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SEQUENTIAL PERIODS OF THE CRYSTALLINE

FROBENIUS

JULIAN ROSEN

Abstract. There is a notion of p-adic period coming from the
crystalline Frobenius automorphism of the de Rham cohomology
of an algebraic variety. In this paper, we consider sequences of
p-adic periods, one for each prime. We study the sequences using
motivic periods, and we formulate an analogue of the Grothendieck
period conjecture.

1. Introduction

Let X be a smooth algebraic variety over Q. The algebraic de Rham
cohomologyHdR(X) =

⊕
nH

n
dR(X) is a finite-dimensional vector space

over Q. For every sufficiently large prime p, there is a distinguished
Qp-linear automorphism

Fp,X : HdR(X)⊗Qp
∼
−→ HdR(X)⊗Qp,

the crystalline Frobenius map, coming from the absolute Frobenius en-
domorphism of the reduction of an integral model of X modulo p (see
[Ked09]). If we choose a Q-basis for HdR(X), we can represent Fp,X

as a square matrix with entries in Qp, and Q-linear combinations of
matrix entries are called p-adic periods1 of X . Note that the Q-span
of matrix entries in independent of the choice of basis.
It makes sense to talk about “the same” p-adic period for different p.

We consider sequences of p-adic periods, one for each sufficiently large
p, living in the ring

R :=

∏
pQp⊕
p Qp

.

An element of R is a prime-indexed sequence (ap)p, with ap ∈ Qp, and
two sequences are equal in R if they agree for all sufficiently large p.

Date: May 7, 2018.
1This is one of several different meanings of the term “p-adic period” that have

appeared in the literature.
1
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The maps Fp,X (for all large p at once) assemble to give an R-linear
automorphism

FR,X : HdR(X)⊗R
∼
−→ HdR(X)⊗R,

which we call the sequential Frobenius map. Like before, if we choose
a Q-basis for HdR(X), we can represent FR,X as a square matrix with
entries in R. The following definition is new.

Definition 1.1. A sequential period (or R-valued period) of X is a
Q-linear combination of matrix entries for FR,X . We denote the set of
sequential periods of X by PR(X) ⊂ R.

We compute several examples of sequential periods in Sec. 2.

Remark 1.2. Sequential periods are analogous to the usual periods of
X , which are complex numbers arising from the comparison between
de Rham and Betti cohomology. The analogy is explained in 3.

1.1. Results. In this paper, we develop a motivic theory of sequen-
tial periods, and we formulate an analogue of the Grothendieck period
conjecture for sequential periods. Our main results are several conse-
quences of the conjecture. The conjecture has a weak form (Conjecture
1) and a strong form (Conjecture 2). Conjecture 1 predicts an answer
to the question: When are two sequential periods equal? Conjecture 2
predicts an answer to the question: When are two sequential periods
congruent modulo pn for all sufficiently large p?
Our conjectures are assertions about a category of (mixed) motives.

Suppose M is a Tannakian category of motives over Q (the precise
properties we need are given in Definition 3.1), equipped with a fibre
functor ωdR, the de Rham realization. Write GdR for the affine group-
scheme Aut⊗(ωdR). The coordinate ring of GdR is a commutative Q-
algebra Pdr, called the ring of de Rham periods of M (see [Bro14],
§2). If M satisfies the conditions of Definition 3.1, the crystalline
Frobenius (for all sufficiently large p at once) gives a distinguished
functorial automorphism FR,M of ωdR(M) ⊗ R for M ∈ M. These
automorphisms determine a ring homomorphism

perR : Pdr → R,

which we call the sequential period map. The image of perR is the
Q-span of all matrix entries for FR,M (for all M ∈ M).
The weak form of our conjecture is the following assertion about M.

Conjecture 1 (Sequential period conjecture). The map perR is injec-
tive.
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By contrast, a similar p-adic period map Pdr → Qp is typically not
injective (see Sec. 3.3).

For X smooth and projective, it is known that the restriction of Fp,X

to the n-th level of the Hodge filtration on HdR(X) has matrix entries
divisible by pn when p is sufficiently large. The strong form of our
conjecture is a converse to this divisibility property. It asserts that if
a sequential period is divisible by pn for all sufficiently large p, then
that period is motivically equivalent (in a precise sense) to something
coming from the n-th level of the Hodge filtration.
To formulate this conjecture precisely, we use the decreasing filtra-

tion Fil• on R given by

FilnR :=
{
(ap)p : lim inf

p
vp(ap) ≥ n

}
.

There is also a decreasing filtration Fil• on Pdr, coming from the Hodge
filtration on algebraic de Rham cohomology. The strong form of our
conjecture is the following assertion about M.

Conjecture 2 (Strong sequential period conjecture). The sequential
period map perR is an embedding of filtered algebras, i.e. for every
integer n,

per−1
R

(
FilnR) = FilnPdr.

We give several consequences of Conjectures 1 and 2. We list some
of them here. The first two results are consequences of Conjecture 1.

Theorem 1 (Theorem 5.8). Assume the standard conjectures on al-
gebraic cycles, and suppose that Conjecture 1 holds for the category of
pure numerical motives over Q. Let X be a smooth projective variety
over Q. If α, β ∈ HdR(X) satisfy Fp,X(α) = pnβ for all but finitely
many p, then α is algebraic.

Theorem 2 (Corollary 5.6). Let M be a category of motives satisfying
Definition 3.1. If Conjecture 1 holds for M, then the Ogus realization
of M is a fully faithful embedding.

The following results give consequences of Conjecture 2 applied to the
categories MT (Z) and MT (Q) of mixed Tate motives over Z resp. Q.

Theorem 3 (Theorem 5.1). If Conjecture 2 holds for MT (Q), then
for every rational number r 6= 0,±1, there exist infinitely many p for
which rp−1 6≡ 1 mod p2.

Theorem 4 (Theorem 5.2). If Conjecture 2 holds for MT (Z), then
for every odd k ≥ 3, there exist infinitely many primes p for which
p ∤ Bp−k.
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Theorem 5 (Theorem 8.11). Assume that the Grothendieck period
conjecture (Conjecture 0 below) holds for MT (Z). Then the truth of
Conjecture 2 for MT (Z) is equivalent to Kaneko-Zagier’s conjecture
on finite multiple zeta values.

1.2. Outline. In Section 2 we compute several examples of sequen-
tial periods. Section 3 gives the properties necessary for a category
of motives in order to construct the sequential period map, and to
state Conjecture 1. In Section 4, we consider divisibility properties of
sequential periods and state Conjecture 2.
Sections 5, 6, and 7 are independent of one another, and can be read

in any order. In Section 5, we deduce several consequences of Conjec-
tures 1 and 2. Sections 6 and 7 describe two variations of sequential
periods. The first variation involves reducing sequential periods mod-
ulo p, and this variation includes Kaneko-Zagier’s finite multiple zeta
values as a special case. The second variation involves allowing uni-
formly convergent infinite sums of sequential periods.
In Section 8, we describe the sequential periods of the category of

mixed Tate motives over Z.

1.3. Acknowledgements. We thank Bhargav Bhatt and Kartik Prasanna
for helpful discussions. We thank Jeffrey Lagarias for comments on this
manuscript.

2. Examples

We compute some examples of sequential periods.

2.1. The projective line. The vector spaceH2
dR(P

1) is 1-dimensional,
and Fp acts on H2

dR(P
1) by multiplication by p. This shows that

p := (p)p ∈ R

is a sequential period. The complex number 2πi is a period of H2(P1),
so we view p as the sequential analogue of 2πi. Note that p, like 2πi,
is transcendental over Q.

2.2. Point counts. Let X be a smooth projective variety over Q.
Choose an integral model X̃ of X , and consider the sequence

(
#X̃(Fp)

)

p

∈ R, (2.1)

which is independent of the choice of X̃ . The Lefschetz fixed point
formula expresses #X̃(Fp) as an alternating sum of traces of Fp,X on
cohomology of X , so (2.1) is a sequential period of X .
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2.3. The p-adic logarithm. For r ∈ Q>0, the logarithm log(r) ∈ R
is a period. The p-adic logarithm is defined by

logp(x) =
∑

n≥1

(−1)n+1 (x− 1)n

n
,

which converges p-adically if vp(x− 1) ≥ 1. For fixed r, the element
(
logp(r

p−1)
)
p
∈ R

is a sequential period (see Sec. 5.1).

2.4. The ℓ-adic Frobenius. Let X be a smooth projective variety
over Q, and fix an integer n ≥ 0 and a prime ℓ. The for p 6= ℓ, the geo-
metric Frobenius at p acting on the ℓ-adic cohomology Hn

ℓ (X ;Qℓ) has
the same characteristic polynomial as Fp,X. This implies the sequence
of characteristic polynomials of the Frobenius at p acting on Hn

ℓ , as p
varies, is a polynomial with coefficients in PR(X).

2.5. Modular forms. Let f(z) =
∑

n≥0 ane
2πinz be a normalized cusp

form of weight k for Γ0(N), with an ∈ Q. Then there is a variety V
over Q (a power of a family of elliptic curves over the modular curve
X0(N)) such that ap is the trace of the Frobenius at p acting on an ℓ-
adic cohomology group of V , and it follows that the sequence

(
ap
)
p
∈ R

is a sequential period.

3. Motivic periods and period maps

Conjectures 1 and 2 are formulated relative to a category of motives.
We begin by listing the properties required of this category.

Definition 3.1. We say M is a category of motives (over Q) if M is a
neutral Tannakian category ([Del89], Definition 2.19) over Q equipped
with the following structure.

(A) There is a fibre functor ωdR (the de Rham realization), M 7→ MdR,
equipped with a decreasing, separated, exhaustive filtration Fil•,
the Hodge filtration. The Hodge filtration is compatible with the
tensor product, and if f : M → N is a morphism in M, then the
induced map fdR : MdR → NdR satisfies fdR(Fil

nMdR) = f(MdR)∩
FilnNdR for all n.

(B) There is a fibre functor ωB (the Betti realization), M 7→ MB, and
a functorial C-linear isomorphism

compM : MdR ⊗ C
∼
−→ MB ⊗ C (3.1)

compatible with the tensor product.
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(C) For each M ∈ M, there is a distinguished automorphism

Fp,M : MdR ⊗Qp
∼
−→ MdR ⊗Qp,

the crystalline Frobenius map, defined for all sufficiently large p.
The crystalline Frobenius is functorial in M (for large p) and com-
patible with the tensor product.

Definition 3.1 holds, for example, for categories satisfying the axioms
in [Del89], §1.3.

Remark 3.2. The data of Fp,M is equivalent to the data of an R-linear
automorphism FR,M of MdR⊗R. The Ogus category Og(Q) is defined
to be the category whose objects are pairs (V, F ), where V is a finite-
dimensional vector space over Q and F is an R-linear automorphism
of V ⊗R. If M is a category of motives, the Ogus realization of M is
the functor M → Og(Q), M 7→ (MdR, FR,M) (see [And04], Sec. 7.1.5).

For the remainder of this section, we fix a category of motives M.

3.1. Complex periods. Suppose M ∈ M. If we choose Q-bases for
MdR and MB, we can represent compM as a square matrix with entries
in C. A (complex) period of M is a Q-linear combination of matrix
entries for compM .
For any two fibre functors ω and η on M, the functor of Q-algebras

R 7→ Hom⊗(ω ⊗ R, η ⊗ R) is representable by an affine pro-algebraic
scheme Hom⊗(ω, η) ([DM82], Theorem 3.2). The scheme Hom⊗(ωdR, ωB)
is called the torsor of periods of M, and the coordinate ring Pm of
Hom⊗(ωdR, ωB) is called the ring of motivic periods ofM. The compar-
ison isomorphism (3.1) determines an element of Hom⊗(ωdR, ωB)(C),
and evaluation at this point induces a ring homomorphism

per : Pm → C, (3.2)

the period map (see [Bro17], §1.2).
The image of per is the set of all periods of all objects ofM. We write

PC(M) for the image of per, and we call PC(M) the ring of periods
of M. The Grothendieck period conjecture for M is the following
assertion.

Conjecture 0 (Period conjecture). The map per is injective.

Conjecture 0 is an algebraic independence statement for periods, and
is expected to be difficult to resolve.
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The ring Pm is a torsor2 for the affine (pro-algebraic) group scheme
Aut⊗(ωB). If Conjecture 0 holds, then the action descends to an ac-
tion of Aut⊗(ωB) on PC(M), and we get a “Galois theory of periods”.
For the category of Artin motives (that is, motives of 0-dimensional
varieties), Conjecture 0 is known to hold, and per maps Pm isomorphi-
cally onto Q ⊂ C. The group Aut⊗(ωB) is canonically isomorphic to
Gal(Q/Q) (viewed as a profinite constant group scheme over Q), and
thus the Galois theory of periods for Artin motives is just the classical
Galois theory (see [Bro17], §5.1).

3.2. Sequential periods. The affine group scheme GdR := Aut⊗(ωdR)
is called the de Rham Galois group of M, and the coordinate ring Pdr

of GdR is called the ring of de Rham periods ofM. The automorphisms
FR,M determine an element FR ∈ Pdr(R). The following definition is
new.

Definition 3.3. The sequential period map is the ring homomorphism

perR : Pdr → R

induced by evaluation at FR.

Here R plays the same role as C plays for the complex period map
(3.2). We write PR(M) ⊂ R for the image of perR, and we call PR(M)
the ring of sequential periods of M. Our weaker analogue of the period
conjecture for sequential periods is the following assertion about M.

Conjecture 1 (Sequential period conjecture). The map perR is injec-
tive.

Conjecture 0 is equivalent to the statement that perR induces an
isomorphism of algebras Pdr ∼

−→ PR(M). As with Conjecture 0, the
truth of Conjecture 1 would give a Galois theory of sequential periods
(see Sec. 5.5). We expect that Conjecture 1 will be difficult to resolve.

3.3. p-adic periods. Suppose p is a prime of good reduction for every
object of M, meaning that for every M ∈ M, Fp,M is defined and is
functorial in M . In this case we get a p-adic period map

perp : P
dr → Qp.

However, perp is typically not injective. For example, Fp acts on the de
Rham realization of the Tate motive by multiplication by p−1, which
is rational, so perp fails to be injective if the Tate motive is in M. It
can also be shown that perp is not injective for the category of Artin
motives.

2In fact Pm is a bitorsor for Aut⊗(ωB) and Aut⊗(ωdR).
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In the case of mixed Tate motives, a modified version of the p-adic
period conjecture is expected to hold. For mixed Tate motives, the de
Rham Galois group decomposes as a semi-direct product

GdR = Gm ⋉ UdR,

where UdR is pro-unipotent. If we write AdR for the coordinate ring
of UdR, then there is a quotient map Pdr

։ AdR. Although the p-adic
period map does not factor through AdR, there is a rescaled version
ϕp : Pdr → Qp that does factor through AdR, and it is conjectured
([Yam10], Conjecture 4) that ϕp : AdR → Qp is injective for every p.

4. Valuations of sequential periods

Let X be a smooth projective variety over Zp. It is known that
matrix coefficients for Fp coming from the n-th level of the Hodge
filtration on HdR(X) are divisible by pn if dim(X) < p (see [Maz72], p.
666). We formulate a version of this statement for sequential periods.
Recall that there is a decreasing filtration Fil• on R given by

FilnR :=
{
(ap)p : lim inf

p
vp(ap) ≥ n

}
.

We also denote by Fil• the Hodge filtration on HdR(X).

Proposition 4.1. Suppose X is smooth and projective over Q. Then
for all integers n ≥ 0, the sequential Frobenius FR,X takes FilnHdR(X)
into HdR(X)⊗ FilnR.

Proof. Choose an integral model X̃ of X over Z[1/N ] for some positive

integer N . For p ∤ N , let Xp be the reduction of X̃ modulo p. There is
a canonical isomorphism

HdR(X)⊗Q Qp
∼= Hcrys(Xp;Zp)⊗Zp

Qp. (4.1)

Choose a basis B for HdR(X) with the property that B ∩ FilnHdR(X)
is a basis for FilnHdR(X) for all n. There is an integer M > N such
that for all p > M , (4.1) takes B to a Zp-basis of Hcrys(Xp;Zp). We

choose M large enough that FilMHdR(X) = 0. For p > M , it is known
that the crystalline Frobenius on Hcrys(Xp;Zp) takes the n-th level of
the Hodge filtration into pnHcrys(Xp;Zp). So for p > M , the matrix of
Fp,X with respect to our chosen basis has the property that columns
corresponding to elements in FilnHdR(X) have each entry in pnZp. It
follows that the corresponding columns in the matrix for FR,X are in
FilnR, so that FR takes FilnHdR(X) into HdR(X)⊗ FilnR. �

The strong form of our period conjecture is a kind of converse to
Proposition 4.1. Roughly speaking, the conjecture asserts that if a
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sequential periods is divisible by pn for all sufficiently large p, then
that period is motivically equivalent something coming from the n-th
level of the Hodge filtration.
To formulate the conjecture precisely, we fix a category M of mo-

tives. The Hodge filtration on ωdR induces a filtration on Pdr. If Fp,M

takes FilnMdR into MdR ⊗ FilnR for all M ∈ M and n ∈ Z (Proposi-
tion 4.1 suggests we should expect this to be the case), then perR takes
FilnPdr(M) into FilnR. We expect that perR is compatible with the
filtrations in a stronger sense. The strong form of our period conjecture
is the following assertion about M.

Conjecture 2 (Strong sequential period conjecture). For all integers
n, we have

per−1
R

(
FilnR

)
= FilnPdr.

Conjecture 2 is equivalent to the statement that perR induces an
isomorphism of filtered algebras Pdr ∼= PR(M). Conjecture 2 implies
Conjecture 1 because the filtration on Pdr is separated. In some cases,
it is possible to show directly that perR(Fil

nPdr) ⊂ FilnR. This is the
case for mixed Tate motives over Z (see Sec. 8). The hard part of the
conjecture is the converse: if x ∈ Pdr satisfies per(x) ∈ FilnR, then
x ∈ FilnPdr.

5. Consequences of the period conjectures

In this section, we describe several consequences of Conjectures 1
and 2 applied to various categories of motives.

5.1. Wieferich primes. Fix a rational number r 6= 0,±1. Fermat’s
Little Theorem asserts that, for all primes p not dividing the numerator
or denominator of r,

rp−1 ≡ 1 mod p. (5.1)

A Wieferich prime to the base r is a prime which (5.1) holds modulo
p2. A heuristic argument suggests that, for each r, the set of Wieferich
primes is infinite but has density 0. Little is known about the Wieferich
primes, and it is an open problem to produce an r for which there
are infinitely many non-Wieferich primes. It is known [Sil88] that the
truth of the ABC-conjecture would imply there are infinitely many
non-Wieferich primes to the base 2.

Theorem 5.1. If Conjecture 2 holds for the category of mixed Tate
motives over Q, then for every rational r 6= 0,±1, there exist infinitely
many non-Wieferich primes to the base r.
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Proof. For r ∈ Q\{0, 1}, there is a Kummer motive K(r) ∈ MT (Q)
sitting in a short exact sequence

0 → Q(0) → K(r) → Q(−1) → 0.

It follow from [Del89], §2.9 that with respect to an appropriate basis,
the matrix for Fp on K(r)dR ⊗Qp is given by

[
1 logp(r

p−1)
0 p

]
,

where logp is the p-adic logarithm. It is not hard to check that logp(r
p−1)

is a non-zero element of pZp for all primes p at which r is a unit, and
for these p, vp(logp(r

p−1)) ≥ 2 precisely when p is a Wieferich prime

to the base r. Since Fil2K(r)dR = 0, Conjecture 2 implies that every
non-zero sequential period of K(r) has valuation exactly 1 for infinitely
many p. It follows that Conjecture 2 implies that there are infinitely
many non-Wieferich primes to the base r. �

5.1.1. Fermat’s Last Theorem. In 1909, Wieferich proved that if the
first case of Fermat’s Last Theorem fails for a prime p, then p must be
a Wieferich prime to the base 2. So Conjecture 2 would imply that the
first case of Fermat’s Last Theorem is true for infinitely many p. By
comparison, the first proof that the first case of Fermat’s Last Theorem
is true for infinitely many p appeared in 1985 [AHB85], so this gives a
lower bound on the difficulty of proving Conjecture 2 for MT (Q).

5.2. Bernoulli numbers. The Bernoulli numbers Bn ∈ Q are a se-
quence of rational numbers defined by

x

ex − 1
=
∑

n≥0

Bn

xn

n!
.

While the denominator of Bn is the product of those primes p for
which p−1|n, the numerators are much more mysterious. For p prime,
the Herbrand-Ribet theorem gives a connection between the set of
Bernoulli numbers with numerator divisible by p and the class group
of the cyclotomic field Q(ζp) (see [Her32] and [Rib76]).
Conjecture 2 applied to the category of mixed Tate motives over Z

has the following consequence for the Bernoulli numbers.

Theorem 5.2. If Conjecture 2 holds for the category of mixed Tate
motives over Z, then for every odd k ≥ 3, there exist infinitely primes
p for which p ∤ Bp−k.
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Proof. Let Pdr be the ring of de Rham periods of MT (Z), which is
described in Sec. 8.2. There is an element ζdr(k) ∈ FilkPdr\Filk+1Pdr,
with the property that

perp(ζ
dr(k)) = ζp(k) ≡ pk

Bp−k

k
mod pk+1.

Conjecture 2 for MT (Z) then implies
(
pkBp−k/k

)
6∈ Filk+1R, which is

the statement that there are infinitely many p not dividing Bp−k. �

Theorem 5.2 can be generalized considerably.

Theorem 5.3. Assume the truth of Conjecture 2 for MT (Z), and let
f ∈ Q[x1, . . . , xn] be a non-zero polynomial. Then there are infinitely
many primes p for which p does not divide the numerator of

f
(
Bp−3, Bp−5, . . . , Bp−2n−1

)
.

The proof is given in Sec. 8.5.

5.3. Fullness of the Ogus realization. The following definition is a
sequential analogue of a definition in [Maz72].

Definition 5.4. A sequential span is a triple (V,W, F ), where V and
W are finite-dimensional vector spaces over Q and F : V ⊗R

∼
−→ W⊗R

is anR-linear isomorphism. The collection of all sequential spans forms
a neutral Tannakian category, which is denoted Span(Q)

There is a functor Og(Q) → Span(Q), (V, F ) 7→ (V, V, F ) that
“forgets” that the two vector spaces are the same.

Theorem 5.5. Conjecture 1 holds for M if and only if the functor
M → Span(Q), M 7→ (MdR,MdR, FR,M) is full.

Proof. The Betti-de Rham category over Q is the category whose ob-
jects are triples (V,W, c), where V and W are finite-dimensional vector
spaces over Q and

c : V ⊗ C
∼
−→ W ⊗ C.

It is well-known (see e.g. [HMS17], Proposition 13.2.8) that Conjecture
0 is equivalent to the assertion that the functor from M to the Betti-de
Rham category is full. The same proof works here. �

Corollary 5.6. Conjecture 1 implies the Ogus realization is full.

Proof. Fullness of M → Span(Q) implies fullness of M → Og(Q)
because Og(Q) → Span(Q) is faithful. �
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Remark 5.7. Conjecture 1 is a priori stronger than the fullness of the
Ogus realization. Conjecture 1 is equivalent to the statement that the
crystalline Frobenius elements of GdR are Zariski dense, whereas the
fullness of the Ogus realization is equivalent to the statement that the
crystalline Frobenius elements generate a Zariski dense subgroup of
GdR.

5.4. Existence of algebraic cycles. Here we describe a consequence
of Conjecture 1 for algebraic cycles. We will need to assume the stan-
dard conjectures on algebraic cycles. Specifically, we assume that for
every smooth projective variety over Q,

(1) The Künneth projectors are algebraic.
(2) Numerical equivalence of cycles equals homological equivalence.

It is shown in [Jan92] (Corollary 2) that condition (1) above implies
that the category of pure numerical motives over Q (with coefficients
in Q) is neutral Tannakian. Condition (2) implies that ωdR and ωB

are fibre functors, and the de Rham-Betti comparison and crystalline
Frobenius map come from the corresponding operations on cohomology.

Theorem 5.8. Assume that the assertions (1) and (2) above hold, and
let M be the category of pure numerical motives over Q. The truth of
Conjecture 1 for M is equivalent to the assertion that, whenever X is
a smooth projective variety, n ∈ Z≥0, and α, β ∈ H2n

dR(X)(n) satisfy
Fp,X(α) = β for all but finitely many p, then α is algebraic (so in fact
α = β).

Here HdR(X)(n) is a Tate twist, meaning Fp,X is scaled by p−n.

Proof. By Theorem 5.5, Conjecture 1 for M is equivalent to the asser-
tion that M → Span(Q) is full. For M ∈ M, write Sp(M) for the
sequential span associated with M . Then M → Span(Q) is full if and
only if, for every M ∈ M,

HomM(Q(0),M) = HomSpan(Q)(Sp(Q(0)), Sp(M)).

It suffices to consider only thoseM of the formH(X)(n). Morphisms of
motives Q(0) → H(X)(n) are in natural bijection with algebraic classes
in H2n

dR(X). Morphisms of sequential spans Sp(Q(0)) → Sp(H(X)(n))
correspond to pairs α, β ∈ HdR(X)(n) such that FR(α) = β, and such
α and β must live in H2n

dR(X)(n) for weight reasons. This completes
the proof. �

Remark 5.9. An Ogus cycle is an element α ∈ H2n
dR(X)(n) such that

Fp,X(α) = α for all sufficiently large p. It is conjectured that every
Ogus cycles is algebraic (see [Ogu82], §4), and statement is equivalent
to the fullness of the Ogus realization.
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5.5. Galois theory. Let M be a category of motives. As the co-
ordinate ring of an affine group scheme, Pdr has the structure of a
commutative Hopf algebra over Q. The ring of motivic periods Pm is
an algebra-comodule over Pdr, and the corresponding group action

Spec Pdr y Spec Pm

makes Spec Pm into a torsor for Spec Pdr.
If Conjecture 1 holds for M, the Hopf algebra structure descends to

PR(M). If in addition Conjecture 0 holds for M, then the coaction
also descends. In this case we get ring homomorphisms

∆R : PR(M) → PR(M)⊗PR(M), (5.2)

∆C : PC(M) → PR(M)⊗PC(M), (5.3)

making PR(M) into a Hopf algebra and making PC(M) into an algebra-
comodule for PR(M).
In practice, (5.2) and (5.3) can be computed explicitly. The com-

putation depends a priori on some choices, and Conjecture 0 and 1
imply that the result is independent of the choices. Concretely, sup-
poseM ∈ M. Given ω ∈ MdR and η ∈ M∗

dR (where M∗
dR is the Q-linear

dual), we get a sequential period of M

〈
ω, η

〉
R
:=

(〈
Fp,Mω, η

〉)

p

∈ R,

and PR(M) is spanned over Q by elements of this form. To compute
the comultiplication (5.2), we choose a basis {v} of MdR, with dual
basis {v∗}, and we have

∆R

(〈
ω, η

〉
R

)
=
∑

v

〈
ω, v∗

〉
R
⊗
〈
v, η
〉
R
. (5.4)

Similarly, for ω ∈ MdR and γ ∈ M∗
B, we get a complex period of M

〈
ω, γ

〉
C
:=
〈
comp(ω), η

〉
∈ C.

The coaction (5.3) is given by

∆C

(〈
ω, γ

〉
C

)
=
∑

v

〈
ω, v∗

〉
R
⊗
〈
v, γ
〉
C
. (5.5)

Remark 5.10. The formulas (5.4) and (5.5) for the comultiplication and
coaction make sense for varieties, even without an underlying category
of motives.
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6. A-valued periods

Kaneko and Zagier (unpublished) observe that certain elements of
the ring

A :=

∏
p Z/pZ⊕
p Z/pZ

∼=
Fil0R

Fil1R

are analogous to periods. In this section we construct a version of
sequential periods living in A. Applied to the category of mixed Tate
motives over Z, our construction recovers the finite multiple zeta values
of Kaneko-Zagier (see Sec. 8.5).
We first give a concrete definition for varieties. Suppose X is a

smooth projective variety over Q. By Proposition 4.1, p−nFR,X takes
FilnHdR(X) into HdR(X)⊗ Fil0R, and we write

F
(n)
A,X : FilnHdR(X) → HdR(X)⊗A

for the composition of p−nFR,X : FilnHdR → HdR(X)⊗Fil0R with the
projection Fil0R → A. If we choose a Q-basis for FilnHdR(X), and

extend it to a basis of HdR(X), we can represent F
(n)
A,X by a non-square

matrix with entries in A.

Definition 6.1. An A-valued period of X is a Q-linear combination

of matrix coefficients for F
(n)
A,X (as n varies). We denote the set of

A-valued periods of X by PA(X) ⊂ A.

Concretely, the matrix for the sequential Frobenius on HdR(X) has
columns that are divisible by various powers of p, according to the
Hodge filtration on HdR(X), and we get an A-valued period by taking
a matrix entry whose column is in the n-th level of the Hodge filtration,
dividing by pn, and reducing modulo p.
To understand A-valued periods in terms of motivic periods, we need

a category M of motives with Ogus realization that is known to satisfy
the easier direction of Conjecture 2. We make the following definition,
which is the sequential version of a definition in [Maz72], p. 665.

Definition 6.2. Let M be a category of motives. We say the Ogus
realization on M is divisible if perR(Fil

nPdr) ⊂ FilnR for all n.

For example, it is known that the category mixed Tate motives over
Z has divisible Ogus realization (see Sec. 8). The truth of the standard
conjectures on algebraic cycles would imply that the Ogus realization
for pure numerical motives is divisible.
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For the remainder of this section, we assume M is a category of
motives equipped with a divisible Ogus realization. Consider

Pdr

0 :=
Fil0Pdr

Fil1Pdr
,

which is the degree 0 part of the associated graded ring of Pdr. The
following definition is new.

Definition 6.3. The A-valued period map is the ring homomorphism

perA : Pdr

0 → A

induced by perR. We write PA for the image of perA, and we call PA

the ring of A-valued periods of M.

We expect that the map perA is injective (this statement could be
called the A-valued period conjecture). Injectivity of perA is essentially
equivalent to Conjecture 2.

Theorem 6.4. Conjecture 2 implies that perA is injective. The con-
verse is true if M admits Tate twists.

Proof. It is immediate that Conjecture 2 implies perR is injective. Con-
versely, suppose that perR is injective, and suppose α ∈ Pdr satisfies
perR(α) ∈ FilnR. Let m = max{M ≤ n : α ∈ FilMPdr}. We will show
that m = n.
For the sake of contradiction, suppose m < n. By assumption there

is a rank-1 object Q(−1) ∈ M (the Lefschetz motive), whose de Rham
period Ldr ∈ Pdr is mapped to p by perR. We have (Ldr)−mα ∈ Fil0Pdr,
and

perR
(
(Ldr)−mα

)
= p−mperR(α) ∈ Filn−mR ⊂ Fil1R.

This shows perA((L
dr)−mα) = 0. Because perA is injective by assump-

tion, we conclude (Ldr)−mα ∈ Fil1Pdr. It follows that α ∈ Film+1Pdr,
contradicting the maximality of m. �

The finite multiple zeta values of Kaneko-Zagier are the A-valued
periods of the category of mixed Tate motives over Z (Theorem 8.10
below). The category AMQ of Artin motives over Q has trivial Hodge
filtration, and for this category the A-valued period map is a map
perR : Pdr → A. The paper [Ros18b] involves an application of the A-
valued period map for AMQ to an analogue of the Skolem-Mahler-Lech
theorem.

Remark 6.5. If one is interested in congruences modulo pn, one can
consider the ring

An =

∏
p Z/p

nZ⊕
p Z/p

nZ
,
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and there is an An-valued period map

perAn
:
Fil0Pdr

FilnPdr
→ An.

If M admits Tate twists, then Conjecture 2 is equivalent to the state-
ment that perAn

is injective for one (equivalently, every) positive integer
n.

7. R̂-valued periods

Some arithmetically interesting quantities can be expressed as infi-
nite sums of p-adic periods in a manner that is uniform in p (we give
some examples in Sec. 8.6). For example, for k ≥ 2 an integer, the
p-adic zeta value ζp(k) is a p-adic period, and a result of Washington
[Was98] expresses a harmonic number in terms of ζp(k):

ps
pr∑

n=1
p∤n

1

ns
=

∞∑

k=0

(−1)k
(
r + k

k + 1

)
rk+1ζp(s+ k + 1), (7.1)

This formula has a generalization due to Jarossay [Jar15b].
Here we describe a version of sequential periods for treating these

infinite sums. This notion of period was considered in [Ros18a] for
mixed Tate motives over Z.
The filtration Fil• on R is neither exhaustive nor separated. To deal

with infinite sums of sequential periods, we replace R with

R̂ :=

⋃
n Fil

nR⋂
n Fil

nR
=

{
(ap) ∈

∏
pQp : vp(ap) bounded below

}

{
(ap) ∈

∏
pQp : vp(ap) → ∞ as p → ∞

} .

We write Fil• for the induced filtration on R̂, which is exhaustive and

separated. The ring R̂ is complete with respect to the topology induced
by Fil•.
Fix a category of motives M with divisible Ogus realization (Defi-

nition 6.2). This means perR takes FilnPdr into FilnR for each n, so
perR induces a continuous homomorphism of the completions.

Definition 7.1. The completed sequential period map is the continuous
ring homomorphism

perR̂ : P̂dr → R̂,

where P̂dr is the completion of Pdr with respect to the Hodge filtration.
We write PR̂(M) for the image of perR̂, and we call PR̂(M) the ring

of R̂-valued periods of M.
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In terms of the example (7.1), we will see in Sec. 8 that ζp(k) is a
p-adic period of the category of mixed Tate motives over Z. For this
category, there are elements ζdr(k) ∈ Pdr that perR maps to

(
ζp(k)

)
p
,

and (7.1) implies perR takes the element

∞∑

k=0

(−1)k
(
r + k

k + 1

)
rk+1ζdr(s+ k + 1) ∈ P̂dr

to 
ps

pr∑

n=1
p∤n

1

ns




p

∈ R.

Remark 7.2. Conjecture 2 for M is equivalent to the statement perR̂
induces an isomorphism of filtered algebras P̂dr ∼= PR̂(M). In par-
ticular, Conjecture 2 would imply PR̂(M) is complete with respect to
Fil•.

8. Mixed Tate motives over Z

The theory of mixed Tate motives and their periods is well-developed.
In this section, we compute the sequential periods of MT (Z). We also

compute the A-valued and R̂-valued periods of MT (Z).
Mixed Tate motives are described in [Del89]. In [DG05] a construc-

tion is given for the category of mixed Tate motives unramified over
the ring of S-integers in a number field. Theory of motivic iterated
integrals appears in [Gon05]. A computation of the periods of MT (Z)
is given in [Bro12]. The crystalline realization (for each prime p) on
MT (Z) is constructed in [Yam10], and these assemble to give an Ogus
realization.
Recall that a composition is a finite ordered list s = (s1, . . . , sk) of

positive integers. The weight of s is |s| := s1 + . . . + sk. The various
types of periods of MT (Z) are indexed by compositions.

8.1. Motivic and complex periods. For s = (s1, . . . , sk) a compo-
sition satisfying s1 ≥ 2, the multiple zeta value (or MZV ) is

ζ(s) :=
∑

n1>...>nk≥1

1

ns1
1 . . . nsk

k

∈ R.

Using the so-called shuffle regularization, it is possible to extend the
definition to the case s1 = 1. It is known the the MZVs are periods of
mixed Tate motives over Z.
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The ring Pm of motivic periods of MT (Z) contains elements ζm(s),
the motivic MZVs, as s ranges over the compositions. The period
map takes ζm(s) to ζ(s). The elements ζm(s) satisfy many algebraic
relations, and a relation satisfied by ζ(s) is called motivic if the corre-
sponding relation holds for ζm(s). There is also an invertible element
L ∈ Pm, the motivic Lefschetz period, which maps to 2πi under the
period map. Euler’s calculation that ζ(2) = π2/6 lifts to the motivic
setting, and we have ζm(2) = −(Lm)2/24.

Proposition 8.1 (Brown [Bro12]). The ring of motivic periods of
MT (Z) is spanned as a Q[Lm, (Lm)−1]-module by the motivic MZVs.

Corollary 8.2. The ring of complex periods of MT (Z) is spanned as
a Q[2πi, (2πi)−1]-module by the MZVs.

There is a Z-grading on Pm called the grading by weight,3 where
L has weight 1 and ζm(s) has weight s. One often works with the
subalgebra H ⊂ Pm spanned by the motivic MZVs. The ring H is
called the ring of motivic MZVs, and it has the advantage of being
N-graded with finite-dimensional graded pieces.

8.2. De Rham and p-adic periods. For s a composition, there are
p-adic analogues ζp(s) ∈ Qp of the MZVs,4 arising from the action of
Frobenius on the crystalline fundamental group of the thrice punctured
line (see [Del02], or §5.28 of [DG05]). The p-adic MZVs are p-adic peri-
ods of MT (Z). Results of Jarossay [Jar15a] give explicit computations
of ζp(s).
The ring Pdr of de Rham periods ofMT (Z) contains elements ζdr(s),

the de Rham MZVs, as s ranges over the compositions. Objects of
MT (Z) are unramified at every prime, so for each p there is a p-adic
period map perp : Pdr → Qp, which takes ζdr(s) to ζp(s). There is an
invertible element Ldr, the de Rham Lefschetz period, which the period
map takes to p.

Proposition 8.3 (Brown [Bro14]). The ring of de Rham periods of
MT (Z) is spanned as a Q[Ldr, (Ldr)−1]-module by the de Rham MZVs.

Corollary 8.4. The ring of p-adic periods of MT (Z) is spanned over
Q by the p-adic MZVs.

The de Rham MZVs satisfy the same Q-linear relations as the mo-
tivic MZVs, along with the additional relation ζdr(2) = 0, thus the
p-adic MZVs also satisfy these relations.

3The weight here is one half of the motivic weight
4The p-adic MZVs we use here were constructed by Deligne, but there is a

different version due to Furusho [Fur04].
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Remark 8.5. The p-adic period map is not injective because it kills
Ldr−p. It is conjectured that for each p, the kernel of perp is generated
as an ideal by Ldr − p.

8.3. Sequential periods. The sequential period map perR takes ζdr(s)
to the sequential MZV

ζp(s) :=
(
ζp(s)

)
p
∈ R,

and takes Ldr to p.

Proposition 8.6. The ring of sequential periods of MT (Z) is spanned
as a Q[p,p−1]-module by the sequential MZVs.

Proof. Follows from Proposition 8.3 by applying perR. �

Like Pm, the ring Pdr is graded by weight, where Ldr has weight 1 and
ζdr(s) has weight |s|. The Hodge filtration is induced by the grading:
FilnPdr is spanned by elements of weight n and higher. It is known
[Cha17] that the p-adic multiple zeta values satisfy

ζp(s) ∈ p|s|Zp (8.1)

for all p > |s|, which means that the Ogus realization on MT (Z) is
divisible, i.e. perR(Fil

nPdr) ⊂ FilnR for all n. So A-valued periods

(Sec. 6) and R̂-valued periods (Sec. 7) are defined for MT (Z).
The statement that perR̂ is injective for MT (Z), which is equivalent

to Conjecture 2 forMT (Z), was stated by the author in [Ros18a] (Con-
jecture 1.3). A related conjecture can be found in [Jar16] (Conjecture
7.7).

8.4. Multiple harmonic sums. Multiple harmonic sums are trun-
cated versions of the MZVs. As we will see, they are related to the

A-valued periods and R̂-valued periods of MT (Z).

Definition 8.7. Let s = (s1, . . . , sk) be a composition and N a positive
integer. The quantity

HN(s1, . . . , sk) :=
∑

N≥n1>...>nk≥1

1

ns1
1 . . . nsk

k

∈ Q

is called a multiple harmonic sum.

Multiple harmonic sums are known to have interesting arithmetic
properties, particularly in the case N = p−1 with p prime (see [Hof04],
[Zha08]). The following formula of Jarossay [Jar15b] expresses multiple
harmonic sums Hp−1(s) in terms of p-adic MZVs.
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Theorem 8.8. Let s = (s1, . . . , sk) be a composition. There is a p-
adically convergent series identity

p|s|Hp−1(s) =
k∑

i=0

∑

ℓ1,...,ℓi≥0

(−1)s1+...+si

i∏

j=1

(
sj + ℓj − 1

ℓj

)
(8.2)

ζp(si + ℓi, . . . , s1 + ℓ1)ζp(si+1, . . . , sk).

It follows from (8.1) that the convergence of the infinite series on the
right hand side of (8.2) is uniform in p, in the sense that it induces a

convergent series identity in R̂.

8.5. A-valued periods. To study congruences between multiple har-
monic sums Hp−1 modulo p, Kaneko and Zagier made the following
definition.

Definition 8.9 (Kaneko-Zagier, unpublished). For s a composition,
the finite multiple zeta value is defined to be

ζA(s) :=
(
Hp−1(s) mod p

)
p
∈ A.

An equality between finite multiple zeta values corresponds to a con-
gruence modulo p that holds for all but finitely many p.

Theorem 8.10. The ring of A-valued periods of MT (Z) is spanned
as a vector space over Q by the finite MZVs.

Proof. The degree 0 graded piece of Pdr is the Q-span of the elements

(Ldr)−|s|ζdr(s), (8.3)

as s ranges through the compositions. The formula (8.2) implies that
the image of (8.3) under the map perR is in the Q-span of the finite
MZVs. A result of Yasuda [Yas16] implies that conversely, we can solve
for the finite MZVs as a Q-linear combination of the images of (8.3)
under perR. �

Kaneko-Zagier conjectured that relations between the finite multiple
zeta values are governed by relations among the real multiple zeta
values. Specifically, the conjecture says that the Q-linear relations
satisfied by the finite multiple zeta values are precisely the same as the
Q-linear relations satisfied by the symmetrized multiple zeta values

ζs(s1, . . . , sk) :=
k∑

i=0

(−1)s1+...+skζ(si, . . . , s1)ζ(si+1, . . . , sk)

modulo ζ(2). We show that Kaneko-Zagier’s conjecture is essentially
equivalent to Conjecture 2 for MT (Z).
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Theorem 8.11. The finite multiple zeta values satisfy every relation
satisfied by the motivic version of the symmetrized multiple zeta values
modulo ζm(2). Conjecture 2 for MT (Z) is equivalent to the assertion
that the finite MZVs satisfy precisely the same relations as the motivic
symmetrized MZVs modulo ζm(2).

Proof. Yasuda’s result [Yas16] implies that Pdr

0 is the Q-span of the the
elements

ζ̄dr,s(s1, . . . , sk) := (Ldr)−|s|
k∑

i=0

(−1)s1+...+skζdr(si, . . . , s1)ζ
dr(si+1, . . . , sk).

(8.4)
The elements (8.4) satisfy precisely the same relations as the motivic
symmetrized multiple zeta values modulo ζm(2). Jarossay’s formula
(8.2) implies that perA takes ζ̄dr,s(s) to ζA(s). This proves that the
finite multiple zeta values satisfy every relations satisfied by the motivic
symmetrized MZVs modulo ζm(2). The converse is the statement that
perA : Pdr

0 → A is injective, which by Theorem 6.4 is equivalent to
Conjecture 2 for MT (Z). �

We can now prove the modulo p independence statement for Bernoulli
numbers, which was stated in Sec. 5.2.

Proof of Theorem 5.3. For n ≥ 3 odd, the elements

n(Ldr)−nζdr(n) ∈ Pdr

0 (8.5)

are algebraically independent. If we assume Conjecture 2 for MT (Z),
then by Theorem 6.4, perR maps (8.5) to algebraically independent
elements of R. The Theorem now follow from the well-known formula

np−nζp(n) ≡ Bp−n mod p

for p sufficiently large. �

8.6. R̂-valued periods. Jarossay’s formula (8.2) expresses Hp−1(s) as
a uniformly convergent series in terms of p-adic multiple zeta values,
which implies that

Hp−1(s) :=
(
Hp−1(s)

)
∈ R

is in the image of the completed sequential period map (it is the image

of the element of P̂dr obtained by replacing each ζp on the right hand
side of (8.2) with ζdr). Many other combinatorially defined quantities
depending on p can be expressed in terms of the Hp−1, and can be

shown to be R̂-valued periods of MT (Z). An explicit description of

the ring of R̂-valued periods of MT (Z) was computed in [Ros18a].
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Definition 8.12 ([Ros18a], Theorem 3.3). The MHS algebra is the

subalgebra of R̂ consisting of those α ∈ R̂ for which there exist se-
quences an ∈ Q, bn ∈ Z with bn → ∞, and compositions sn, such
that

α =
∞∑

n=0

an p
bnHp−1(sn). (8.6)

Observe that the condition bn → ∞ guarantees that (8.6) converges.

Theorem 8.13 ([Ros18a], Theorem 3.3). The ring of R̂-valued periods
of the category MT (Z) is the MHS algebra.

As a consequence, elements of the MHS algebra can be lifted to
P̂dr, and if we assume the truth of Conjecture 2 for MT (Z), we get a
Galois theory for the MHS algebra. Some aspects of the Galois action
are computed in [Ros18a].
Many combinatorially-defined sequences can be shown to be in the

MHS algebra (several examples are given in [Ros18a], §7). For example,
if f(x), g(x) ∈ Z[x] have positive leading coefficient, then the sequence
of binomial coefficients

(
f(p)

g(p)

)
:=

((
f(p)

g(p)

))

p

∈ R

is in the MHS algebra ([Ros16], Theorem 7.11). In [Ros18a], §4, there
is an algorithm (along with a link to an implementation) that takes
as input a positive integer n and two elements (ap), (bp) of the MHS
algebra, and gives as ouput either a proof that ap ≡ bp mod pn for p
large, or a proof that Conjecture 2 implies there are infinitely many p
for which ap 6∼= bp mod pn.
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