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Central Values of GL(2) x GL(3) Rankin-Selberg L-functions
with Applications '

Qinghua Pi

Abstract Let f be a normalized holomorphic cusp form for SLy(Z) of weight k with £ = 0 mod 4.
By the Kuznetsov trace formula for GL3(R), we obtain the first moment of central values of L(s, f®¢),
where ¢ varies over Hecke-Maass cusp forms for SL3(Z). As an application, we obtain a non-vanishing
result for L(1/2, f ® ¢) and show that such f is determined by {L(1/2, f ® ¢)} as ¢ varies.
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1. INTRODUCTION

Special values of L-functions are expected to carry important information on relevant arithmetic
and geometric objects. In 1997, Luo and Ramakrishnan [[LR1997] asked the question that to what
extent modular forms are actually characterized by their special L-values. In the same paper, they
considered the moment of y4(p)L(1/2, f ® xq) as d varies, and showed that a cuspidal normalized
holomorphic Hecke newform f is uniquely determined by the family {L(1/2, f ® x4)} for all quadratic
characters yg. Since then, this problem has been studied by many authors ([Lul999], [CD2005],
[Li2007], [Li2009], [GHS2009], [Mu2010], [Liu2010], [Pi2010], [Liu2011], [Zh2011], [Ma2014], [Pi2014],
[Su2014],]MS2015)).

Let f be a normalized holomorphic Hecke-cusp form for SLs(Z) of fixed weight & with £ = 0 mod 4.
Let {¢} be a Hecke basis of the space of Maass cusp forms for SL3(Z). In this paper, we con-
sider central values of Rankin-Selberg L-functions L(s, f ® ¢). By calculating the twisted moment of
Ap(p,p)L(1/2, f ® ¢) where Ag(p,p) is the Hecke eigenvalue of ¢ at (p,p), we show that f is uniquely
determined by the family {L(1/2, f ® ¢)} as ¢ varies over a Hecke basis of the space of Maass cusp
forms for SL3(Z).

To state our result, we give the following notations.

e For ¢ a Hecke-Maass cusp form for SL3(Z), let pg = (j1, 12, u3) be the Langlands parameter
of ¢. We know that pg is a point in the region

1
[Re(u;)] < 3 Mt pe s =0,

/1/2 = (Ml)/JZ)/J3) S (C37 _ _ _
{:ub 2, #3} = {_Mlv —H2, _M3}

in the Lie algebra sl3(C). Let

1 1
VL= §(M1 —p2), v2= §(M2 —p3), V3= -

which are known as the spectral coordinates.
e Fix a point u’ € A] Jo such that

0] — o . .
il =< [lp’l =T, 1<j<3.
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As in [BB2015] (or see [HLZ2017]), we choose the test function h(p) to localize at a ball of
radius M = T% with 0 < 6 < 1 about w(u"), where w are elements in the Weyl group W. For
a precise definition of h(u), we refer to section 2.3.

o Let dp = dpydps and dgpecpp = spec(p)dp with

3T
spec(p) = H <3Vj tan <7uj>> .
j=1
Our main result is in the following.

Theorem 1.1. Let f be a normalized holomorphic Hecke cusp form for SLo(Z) of weight k with
k = 0mod4. Let {¢} be a Hecke basis of the space of cusp forms for SL3(Z) and Ag(p,p) be the
Hecke eigenvalue of ¢ at (p,p). One has

> —h%f) As(pp)L(1/2, f @ 6) = Xgi? M (h) + O o(p= T3 M?) (1.1)
¢

for T >y, p3+%+6. Here Ny is the normalized factor defined in (2.5) and

3 k
1 (5 + py)
Mh:—// h(p 1+||72 T2 dgpec -

Note that My (h) < T2M?. On taking p = 1, the above theorem implies the existence of non-
vanishing of L(1/2, f ®¢) as ¢ varies. Moreover, by the strong multiplicity one theorem (see [PS1979]),
we have the following corollary.

Corollary 1. Let f and f' be two normalized holomorphic cusp forms for SLo(Z) of fized weight k
with k = 0mod 4. If L(1/2, f ® ¢) = L(1/2, f' ® ¢) for all Hecke-Maass cusp forms ¢ for SLs(Z),
then f = f'.

We remark that central values of L(s, f ® ¢) vanish for k = 2 mod 4. In this case we can consider
%L(1/2, f ® ¢) instead of L(1/2, f ® g) as in [Zh2011]. But we do not address this here.

This paper is arranged as follows. In section 2, we review the Kuznetsov trace formula in the
version of [Bu2014], choose the test function and give the approximate functional equation of the
Rankin-Selberg L-function. Theorem 1.1 will be proved in section 3, where we apply the approximate
functional equation and the Kuznetsov trace formula, and give estimations on each terms. The main
term in (1.1) comes from the geometric term associated to the trivial Weyl’s element, and the error
term comes from the maximal Eisenstein series in the continuous spectrum.

2. PRELIMINARIES

In this section, we review the definition of automorphic forms on SL(3,Z) in [B12013] (or see
[G02006]), the Kuznetsov’s trace formula in [Bu2014] (or see [BB2015]) and the approximate functional
equation of Rankin-Selberg L-functions.

Let
1 zy 3 Y1Y2
63 = z = 1 1 Y1 ) T1,T2,T3 € R7y17y2 € R+
1 1
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be the generalized Poincare upper half plane. Given a spectral parameter (v, ) € C2, the function
I, 1, on b3 is defined by

14+2v1+rvo 141014209
Loy, (2) = 4 Yo

and the Jacquet-Whittaker function is defined by

1 1UQ us

W;—Ll,,&( )= /3[,,17,,2 1 1wy | 2| e(—(u1 £ ug))duydugdus
R 1 1
where e(z) = exp(2mix).
Let v3 = —11 — 19 and
w1 =1+ 20, o =v| — o, 3 = —2 — s, (2.1)

We will simultaneously use g = (i1, g2, p3) and (vq, 2, v3) coordinates,

1

Vlzg(

p1— p2), ve = -(u2 — p3), v3=—v|— .

3(
2.1. Automorphic forms for SL(3,Z).

2.1.1. Hecke-Maass cusp forms. A Hecke-Maass cusp form for I' = SL3(Z) of type (3 + v, 5 + 1) is
a function ¢ : I'\h*> — C which has the Fourier expansion

A¢> my,msa) (ma2) ml’mZ‘ Y
Y Sgn(m.
Z Z m1’m2‘ Z WV%,VQ : my . < 1> Z | Cuy v

m1=1my7#0 ~eU2\SL2(Z)
Here Ag(mi,ma) are eigenvalues of ¢ at (m1,ms) satisfying
Agp(my, mz) < mima,

W}l v, (2) is the Jacquet-Whittaker function and c¢,, ,, is a constant depending only on v; and vy (see

formula (2.13) in [BI2013]).
Let py = (p1, p12, p13) be the Langlands parameter of ¢ where yu; are given by (2.1). The L-function
associated to ¢ is defined by

L(s,0):= 3 2ol

ms
m>1

for Re(s) > 2. It has analytic continuation for s € C and satisfies the functional equation

r(s + 1) L(s, ¢) =A(1—s,0").

”E“

Here Tp(s) = 7~ 20(s/2) and ¢V is the dual Hecke-Maass cusp form of ¢ with

Agv(mi,mo) = Ag(ma,m1),  pgv = (—p1, —p, —H13)-
3



2.1.2. The minimal Eisenstein series. Let Pi 11 be the standard minimal parabolic subgroup of G L3
and Us be the unipotent radical of Py 1 1. Given a spectral parameter (v1,15) € C2, let pu = (1, 2, p3)
be the Langlands parameter given by (2.1). The minimal Eisenstein series

EII/I;I,SQ () = Z Loy 0, (72)
YEU3(Z)\T
is defined for Re(v1) and Re(r2) sufficient large and has meromorphic continuation to all (v1,12) € c2.
The Hecke eigenvalues A2, (m,n) of EIM' (2) at (m,n) are defined by

vy,v2 v1,V2
Agii,rll/z (17 n) — Z dl_Ml d2—ﬂ2 d;MJ
didadz=n
and by Hecke relations
ARIn (1) = Amin (1 m),

vi,V2 vi,v2
. - mp ; me
Azt mma) = Y0 A, () an, (1.72).
d|(m1,m2)
The L-function associated to ngsz (2) is
. Amin (1.m)
L(s, Byy,) = ) =2 = (s + m)C(s + p)( (s + pos)

m>1

where p; are given by (2.1).
2.1.3. The Mazximal Eisenstein series. Let g : SLa(Z)\h* — C be a Hecke-Maass cusp form with the

spectral parameter it, € iR and Hecke eigenvalues \;(m). We assume that g is normalized by ||g|| = 1.
Let
* ok ok
Pyp=|* * x
*

be the standard maximal parabolic subgroup of GL3. For u € C, the maximal Eisenstein series
1
Eig(@)= ) det(yz) g(mp,, (72))
’*/GPQJ(Z)\F

is defined for Re(u) sufficient large. Here mp, , is the restriction to the upper left corner,

Y1y2 Yirz2 I3 Yo 9
mpy, - hg — h2y Y1 Ty | = ( 1 > .
1
The Hecke eigenvalue A9 (m,n) of E5* at (m,n) is defined by
ATTAm) = Y Ag(d)dyd3 (2.2)
dida=|n|

and by the Hecke relations

At (m, 1) = ARex(1,m),
max max m max m
Apmimz) = Y Ay (1) A (122 (2.3)
d|(mi,m2)
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The L-function associated to E'5(2) is

Ang (1,m)

L(s, Ey5Y) = Z =((s—2u)L(s+ u,g)

mS
m>1
and the complete L-function is
3
A(s, o) = [ Tr(s + i) L(s, ByeX) = A(1 — s, B,
i=1
where
Py =utity, ph=u—ity, uh=—2u. (2.4)

2.2. The Kuznetsov trace formula. We recall the Kuznetsov trace formula in the version of
[Bu2014]. Let du = duydus be the standard measure on the Lie algebra

Ao = {p = (1, 2, 13) € C*, iy + piz + iz = 0}
We set dspec(pt) = spec(p)dp with
5 3T
spec(u) := jl_Il <3uj tan <7VJ>> .

2.2.1. Normalized factors. The normalized factors are defined as follows.

e For ¢ a Hecke-Maass cusp form with gy = (p1, p2, 13), we denote by

Ny = H¢H2Hcos< ;). (25)

Note that for pg = (1, 2, pg) with p; < T, one has
Ny =< Ress—1L(s,0 @ ¢") < T

e For E}};“,}Q( z) the minimal Eisenstein series with the Langlands parameter M(E,‘};l%) (p1, o2, pi3),

the normalized factor is defined by
13
./\/',21322 = T |_| C(1+ 31/3

e For E'2*(2) the maximal Eisenstein series, we define
N = 8L(1, Ad®g)|L(1 + 3u, g)|*.

2.2.2. Kloosteman Sums. Two type of Kloosterman sums are defined as follows. Assume D; | Dy, we
have the incomplete Kloosterman sum

B 6102 62 Gy
S(n1.1o.ma. Dy. Do) i— eln +my +tni=- |-
( 1, 12,11, 1, 2) . Z 2 Dl D2/D1 D1
1 (mod Dy),Cy( mod Dy)
(C1,D1)=(C2,Dy/D1)=1
5




The complete Kloosterman sum is defined by

S(n1,n2,m1,ma, D1, Dy)

o Z n By + ml(Yng — ZlBg) moBsy + ng(Yng — ZQBl)
= e +
D1 D2

B1,C1 mod D
Bg,Cy mod Dy
D1Co+B1Bgo+DoC1=0 mod DDy
(Bj.C;.D;)=1
where Y;B; + Z;C; = 1 mod D; for j =1, 2.
By the standard (Weil-type) bounds we have (see formulas 3.1 and 3.2 in [BB2015])
S(n1,n2,m1, Dy, Dy) < ((my, D2/ D1)D3, (ny,m2, D1)D3)) (D1 Ds)¢
and
S(n1,n2,m1,ma, D1, Da) < (D1D2)"/** {(Dy, D3)(myny, [D1, Do])(mong, [D1, Do)}/

2.2.3. Integral kernels. Following Theorems 2 and 3 in [Bu2014], the integral kernels are given as
follows. For s € C and p = (p1, p2, p13), we let

1+s—p
_3s 3 5— uj 3 73
: N5 P
G* (S u) 1228877/2 11 P(l S+MJ H <2 s+,u])
]:
The integral kernel associated to wy is defined by
100 <~ ds
K N = - € _
i) = [ G )

for y € R — {0} with € = sgn(y).
For (s1,s2) € C? and p = (1, o, 13), we let

G(s1,82,p) = =———— (o1 + 52) HF D(s2 + p;).

We also define the following trigonometric functlons

St (s1,80p) = Y. 2HCOS< 7”’])

1 cos(Bmum)sin(n(s: — ) sin(r(sa + pa)) sin(r(ss + 1)
ST (s1 sz p) 3272 sm(27r1/1)81n(%7w?,)81n( (s1+ 82)) '
o L costmn)sin(a(sr — ) sinr(sn — pa))sin(rs + )
S (s saim) = 3272 sin(27v) sin(2mvs) sin (7 (31+32)) '
S (51, 52: 1) 1 cos(gmvs) sin(m(s1 — p2)) sin(x m(s2 + p2))

322 sin(2mus) sin(3m)

The integral kernel associated to the longest Weyl’s element wy; is defined by
K3 (Y1, y2; o / / |4y |75 [P ya| T2 G (s1, 525 ) S (51, 523 )

for (y1,y2) € (R — {0})? with ¢; = sgn(y;).

d81d82
(27i)?



2.2.4. The Kuznetsov’s trace formula. Let ni,na,mi,ms € N and let h(u) be a function that is
holomorphic on

1
Ayjors = {u = (1, p2, p3) € C2, iy + pa + p3 = 0, Re(p;) < 5}

\)

for some ¢ > 0, symmetric under the Weyl group W, rapidly decaying as |Imy;| — oo and satisfies
h(31/1 + 1,39 4+ 1,33 + 1) =0.
Then one has

C+Emin+gmax:A+24+25+zl7

where
c = Z A¢> (n1,m2)Ag(m1, ma),
¢
£, = QMZ/RO(U u+ztg/7\/1’:r?g;xztgj—QU)AIJZX(M,M)WOI/
Emin = 2m //R N;?}BQATH("”"”WCZ“ ’
and

1
A= OmimOman 19275 //RC(M)ZO Hbe)dspec

g(—eng,mg,ml,Dg,Dl) €m1mans
Yy = E E ) ——~:h
4 DD, wi\T DD, )’
cc{£1}  DalD;

moDy=nq D%

S(—enq,m1,ma, D1, Do) EN1MIM2
S Qs | ———=—3h )
5 Z Z DD, ws DDy
ee{+1} D1|Dy

m1Do=ngo D%

S(eang, exn1;my, ma; Dy, Do) eomingDy  eymani Dy
Y, = E E P — — chl.
l D1D2 wy D% ) D% 3

e1,e26{£1} D1,D2

Here

(I)w4 (y; h) = // h(/J/)Ku&; (y; /J/)dspeclJ/7
Re(p)=

(I)ws (y; h) - // h(u)szL(_y; _/J/)dspecl"w
Re(p)=

(I)wl (y17 Y2; h) = //R w h(u)Kngln(yl)vsgn(yz) (yh Yo; H)dspecﬂ'
e(p
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2.3. The choice of the test function. By unitarity and the Jacquet-Shalika’s bounds, the Langlands
parameter pg of a Hecke-Maass cusp form ¢ for SL3(Z) is contained in

1
Re(uy)| < 3.
{1, w2, p3} = {7y, g, Fig }

Let p® = (19, 19, 1) be in generic position in A/1/2= i.e.

iy + g = 0,
A,1/2 = (M17M27,u3) € (C37 i Ha s

WGl = |’ =T, 1<j<3.

Following [BB2015](or see [HLZ2017]), we choose a test function h(p) to localizes at a ball of radius
M =T with 0 < < 1 about w(u®) for each w € W. Tt is defined by

where ¥ (p) = exp (,u% + p3 + u%) and

3
Plu H 2(1+2n)) (v; + 3(1+2n))
72
0<n< 7j=1 J
for some fixed large Ag > 0. Here
1 1 1
W = I,’LUQ: 1 , W3 = 1 , Wy = 1 s
1 1 1
1 1
W5 = 1 , Wy = 1
1 1

is the Weyl group for GL3(R).

We need the following two lemmas in [BB2015], which are used in truncating summations in geo-
metric terms after the application of the Kuznetsov’s trace formula.

Lemma 2.1. Let 0 < |y| < T3¢. Then for any constant A > 0 one has
Dy, (yih) e T4
If ly| > T3¢ then
lyl @) (y: h) <joe TXMP(T + [y|'2)
for any j € Np.
Lemma 2.2. Let Y := min{|ys|"/3|yo| /6, [y |6 |y2|/3}. If Y < T, then
oy (y1, 923 1) <pe T
for any fized constant A > 0. If Y > T'~¢, then

o 2 2

Y17t y2 |72 — — O

oyt Oyf?

irine TMAT + g1 [ + a2yl V) (T + a2 + [ya] V2] /52
8
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for all j1, jo € Ny.

2.4. Rankin-Selberg L-functions. We recall holomorphic Hecke cusp forms in [lw1997]. Let f be a
normalized holomorphic Hecke cusp form of weight k for SLs(7Z) such that f has the Fourier expansion

Z)\f m2emz)

m>1
where A¢(m) are Hecke eigenvalues of the Hecke operators T'(m). The L-function associated to f is
Ap(m)
Lis, )= ==
m>1

which is absolutely convergent for Re(s) > 1 by the Ramanujan-Deligne’s bound A(m) < m€. It has
analytic continuation for all s € C and satisfies the functional equation

A(s, f):=Tg <s + %) I'r <s - %) L(s, f) = i"A(1 — s, f).

Let f be as above and ¢ be a Hecke-Maass cusp form for SLs3(Z) with Langlands parameter
t¢ = (p1,p2,p3). The Rankin-Selberg L-function L(s, f ® ¢) is defined by (see Section 12.2 in
[G02006])

f®¢ Z Z /\f TTLQ A¢ ml,mQ)

m m
mi1>1mao>1 2)

for Re(s) sufficient large. It has analytic continuation for all s € C and satisfies the functional equation

3
Msuf @ 0) = TTre (s 55 ) v (54 552 - ) D p 00

=1

= (*)’A(1 — s, f © ¢"),

where ¢V is the dual Maass cusp form associated to ¢.
Let E™1 (2) be the minimal Eisenstein series with the Langlands parameter pu(E™ ). By Euler

V1,2 vi,V2
products of L(s, f) and L(s, E ), we have
Amm my, m
Ko fomg) = 30 3 M)

m mo)s
mi1>1mao>1 2)

= L(S - :ul7f)L(S - MQaf)L(S - ,Ltg,f)-
It satisfies the functional equation
min 1 k + 1 min
Als, f @ Ei,) = HFR ( - uj) T (s - uj) L(s, f x E,)

:A(l—s,f®Emm ).

—V1,—V2
9



For E}'5(2) the maximal Eisenstein series with p(E35%) = (1, py, p3) where i are given by (2.4),
we have

Amax(ml’ m2)

L fom .=y Y N T

m1>1mao>1
- L(S + 2’LL,f)L(S - u,f@g),
where L(s, f ® g) is the Rankin-Selberg function associated to f and g. The complete L-function is

1 k+1
A(s, f @ EgY) HFR<3+——N>< +T—MJ>L(8,f®EETZ")

=i*A(1 — 5, f @ E™8%),

—u,g

2.5. The approximate functional equation. For the Rankin-Selberg L-function defined in the
previous section, we have the following approximate functional equation (see Theorem 5.3 in [[[X2004]).

Lemma 2.3. Let G(s) = e, We have
1 )\ m2 A mg,ml

mi1>1mao>1 me
Ap(my)Ag(my,ma) ~
WYY s Ag(mama) oo
12 171125 7“(25)7
mi>1me>1 (mima)'/
where
3 1, k=1 1
1 _ Tg(s+ 4+ 5 — ) Tr (s + 5 + 5L — ) ds
V) =5 [ o R G(s) 2 (2.6)
oy T e a0
and

~ i/ y_SﬁFR(S—l-%‘F%—FMZ’)PR(S-I-I+k+1+,uz') S@
0 T (3 + 578 = ) Tr (3 + 555 — i) 5

The functions Vi (y, ) and Vi(y, ) have the following properties, which can be proved by the
method in Proposition 5.4 in [[1X2004].

Lemma 2.4. Assume that p = (1, p2, p3) with p; < T. One has
a[l

yagavk(y,u) <k (%>_A, y“ayaf/k(y,u) < (%>_A

for any large number A > 0 and any a € Ny. Moreover, for y > T3,

73\ P
Vi(y,u) = 1+ OBy (;)
3 k 3\ —B
- I'(5 + s T
Viy, 1) = Hir(i — ') +Opx <?>

for any 0 < B < k=1
10



3. PROOF OF THEOREM 1.1

Let k =0 mod 4. For h(pu) defined in section 2.3, we consider

A= Z Ag(p,p)L(1/2, f © ¢),

where ¢ runs over a Hecke-Maass ba51s of the space of Maass cusp forms for SL3(Z). By the approx-

imate functional equation in Lemma 2.3, one has
A=A + Ay

where

Ar(m Vi.(mima,
A= )] Z i 21/22 ity ’“(N; 28) 4 (g 1) Ao (9 p),

m1>1mo>1 mm2
Ay (ma) h(pg) Vie(mima, pg)
Ay = ), Z f 1/22 o) 1 22 Ag(m1,ma) Ag(p, p).-
m1>1m2>1

Thus Theorem 1.1 follows from

= wrepatens2
A= 3/2 1927r5 //Re(u B)dspec (1) + O e(p2 T T27M7),

Ar(p) 1 // - U(5 + 1) T s 2
Az = h — 2 dipec(p) + Ok (p32 7T 2T M?).
’ p?2 1927° | Jre(u)= (“)Hr(k )P (1) + Op.e(p )

J
Since the proof of (3.2) is the same as that of (3.1). We only prove (3.1).
For A4, by letting
Hy(p) := h(p)Vi(y; 1)
and applying the Kunzetsov’s trace formula in section 2.2, one has

A1 =D1 4+ Riw, + Riw, — E1,max — €1, min,

(3.1)

(3.2)

).

where
Ap(p) 1 / 3
D = 1095 h ds ec b,
! p3/2 19275 /RO(;L)— () Vi (p°, 1) pec b
_ )\f m2 g(_emlupap;D27Dl) 6Tnlp
Riw = 20 2 Gusim 22 2 DiDs @u, By Hitma
mi1>1mao>1 E{:I:l} Dg| Dy
pD1= m2D§
Ap(ma) S(ema,p, p; D1, D) emap?
T o DI o (22 1,5,),
m1>1mo>1 (m m2 / ec{+1} DilD2 DD, D1D2 ’
pDo= mlD%
Ar(ma) S(eamy, exma, p,p; D1, Do)
Riw = D, D, o —~m 2. D
m1>1mo>1 (m1m2) / €1,e2€{£1} D1,D> D1Ds

o eopm1 Do €1pmaDy
XPy, | — D% s D% »Hmimag | o
11



and
)\f m2
& =
bmas =D DL g 1/222m
mi1>1mo>1

/ Hp20, (0 + itg, u — itg, —2u)
Re(u)=0 Ny

B )\f m2 1
Smin = Z Z (m?ma)t/2 24(2mi)?

mi1>1mo>1

Ang(ma, m1) AyGH (p, p)du,

H - (u) . .
—L AR (g, ma) AL (p, p)dp
//RO(;L) _/\/’mln 1, 2( 2 1) 1, 2( )

V1,v2

The main term in (3.1) comes from the estimation on D; in (3.5), and the error term comes from the
contribution of & max in (3.4). For & min and Ri vy, Riws, Ri,we, We will show that their contribution
is negligible under the condition in Theorem 1.1.

3.1. Estimation on the continuous spectrum. We consider &£ mi, firstly. Note that H,(u) =
h(p)Vi(y, p). By the integral expression of Vi (y, p) in (2.6) and the fact that

)\ Amln ,
3 7 (m2) AJ, (ma, m) _L< +s—u1,f>L<%+S—M27f>L<%+S—M3,f>

mi,ma>1 (mlm )3+2
for Re(s) = 3, one has
h(B) i
Elmin = // A (0, D) T () dps,
min 27TZ Re(u)= 1/1 1/2 )NI;?}BQ k ( )
where

3 1 k—1 1 k+1
1 Te(s+5+52 — ) Tr(s+ 3+ 5L — ) <1 )ds
o) = — [ G 2”2 2 2 L(5+s—pf)=.

. 27”'/@) (S)il;[l (3 + % —m) e (3 + 45 A

2
For I,rgnin(u), moving the line of integration to Re(s) = € and applying the subconvexity bound (see
[G01982])
L(1/2 +it, f) <p (L+]8])' /5,

one has
. 3 1
TP () e [ ]+ Mmp))) ™.
j=1
It gives that

h(p) 1
E1min Kgye // AS“?, D, | | 14 [Im(p;)])3 dp.
1 Re(u)zo 1 2( )len ( | ( ,7)|)

vi,V2 j

Note that A™% (p,p) = O(1) and

v1,V2
1L : 1 i
min _ _~ 143 (2 .
./\/',,17,,2 16 Jl;[l K( + Vﬂ,j)‘ > E <log(1 + 3Iml/7r,j)>
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One has
Ermin Kpe THEM. (3.3)

Next we consider & max. By similar argument as above one has

x( h(u 4+ it,, u — it,, « . .
E1max = Z o /C(u Ang (p,p) ( ? g )Ima (u+ity, u —ity, —2u)du,

N max
where
e = / HFR s+t — ) Te (s +3+ 5 — )
2mi S —+——uz)F (3 +5 —m)
1 ds
L +s+2u,f )L §+s—u,f®g G(s)?.

For Z;"** (), by moving the line of integration to Re(s) = % + € and applying the fact that
Ll+e+2u,f)<l, Ll+e—uf®g) <1,

which follow from the Ramanujar-Deligue’s bound and the property of Rankin-Selberg L-functions
(see [RS1996]), one has

3 1 k—1 1 k+1
Tr(s+5+5% —pw)Tr(s+ 5+ 5 —w) ., ds
Imax(u) < / 2 z G(S)—
’“ woll T RO e (I OO
3
<pe L+ mpy))z*e
7j=1

Moreover, by the definition of Aj'9*(m, n) in (2.2) and (2.3), and the bound Ay(p) < psITEin [KS2003],
one has A% (p, p) < p3_72+5. These together with

1
max __ 2 ? 1+ log |u|
Neg™ = 8L(1,Ad"g)|L(1 + 3u, g)[* > <1 +log M)

give that

h(u + ity,u —ity, —2u 1
51 ,max <<k p32+52/ ! ! ) (1+ ’Imu+tg’)2+e
Re(u)= Nug

(1 + [Tmu — £4])2 7 (1 + [2Imu]) 2 du
p3—72+5Tg+5M Z 1
TflvfgitgggT+]W

Cpe pRTETITEN2, (3.4)

Lk e

)

where we have used the Weyl’s law for Hecke-Mass cusp forms for SLy(Z) (see [[w2002]).
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3.2. Estimation on the diagonal term D;. For the diagonal term Di, by Lemma 2.4, we have

D, A,;(/z;) 19;T5 <1 +0p <%>3B> //Re(u)=0 (1) dspee (12) (3.5)

for 0 < B < kL. The choice of h(p) in section 2.3 gives

// h(p)dspec (1) =< T° M,
Re(p)=0
Recall that £ > 12. By (3.3) and (3.4), D; gives the main term in (3.1) if

T >y pP ot (3.6)

3.3. Estimation on other geometric terms. In this subsection, we show that the contribution
from other geometric terms are negligible. For Ri,, and Ri.,, it follows immediately from the
application of the truncation Lemmas 2.1 and 2.2, respectively. To show that Ri ., is negligible,
one needs to open the incomplete Kloosterman sum, rearrange the summation and apply the Voronoi
formula for GLs.

3.3.1. The term Rq ,. Consider Rq 4, firstly. By the property of Vi(y; 1) in lemma 2.4, the terms in
summations over m; and mg are negligible for those m#msy > T3¢, By Lemma 2.1, the contribution
of terms in summations over Dy and D- is neghglble if

p’mi p*Pmyym < i,
DDy 51’>/2
Thus one needs only to consider
Ar(m S(—emu,p, p; Do, D
oy y Sempabeb, (P,
my,mo>1 112 ec{£1} Da|Dy =2 2
'm%n’LQST3+€ pD1= m2D§

p(m177L2)1/3

1<Dy < ——12

Note that m3ms < T3+ and 1 < Dy < p(mjlﬂii) give p > T'¢, which contradicts with (3.6). Thus

these terms Vamsh and Ry 4, is negligible.

3.3.2. The term Ri4,. For Ry, by the property of Vi (y, i) in lemma 2.4, the terms in summations
over my and my are negligible for those m%ml < T3+€, Let
1/3_1/6 1/3 1/6
. miTm my' “m
Y= p1/2 min 1 1/22 L 1/21
Dy D,
By lemma 2.2, the contribution is negligible for those terms in summations over D and D5 satisfying
Y < T1¢. Thus we need only to estimate

Z )\f(mg) Z Z S(egmy, exma, p,p; D1, D)

172 DD
m2m
mq,mo>1 ( 1 2) 617526{:|:1} Dl D2 12
'm%n’LQST3+€ —€
o < eapmy Do 611077121)1.H , >
wy - 2 s 2 ’ m4mso .
Dy Ds !
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Note that m%mg < T3 € and Y > T ¢ give p > T'¢, which contradicts with (3.6). Thus these terms
vanish and R 4, is negligible.

3.3.3. The term R,,,. Consider R,,. By the similar argument in previous sections, one needs only to
consider the contribution of

SR Y AL

: (m2m2)1/2
my my>1 1 ec{£1}
T3 Sm%mz <T3+te

S(—ema,p,p; D2, Dy) ep’my
> DD Pui \ By Hmims |-
D11Do 1D 1D
pDo= mlD

p(m3 m1)1/3

1<D2= T2 €

since other terms either vanish or are negligible.
We show that R* is also negligible. Recall the smooth partition of unity

m2m2
1= — =
2o (),
a>0
where w is a function which is smooth and compactly supported on [%, %] and N, = 2%. One has
) mima\  Ag(mo)
e T Y () e

1/2
, 020 mi,ma>1 m1m2) ce{£1}
T3 KNqKT3+e

Z S(Emz,p,p;Dth)q) emap® H,
DDy DD, mimz |-

D1|Dy
pDo=m1 D%

Let Dy = D19. We open the incomplete Kloosterman sum, rearrange the summation and then obtain

RN YD D YD V= D D G e

8/3 S+em >1 c{+1} §Dy>1 1 Cy( mod Dy), Coy( mod Dy8)
TR Na e = cetEly ol (C1.D1)=(Ca,0)=1
m2ma\ A¢(mo ep>mo Cq
3 w( I ) m2) g ( %25 Hm1m2> ¢ <em2D— . (3.7)
- « /12 1

Thus one can apply the following GL(2) Voronoi formula (see formula (4.71) in [IK2004]).

Lemma 3.1. Let ¢ > 1 and (a,c) = 1. Let F be a smooth, compactly supported function on RT. One

has
5 aptme (“2) Flm) = 3 aste (-2 6o

m>1 n>1

where G(y) = 2mi% [[° F(2)Jy—1 ( y> dx. Here Ji(y) is the J-Bessel function.

15



For the summation over my in (3.7), we apply the Voronoi formula in the above lemma and obtain

mlmg Ar(ma) ep’me Cy
Z”( N, > iz v\ Tpgg Mt €\ My

mao>1

C
= — Z )\f m2 < < 5T2>G(m2),

m2>1

where
[e%S) 2
ok mix 1 eEpex 41\ /xmey
G(mg) = 271 /0 w <Ta> mq) <D25 Hm1m2> Jk_l (T dx.

Lemma 3.2. We have

for any j € Np.

2
Proof. For G(mz), we change the variable ¢ = %x to obtain

VN, ep’ N, 4m\/Nymot\ dt
— 2k DQus | =5=—=t, H,,2 | ———— —.
G(mg) = 2mi ) w(t) D25 2 m2ma Ji_1 Dy 7

Let R = 4mvNamz . By applying the recurrence formula of the J-Bessel function

mi D1

(R e (RYD) = B i) (R,

one has
VN, 1 -2 k ep®N,, ' k
G(my) = 2mi* o 1R2/ <t gw(t)(ID <Dp25 St Hm1m2>> (Rﬂ) Jr(RVt)dt
- 97 kV 1 _i ’
- mi Rk 1 R2

o0 () ktj—1
/ B 0w() Dy (s N2t, Hype, (R\/Z) T Tk (RVA)d
; D2m 2

for any 7 € Nyp. Note that ®,,, also satisfies Lemma 2.1 and one has

(4) 2 J(l—l—e)
ep” Ny 3.9 ( P°Na 3
T°M t .
<q’ (aza 7 o m)) < <D%am% )

G(m2) <kje ?((Dzéml /R>

V Ny p3+€ <m1D1>
16
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since R = “T Vf\%lm?. The lemma follows immediately from the fact that miD; = pd. O

By lemma 3.2, the contribution is negligible for those terms in R* satisfying

p1+e

—€
i, 1 Lhe T7°
Ng& m3

Note that N, > T3. Thus one needs only to consider terms in R* satisfying the condition

1_ 4
PSS p e N§ T T,

which contradicts with (3.6). Thus the contribution of R* is negligible.
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