ′(t), [N ]〉 = 〈−g′ + g′′, [N ]〉 6= 0

where N is constructed in proposition 3.17.
Suppose that FacM0 ⊂ FacM1, then we know that FacM = FacM0. Thus,

we have that (T0,F0) = (FacM,M⊥) and (T1,F1) = (⊥(τM) ∩ P⊥,F1) are the
torsion pairs associated to (M0, P0) and (M1, P1), respectively. Moreover, we have
that N ∈ M⊥∩⊥(τM)∩P⊥ which is contained in M⊥ = F0 and, at the same time,
is contained in ⊥(τM) ∩ P⊥ = T1. Hence, Lemma 3.12 implies the following.

0 > 〈gM0 − gP0 , [N ]〉 = 〈g′, [N ]〉+ 〈gM − gP , [N ]〉 = 〈g′, [N ]〉 (4)

0 < 〈gM1 − gP1 , [N ]〉 = 〈g′′, [N ]〉+ 〈gM − gP , [N ]〉 = 〈g′′, [N ]〉 (5)
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Therefore we have that

〈γ′(t), [N ]〉 = 〈−g′ + g′′, [N ]〉 = 〈−g′, [N ]〉+ 〈g′′, [N ]〉 > 0,

which means that the crossing is green. Using the same arguments one shows that
if FacM = FacM1, then the crossing is red. This completes the proof.

Now we are able to prove the main result of this subsection.

Theorem 4.3. Let {(M0, P0), (M1, P1), . . . , (Mr, Pr)} be a set of τ-tilting pairs such
that for every i ≥ 1, (Mi, Pi) is a mutation of (Mi−1, Pi−1). Then there exists a
D-generic path γ̃ : [0, 1] → Rn with exactly r points {t1, . . . , tr} in [0, 1] where γ̃(ti)
belongs to D(Ni) for some nonzero module Ni and γ̃(t) belong to C(Mi,Pi) for every
t in the interval (ti, ti+1).

Proof. Consider the path γ : [0, 1] → Rn defined as before by

γ(t) = (1− rt+ i)(gMi − gPi)− (rt − i)(gMi+1 − gPi+1) if t ∈

[

i

r
,
i+ 1

r

]

.

Of course, the function γ restricted to the interval [i/r, (i+ 1)/r] coincides with
the path considered in Lemma 4.2. Therefore γ crosses exactly r walls verifying
Definition 4.1.1 4.1.2 and 4.1.3. But γ is not smooth and thus is not a D-generic
path.

Note however that every chamber C(Mi,Pi) is an open set in Rn with the euclidean
topology. Therefore, for every 1 ≤ i ≤ r − 1 there is an ǫi > 0 such that the sphere
B(gMi − gPi , ǫi) of center gMi − gPi and radius ǫi is contained in C(Mi,Pi). Choose
a smooth path γ̃ : [0, 1] → Rn such that γ(t) = γ̃(t) when γ(t) does not belong to
B(gMi − gPi , ǫi) for every i. Then γ̃ crosses a wall exactly in the same points as γ.
Therefore γ̃ is a D-generic path crossing exactly r walls. This finishes the proof.

Given an algebra A we can always construct the following graph associated to
the wall and chamber structure of A.

Definition 4.4. Let A be an algebra. We define the quiver GA as follows.

• The vertices of GA correspond to the chambers in the wall and chamber struc-
ture of A.

• There is an arrow from the vertex associated to C1 to the vertex associated to
C2 if TC2 ( TC1 and there is no torsion class T such that TC2 ( T ( TC1 .

As a immediate consequence of Theorem 4.3 we obtain the following.

Proposition 4.5. Let A be an algebra. Then the exchange graph of τ-tilting pairs
of A is a full subquiver of GA. Moreover both quivers are isomorphic if A is τ-tilting
finite.

Remark 4.6. Suppose that we have two vertices of GA induced by τ -tilting pairs
(M1, P1) and (M2, P2) that are connected by an edge. Then it is easy to see that this
edge corresponds to the cone C(M,P ) generated by the almost τ -tilting pair (M,P )
which is a direct summand of both (M1, P1) and (M2, P2). But theorem 3.14 implies
the existence of a unique α(M,P )-stable module B(M,P ) for every α(M,P ) ∈ C(M,P ).
Moreover B(M,P ) is a brick by [34, Theorem 1] and independent of the choice of
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α(M,P ) ∈ C(M,P ) by construction. Therefore, the previous proposition implies that
GA induces a brick labeling of the edges in the exchange graph of τ -tilting pairs of
modA.

This labeling by bricks appeared independently in [2, 16, 7]. Moreover, based on
the results developed here, the brick labeling was studied further in [38], showing
that dimension vectors of these bricks correspond to the c-vectors of modA.

Conjecture 4.7. The quiver GA is isomorphic to the exchange graph of τ -tilting
pairs for every algebra A.

4.2 Maximal green sequences as D-generic paths

We study in this section maximal green sequences in module categories:

Definition 4.8. A maximal green sequence in modA is a finite sequence of torsion
classes 0 = T0 ( T1 ( · · · ( Tn−1 ( Tr = modA such that for all i ∈ {1, 2, . . . , r},
the existence of a torsion class T satisfying Ti ⊆ T ⊆ Ti+1 implies T = Ti or
T = Ti+1.

As a first result, we provide a characterization of maximal green sequences in
terms of τ -tilting pairs.

Proposition 4.9. Let A be an algebra and

{0} = T0 ( T1 ( · · · ( Tr = modA

be a maximal green sequence in modA. Then there exists a set {(Mi, Pi)}
r
i=0 of

τ-tilting pairs such that FacMi = Ti for all 1 ≤ i ≤ r.

Proof. We construct the τ -tilting pairs (Mi, Pi) such that FacMi = Ti inductively,
starting at T0 = {0}. Of course, setting (M0, P0) = (0, A) provides a τ -tilting pair
with FacM0 = {0}.

Suppose now that we already constructed a τ -tilting pair (Mi, Pi) such that
Ti = FacMi. By definition of a maximal green sequence, we know that there is no
torsion class strictly between Ti = FacMi and Ti+1. Therefore [15, Theorem 3.1]
implies the existence of a τ -tilting pair (Mi+1, Pi+1) such that Ti+i = FacMi+1.

Finally this process will eventually stop given that maximal green sequences
consist only of finitely many torsion classes. This finishes the proof.

As a consequence of Theorem 4.3 and Proposition 4.9 we can give a characteri-
zation of maximal green sequences in module categories in terms of D-generic paths,
which is one of the aims of this work. Remember that one can associate a torsion
class Tθ for every θ ∈ Rn, see section 3.4.

Theorem 4.10. Let A be an algebra and

{0} = T0 ( T1 ( · · · ( Tr = modA

be a maximal green sequence in modA. Then there exist a D-generic path γ : [0, 1] →
Rn such that the following conditions hold:

1. γ crosses exactly r walls at t1 < t2 < · · · < tr;

2. every wall crossing of γ is green;
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3. the torsion class associated to Tγ(t) coincides with some torsion class Tk in the
maximal green sequence for every t ∈ [0, 1];

4. Tγ(t′) is contained in Tγ(t′′) if t′ < t′′.

Proof. Proposition 4.9 yields a set of τ -tilting pairs {(M0, P0), (M1, P1), . . . , (Mr, Pr)}
such that (Mi, Pi) is a left mutation of (Mi−1, Pi−1) and Ti = FacMi. The exis-
tence of a D-generic path γ satisfying condition (1) follows directly from Theorem
4.3. Moreover, since Ti−1 ⊂ Ti, Lemma 4.2 implies that every crossing is green,
which shows condition (2).

Suppose that t is not a point in which γ crosses a wall. Hence, Theorem 4.3
shows that γ(t) belongs to the chamber C(Mi,Pi) for some i. Therefore Proposition
3.27 implies that Tγ(t) = FacMi.

Otherwise, if t = ti is a point in which γ crosses a wall we have that γ(ti) ∈
C(M,P ), where (M,P ) is the only almost τ -tilting pair that is a direct summand
of (Mi−1, Pi−1) and (Mi, Pi). Denote by (Ti−1,Fi−1) and (Ti,Fi) the torsion pairs
associated to (Mi−1, Pi−1) and (Mi, Pi), respectively. Hence Lemma 3.12 implies
that Ti−1 ( Tγ(t). Also, the dual of Lemma 3.12 implies that Fi ( Fγ(t), where
Fγ(t) is the torsion free class associated to γ(t). From these two equations we deduce
that

FacMi−1 ( Tγ(t) ⊂ FacMi,

which implies that Tγ(t) = FacMi by the definition of a maximal green sequence.
This shows condition (3). Finally, (4) is a direct consequence of (3).

Remark 4.11. Note that for the green D-generic path constructed in corollary 4.10
we have γ(0) = −gA ∈ C(0,A) and γ(1) = gA ∈ C(A,0) with Tγ(1) = modA. Lemma
4.2 implies that if we extend γ in order to cross another wall, then this crossing
must be red. Hence, the D-generic paths associated to a maximal green sequence
are the ones passing from −gA to gA via a finite number of green crossings and
which cannot be extended.

We finish the section with theorem 4.14 which shows an example that not every
algebra admits a maximal green sequence. These algebras are related to the cluster
algebra of the one-punctured torus, and have been object of intense studies in the
context of cluster algebras, see for instance [30, Example 35], [32] or [15, Theorem
5.17]. Before stating the theorem, we need some preparatory results.

Lemma 4.12. Let A be an algebra and consider the two trivial τ-tilting pairs (A, 0)
and (0, A). Then every wall in the boundary of C(A,0) or C(0,A) is defined by a simple
A-module.

Proof. We show the result only for the τ -tilting pair (A, 0), the case (0, A) being

analogous. For each 1 ≤ j ≤ n, consider the almost τ -tilting pair
(

⊕

i6=j P (i), 0
)

and the simple module S(j) = P (j)/topP (j). If i 6= j, we have that

〈gP (i), [S(j)]〉 = 〈ei, ej〉 = 0,

where ei and ej represent the i-th and j-th element of the canonical basis of Zn.
Since S(j) does not have any proper submodule, this implies that S(j) is θ-stable for
all θ ∈ C(

⊕
i6=j

P (i),0) and the statement follows from the results in section 3.3.
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Lemma 4.13. Let A be an algebra and I an ideal containing no non-zero idempotent
of A. If N is an A/I-module defining a wall D(N) in the wall and chamber structure
of A/I then D(N) is also a wall in the wall and chamber structure of A.

Proof. Let N be an A/I-module defining a wall DA/I(N) and let θ ∈ DA/I(N).
The submodules of N as a A-module coincide with the submodules of N as an
A/I-submodule, therefore θ(L) ≤ 0 for every submodule L of N as an A-module.
This implies that θ ∈ DA(N). Hence DA(N) is a wall in the wall and chamber
structure of A. The condition that the ideal I contains no non-zero idempotent
of A is only there to guarantee that the Grothendieck groups of A and A/I are
isomorphic, allowing us to compute θ(L) for both cases.

Our last result is a generalization of [31, Theorem 2.3.1].

Theorem 4.14. Let A = kQ/I be an algebra where I is an admissible ideal of kQ
and the quiver Q has exactly three vertices and admits the quiver

2
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1 // // 3
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as a subquiver. Then there is no maximal green sequence in modA.

Proof. We start the proof showing that if C is the path algebra of the quiver

2
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1 //// 3

^^❃❃❃❃❃❃❃❃
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modulo its radical squared, then there is no maximal green sequence in modC. We
do that by showing that every green D-generic path γ that starts at (−1,−1,−1)
and finishes in (1, 1, 1) crosses infinitely many walls.

Since there are three pairs of double arrows, we get from the representation
theory of the Kronecker quiver the existence of three families of indecomposable
modules in modC whose dimension vectors are as follows.

F1 = {Mn ∈ modA : [Mn] = (n+ 1, 0, n), n ∈ N}

F2 = {M ′
n ∈ modA : [Mn] = (n, n+ 1, 0), n ∈ N}

F3 = {M ′′
n ∈ modA : [Mn] = (0, n, n+ 1), n ∈ N}

For Mn ∈ F1, we want to calculate its wall D(Mn). The representation theory of the
Kronecker quiver yields that the proper submodules of Mn are the modules Mk ∈ F1

with k < n. Therefore we have that

D(Mn) = {(x, y, z) ∈ R3 : 〈(x, y, z), (n+1, 0, n)〉 = 0 and 〈(x, y, z), (k+1, 0, k)〉 ≤ 0 for all k < n}

Therefore, (x, y, z) ∈ D(Mn) implies that

z = −

(

n+ 1

n

)

x (6)
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and

0 ≥ (k + 1)x+ kz for all k < n. (7)

Substituting 6 in 7 gives

0 ≥ (k + 1)x− k
(

n+1
n

)

x (8)

=
(

n(k+1)−k(n+1)
n

)

x (9)

=
(

n−k
n

)

x (10)

which implies that x ≤ 0 because k < n. Therefore we have that

D(Mn) = {(x, y, z) ∈ R3 : (n+ 1)x+ nz = 0 and x ≤ 0}.

Likewise, one can prove that

D(M ′
n) = {(x, y, z) ∈ R3 : nx+ (n+ 1)y = 0 and y ≤ 0},

D(M ′′
n ) = {(x, y, z) ∈ R3 : ny + (n+ 1)z = 0 and z ≤ 0}

Now, suppose that we have a green D-generic path γ : [0, 1] → R3 starting in
γ(0) = (−1,−1,−1) ∈ C(0,C) and ending in γ(1) = (1, 1, 1) ∈ C(C,0). We show that
γ crosses infinitely many walls. Lemma 4.12 implies that the first wall crossed by γ
is either D(S(1)), D(S(2)) or D(S(3)). We consider the case were γ starts crossing
D(S(1)), the other two cases are analogous.

Because γ crosses D(S(1)) there exists a t0 ∈ [0, 1] such that γ(t0) = (0, y, z)
with y < 0 and z < 0. Hence there exists an ǫ ∈ R such that γ(t0 + ǫ) = (x, y, z)
with |x| < |y| and y < 0, which gives nx+(n+1)y < 0. Therefore, the wall D(M ′

n)
lies between γ(t0 + ǫ) and γ(1) = (1, 1, 1) for every M ′

n ∈ F2. Since γ is a green
path, it must stay in the half-space {(x, y, z) ∈ R3 : x > 0}, implying that γ crosses
D(M ′

n) for every M ′
n ∈ F2.

This shows that every green D-generic path γ in the wall and chamber structure
of C starting in C(0,C) and finishing in CC,0, crosses infinitely many walls.

Now consider a finite dimensional algebra A = kQ/I as in the statement of the
theorem. Then lemma 4.13 implies that every D-generic path γ in the wall and
chamber structure of A crosses at least as many walls as the same path does in the
wall and chamber structure of the algebra C. Therefore, every green D-generic path
γ starting in C(0,A) and C(A,0) crosses infinitely many walls. Henceforth, corollary
4.10 implies that there is no maximal green sequence in modA.
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