
ar
X

iv
:1

80
5.

02
07

1v
1 

 [
m

at
h.

N
T

] 
 5

 M
ay

 2
01

8

Central Values of GL(2)×GL(3) Rankin-Selberg L-functions

with Applications 1

Qinghua Pi

Abstract Let f be a normalized holomorphic cusp form for SL2(Z) of weight k with k ≡ 0 mod 4.
By the Kuznetsov trace formula for GL3(R), we obtain the first moment of central values of L(s, f⊗φ),
where φ varies over Hecke-Maass cusp forms for SL3(Z). As an application, we obtain a non-vanishing
result for L(1/2, f ⊗ φ) and show that such f is determined by {L(1/2, f ⊗ φ)} as φ varies.
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1. Introduction

Special values of L-functions are expected to carry important information on relevant arithmetic
and geometric objects. In 1997, Luo and Ramakrishnan [LR1997] asked the question that to what
extent modular forms are actually characterized by their special L-values. In the same paper, they
considered the moment of χd(p)L(1/2, f ⊗ χd) as d varies, and showed that a cuspidal normalized
holomorphic Hecke newform f is uniquely determined by the family {L(1/2, f ⊗χd)} for all quadratic
characters χd. Since then, this problem has been studied by many authors ([Lu1999], [CD2005],
[Li2007], [Li2009], [GHS2009], [Mu2010], [Liu2010], [Pi2010], [Liu2011], [Zh2011], [Ma2014], [Pi2014],
[Su2014],[MS2015]).

Let f be a normalized holomorphic Hecke-cusp form for SL2(Z) of fixed weight k with k ≡ 0 mod 4.
Let {φ} be a Hecke basis of the space of Maass cusp forms for SL3(Z). In this paper, we con-
sider central values of Rankin-Selberg L-functions L(s, f ⊗ φ). By calculating the twisted moment of
Aφ(p, p)L(1/2, f ⊗ φ) where Aφ(p, p) is the Hecke eigenvalue of φ at (p, p), we show that f is uniquely
determined by the family {L(1/2, f ⊗ φ)} as φ varies over a Hecke basis of the space of Maass cusp
forms for SL3(Z).

To state our result, we give the following notations.

• For φ a Hecke-Maass cusp form for SL3(Z), let µφ = (µ1, µ2, µ3) be the Langlands parameter
of φ. We know that µφ is a point in the region

Λ′
1/2 :=







(µ1, µ2, µ3) ∈ C
3,

|Re(µj)| ≤
1

2
, µ1 + µ2 + µ3 = 0,

{µ1, µ2, µ3} = {−µ1,−µ2,−µ3}







in the Lie algebra sl3(C). Let

ν1 =
1

3
(µ1 − µ2), ν2 =

1

3
(µ2 − µ3), ν3 = −ν1 − ν2

which are known as the spectral coordinates.
• Fix a point µ0 ∈ Λ′

1/2 such that

|µ0j | ≍ ‖µ0‖ := T, 1 ≤ j ≤ 3.

1This work is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2014AQ002) and
Innovative Research Team in University (Grant No. IRT16R43).
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As in [BB2015] (or see [HLZ2017]), we choose the test function h(µ) to localize at a ball of
radius M = T θ with 0 < θ < 1 about w(µ0), where w are elements in the Weyl group W . For
a precise definition of h(µ), we refer to section 2.3.

• Let dµ = dµ1dµ2 and dspecµ = spec(µ)dµ with

spec(µ) =

3
∏

j=1

(

3νj tan

(

3π

2
νj

))

.

Our main result is in the following.

Theorem 1.1. Let f be a normalized holomorphic Hecke cusp form for SL2(Z) of weight k with
k ≡ 0 mod 4. Let {φ} be a Hecke basis of the space of cusp forms for SL3(Z) and Aφ(p, p) be the
Hecke eigenvalue of φ at (p, p). One has

∑

φ

h(µφ)

Nφ
Aφ(p, p)L(1/2, f ⊗ φ) =

λf (p)

p3/2
Mk(h) +Ok,ǫ(p

7
32

+ǫT
5
2
+ǫM2) (1.1)

for T ≫k,ǫ p
3+ 7

16
+ǫ. Here Nφ is the normalized factor defined in (2.5) and

Mk(h) =
1

192π5

∫∫

Re(µ)=0
h(µ)



1 +
3
∏

j=1

Γ(k2 + µj)

Γ(k2 − µj)



 dspecµ.

Note that Mk(h) ≍k T
3M2. On taking p = 1, the above theorem implies the existence of non-

vanishing of L(1/2, f⊗φ) as φ varies. Moreover, by the strong multiplicity one theorem (see [PS1979]),
we have the following corollary.

Corollary 1. Let f and f ′ be two normalized holomorphic cusp forms for SL2(Z) of fixed weight k
with k ≡ 0 mod 4. If L(1/2, f ⊗ φ) = L(1/2, f ′ ⊗ φ) for all Hecke-Maass cusp forms φ for SL3(Z),
then f = f ′.

We remark that central values of L(s, f ⊗ φ) vanish for k ≡ 2 mod 4. In this case we can consider
d
dsL(1/2, f ⊗ φ) instead of L(1/2, f ⊗ g) as in [Zh2011]. But we do not address this here.

This paper is arranged as follows. In section 2, we review the Kuznetsov trace formula in the
version of [Bu2014], choose the test function and give the approximate functional equation of the
Rankin-Selberg L-function. Theorem 1.1 will be proved in section 3, where we apply the approximate
functional equation and the Kuznetsov trace formula, and give estimations on each terms. The main
term in (1.1) comes from the geometric term associated to the trivial Weyl’s element, and the error
term comes from the maximal Eisenstein series in the continuous spectrum.

2. Preliminaries

In this section, we review the definition of automorphic forms on SL(3,Z) in [Bl2013] (or see
[Go2006]), the Kuznetsov’s trace formula in [Bu2014] (or see [BB2015]) and the approximate functional
equation of Rankin-Selberg L-functions.

Let

h3 =







z =





1 x2 x3
1 x1

1









y1y2
y1

1



 , x1, x2, x3 ∈ R, y1, y2 ∈ R
+







≃ GL3(R)/O3(R)Z(R)
2



be the generalized Poincare upper half plane. Given a spectral parameter (ν1, ν2) ∈ C
2, the function

Iν1,ν2 on h3 is defined by

Iν1,ν2(z) = y1+2ν1+ν2
1 y1+ν1+2ν2

2

and the Jacquet-Whittaker function is defined by

W±
ν1,ν2(z) : =

∫

R3

Iν1,ν2









1
1

1









1 u2 u3
1 u1

1



 z



 e(−(u1 ± u2))du1du2du3

where e(x) = exp(2πix).
Let ν3 = −ν1 − ν2 and

µ1 = ν1 + 2ν2, µ2 = ν1 − ν2, µ3 = −2ν1 − ν2. (2.1)

We will simultaneously use µ = (µ1, µ2, µ3) and (ν1, ν2, ν3) coordinates,

ν1 =
1

3
(µ1 − µ2), ν2 =

1

3
(µ2 − µ3), ν3 = −ν1 − ν2.

2.1. Automorphic forms for SL(3,Z).

2.1.1. Hecke-Maass cusp forms. A Hecke-Maass cusp form for Γ = SL3(Z) of type (13 + ν1,
1
3 + ν2) is

a function φ : Γ\h3 → C which has the Fourier expansion

φ(z) =
∞
∑

m1=1

∑

m2 6=0

Aφ(m1,m2)

m1|m2|
∑

γ∈U2\SL2(Z)

Wsgn(m2)
ν1,ν2









m1|m2|
m1

1





(

γ
1

)

z



 cν1,ν2 .

Here Aφ(m1,m2) are eigenvalues of φ at (m1,m2) satisfying

Aφ(m1,m2) ≪ m1m2,

W±
ν1,ν2(z) is the Jacquet-Whittaker function and cν1,ν2 is a constant depending only on ν1 and ν2 (see

formula (2.13) in [Bl2013]).
Let µφ = (µ1, µ2, µ3) be the Langlands parameter of φ where µj are given by (2.1). The L-function

associated to φ is defined by

L(s, φ) :=
∑

m≥1

Aφ(1,m)

ms

for Re(s) > 2. It has analytic continuation for s ∈ C and satisfies the functional equation

Λ(s, φ) =

3
∏

j=1

ΓR(s+ µj)L(s, φ) = Λ(1− s, φ∨).

Here ΓR(s) = π−
s
2Γ(s/2) and φ∨ is the dual Hecke-Maass cusp form of φ with

Aφ∨(m1,m2) = Aφ(m2,m1), µφ∨ = (−µ1,−µ2,−µ3).
3



2.1.2. The minimal Eisenstein series. Let P1,1,1 be the standard minimal parabolic subgroup of GL3

and U3 be the unipotent radical of P1,1,1. Given a spectral parameter (ν1, ν2) ∈ C
2, let µ = (µ1, µ2, µ3)

be the Langlands parameter given by (2.1). The minimal Eisenstein series

Emin
ν1,ν2(z) :=

∑

γ∈U3(Z)\Γ
Iν1,ν2(γz)

is defined for Re(ν1) and Re(ν2) sufficient large and has meromorphic continuation to all (ν1, ν2) ∈ C
2.

The Hecke eigenvalues Amin
ν1,ν2(m,n) of E

min
ν1,ν2(z) at (m,n) are defined by

Amin
ν1,ν2(1, n) =

∑

d1d2d3=n

d−µ1
1 d−µ2

2 d−µ3
3

and by Hecke relations

Amin
ν1,ν2(m, 1) = Amin

ν1,ν2(1,m),

Amin
ν1,ν2(m1,m2) =

∑

d|(m1,m2)

µ(d)Amin
ν1,ν2

(m1

d
, 1
)

Amin
ν1,ν2

(

1,
m2

d

)

.

The L-function associated to Emin
ν1,ν2(z) is

L(s,Emin
ν1,ν2) :=

∑

m≥1

Amin
ν1,ν2(1,m)

ms
= ζ(s+ µ1)ζ(s+ µ2)ζ(s+ µ3)

where µi are given by (2.1).

2.1.3. The Maximal Eisenstein series. Let g : SL2(Z)\h2 → C be a Hecke-Maass cusp form with the
spectral parameter itg ∈ iR and Hecke eigenvalues λg(m). We assume that g is normalized by ‖g‖ = 1.
Let

P2,1 =





∗ ∗ ∗
∗ ∗ ∗

∗





be the standard maximal parabolic subgroup of GL3. For u ∈ C, the maximal Eisenstein series

Emax
u,g (z) :=

∑

γ∈P2,1(Z)\Γ
det(γz)

1
2
+ug(mP2,1(γz))

is defined for Re(u) sufficient large. Here mP2,1 is the restriction to the upper left corner,

mP2,1 : h
3 → h2,





y1y2 y1x2 x3
y1 x1

1



 7→
(

y2 x2
1

)

.

The Hecke eigenvalue Amax
u,g (m,n) of Emax

u,g at (m,n) is defined by

Amax
u,g (1, n) =

∑

d1d2=|n|
λg(d)d

−u
1 d2u2 (2.2)

and by the Hecke relations

Amax
u,g (m, 1) = Amax

u,g (1,m),

Amax
u,g (m1,m2) =

∑

d|(m1,m2)

µ(d)Amax
u,g

(m1

d
, 1
)

Amax
u,g

(

1,
m2

d

)

. (2.3)
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The L-function associated to Emax
u,g (z) is

L(s,Emax
u,g ) =

∑

m≥1

Amax
u,g (1,m)

ms
= ζ(s− 2u)L(s + u, g)

and the complete L-function is

Λ(s,Emax
u,g ) =

3
∏

i=1

ΓR(s+ µ′i)L(s,E
max
u,g ) = Λ(1− s,Emax

−u,g),

where

µ′1 = u+ itg, µ′2 = u− itg, µ′3 = −2u. (2.4)

2.2. The Kuznetsov trace formula. We recall the Kuznetsov trace formula in the version of
[Bu2014]. Let dµ = dµ1dµ2 be the standard measure on the Lie algebra

Λ∞ := {µ = (µ1, µ2, µ3) ∈ C
3, µ1 + µ2 + µ3 = 0}.

We set dspec(µ) = spec(µ)dµ with

spec(µ) :=

3
∏

j=1

(

3νj tan

(

3π

2
νj

))

.

2.2.1. Normalized factors. The normalized factors are defined as follows.

• For φ a Hecke-Maass cusp form with µφ = (µ1, µ2, µ3), we denote by

Nφ := ‖φ‖2
3
∏

j=1

cos

(

3

2
πνj

)

. (2.5)

Note that for µφ = (µ1, µ2, µ3) with µi ≍ T , one has

Nφ ≍ Ress=1L(s, φ⊗ φ∨) ≪ T ǫ.

• For Emin
ν1,ν2(z) the minimal Eisenstein series with the Langlands parameter µ(Emin

ν1,ν2) = (µ1, µ2, µ3),
the normalized factor is defined by

Nmin
ν1,ν2 :=

1

16

3
∏

j=1

|ζ(1 + 3νj)|2.

• For Emax
u,g (z) the maximal Eisenstein series, we define

Nmax
u,g := 8L(1,Ad2g)|L(1 + 3u, g)|2.

2.2.2. Kloosteman Sums. Two type of Kloosterman sums are defined as follows. Assume D1 | D2, we
have the incomplete Kloosterman sum

S̃(n1, n2,m1,D1,D2) :=
∑

C1( mod D1),C2( mod D2)
(C1,D1)=(C2,D2/D1)=1

e

(

n2
C1C2

D1
+m1

C2

D2/D1
+ n1

C1

D1

)

.

5



The complete Kloosterman sum is defined by

S(n1, n2,m1,m2,D1,D2)

:=
∑

B1,C1 mod D1
B2,C2 mod D2

D1C2+B1B2+D2C1=0 mod D1D2
(Bj,Cj,Dj )=1

e

(

n1B1 +m1(Y1D2 − Z1B2)

D1
+
m2B2 + n2(Y2D1 − Z2B1)

D2

)

where YjBj + ZjCj ≡ 1 mod Dj for j = 1, 2.
By the standard (Weil-type) bounds we have (see formulas 3.1 and 3.2 in [BB2015])

S̃(n1, n2,m1,D1,D2) ≪
(

(m1,D2/D1)D
2
1, (n1, n2,D1)D2)

)

(D1D2)
ǫ

and

S(n1, n2,m1,m2,D1,D2) ≪ (D1D2)
1/2+ǫ {(D1,D2)(m1n1, [D1,D2])(m2n2, [D1,D2])}1/2 .

2.2.3. Integral kernels. Following Theorems 2 and 3 in [Bu2014], the integral kernels are given as
follows. For s ∈ C and µ = (µ1, µ2, µ3), we let

G̃±(s,µ) :=
π−3s

12288π7/2





3
∏

j=1

Γ(
s−µj

2 )

Γ(
1−s+µj

2 )
± i

3
∏

j=1

Γ
(

1+s−µj

2

)

Γ
(

2−s+µj

2

)



 .

The integral kernel associated to w4 is defined by

Kw4(y;µ) =

∫ i∞

−i∞
|y|−sG̃ǫ(s,µ)

ds

2πi

for y ∈ R− {0} with ǫ = sgn(y).
For (s1, s2) ∈ C

2 and µ = (µ1, µ2, µ3), we let

G(s1, s2,µ) :=
1

Γ(s1 + s2)

3
∏

j=1

Γ(s1 − µj)Γ(s2 + µj).

We also define the following trigonometric functions

S++(s1, s2;µ) =
1

24π2

3
∏

j=1

cos

(

3

2
πνj

)

,

S+−(s1, s2;µ) = − 1

32π2
cos(32πν2) sin(π(s1 − µ1)) sin(π(s2 + µ2)) sin(π(s2 + µ3))

sin(32πν1) sin(
3
2πν3) sin(π(s1 + s2))

,

S−+(s1, s2;µ) = − 1

32π2
cos(32πν1) sin(π(s1 − µ1)) sin(π(s1 − µ2)) sin(π(s2 + µ3))

sin(32πν2) sin(
3
2πν3) sin(π(s1 + s2))

,

S−−(s1, s2;µ) =
1

32π2
cos(32πν3) sin(π(s1 − µ2)) sin(π(s2 + µ2))

sin(32πν2) sin(
3
2πν1)

.

The integral kernel associated to the longest Weyl’s element wl is defined by

Kǫ1,ǫ2
wl

(y1, y2;µ) =

∫ i∞

−i∞

∫ i∞

−i∞
|4π2y1|−s1 |4π2y2|−s2G(s1, s2;µ)S

ǫ1,ǫ2(s1, s2;µ)
ds1ds2
(2πi)2

for (y1, y2) ∈ (R − {0})2 with ǫi = sgn(yi).
6



2.2.4. The Kuznetsov’s trace formula. Let n1, n2,m1,m2 ∈ N and let h(µ) be a function that is
holomorphic on

Λ1/2+δ =

{

µ = (µ1, µ2, µ3) ∈ C
3, µ1 + µ2 + µ3 = 0,Re(µj) ≤

1

2
+ δ

}

for some δ > 0, symmetric under the Weyl group W , rapidly decaying as |Imµj| → ∞ and satisfies

h(3ν1 + 1, 3ν2 + 1, 3ν3 + 1) = 0.

Then one has

C + Emin + Emax = ∆+Σ4 +Σ5 +Σl,

where

C =
∑

φ

h(µφ)

Nφ
Aφ(n1, n2)Aφ(m1,m2),

Emax =
1

2πi

∑

g

∫

Re(u)=0

h(u+ itg, u− itg,−2u)

Nmax
u,g

Amax
u,g (n1, n2)Amax

u,g (m1,m2)du,

Emin =
1

24(2πi)2

∫∫

Re(µ)=0

h(µ)

Nmin
ν1,ν2

Amin
µ (n1, n2)Amin

µ (m1,m2)dµ,

and

∆ = δm1,n1δm2,n2

1

192π5

∫∫

Re(µ)=0
h(µ)dspecµ,

Σ4 =
∑

ǫ∈{±1}

∑

D2|D1
m2D1=n1D

2
2

S̃(−ǫn2,m2,m1,D2,D1)

D1D2
Φw4

(

ǫm1m2n2
D1D2

;h

)

,

Σ5 =
∑

ǫ∈{±1}

∑

D1|D2
m1D2=n2D

2
1

S̃(−ǫn1,m1,m2,D1,D2)

D1D2
Φw5

(

ǫn1m1m2

D1D2
;h

)

,

Σl =
∑

ǫ1,ǫ2∈{±1}

∑

D1,D2

S(ǫ2n2, ǫ1n1;m1,m2;D1,D2)

D1D2
Φwl

(

−ǫ2m1n2D2

D2
1

,−ǫ1m2n1D1

D2
2

;h

)

.

Here

Φw4(y;h) =

∫∫

Re(µ)=0
h(µ)Kw4(y;µ)dspecµ,

Φw5(y;h) =

∫∫

Re(µ)=0
h(µ)Kw4(−y;−µ)dspecµ,

Φwl
(y1, y2;h) =

∫∫

Re(µ)=0
h(µ)Ksgn(y1),sgn(y2)

wl
(y1, y2;µ)dspecµ.

7



2.3. The choice of the test function. By unitarity and the Jacquet-Shalika’s bounds, the Langlands
parameter µφ of a Hecke-Maass cusp form φ for SL3(Z) is contained in

Λ′
1/2 :=







(µ1, µ2, µ3) ∈ C
3,

|Re(µj)| ≤
1

2
, µ1 + µ2 + µ3 = 0,

{µ1, µ2, µ3} = {µ1, µ2, µ3}







.

Let µ0 = (µ01, µ
0
2, µ

0
3) be in generic position in Λ′

1/2, i.e.

|µ0j | ≍ ‖µ0‖ := T, 1 ≤ j ≤ 3.

Following [BB2015](or see [HLZ2017]), we choose a test function h(µ) to localizes at a ball of radius
M = T θ with 0 < θ < 1 about w(µ0) for each w ∈W . It is defined by

h(µ) := P (µ)2

(

∑

w∈W
ψ

(

w(µ) − µ
0

M

)

)2

,

where ψ(µ) = exp
(

µ21 + µ22 + µ23
)

and

P (µ) =
∏

0≤n≤A0

3
∏

j=1

(

νj − 1
3(1 + 2n)

) (

νj +
1
3 (1 + 2n)

)

|ν0j |2

for some fixed large A0 > 0. Here

W =







I, w2 =





1
1

1



 , w3 =





1
1

1



 , w4 =





1
1

1



 ,

w5 =





1
1

1



 , wl =





1
1

1











is the Weyl group for GL3(R).

We need the following two lemmas in [BB2015], which are used in truncating summations in geo-
metric terms after the application of the Kuznetsov’s trace formula.

Lemma 2.1. Let 0 < |y| ≤ T 3−ǫ. Then for any constant A ≥ 0 one has

Φw4(y;h) ≪ǫ,B T−A.

If |y| > T 3−ǫ then

|y|jΦ(j)
w4

(y;h) ≪j,ǫ T
3M2(T + |y|1/3)j

for any j ∈ N0.

Lemma 2.2. Let Y := min{|y1|1/3|y2|1/6, |y1|1/6|y2|1/3}. If Y ≤ T 1−ǫ, then

Φwl
(y1, y2;h) ≪B,ǫ T

−A

for any fixed constant A ≥ 0. If Y ≫ T 1−ǫ, then

|y1|j1 |y2|j2
∂j1

∂yj11

∂j2

∂yj21
Φwl

(y1, y2)

≪j1,j2,ǫ T 3M2(T + |y1|1/2 + |y1|1/3|y2|1/6)j1(T + |y2|1/2 + |y2|1/3|y1|1/6)j2
8



for all j1, j2 ∈ N0.

2.4. Rankin-Selberg L-functions. We recall holomorphic Hecke cusp forms in [Iw1997]. Let f be a
normalized holomorphic Hecke cusp form of weight k for SL2(Z) such that f has the Fourier expansion

f(z) =
∑

m≥1

λf (m)m
k−1
2 e(mz),

where λf (m) are Hecke eigenvalues of the Hecke operators T (m). The L-function associated to f is

L(s, f) =
∑

m≥1

λf (m)

ms

which is absolutely convergent for Re(s) > 1 by the Ramanujan-Deligne’s bound λf (m) ≪ mǫ. It has
analytic continuation for all s ∈ C and satisfies the functional equation

Λ(s, f) := ΓR

(

s+
k − 1

2

)

ΓR

(

s+
k + 1

2

)

L(s, f) = ikΛ(1− s, f).

Let f be as above and φ be a Hecke-Maass cusp form for SL3(Z) with Langlands parameter
µφ = (µ1, µ2, µ3). The Rankin-Selberg L-function L(s, f ⊗ φ) is defined by (see Section 12.2 in
[Go2006])

L(s, f ⊗ φ) :=
∑

m1≥1

∑

m2≥1

λf (m2)Aφ(m1,m2)

(m2
1m2)s

for Re(s) sufficient large. It has analytic continuation for all s ∈ C and satisfies the functional equation

Λ(s, f ⊗ φ) =

3
∏

i=1

ΓR

(

s+
k − 1

2
− µi

)

ΓR

(

s+
k + 1

2
− µi

)

L(s, f ⊗ φ)

= (ik)3Λ(1− s, f ⊗ φ∨),

where φ∨ is the dual Maass cusp form associated to φ.
Let Emin

ν1,ν2(z) be the minimal Eisenstein series with the Langlands parameter µ(Emin
ν1,ν2). By Euler

products of L(s, f) and L(s,Emin
ν1,ν2), we have

L(s, f ⊗ Emin
ν1,ν2) : =

∑

m1≥1

∑

m2≥1

λf (m2)Amin
ν1,ν2(m1,m2)

(m2
1m2)s

= L(s− µ1, f)L(s− µ2, f)L(s − µ3, f).

It satisfies the functional equation

Λ(s, f ⊗ Emin
ν1,ν2) : =

3
∏

j=1

ΓR

(

s+
k − 1

2
− µj

)

ΓR

(

s+
k + 1

2
− µj

)

L(s, f × Emin
ν1,ν2)

= Λ(1− s, f ⊗ Emin
−ν1,−ν2).
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For Emax
u,g (z) the maximal Eisenstein series with µ(Emax

u,g ) = (µ′1, µ
′
2, µ

′
3) where µ

′
j are given by (2.4),

we have

L(s, f ⊗ Emax
u,g ) : =

∑

m1≥1

∑

m2≥1

λf (m2)Amax
ν,u (m1,m2)

(m2
1m2)s

= L(s+ 2u, f)L(s− u, f ⊗ g),

where L(s, f ⊗ g) is the Rankin-Selberg function associated to f and g. The complete L-function is

Λ(s, f ⊗ Emax
u,g ) =

3
∏

j=1

ΓR

(

s+
k − 1

2
− µ′j

)(

s+
k + 1

2
− µ′j

)

L(s, f ⊗ Emax
u,g )

= ikΛ(1− s, f ⊗Emax
−u,g).

2.5. The approximate functional equation. For the Rankin-Selberg L-function defined in the
previous section, we have the following approximate functional equation (see Theorem 5.3 in [IK2004]).

Lemma 2.3. Let G(s) = es
2
. We have

L

(

1

2
, f ⊗ φ

)

=
∑

m1≥1

∑

m2≥1

λf (m2)Aφ(m2,m1)

(m2
1m2)1/2

Vk(m
2
1m2,µφ)

+ik
∑

m1≥1

∑

m2≥1

λf (m1)Aφ(m1,m2)

(m2
1m2)1/2

Ṽ (m2
1m2; k,µφ),

where

Vk(y,µ) =
1

2πi

∫

(3)
y−s

3
∏

i=1

ΓR

(

s+ 1
2 +

k−1
2 − µi

)

ΓR

(

s+ 1
2 + k+1

2 − µi
)

ΓR

(

1
2 +

k−1
2 − µi

)

ΓR

(

1
2 + k+1

2 − µi
) G(s)

ds

s
(2.6)

and

Ṽk(y,µ) =
1

2πi

∫

(3)
y−s

3
∏

i=1

ΓR

(

s+ 1
2 + k−1

2 + µi
)

ΓR

(

s+ 1
2 + k+1

2 + µi
)

ΓR

(

1
2 + k−1

2 − µi
)

ΓR

(

1
2 +

k+1
2 − µi

) G(s)
ds

s
.

The functions Vk(y,µ) and Ṽk(y,µ) have the following properties, which can be proved by the
method in Proposition 5.4 in [IK2004].

Lemma 2.4. Assume that µ = (µ1, µ2, µ3) with µi ≍ T . One has

ya
∂a

∂ya
Vk(y,µ) ≪k

( y

T 3

)−A
, ya

∂a

∂ya
Ṽk(y,µ) ≪k

( y

T 3

)−A

for any large number A > 0 and any a ∈ N0. Moreover, for y ≫ T 3,

Vk(y,µ) = 1 +OB,k

(

T 3

y

)−B

Ṽk(y,µ) =
3
∏

i=1

Γ(k2 + µi)

Γ(k2 − µi)
+OB,k

(

T 3

y

)−B

for any 0 < B < k−1
2 .

10



3. Proof of Theorem 1.1

Let k ≡ 0 mod 4. For h(µ) defined in section 2.3, we consider

A =
∑

φ

h(µφ)

Nφ
Aφ(p, p)L(1/2, f ⊗ φ),

where φ runs over a Hecke-Maass basis of the space of Maass cusp forms for SL3(Z). By the approx-
imate functional equation in Lemma 2.3, one has

A = A1 +A2

where

A1 =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

φ

h(µφ)Vk(m
2
1m2,µφ)

Nj
Aφ(m2,m1)Aφ(p, p),

A2 =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

φ

h(µφ)Ṽk(m
2
1m2,µφ)

Nj
Aφ(m1,m2)Aφ(p, p).

Thus Theorem 1.1 follows from

A1 =
λf (p)

p3/2
1

192π5

∫∫

Re(µ)=0
h(µ)dspec(µ) +Ok,ǫ(p

7
32

+ǫT
5
2
+ǫM2), (3.1)

A2 =
λf (p)

p3/2
1

192π5

∫∫

Re(µ)=0
h(µ)

3
∏

j=1

Γ(k2 + µj)

Γ(k2 − µj)
dspec(µ) +Ok,ǫ(p

7
32

+ǫT
5
2
+ǫM2). (3.2)

Since the proof of (3.2) is the same as that of (3.1). We only prove (3.1).

For A1, by letting

Hy(µ) := h(µ)Vk(y;µ)

and applying the Kunzetsov’s trace formula in section 2.2, one has

A1 = D1 +R1,w4 +R1,wl
− E1,max − E1,min,

where

D1 =
λf (p)

p3/2
1

192π5

∫∫

Re(µ)=0
h(µ)Vk(p

3,µ)dspecµ,

R1,w4 =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

ǫ∈{±1}

∑

D2|D1
pD1=m2D

2
2

S̃(−ǫm1, p, p;D2,D1)

D1D2
Φw4

(

ǫm1p
2

D1D2
;Hm2

1m2

)

,

R1,w5 =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

ǫ∈{±1}

∑

D1|D2
pD2=m1D

2
1

S̃(ǫm2, p, p;D1,D2)

D1D2
Φw5

(

ǫm2p
2

D1D2
;Hm2

1m2

)

,

R1,wl
=

∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

ǫ1,ǫ2∈{±1}

∑

D1,D2

S(ǫ2m1, ǫ1m2, p, p;D1,D2)

D1D2

×Φwl

(

−ǫ2pm1D2

D2
1

,−ǫ1pm2D1

D2
2

;Hm2
1m2

)

,
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and

E1,max =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

∑

g

1

2πi

∫

Re(u)=0

Hm2
1m2

(u+ itg, u− itg,−2u)

Nmax
u,g

Amax
u,g (m2,m1)A

max
u,g (p, p)du,

E1,min =
∑

m1≥1

∑

m2≥1

λf (m2)

(m2
1m2)1/2

1

24(2πi)2

∫∫

Re(µ)=0

Hm2
1m2

(µ)

Nmin
ν1,ν2

Amin
ν1,ν2(m2,m1)A

min
ν1,ν2(p, p)dµ

The main term in (3.1) comes from the estimation on D1 in (3.5), and the error term comes from the
contribution of E1,max in (3.4). For E1,min and R1,w4 ,R1,w5 , R1,w6 , we will show that their contribution
is negligible under the condition in Theorem 1.1.

3.1. Estimation on the continuous spectrum. We consider E1,min firstly. Note that Hy(µ) =
h(µ)Vk(y,µ). By the integral expression of Vk(y,µ) in (2.6) and the fact that

∑

m1,m2≥1

λf (m2)A
min
ν1,ν2(m2,m1)

(m2
1m2)

s+ 1
2

= L

(

1

2
+ s− µ1, f

)

L

(

1

2
+ s− µ2, f

)

L

(

1

2
+ s− µ3, f

)

for Re(s) = 3, one has

E1,min =
1

24(2πi)2

∫∫

Re(µ)=0
Amin

ν1,ν2(p, p)
h(µ)

Nmin
ν1,ν2

Imin
k (µ)dµ,

where

Imin
k (µ) =

1

2πi

∫

(3)
G(s)

3
∏

i=1

ΓR

(

s+ 1
2 + k−1

2 − µi
)

ΓR

(

s+ 1
2 +

k+1
2 − µi

)

ΓR

(

1
2 + k−1

2 − µi
)

ΓR

(

1
2 +

k+1
2 − µi

) L

(

1

2
+ s− µi, f

)

ds

s
.

For Imin
k (µ), moving the line of integration to Re(s) = ǫ and applying the subconvexity bound (see

[Go1982])

L(1/2 + it, f) ≪k (1 + |t|)1/3+ǫ,

one has

Imin
k (µ) ≪ǫ,k

3
∏

j=1

(1 + |Im(µj)|)
1
3
+ǫ.

It gives that

E1,min ≪k,ǫ

∫∫

Re(µ)=0
Amin

ν1,ν2(p, p)
h(µ)

Nmin
ν1,ν2

∏

j

(1 + |Im(µj)|)
1
3
+ǫdµ.

Note that Amin
ν1,ν2(p, p) = O(1) and

Nmin
ν1,ν2 =

1

16

3
∏

j=1

|ζ(1 + 3νπ,j)|2 ≫
3
∏

j=1

(

1

log(1 + 3Imνπ,j)

)2

.
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One has

E1,min ≪k,ǫ T
1+ǫM2. (3.3)

Next we consider E1,max. By similar argument as above one has

E1,max =
∑

g

1

2πi

∫

Re(u)=0
Amax

u,g (p, p)
h(u+ itg, u− itg,−2u)

Nmax
u,g

Imax
k (u+ itg, u− itg,−2u)du,

where

Imax
k (µ) =

1

2πi

∫

(3)

3
∏

i=1

ΓR

(

s+ 1
2 + k−1

2 − µi
)

ΓR

(

s+ 1
2 +

k+1
2 − µi

)

ΓR

(

1
2 + k−1

2 − µi
)

ΓR

(

1
2 +

k+1
2 − µi

)

L

(

1

2
+ s+ 2u, f

)

L

(

1

2
+ s− u, f ⊗ g

)

G(s)
ds

s
.

For Imax
k (µ), by moving the line of integration to Re(s) = 1

2 + ǫ and applying the fact that

L(1 + ǫ+ 2u, f) ≪ 1, L (1 + ǫ− u, f ⊗ g) ≪ 1,

which follow from the Ramanujar-Deligue’s bound and the property of Rankin-Selberg L-functions
(see [RS1996]), one has

Imax
k (µ) ≪

∫

( 1
2
+ǫ)

3
∏

i=1

ΓR

(

s+ 1
2 + k−1

2 − µi
)

ΓR

(

s+ 1
2 +

k+1
2 − µi

)

ΓR

(

1
2 + k−1

2 − µi
)

ΓR

(

1
2 +

k+1
2 − µi

) G(s)
ds

s

≪k,ǫ

3
∏

j=1

(1 + |Imµj|)
1
2
+ǫ .

Moreover, by the definition of Amax
u,g (m,n) in (2.2) and (2.3), and the bound λg(p) ≪ p

7
64

+ǫ in [KS2003],

one has Amax
u,g (p, p) ≪ p

7
32

+ǫ. These together with

Nmax
u,g = 8L(1,Ad2g)|L(1 + 3u, g)|2 ≫

(

1

1 + log |u|

)

give that

E1,max ≪k,ǫ p
7
32

+ǫ
∑

g

∫

Re(u)=0

h(u+ itg, u− itg,−2u)

Nu,g
(1 + |Imu+ tg|)

1
2
+ǫ

(1 + |Imu− tg|)
1
2
+ǫ (1 + |2Imu|) 1

2
+ǫ dµ

≪k,ǫ p
7
32

+ǫT
3
2
+ǫM

∑

g
T−M≤itg≤T+M

1

≪k,ǫ p
7
32

+ǫT
5
2
+ǫM2, (3.4)

where we have used the Weyl’s law for Hecke-Mass cusp forms for SL2(Z) (see [Iw2002]).
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3.2. Estimation on the diagonal term D1. For the diagonal term D1, by Lemma 2.4, we have

D1 =
λf (p)

p3/2
1

192π5

(

1 +OB

( p

T

)3B
)
∫∫

Re(µ)=0
h(µ)dspec(µ) (3.5)

for 0 < B < k−1
2 . The choice of h(µ) in section 2.3 gives

∫∫

Re(µ)=0
h(µ)dspec(µ) ≍ T 3M2.

Recall that k ≥ 12. By (3.3) and (3.4), D1 gives the main term in (3.1) if

T ≫k,ǫ p
3+ 7

16
+ǫ. (3.6)

3.3. Estimation on other geometric terms. In this subsection, we show that the contribution
from other geometric terms are negligible. For R1,w4 and R1,wl

, it follows immediately from the
application of the truncation Lemmas 2.1 and 2.2, respectively. To show that R1,w5 is negligible,
one needs to open the incomplete Kloosterman sum, rearrange the summation and apply the Voronoi
formula for GL2.

3.3.1. The term R1,w4 . Consider R1,w4 firstly. By the property of Vk(y;µ) in lemma 2.4, the terms in
summations over m1 and m2 are negligible for those m2

1m2 > T 3+ǫ. By Lemma 2.1, the contribution
of terms in summations over D1 and D2 is negligible if

p2m1

D1D2
=
p3/2m1

√
m2

D
3/2
1

≤ T 3−ǫ.

Thus one needs only to consider

∑

m1,m2≥1

m2
1m2≤T3+ǫ

λf (m2)

(m2
1m2)1/2

∑

ǫ∈{±1}

∑

D2|D1
pD1=m2D

2
2

1≤D1≤
p(m2

1
m2)

1/3

T2−ǫ

S̃(−ǫm1, p, p;D2,D1)

D1D2
Φw4

(

ǫp2m1

D1D2
;Hm2

1m2

)

.

Note that m2
1m2 ≤ T 3+ǫ and 1 ≤ D1 ≤ p(m2

1m2)1/3

T 2−ǫ give p ≥ T 1−ǫ, which contradicts with (3.6). Thus
these terms vanish and R1,w4 is negligible.

3.3.2. The term R1,wl
. For R1,wl

, by the property of Vk(y,µ) in lemma 2.4, the terms in summations
over m1 and m2 are negligible for those m2

1m1 ≤ T 3+ǫ. Let

Y := p1/2 min

{

m
1/3
1 m

1/6
2

D
1/2
1

,
m

1/3
2 m

1/6
1

D
1/2
2

}

.

By lemma 2.2, the contribution is negligible for those terms in summations over D1 and D2 satisfying
Y ≤ T 1−ǫ. Thus we need only to estimate

∑

m1,m2≥1

m2
1m2≤T3+ǫ

λf (m2)

(m2
1m2)1/2

∑

ǫ1,ǫ2∈{±1}

∑

D1,D2
Y>T1−ǫ

S(ǫ2m1, ǫ1m2, p, p;D1,D2)

D1D2

Φwl

(

−ǫ2pm1D2

D2
1

,−ǫ1pm2D1

D2
2

;Hm2
1m2

)

.
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Note that m2
1m2 ≤ T 3+ǫ and Y > T 1−ǫ give p ≥ T 1−ǫ, which contradicts with (3.6). Thus these terms

vanish and R1,wl
is negligible.

3.3.3. The term Rw5. Consider Rw5 . By the similar argument in previous sections, one needs only to
consider the contribution of

R∗ : =
∑

m1,m2≥1

T
8
3 ≤m2

1
m2≤T3+ǫ

λf (m2)

(m2
1m2)1/2

∑

ǫ∈{±1}

∑

D1|D2
pD2=m1D

2
1

1≤D2≤
p(m2

2
m1)

1/3

T2−ǫ

S̃(−ǫm1, p, p;D2,D1)

D1D2
Φw4

(

ǫp2m1

D1D2
;Hm2

1m2

)

,

since other terms either vanish or are negligible.
We show that R∗ is also negligible. Recall the smooth partition of unity

1 =
∑

α≥0

ω

(

m2
1m2

Nα

)

,

where ω is a function which is smooth and compactly supported on [12 ,
5
2 ] and Nα = 2α. One has

R∗ ≪
∑

α≥0

T
8
3 ≪Nα≪T3+ǫ

∑

m1,m2≥1

ω

(

m2
1m2

Nα

)

λf (m2)
(

m2
1m2

)1/2

∑

ǫ∈{±1}

∑

D1|D2
pD2=m1D

2
1

S̃(ǫm2, p, p;D1,D2)

D1D2
Φw5

(

ǫm2p
2

D1D2
;Hm2

1m2

)

.

Let D2 = D1δ. We open the incomplete Kloosterman sum, rearrange the summation and then obtain

R∗ ≪
∑

T 8/3≪Nα≪T 3+ǫ

∑

m1≥1

1

m1

∑

ǫ∈{±1}

∑

δ,D1≥1
pδ=m1D1

1

D2
1δ

∑

C1( mod D1), C2( mod D1δ)
(C1,D1)=(C2,δ)=1

e

(

pC1C2

D1
+ p

C2

δ

)

∑

m2≥1

ω

(

m2
1m2

Nα

)

λf (m2)√
m2

Φw5

(

ǫp2m2

D2
1δ

,Hm2
1m2

)

e

(

ǫm2
C1

D1

)

. (3.7)

Thus one can apply the following GL(2) Voronoi formula (see formula (4.71) in [IK2004]).

Lemma 3.1. Let c ≥ 1 and (a, c) = 1. Let F be a smooth, compactly supported function on R
+. One

has

∑

m≥1

λf (m)e
(am

c

)

F (m) =
1

c

∑

n≥1

λf (n)e

(

−an
c

)

G(n),

where G(y) = 2πik
∫∞
0 F (x)Jk−1

(

4π
√
xy

c

)

dx. Here Jk(y) is the J-Bessel function.

15



For the summation over m2 in (3.7), we apply the Voronoi formula in the above lemma and obtain

∑

m2≥1

ω

(

m2
1m2

Nα

)

λf (m2)√
m2

Φw5

(

ǫp2m2

D2
1δ

,Hm2
1m2

)

e

(

ǫm2
C1

D1

)

=
1

D1

∑

m2≥1

λf (m2)e

(

−ǫC1m2

D1

)

G(m2),

where

G(m2) = 2πik
∫ ∞

0
ω

(

m2
1x

Nα

)

1

x1/2
Φw5

(

ǫp2x

D2
1δ
,Hm2

1m2

)

Jk−1

(

4π
√
xm2

D1

)

dx.

Lemma 3.2. We have

G(m2) ≪j,k,ǫ

√
Nα

m1





p1+ǫ

N
1
6
−ǫ

α m
1
2
2





j

for any j ∈ N0.

Proof. For G(m2), we change the variable t =
m2

1
Nα
x to obtain

G(m2) = 2πik
√
Nα

m1

∫ ∞

0
ω(t)Φw5

(

ǫp2Nα

D2
1δm

2
1

t,Hm2
1m2

)

Jk−1

(

4π
√
Nαm2t

m1D1

)

dt√
t
.

Let R = 4π
√
Nαm2

m1D1
. By applying the recurrence formula of the J-Bessel function

d

dy

(

(R
√
y)s+1Js+1(R

√
y)
)

=
R2

2
(R

√
y)sJs(R

√
y),

one has

G(m2) = 2πik
√
Nα

m1

1

Rk−1

−2

R2

∫ ∞

0

(

t−
k
2ω(t)Φw5

(

ǫp2Nα

D2
1δm

2
1

t,Hm2
1m2

))′
(

R
√
t
)k
Jk(R

√
t)dt

= 2πik
√
Nα

m1

1

Rk−1

(

− 2

R2

)j

∫ ∞

0

(

t−
k
2ω(t)Φw5

(

ǫp2Nα

D2
1δm

2
1

t,Hm2
1m2

))(j)
(

R
√
t
)k+j−1

Jk+j−1(R
√
t)dt

for any j ∈ N0. Note that Φw5 also satisfies Lemma 2.1 and one has

(

Φw5

(

ǫp2Nα

D2
1δm

2
1

t,Hm2
1m2

))(j)

≪ T 3M2

(

p2Nα

D2
1δm

2
1

t

)j(1
3
+ǫ)

.

It gives that

G(m2) ≪k,j,ǫ

√
Nα

m1

(

(

p2N

D2
1δm

2
1

)( 1
3
+ǫ)
/

R

)j

≪k,j,ǫ

√
Nα

m1





p
2
3
+ǫ

N
1
6
−ǫ

α m
1
2
2

(

m1D1

δ

) 1
3





j
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since R = 4π
√
Nαm2

m1D1
. The lemma follows immediately from the fact that m1D1 = pδ. �

By lemma 3.2, the contribution is negligible for those terms in R∗ satisfying

p1+ǫ

N
1
6
−ǫ

α m
1
2
2

≪k,ǫ T
−ǫ.

Note that Nα ≫ T
8
3 . Thus one needs only to consider terms in R∗ satisfying the condition

p1+ǫ ≫k,ǫ N
1
6
−ǫ

α T−ǫ ≫ T
4
9
−ǫ,

which contradicts with (3.6). Thus the contribution of R∗ is negligible.
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