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SOME NEW INEQUALITIES FOR THE q-GAMMA AND

RELATED FUNCTIONS

MOHAMED EL BACHRAOUI AND JÓZSEF SÁNDOR

Abstract. We consider convexity and monotonicity properties for some func-
tions related to the q-gamma function. As applications, we give a variety of
inequalities for the q-gamma function, the q-digamma function ψq(x), and the
q-series. Among other consequences, we improve a result of Azler and Grinsh-
pan about the zeros of the function ψq(x). We use q-analogues for the Gauss
multiplication formula to put in closed form members of some of our inequal-
ities.

1. Introduction

Throughout this paper we assume that 0 < q < 1. The q-shifted factorials of a
complex number a are defined by

(a; q)0 = 1, (a; q)n =

n−1
∏

i=0

(1− aqi), (a; q)∞ = lim
n→∞

(a; q)n.

For convenience we write

(a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n, (a1, . . . , ak; q)∞ = (a1; q)∞ · · · (ak; q)∞.
For any complex x, we let

[x]q =
1− qx

1− q
,

for which we have limq→1[x]q = x. The q-gamma function is given by

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x (|q| < 1)

It is clear that

(1) Γq(x+ 1) = [x]qΓq(x)

and it is well-known that Γq(x) is a q-analogue for the function Γ(x), see Askey [3].

The digamma function is ψ(x) =
(

log Γ(x)
)′

= Γ′(x)
Γ(x) and its q-analogue is the

q-digamma function given by

ψq(x) =
(

log Γq(x)
)′

=
Γ′
q(x)

Γq(x)
.
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The q-binomial theorem states that

(2)

∞
∑

n=0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

=: 1φ0(a,−; q, x) (|x| < 1, |q| < 1),

where 1φ0(a,−; q, x) is the basic hypergeometric series. For details and historical
notes on the q-series, the hypergeometric series, and related functions we refer to [1].
Our primary goal in this paper is to consider monotonicity and convexity properties
of the q-gamma function and some of its related functions. As an application,
we shall present inequalities involving the functions Γq(x) and ψq(x) along with
related functions including the function 1φ0(a,−; q, x). Some of our inequalities
involve powers, ratios, and products of these special functions. A crucial tool to
achieve some of our inequalities is Jensen’s inequality stating that if f(x) is a convex
function on I then for all x1, . . . , xn ∈ I and all positive a1, . . . , an one has

f
(

∑n
i=1 aixi

∑n
i=1 ai

)

≤
∑n

i=1 aif(xi)
∑n
i=1 ai

.

We mention that refinements of Jensen’s inequality exist in literature and thus any
inequality we prove in this paper using Jensen’s inequality can appropriately be
slightly improved. For some of other refinements of Jensen’s inequality, see [16].
Azler and Grinshpan [2, Lemma 4.5] proved that the function ψq(x) for 0 < q 6= 1
has a uniquely determined positive zero x0 = x0(q). Among our applications, we
shall show that x0(q) ∈ (1, 2). We will also provide Ky Fan type inequalities for
the q-gamma function. Another purpose of our work is to establish a variety of
inequalities involving the q-series. We note that some of our formulas have been
put in closed forms thanks to q-analogues of the Gauss multiplication formula for
the gamma function which we shall describe now. We recall that the Gaussian
multiplication formula for gamma function states that

(3) Γ

(

1

n

)

Γ

(

2

n

)

· · ·Γ
(

n− 1

n

)

=
(2π)

n−1
2

√
n

(n = 1, 2, . . .).

A famous q-analogue for (3) due to Jackson [9, 10], states that

(4)

(

1− qn

1− q

)nz−1

Γqn(z)Γqn

(

z +
1

n

)

· · ·Γqn
(

z +
n− 1

n

)

= Γqn(nz)Γqn

(

1

n

)

Γqn

(

2

n

)

· · ·Γqn
(

n− 1

n

)

(n = 1, 2, . . .).

Recently, the authors [4] gave the following q-analogue for (3)

(5)
n−1
∏

k=1

Γq

(

k

n

)

=
(

Γq
(1

2

)

)n−1 (q
1
2 ; q

1
2 )n−1

∞

(q; q)n−2
∞ (q

1
n ; q

1
n )∞

.

Besides, Sándor and Tóth [21] found

(6) P (n) :=

n
∏

k=1
(k,n)=1

Γ

(

k

n

)

=
(2π)

ϕ(n)
2

∏

d|n d
1
2µ(

n
d )

=
(2π)

ϕ(n)
2

e
Λ(n)

2

,
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where ϕ(n) in the Euler totient function, µ(n) is the Möbius mu function, and Λ(n)
is the Von Mangoldt function. We accordingly let

Pq(n) =

n
∏

k=1
(k,n)=1

Γq

(k

n

)

.

The authors [4] also found the following q-analogue (6).

(7) Pq(n) =

(

Γq

(

1
2

))ϕ(n)

(q
1
2 ; q)ϕ(n)

∏

d|n

((

q
1
d ; q

1
d

)

∞

)µ(n
d )

=

(

2Γq

(

1
2

))

ϕ(n)
2

e
Λq(n)

2

.

2. Inequalities for ψq(x) and Γq(x)

Lemma 1. (a) The derivative of the function ψq(x) is strictly completely monotonic
on (0,∞), that is,

(−1)n
(

ψ′(x)
)(n)

> 0 x > 0, n = 0, 1, 2, . . . .

(b) For any x ≥ 1, we have that x
(

ψq(x)
)′
+ 2ψq(x) > 0.

Proof. Part (a) is an immediate consequence of the series representation

ψq(x) = − log(1− q) + (log q)

∞
∑

n=0

qn+x

1− qn+x
= − log(1− q) + (log q)

∞
∑

n=1

qnx

1− qn
.

Part (b) is due Azler and Grinshpan [2, Lemma 3.4]. �

Lemma 2. For all x > 0, we have

qx log q

1− qx
+ log[x]q < ψq(x) < log[x]q.

Proof. From (1), we deduce that log Γq(x + 1) − log Γq(x) = log[x]q. Then by
Lagrange mean value theorem, there exists t ∈ (0, 1) such that

(8) ψq(x+ t) = log[x]q .

As ψq(x) is strictly increasing by Lemma 1, the forgoing identity implies that

(9) ψq(x) < ψq(x+ t) < ψq(x+ 1).

Next, differentiate both sides of (1) to obtain

(10) ψq(x) =
qx log q

1− qx
+ ψq(x+ 1).

Now, combine (8), (9), and (10) to get the desired inequalities. �

Azler and Grinshpan [2, Lemma 4.5] proved that the function ψq(x) for 0 < q 6= 1
has a uniquely determined positive zero x0 = x0(q). For 0 < q < 1, it turns out
that x0(q) ∈ (0, 1) as we will see now.

Theorem 1. (a) The function ψq(x) has a unique zero x0 in the interval (1, 2).
(b) There holds Γq(x) ≥ Γq(x0) for all x ∈ (0,∞).



4 M. EL BACHRAOUI AND J. SÁNDOR

Proof. First proof of (a) Application of Lemma 2 to x = 1 and to x = 2 respectively
gives

(11)
q log q

1− q
< ψq(1) < 0 and

q2 log q

1− q2
+ log(1 + q) < ψq(2).

By the well-known fact that the function ψ(x) is strictly increasing and continuous
we will be done if we show that

(12)
q2 log q

1− q2
+ log(1 + q) > 0.

Letting q = 1
t for t > 1 and after simplification (12) becomes

log t < log(t+ 1)− log t

t2 − 1
,

or equivalently,

(t2 − 1) log(t+ 1)− t2 log t > 0.

Letting f(t) = (t2 − 1) log(t+ 1)− t2 log t, we find that

f ′(t) = 2t log(t+ 1)− 2t log t− 1

f ′′(t) = 2

(

log
(

1 +
1

t

)

− 1

t+ 1

)

Then by a combination of the previous identity and the well-known inequality
(

1+ 1
t

)t+1

> e, we deduce that f ′′(t) > 0 from which it follows that f ′(t) is strictly

increasing. Then from the above, f ′(t) > f ′(1) = 2 log 2 − 1 > 0, which in turn
shows that f(t) is strictly increasing. Therefore f(t) > f(1) = 0, establishing the
relation (12).
Second proof of (a) As Γq(1) = Γq(2) = 1, we have by Rolle’s theorem applied to

Γq(x) on [1, 2] there exists x0 ∈ (1, 2) such that
(

Γq(x0)
)′

= 0 and hence ψq(x0) = 0

as
(

Γq(x)
)′

= ψq(x)Γq(x). Since Γq(x) is strictly convex, its derivative is strictly
increasing, and so x0 is unique.
(b) It is well-known that a strict log-convex function is also strict convex and

so, Γq(x) is strict convex on (0,∞) by Lemma 1(a). That is,
(

Γq(x)
)′

is strictly

increasing on (0,∞). Now Combine this with the identity
(

Γq(x)
)′

= ψq(x)Γq(x) as

follows. Then
(

Γq(x)
)′
<

(

Γq(x0)
)′

= 0 on the left of x0 and
(

Γq(x)
)′ ≥

(

Γq(x0)
)′

=
0 on the right of x0, showing that the function Γq(x) is strictly decreasing on (0, x0)
and strictly increasing on (x0,∞). This completes the proof. �

Remark 1. By the known inequality log x < x− 1 for 1 6= x > 0 applied to x = 1
q ,

we get q log q
q > −1 and so by (11), we get

(13) − 1 < ψq(1) < 0.

Bradley [6] introduced an extension of the Euler gamma constant γ as follows

γq = log(1 − q)− log q

1− q

∞
∑

i=1

qi

[i]q

and proved that limq→1 γq = γ. Mahmoud and Agarwal [12] proved that for 0 <
q < 1 we have ψq(1) = γq. We note that there no any other information in [6] and
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[12] related to the generalized constant γq. From (13), it follows that

0 < γq < 1 for any q ∈ (0, 1).

Stronger approximations are given in [5].

Theorem 2. (a) The function log Γq(x) + xψq(x) is strictly increasing on (1,∞)
with a single zero which is in (1, 2).
(b) The function log Γq(x) − xψq(x) is strictly decreasing on (0,∞) with a single
zero which is in (1, 2).

Proof. Let f(x) = log Γq(x) + xψq(x). Then by Lemma 1(b), f ′(x) = 2ψq(x) +
xψ′

q(x) > 0 and therefore f(x) is strictly increasing on (1,∞). We have already
seen in the proof of Theorem 1 that ψq(1) < 0 < ψq(2). It follows that f(1) =
ψq(1) < 0 < 2ψq(2) = f(2). As the function f(x) is clearly continuous on (1,∞),
the proof is complete for part (a). Part (b) follows in exactly the same way. �

Corollary 1. For any x > 1 and any positive integer n we have the following
double inequality

xψq(x) − (x+ n)ψq(x+ n) < log
Γq(x)

Γq(x+ n)
< (x+ n)ψq(x+ n)− xψq(x).

Proof. By Theorem 2(a), we have log Γq(x)+xψq(x) < log Γq(y)+yψq(y) whenever
1 < x < y. Repeatedly application of this and simplifying yield

log Γq(x) − log Γq(x+ 1) < (x+ 1)ψq(x+ 1)− xψq(x)

log Γq(x+ 1)− log Γq(x+ 2) < (x+ 2)ψq(x+ 2)− (x+ 1)ψq(x+ 1)

...

log Γq(x + n− 1)− log Γq(x+ n) < (x+ n)ψq(x+ n)− (x+ n− 1)ψq(x+ n− 1).

Adding together gives

log Γq(x)− log Γq(x+ n) < −xψq(x) + (x+ n)ψq(x + n),

which is equivalent to the first inequality. The second inequality is obtained simi-
larly by considering the function log Γq(x) − xψq(x) which is decreasing by Theo-
rem 2(a). �

Remark 2. It is known, see for instance [3], that the function xψq(x) is strictly
convex, so, as log Γq(x) is strictly convex too, we get that the function f(x) =
log Γq(x) + xψq(x) of Theorm 2(a) is strictly convex.

Lemma 3. For any positive integers k and n there holds

(a)
n−1
∑

i=1

ψq
( i

n

)

= (n− 1)ψq(1)− n log
1− q

1− q
1
n

(b)
n−1
∑

i=1

ψ(k)
q

( i

n

)

= (nk+1 − 1)ψ(k)
q (1).

Proof. In (4) replacing qn with q and taking logarithms on both sides give

(14) (nz − 1) log
1− q

1− q
1
n

+

n−1
∑

i=0

log Γq(z +
i

n
) = log Γq(nz) + log

n−1
∏

i=1

Γq
( i

n

)

.
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Differentiating with respect to z and then letting z = 1
n yield

n log
1− q

1− q
1
n

+

n−1
∑

i=1

ψq
( i

n

)

+ ψq(1) = nψq(1),

which is equivalent to the desired identity in part (a). To prove part (b), first
differentiate with respect z, k times both sides of (14) to obtain

n−1
∑

i=0

ψ(k)
q

(

z +
i

n

)

= nk+1ψ(k)
q (nz),

then let z = 1
n to get

n−1
∑

i=1

ψ(k)
q

( i

n

)

= (nk+1 − 1)ψ(k)
q (1),

as desired. �

Theorem 3. For any positive integers k and n there holds

(a) (n− 1)
(

ψq(1)− ψq
(1

2

)

)

< n log
1− q

1− q
1
n

(b) (n− 1)ψ(2k−1)
q

(1

2

)

< (n2k − 1)ψ(2k−1)
q (1)

(c) (n− 1)ψ(2k)
q

(1

2

)

> (n2k+1 − 1)ψ(2k)
q (1).

Proof. (a) By Lemma 1(a), the function ψq(x) is strictly concave. Then by an
application of Jensen’s inequality to this function with k = n − 1 and xi =

i
n for

i = 1, . . . , n− 1 we find

ψq

(

∑n−1
i=1

i
n

n− 1

)

>
1

n− 1

n−1
∑

i=1

ψq
( i

n

)

.

Then by an appeal to Lemma 3(a) along with simplification we derive

(n− 1)ψq
(1

2

)

> (n− 1)ψq(1)− n log
1− q

1− q
1
n

,

which proves part (a).

(b) By Lemma 1(a), the function ψ
(2k−1)
q (x) is strictly convex and therefore by

Jensen’s inequality applied to this function with k = n − 1 and xi = i
n for i =

1, . . . , n− 1 one has

ψ(2k−1)
q

(

∑n−1
i=1

i
n

n− 1

)

<
1

n− 1

n−1
∑

i=1

ψ(2k−1)
q

( i

n

)

.

Now use Lemma 3(b) and simplify to deduce that

(n− 1)ψ(2k−1)
q

(1

2

)

< (n2k − 1)ψ(2k−1)
q (1),

which is the desired relation in part (b). The similar proof of part (c) is omitted. �
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3. Convexity and inequalities for powers, ratios, and products of

Γq(x)

Lemma 4. Let f : (0,∞) → (0,∞) and let g(x) = f(x+1)
f(x) . If f(x) is strictly

log-convex on (0,∞), then for any x > 0 and any a ∈ (0, 1) we have

(

g(x)
)1−a

<
f(x+ 1)

f(x+ a)
<

(

g(x+ a)
)1−a

.

Proof. f(x) is strictly log-convex on (0,∞) we have for any u ∈ [0, 1] and any
y 6= z > 0

log
(

f(uy + (1− u)z)
)

< u log f(y) + (1− u) log f(z)

or equivalently,

(15) f(uy + (1 − u)z) <
(

f(y)
)u(

f(z)
)1−u

.

Let in (15) y := x, z := x+ 1, and u := 1− a to obtain

f(x+ a) <
(

f(x)
)1−a(

f(x+ 1)
)a
,

from which we easily get the first inequality. As to the second inequality, let in (15)
y := x+ a, z := x+ a+ 1, and u := a and proceed as before. �

A classical result by Gautschi [8] states that

x1−a <
Γ(x+ 1)

Γ(x+ a)
< e(1−a)ψ(x+1) (0 < a < 1).

We have the following q-variant which seems to be new.

Corollary 2. Let x > 0 and a ∈ (0, 1). Then

(

[x]q
)1−a

<
Γq(x+ 1)

Γq(x + a)
<

(

[x+ a]q
)1−a

.

Proof. Simply apply Lemma 4 to the function f(x) = log Γq(x). �

The following result is well-known.

Lemma 5. Let I ⊆ R and let f : I → (0,∞).
(a) If f(x) is concave (strictly concave), then 1

f(x) is convex (strictly convex).

(b) The function f(x) is log-convex if and only if 1
f(x) is log-concave.

Note that the converse of Lemma 5(a) is not true. For example, the function ex

is convex but the reciprocal e−x is not concave.

Lemma 6. For any x > 0 we have

(a)
(

ψq(x+ 1)
)′
<

−qx log q
1− qx

<
(

ψq(x)
)′

(b)
(

ψq(x)
)′′
<

−qx(log q)2
(1− qx)2

<
(

ψq(x+ 1)
)′′
.

Proof. By the Lagrange mean value theorem there is y ∈ (x, x + 1) such that

ψq(x+1)−ψq(x) =
(

ψq(y)
)′
. As the the function

(

ψq(x)
)′

is strictly decreasing by
Lemma 1(a), a combination of the previous identity with the relation (10) yields
part (a). To establish part (b), note first that using the Lagrange mean value
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theorem there exists z ∈ (x, x + 1) such that ψq(x + 1) − ψq(x) =
(

ψq(z)
)′′
. Note

also that by (10) one has

(

ψq(x+ 1)
)′ −

(

ψq(x)
)′

=
−qx(log q)2
(1− qx)2

.

Moreover, the function
(

ψq(x)
)′

is strictly increasing by Lemma 1(a). Thus part
(b) follows by a combination of the above facts. �

Corollary 3. There holds

(a)
(

ψq(x+ 1)
)′
<

1

x
, for all x > 0

(b)
(

ψq(x+ 1)
)′′
>

−1

x2
, for all x > 0.

Proof. Upon letting t = qx and using Lemma 6, we see that to prove part (a) it

will be enough to show that t log t
1−t > −1. But this inequality has been established

in Remark 1. Similarly, but now letting qx = 1
p for p > 1, we can check that in

order to prove part (b), it will be enough to show that

√
p <

p− 1

log p
.

To this end, let A(a, b) be the arithmetic mean, G(a, b) be the geometric mean, and
L(a, b) be the logarithmic mean, i.e.

A(a, b) =
a+ b

2
, G(a, b) =

√
ab, L(a, b) =

b− a

log b− log a
.

It is well-known (see for instance Sándor [17, 20]) for these means that

(16) G(a, b) < L(a, b) < A(a, b).

In particular, we have that G(p, 1) < L(p, 1), which is the desired inequality. �

Theorem 4. The function f(x) =
(

Γq(x+1)
)

1
x is strictly log-concave and strictly

increasing on (0,∞).

Proof. We find

(17) x3
(

log f(x)
)′′

= x2
(

ψq(x+ 1)
)′ − 2xψq(x+ 1) + 2 logΓq(x+ 1)

and letting h(x) = x2
(

ψq(x+1)
)′ − 2xψq(x+1)+ 2 log Γq(x+ 1), we have h′(x) =

x2
(

ψq(x+1)
)′′

and so h′(x) < 0 by Lemma 1(a), that is, h(x) is strictly decreasing
on (0,∞). Then h(x) < h(0) = 0, which combined with equation (17) implies that
log f(x) is strictly concave on (0,∞) and therefore, the first statement follows. As

to the monotonicity, observe that
(

log f(x)
)′

= a(x)
x2 , where

a(x) = xψq(x+ 1)− log Γq(x + 1).

The function a(x) is well-defined on [0,∞). One clearly has a(0) = 0 and by

Lemma 1, a′(x) = x
(

ψq(x)
)′
> 0. Thus a(x) > a(0) = 0 and we have that the

function f(x) is strictly increasing on (0,∞). �

Corollary 4. Let f(x) be the function in Theorem 4. Then for any x > 0 we have

e−γq < f(x) <
1

1− q
.



SOME NEW INEQUALITIES... 9

Proof. Since f(x) is strictly increasing by Theorem 4, one has

f(0+) < f(x) < f(∞).

Recall further that ψq(1) = −γq and note that by Azler and Grinshpan [2] we have
limx→∞ ψq(x) = − log(1− q). Now, by l’Hopital’s rule we find that

lim
x→∞

log f(x) = ψq(1) = −γq and lim
x→∞

log f(x) = lim
x→∞

ψq(x+ 1) = − log(1− q),

which yields the desired inequalities. �

Corollary 5. The function 1

Γq(x+1)
1
x

is strictly log-convex on (0,∞).

Proof. This follows by Theorem 4 and Lemma 5(b). �

A classical gamma version for Corollary 5 is due to Van de Lune [23].

Corollary 6. Let

g(x) =







(

Γq(x+ 1)
)

1
x

[x+ 1]q







1
x+1

.

Then for any x > 0 and any a ∈ (0, 1), we have

(

g(x)
)1−a

<

(

Γq(x+ a+ 1)
)

1
x+a

(

Γq(x+ 2)
)

1
x+1

<
(

g(x+ a)
)1−a

.

Proof. This is a direct consequence of Corollary 5 and Lemma 2 and the basic fact
that Γq(x+ 2) = [x+ 1]qΓq(x+ 1). �

Theorem 5. Let f(x) be as defined in Theorem 4. Then the function F (x) = f(x)
x

is strictly decreasing and strictly log-convex on (0,∞).

Proof. Let b(x) = logF (x) and c(x) = x2b′(x). Then we easily find that b(x) =
− logx+ 1

x log Γq(x+1) and therefore that c(x) = −x− log Γq(x+1)+ xψq(x+1).
Note that the function c(x) can be defined for all x ≥ 0 and we have that c(0) = 0

and c′(x) = −1 + x
(

ψq(x + 1)
)′
. The last identity and Corollary 3(a) imply that

c′(x) < 0, thus c(x) < c(0), so b′(x) < 0, and consequently the function b(x) is
strictly decreasing. Now we consider the convexity of b(x). As we have seen above,
one has

b′(x) =
−1

x
− 1

x2
log Γq(1 + x) +

1

x
ψq(1 + x),

from where we obtain, by letting d(x) = x3b′′(x), that

d(x) = x+ 2 log Γq(x + 1)− 2xψq(x+ 1) + x2(ψq(x+ 1))′

The function can be defined on [0,∞). One has d(0) = 0 and we obtain after some

computations that d′(x) = 1 + x2
(

ψq(x + 1)
)′′
. Then by virtue of Corollary 3(b)

we have that d′(x) > 0. Thus d(x) > d(0) = 0, and the result follows. �

Remark 3. The two monotonicity properties of the functions f(x) of Theorem 4

and of f(x)
x of Theorem 5 have been proved for the case of the classical gamma

function by Kershaw and Laforgia [11]. We note also that in [11] it was proved that

the function Γ
(

1 + 1
x

)x
is strictly decreasing and xΓ

(

1 + 1
x

)x
is strictly increasing.
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It is immediate that these are equivalent with the above monotonicity theorems for
q = 1.

Theorem 6. (a) The function
(

Γq(x)
)

1
x

is strictly log-convex on (0, 1].

(b) The function
(

Γq(x)
)x

is strictly log-convex on [1,∞).

Proof. (a) Letting f(x) =
(

Γq(x)
)

1
x

, we get

(18) x3
(

log f(x)
)′′

= x2
(

ψq(x)
)′ − 2xψq(x) + 2 log Γq(x + 1).

Now for the function h(x) = x2
(

ψq(x)
)′− 2xψq(x)+ 2 logΓq(x+1) we find h′(x) =

x2
(

ψq(x)
)′′
< 0, that is, the function h(x) decreases on (0, 1]. Then for any x ∈ (0, 1]

we have with the help of Lemma 1(a) and inequality (11)

h(x) ≥ h(1) = ψ′
q(1)− 2ψq(1) > 0.

Thus
(

log f(x)
)′′
> 0 on (0, 1], or equivalently, f(x) =

(

Γq(x)
)

1
x

is log-convex on

(0, 1]. (b) We have by a straight computation and Lemma 1(b),
(

log
(

Γq(x)
)x
)′′

= 2ψq(x) + x
(

ψq(x)
)′
> 0,

showing the desired statement. �

We note that Theorem 4 and Theorem 6(a) were motivated by results of the
second author in [18, 19] on Euler gamma function.

Lemma 7. Let f(x) be strictly log-convex on the interval (0, 1). Then we have

f
(

1− 2x(1− x)
)

f(1− x)
<

( f(x)

f(1− x)

)x

<
f(x)

f
(

2x(1− x)
) .

Proof. As f(x) is strictly log-convex we have for any a ∈ (0, 1)

f
(

a(1 − x) + (a− 1)x
)

<
(

f(1− x)
)a(

f(x)
)1−a

,

which by letting a = 1− x means

f(2x2 − 2x+ 1) <
(

f(1− x)
)1−x(

f(x)
)x
.

It follows that
f
(

1− 2x(1− x)
)

f(1− x)
<

( f(x)

f(1− x)

)x

,

which is the first desired inequality. As to the second inequality, as f(x) is strictly
log-convex we also have for any a ∈ (0, 1)

f
(

ax+ (a− 1)(1− x)
)

<
(

f(x)
)a(

f(1− x)
)1−a

,

which by letting a = 1− x means

f
(

2x(1 − x)
)

<
(

f(x)
)1−x(

f(1− x)
)x
,

or equivalently,
f(x)

f
(

2x(1− x)
) >

( f(x)

f(1− x)

)x

.

This completes the proof. �
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Corollary 7. For any x ∈ (0, 1) we have

(a) Γq
(

2x(1− x)
)

Γq
(

1− 2x(1 − x)
)

< Γq(x)Γq(1 − x)

(b) ψq
(

2x(1− x)
)

ψq
(

1− 2x(1− x)
)

> ψq(x)ψq(1− x).

Proof. Let f(x) = Γq(x)Γq(1 − x). Then f(x) is strictly log-convex being the
product of two log-convex functions and we clearly have f(x) = f(1− x). Then by
virtue of Lemma 7, we get

Γq
(

2x(1 − x)
)

Γq
(

1− 2x(1− x)
)

Γq(x)Γq(1− x)
< 1 <

Γq(x)Γq(1− x)

Γq
(

2x(1 − x)
)

Γq
(

1− 2x(1− x)
) .

Then simplifying gives part (a). As to part (b), let g(x) = ψq(x)ψq(1 − x). Then
by Lemma 1(a) we find

(

log g(x)
)′′

=
(

ψ(x)
)′′

+
(

ψ(1− x)
)′′
< 0,

showing by Lemma 5 that the reciprocal 1
g(x) is strictly log-convex. Moreover, it is

clear that g(x) = g(1− x). Then from Lemma 7, we have

ψq(x)ψq(1− x)

ψq
(

2x(1− x)
)

ψq
(

1− 2x(1− x)
) < 1.

This completes the proof. �

For our next result, we need the following result of Vasić [22] which is an extension
of a famous inequality of Petrović. We refer to [13] for details about Petrović’s
inequality.

Lemma 8. Let f : [0,∞) → R be convex. Then for any x1, . . . , xn ≥ 0 and any
p1, . . . , pn ≥ 1, we have

n
∑

i=1

pif(xi) ≤ f
(

n
∑

i=1

pixi
)

+
(

n−1
∑

i=1

pi − 1
)

f(0).

Corollary 8. For any real numbers x1, . . . , xn ≥ 0, we have
n
∏

i=1

Γq(xi) ≤
[
∑n

i=1 xi]q
∏n
i=1[xi]q

Γq

(

n
∑

i=1

xi

)

.

Proof. Simply apply Lemma 8 to f(x) = log Γq(x+1), p1 = . . . = pn = 1 and note
that f(0) = 0. �

4. Inequalities related to
Γq(1−x)
Γq(x)

and Γq
(

1−x
x

)

Theorem 7. (a) The function Γq

(

1−x
x

)

is strictly log-convex on (0, 12 ].

(b) The function
Γq(1−x)
Γq(x)

is strictly log-concave on (0, 12 ].

Proof. (a) Let f1(x) = log Γq

(

1−x
x

)

. Then

f ′
1(x) = − 1

x2
ψq

(1− x

x

)

f ′′
1 (x) =

2

x3
ψq

(1− x

x

)

+
1

x4
ψ′
q

(1− x

x

)

,
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and so, x3f ′′
1 (x) = 2ψq(y) +

1
xψ

′
q(y) where y = 1−x

x . Noting that y < 1
x and that

1−x
x ≥ 1 on (0, 12 ], we get with the help of Lemma 1(b) that

x3f ′′
1 (x) > 2ψq(y) + yψ′

q(y) > 0.

It follows that f ′′
1 (x) > 0 and thus Γq

(

1−x
x

)

is strictly log-convex on (0, 12 ].

(b) Let f2(x) = log
Γq(1−x)
Γq(x)

. Then f ′′
2 (x) = ψ′

q(1 − x) − ψ′
q(x). As 1 − x > x on

(0, 12 ) and the function ψq(x) is strictly decreasing by Lemma 1(a), we deduce that
f ′′
2 (x) < 0. This completes the proof. �

For our next result we need the following lemma.

Lemma 9. There holds

ψq
(1

2

)

< 2ψq(1).

Proof. By virtue of Lemma 3 applied to n = 2, we have ψq
(

1
2

)

= ψq(1)−2 log(1+q
1
2 )

and so our desired inequality means that ψq(1) > −2 log(1 + q
1
2 ). Now, by a

combination of Lemma 2 applied to x = 1 and the relation (12), we get ψq(1) >
q log q
1−q − 2 log(1 + q

1
2 ), which completes the proof. �

Theorem 8. For any x ∈ (0, 12 ], one has

Γq(1 − x)

Γq(x)
≤ Γq

(1− x

x

)

,

with equality only for x = 1
2 .

Proof. Let

f(x) = log Γq
(1− x

x

)

+ log Γq(x) − log Γq(1 − x).

As f
(

1
2

)

= 0, it will be enough to prove that f(x) is decreasing on (0, 12 ]. Note first

that from Theorem 7(a) we have that
(

log Γq
(

1−x
x

)

)′

is increasing on (0, 12 ], which

implies that
(

log Γq
(1− x

x

)

)′

= − 1

x2
ψq

(1− x

x

)

≤ −4ψq(1).

Moreover, since the function ψq(x) is concave by Lemma 1(a), we have

ψq(x) + ψq(1− x) ≤ 2ψq
(x+ (1− x)

2

)

= 2ψq
(1

2

)

.

Now as

f ′(x) =
(

log Γq
(1− x

x

)

)′

+ ψq(x) + ψq(1− x),

we deduce from Lemma 9 and the above facts that

f ′(x) ≤ −4ψq(1) + 2ψq
(1

2

)

= 2
(

ψq
(1

2

)

− 2ψq(1)
)

≤ 0.

showing that f(x) is decreasing. This completes the proof. �

We close this section with an inequality of Ky Fan type for the q-gamma function.
For Ky Fan inequalities related to the classical gamma function the reader is referred
to Neuman and Sándor [15].
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Theorem 9. For a positive integer k and i = 1, 2, . . . , k, let xi ∈ (0, 12 ] and let
x′i = 1 − xi. Let Ak denote the arithmetic mean of xi and let A′

k denote the
arithmetic mean of x′i. Then

(a) Γq
(A′

k

Ak

)

≤
(

k
∏

i=1

Γq
(xi
x′i

)

)
1
k

(b)
Γq(A

′
k)

Γq(Ak)
≥

(

k
∏

i=1

Γq(x
′
i)

Γq(xi)

)
1
k

.

Proof. As the function Γq

(

1−x
x

)

is strictly log-convex on (0, 12 ] by Theorem 7(a),

an application of Jensen’s inequality to this function yields part (a). Moreover,

an application of Jensen’s inequality to
Γq(1−x)
Γq(x)

, which is strictly log-concave by

Theorem 7(b), gives to part (b). �

5. Inequalities related to q-series

Theorem 10. For any positive integer n, any x > 0, and any a ∈ (0, 1), we have

(a) (1− qx)1−a <
(qx+a; q)n
(qx+1; q)n

< (1− qx+a)1−a

(b) (1− qx)1−a ≤ 1φ0
(

qa−1,−; q, qx+1
)

≤ (1− qx+a)1−a.

Proof. Let f(x) = (qx; q)n. Then from f(x) =
∑n−1
i=0 log(1− qx+i), we get

(

log f(x)
)′′

= −(log q)2
n−1
∑

i=0

qx+i

(1 − qx+i)2
< 0

which means that the function f(x) is strictly log-concave and so, 1
f(x) is strictly

log-convex by Lemma 5(b). Then by Lemma 4 applied to 1
f(x) ,

(1−qx)1−a =

(

(qx; q)n
(qx+1; q)n

)1−a

<
(qx+a; q)n
(qx+1; q)n

<

(

(qx+a; q)n
(qx+a+1; q)n

)1−a

= (1−qx+a)1−a,

which proves part (a). As to part (b), take limits as n → ∞ in the previous
inequalities and use the q-binomial theorem 2 to obtain

(1− qx)1−a ≤ (qx+a; q)∞
(qx+1; q)∞

= 1φ0
(

qa−1,−; q, qx+1
)

≤ (1− qx+a)1−a,

which is the desired double inequality. �

Theorem 11. For any positive integer n we have

1

(q; q)∞
≤ inf

{

(q
1
2 ; q)n−1

∞

(q; q
1
n )∞(1− q

1
2 )n−1

,
(q

1
2 ; q)n−1

∞

(q
1
n ; q

1
n )∞

,
(q

1
2 ; q)n−1

∞ (−q 1
n ; q

1
n )n−1

(q
1
n ; q

1
n )∞(1 + q

1
2 )n−1

}

Proof. The function (1 − qx)Γq(x) is strictly log-convex by Askey [3]. Then by
Jensen’s inequality

log
(

(1−q(x1+...+xk)/k)Γq(
x1 + . . .+ xk

k
)
)

≤ 1

k

(

log
(

(1−qx1)Γq(x1)
)

+. . .+log
(

(1−qxk)Γq(xk)
)

)

,
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which by taking k = n− 1 and xi =
i

n−1 and simplifying yield

(

(1− q1/2)Γq(1/2)
)n−1

≤ (q1/n; q1/n)n−1

n−1
∏

i=1

Γq(i/n),

or, by (5),

(

(1− q1/2)Γq(1/2)
)n−1

≤ (q1/n; q1/n)n−1

(

Γq(1/2)
)n−1 (q1/2; q1/2)n−1

∞

(q; q)n−2
∞ (q1/n; q1/n)∞

.

Simplifying gives

(19)
(q1/2; q)n−1

∞

(q; q1/n)∞(1− q1/2)n−1
≥ 1

(q; q)∞
.

Now apply Jensen’s inequality to the strictly log-convex function Γq(x) and proceed
as before to obtain

(20)
(q1/2; q)n−1

∞

(q1/n; q1/n)∞
≥ 1

(q; q)∞
.

Finally, note that (1 + qx)Γq(x) is strictly log-convex and use the same sort of
argument as before to deduce that

(21)
(q1/2; q)n−1

∞ (−q1/n; q1/n)n−1

(q1/n; q1/n)∞(1 + q1/2)n−1
≥ 1

(q; q)∞
.

Combining (19), (20), and (21) yields the desired result. �

Theorem 12. For any integer n > 1, we have

(q
1
2 ; q)ϕ(n)∞ ≥ sup







∏

d|n

(q
1
d ; q

1
d )
µ( n

d
)

∞ , (1− q
1
2 )ϕ(n)

∏

d|n

(q; q
1
d )
µ( n

d
)

∞ , (1 + q
1
2 )ϕ(n)

∏

d|n(q
1
d ; q

1
d )
µ(n

d
)

∞

∏

d|n(−q
1
d ; q

1
d )
µ( n

d
)

d−1







.

Proof. Note first the following well-known facts on the Euler totient function ϕ(n):

n
∑

i=1
(i,n)=1

1 = ϕ(n) and

n
∑

i=1
(i,n)=1

i =

n
∑

i=1
(i,n)=1

(n− i) =
nϕ(n)

2
,

from which it follows that

n
∑

i=1
(i,n)=1

i

n
=
ϕ(n)

2
and

n
∑

i=1
(i,n)=1

i

n

n
∑

i=1
(i,n)=1

1

=
1

2
.

Apply Jensen’s inequality to the function Γq(x) with k = ϕ(n) and xi = i
n for

i = 1, . . . , ϕ(n) and use the above to get

log Γq

(1

2

)

≤ 1

ϕ(n)
log

n
∏

i=1
(i,n)=1

Γq
( i

n

)

,
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which by virtue of (7) means

(

Γq

(1

2

))ϕ(n)

≤ Pq(n) =

(

Γq

(

1
2

))ϕ(n)

(q
1
2 ; q)ϕ(n)

∏

d|n

((

q
1
d ; q

1
d

)

∞

)µ(n
d )

.

It follows that

(22) (q
1
2 ; q)ϕ(n) ≥

∏

d|n

(

q
1
d ; q

1
d

)µ(n
d )

∞
.

In the remaining part of the proof we shall need

(23)

n
∏

i=1
(i,n)=1

(1− q
i
n ) =

∏

d|n

(q
1
d ; q

1
d )
µ(n

d )
d−1

which follows by the Möbius inversion formula applied to
∏n−1
i=1 (1−q

i
n ) = (q

1
n ; q

1
n )n−1.

Now apply Jensen’s inequality to the function (1 − qx)Γq(x) with k = ϕ(n) and
xi =

i
n for i = 1, . . . , ϕ(n) to deduce

log
(

(1− q
1
2 )Γq

(1

2

))

≤ 1

ϕ(n)
log

n
∏

i=1
(i,n)=1

(1− q
i
n )Γq

( i

n

)

,

which by virtue of (7) and (23) means

(

(1 − q
1
2 )Γq

(1

2

))ϕ(n)

≤
∏

d|n

(q
1
d ; q

1
d )
µ(n

d )
d−1

(

Γq

(

1
2

))ϕ(n)

(q
1
2 ; q)ϕ(n)

∏

d|n

((

q
1
d ; q

1
d

)

∞

)µ(n
d )

.

Simplifying the foregoing inequality yields

(24) (q
1
2 ; q)ϕ(n) ≥ (1− q

1
2 )ϕ(n)

∏

d|n

(

q; q
1
d

)µ(n
d )

∞
.

Furthermore, apply Jensen’s inequality to the function (1+qx)Γq(x) with k = ϕ(n)
and xi =

i
n for i = 1, . . . , ϕ(n) and use the same argument as above to obtain

(25) (q
1
2 ; q)ϕ(n) ≥ (1 + q

1
2 )ϕ(n)

∏

d|n(q
1
d ; q

1
d )
µ( n

d
)

∞

∏

d|n(−q
1
d ; q

1
d )
µ(n

d
)

d−1

.

Finally combine (22), (24), and (25) to complete the proof. �

For our next result we need the following lemma of Askey [3] which deals with
the behaviour of Γq as a function of q.

Lemma 10. Let 0 < p < q < 1. Then

(a) Γp(x) ≤ Γq(x) ≤ Γ(x), 0 < x ≤ 1 or x ≥ 2

(b) Γp(x) ≥ Γq(x) ≥ Γ(x), 1 ≤ x ≤ 2.
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Theorem 13. Let 0 < p < q < 1 and let n > 1 be an integer. Then

(a)
(p; p)n∞

(p
1
n ; p

1
n )∞

(1− p)
n−1
2 ≤ (q; q)n∞

(q
1
n ; q

1
n )∞

(1− q)
n−1
2 ≤ (2π)

n−1
2

√
n

(b)
(p; p)n∞

(p; p
1
n )∞

1

(1− p)
n−1
2

≥ (q; q)n∞

(q; q
1
n )∞

1

(1− q)
n−1

2

≥ (n− 1)!(2π)
n−1
2

nn−
1
2

.

Proof. Note first that

(

Γq
(1

2

)

)n−1

(q
1
2 ; q

1
2 )n−1

∞ = (1− q)
n−1
2 (q; q)2n−2

∞ ,

and therefore the relation (5) boils down to

(26)

n−1
∏

k=1

Γq

(

k

n

)

=
(q; q)n∞

(q
1
n ; q

1
n )∞

(1− q)
n−1
2 .

(a) Let xi =
i
n for i = 1, . . . , n− 1 and apply Lemma 10(a) to obtain

n−1
∏

i=1

Γp
( i

n

)

≤
n−1
∏

i=1

Γq
( i

n

)

≤
n−1
∏

i=1

Γ
( i

n

)

.

Now use (26) and (3) to deduce

(p; p)n∞

(p
1
n ; p

1
n )∞

(1− p)
n−1
2 ≤ (q; q)n∞

(q
1
n ; q

1
n )∞

(1− q)
n−1
2 ≤ (2π)

n−1
2

√
n

,

which is the desired inequalities.
(b) As to this part let xi = 1 + i

n for i = 1, . . . , n− 1 and apply Lemma 10 (b) to
get

n−1
∏

i=1

Γp
(

1 +
i

n

)

≥
n−1
∏

i=1

Γq
(

1 +
i

n

)

≥
n−1
∏

i=1

Γ
(

1 +
i

n

)

.

It follows by combining these inequalities with the basic facts Γq(x+1) = 1−qx

1−q Γq(x)

and Γ(x+ 1) = xΓ(x) that

n−1
∏

i=1

Γp
( i

n

)1− p
i
n

1− p
≥

n−1
∏

i=1

Γq
( i

n

)1− q
i
n

1− q
≥

n−1
∏

i=1

Γ
( i

n

) i

n
,

or equivalently,

(p
1
n ; p

1
n )n−1

(1− p)n−1

(p; p)n∞

(p
1
n ; p

1
n )∞

(1−p)n−1
2 ≥ (q

1
n ; p

1
n )n−1

(1− q)n−1

(q; q)n∞

(q
1
n ; q

1
n )∞

(1−q)n−1
2 ≥ (n− 1)!

nn−1

n−1
∏

i=1

Γ
( i

n

)

.

Finally, an application of (26) and (3) to the foregoing inequalities and simplifying
yield

(p; p)n∞

(p; p
1
n )∞

1

(1− p)
n−1
2

≥ (q; q)n∞

(q; q
1
n )∞

1

(1− q)
n−1
2

≥ (n− 1)!(2π)
n−1
2

nn−
1
2

.

This completes the proof. �
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[21] J. Sándor and L. Tóth, A remark on the gamma function, Elem. Math. 44:3 (1989), 73–76.
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