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Abstract

We analyze the Hamiltonian structure of a general theory of bi-gravity where the

interaction term is a scalar function of the form V (X n) where X may be
√

g−1f or g−1f .

We give necessary conditions for the interaction term of such a theory to be ghost free.

We give a precise constraint analysis of the bi-gravity theory of Hassan- Rosen and show

that the additional constraint which omit the ghost is our choice at the bifurcation point.

1 Introduction

Finding a consistent covariant theory of massive gravity is an old dream for about eight decades,
beginning by the pioneer paper of Fierz and Pauli [1], in 1939. The main difficulty is arising
ghosts in the spectrum of solutions. In recent years, there was made some hopes toward a
consistent theory of massive gravity due to dRGT model [2]. Then Hassan and Rosen im-
proved the model [3] by replacing the flat background metric with an external metric fµν . The
interaction term added to Hilbert-Einstein action in this model is a polynomial of the function
Tr
√

g−1f . In order to have a covariant model, they introduced their bi-gravity model after-
wards by giving dynamics to the second metric, via introducing the kinetic term

√

−(4)fR(f)
in the Lagrangian.

Bi-gravity model by itself is attractive theoretically as well as observationally in describ-
ing physical events. For instance, it has been recently shown [4] that doubly coupled mod-
els of bi-gravity are tightly constrained by observation in light of the neutron star merger
GW170817/GRB170817A [5]. These constraints indicate that viable bi-gravity theories would
be singly-coupled, in that matter couples to only one of the two available metrics. Our fo-
cus here is on theoretically consistent bi-gravity models, specifically those that are ghost-free.
Such ghost-free models should enable us to adjust the corresponding couplings to matter in a
physically viable manner.
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To investigate the existence of a ghost (or ghosts) a popular way is to expand the metric
(or the metrics in bi-gravity) around a given background and search for conditions of avoiding
negative kinetic terms. However, this method is not trusty enough, since just acquires infor-
mation in the vicinity of the given background solution. The next method, which is much
more trustworthy, is the Hamiltonian analysis of the dynamical structure of the model. This
approach, however, is much more complicated and requires lengthy and tedious calculations.

For the massive gravity, the Hamiltonian analysis given in [6] shows that ghost disap-
pears. Despite of some doubts in Refs. [7]- [11] we show in our previous paper [12] that in
full phase space of 20 variables, there is no ghost in massive gravity. Concerning the case of
HR bi-gravity, a crucial calculation is done by Hassan and Rosen [13] to show that additional
constraints emerge in the Hamiltonian analysis of the theory which lead to omitting the ghost
degrees of freedom. Based on this observation, the new model of HR bi-gravity gained con-
siderable attraction among the community. Hence, the Hamiltonian analysis of HR bi-gravity,
for assuring people about additional constraints, is a very important task which may validate
or invalidate hundreds of papers based on reliability of calculations of a few papers written on
this issue [13]- [19].

However, we think that deducing additional constraints needed to omit the Boulware-Deser
ghost does not come true completely. In other words, the main reference on this issue, i.e.
Ref [13], contains subtleties which contradict the standard Dirac approach for constrained
systems. In fact, the additional constraint C2 which has the crucial role of omitting the ghost
is just the Poisson bracket {C,D} of two existing constraints C and D. In the context of Dirac
formalism when {C, D} 6= 0, it turns out that they are second class, while in the mentioned
papers the constraint D is considered as a first class constraint on the basis of demanding
enough number of first class constraints to generate diffeomorphism. Hence, it seems that
the additional constraints needed to omit the ghost do not emerge naturally in the constraint
structure of the model.

Our main interest in this paper is to investigate more deeply the constraint structure of
the bi-gravity and see how additional constraints may emerge to cancel the Boulware-Deser
ghost. As we will show, the crucial point is that the dynamical behavior of a system, including
the number of degrees of freedom and the symmetries, may be different in some subregion
of the phase space. For example, the problem of ghost may be solved only in some special
subregion of the phase space. This may happen due to the problem of bifurcation. Whenever
we find multiplicative constraints, the theory may bifurcate into different branches with distinct
physical properties. Our final answer to the problem of ghost in bi-gravity is that the theory is
ghost free in one branch at the bifurcation point.

A second reason to study the constraint structure of the bi-gravity theory is that the original
papers on the canonical analysis of HR bi-gravity has performed calculations in a 24 dimensional
phase space containing gij, fij (i.e. the spatial part of the metrics) and their conjugate momenta.
In this approach, the lapse and shift functions have been considered as auxiliary fields. However,
we think that a Hamiltonian analysis in the 40 dimensional phase space including lapse and
shift functions as dynamical variables is more fundamental, since they are parts of metrics
which do participate in dynamics as well as the gauge symmetry (i.e. diffeomorphisms) of the
theory. In fact, in the Hamiltonian formulation the momenta conjugate to the lapse and shift
functions should play some roles in generating the gauge transformations.

Although the author of Ref. [15] have also tried to give a careful Hamiltonian analysis in
40 dimensional phase space, he finally found two similar differential equations for the lapse
functions as the result of consistency of the constraints C and D. In his approach, no additional
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constraint is obtained to omit the ghost. On the other hand, there are not enough first class
constraints for generating the full space-time diffeomorphism. The same author analyzed, in
another paper [16], a bi-gravity theory in which the interaction term is a function of Tr(g−1f),
(rather than Tr

√

g−1f). He concluded finally that it is highly improbable to find a ghost free
bi-gravity which supports the diagonal diffeomorphism as well.

Our Hamiltonian analysis in this paper is not limited to HR bi-gravity; we try to give
a compelling Hamiltonian analysis for a general bi-gravity model with an interaction term
V as a polynomial function of either Tr

√

(g−1f)n or Tr((g−1f)n). We show that, in every
parametrization of the lapse and shift functions, the most determinant factor for the presence
of ghosts is the matrix of second derivatives of V with respect to lapses and shifts. As we
will see, one needs, as a necessary condition, four null-vectors for this matrix to guarantee the
diffeomorphism gauge symmetry and one more null-vector for omitting the ghost.

In section 2, we give a general framework for the Hamiltonian analysis of bi-gravity models,
and the crucial role of the second derivatives of the interaction potential with respect to lapses
and shifts. In section 3, we give our main Hamiltonian analysis of the HR gravity. In section 4,
we analyze a model without square root, using a different set of lapse and shift variables. We
show that it is not improbable to have a ghost free model of this kind. Section 5, denotes some
concluding remarks and some view points towards future works.

2 Hamiltonian structure of general bi-gravity

We present a general framework for analyzing a bi-gravity theory. Consider a dynamical theory
in four dimensions with two spin-2 fields fµν and gµν described by the following action

S =

∫

d4x
(

M2
g

√

−(4)gR(g) +M2
f

√

−(4)fR(f) + 2m4
√

−(4)gV (Zµ
ν)
)

, (1)

where Zµ
ν = gµρfρν , Mg and Mf are Plank masses and m is mass parameter. Note that gµν

is the inverse of gµν , while we do not use fµν as the inverse of fµν except in construction of
the curvature R(f) . The interaction potential V (Zµ

ν) is a scalar function of the matrix Z.
This can include Tr(Z) or more generally Tr(Zn). In ADM formalism, the metrics has the
following (3+1) decomposition [21],

gµν =

(

−N2 +NiN
i Ni

Ni gij

)

, fµν =





−M2 +MiM
i Mi

Mi fij



 (2)

where N,M,N i,M i are called lapses and shifts respectively. The inverse metrics gµν and fµν

can be written as

gµν =

(

−N−2 N iN−2

N iN−2 gij −N iN jN−2

)

, fµν =

(

−M−2 M iM−2

M iM−2 f ij −M iM jM−2

)

. (3)

Note that in the interaction term we do not need to raise the indices of fµν , while the indices in
g-sector will raise and lower with gµν and gµν . Since the interaction term does not depend on
the derivatives of the fields, the momenta ΠN ,ΠN i ,ΠM and ΠM i are primary constraints and
the Lagrangian density reads

L = πij ˙gij + pij ˙fij −Hc, (4)
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where πij and pij are conjugate momenta of gij and fij respectively and

Hc =

∫

d3x
(

NµR(g)
µ +MµR(f)

µ + V
)

. (5)

The expressions R(g)
0 , R(g)

i are the Hamiltonian and momentum constraints of the correspond-
ing Hilbert-Einstein action of the metric gµν as follows

R(g)
0 = M2

g

√
gR+

1

M2
g

√
g
(
1

2
π2 − πijπij), R(g)

i = 2
√
ggij▽k(

πjk

√
g
). (6)

Similar relations should also be considered for R(f)
0 and R(f)

i in terms of the f -metric. Noticing
that

√

−(4)g = N
√
g, where g ≡ det(gij), the interaction term reads

V = 2m4N
√
gV (Zµ

ν ). (7)

Let us denote the whole set of lapse and shift functions as La, a = 1, ..., 8 where the first four
refer to N and Ni and the remaining ones to M and Mi. In this way the canonical Hamiltonian
(5) reads

Hc =

∫

d3x (LaRa + V) , (8)

where the same notation has been used to denote R(g)
0 ,R(g)

i ,R(f)
0 and R(f)

i as R1, ...,R8. The
total Hamiltonian reads

HT = Hc +

∫

d3xuaΠa, (9)

where Πa, as primary constraints, are momenta conjugate to La and ua are Lagrange multipliers.
The primary constraints should be preserved during the time. This gives the second level
constraints as

Aa ≡ {Πa, Hc} = −(Ra +
∂V
∂La

) ≈ 0. (10)

The constraints Aa should also be preserved during the time, i.e.

{Aa, HT} = {Aa, Hc} −
∂2V

∂La∂Lb
ub ≈ 0. (11)

We know that the bi-gravity theory is diffeomorphic invariant. Hence, loosely speaking, we
demand that four arbitrary fields exist in the dynamical analysis of the theory. This can be
achieved by demanding that at least four Lagrange multipliers ua should remain undetermined.
In other words, the rank of the matrix ∂2V/∂La∂Lb should not exceed four, in order to have
at least four null-vectors. If there were no interaction, we would have eight null-vectors due to
vanishing the matrix ∂2V/∂La∂Lb. Suppose χa

(α) are null-vectors of ∂2V/∂La∂Lb. Then from
Eq. (11) we find the following third level constraints B(α) labeled by the index α,

B(α) ≡ χa
(α){Aa, Hc} ≈ 0, (12)

However, some of B(α)’s may vanish on the constraint surface. For the case of no interaction,
we have two disjoint Einestain-Hilbert theories and the expressions B(α) consist of Poisson
brackets of R(g)

0 ,R(g)
i ,R(f)

0 and R(f)
i which vanish weakly. For a generic interaction, we also

expect that at least four of the third level constraints B(α) are trivial due to our need to have at
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least four secondary first class constraints to generate diffeomorphisms. If more than four B(α)

vanish, we would have extra symmetries besides diffeomorphisms and the theory would have
less number of degrees of freedom, comparing to what we consider in the following. On the other
hand, consistency of the third level constraints (if any) should not determine the Lagrangian
multipliers. Therefore, it is legitimate to assume that at least four of the expressions B(α) should
vanish weakly. We will discuss this point with more details for two distinct examples in the
following sections.

To be used in the next section, let us consider the possibility of redefinition of the second
level constraints. In the framework of constrained systems, one may replace, for some reasons,
the constraints Aa with Ãa such that

Aa ≈ 0 ⇔ Ãa ≈ 0. (13)

Hence, the equation (11) should be replace by

{Ãa, HT} = {Ãa, Hc}+
∂Ãa

∂Lb
ub. (14)

In this way, our discussions after Eq. (11) are valid by considering the null-vectors of the matrix
∂Ãa/∂L

b instead of ∂2V/∂La∂Lb.
If the rank of ∂Ãa/∂L

a is four, and we have no further third level constraint B(α), this means
that four of the lapse-shift functions Lā and the corresponding second level constraint Ãā are
first class and the remaining Lã as well as Ãã should be second class.

Remember the famous formula of the number of phase space degrees of freedom in a con-
strained system reads [22]

DOF = N − 2FC − SC, (15)

where N is the number of original variables, FC is the number of first class constraints and
SC is the number of second class constraints. For the current case of 40 phase space variables
with 8 first class and 8 second class constraints we find

DOF = 40− 2× 8− 8 = 16, (16)

which correspond to 8 degrees of freedom in the configuration space. This can be interpreted
as one massive and one massless gravitons accompanying by a scalar ghost field.

In order to omit the ghost degree of freedom, we need to find at least two more second
class, or one more first class constraints. The latter possibility corresponds to one more gauge
symmetry besides diffeomorphism, which does not sound well. Moreover, a first class constraint
in the second level implies one more primary first class constraint. Hence, it is not reasonable
to have only one more first class constraint. So, in order to omit the ghost we should expect to
find two more second class constraints.

To reach this goal we need a fifth null-vector for the matrix ∂Ãa/∂L
a which leads to a new

constraint at the third level via Eq. (12), i.e.

B ≡ χa
(5){Aa, Hc} ≈ 0. (17)

If the new constraint depends on lapse-shift functions, one combination of the Lagrange mul-
tipliers ua in Eq. (9) would be determined as the result of consistency of the constraint B.1

1There is a technical point here, i.e. three variables Lã (see before Eq.(15)) are determined in the second
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Hence, the constraint analysis would stop here with just one more second class constraint. This
leads to a phase space with 15 dynamical fields. This may sounds undesirable to have a phase
space with odd number of dynamical degrees of freedom. However, as shown in [23] and [24]
this does not mean an odd-dimensional phase space for field theories. Meanwhile, the main
problem is we need one more second class constraint to omit the ghost.

Let us summaries the final conclusion of this section. In order to have a ghost free bi-gravity
theory, we need to have a diffeomorphic invariant interaction with two following properties.

i) The rank of the matrix ∂2V/∂La∂Lb or ∂Ãa/∂L
a, in the case of redefinition of the con-

straints, should be three.
ii) The new constraint B emerged due to the fifth null-vector should not contain lapse-shift

functions.
We will investigate the above conditions in two approaches given in the following sections.

3 Hamiltonian analysis of HR Bi-gravity

We start by investigating the Hamiltonian formulation of HR bi-gravity given by the following
action [14],

S = M2
g

∫

d4x
√−gR(g) +M2

f

∫

d4x
√

−fR(f) + 2m4

∫

d4x
√−g

4
∑

n=0

βnen(k). (18)

In Eq. (18) βn are free parameters, m is a mass parameter, Mg and Mf are Plank masses and
k ≡

√

g−1f where (g−1f)µν = gµλfλν . The elementary symmetric polynomials en(k) are given
in the appendix A. In this paper we consider only minimal model of the interaction term where
the coefficients βn are β0 = 3, β1 = −1, β2 = β3 = 0, β4 = 1. By applying the following
redefinition for the shift functions [14]

N i = Mni +M i +NDi
jn

j , (19)

and choosing the 3 × 3 matrix Di
j appropriately (see appendix A), the interaction term as

well as the whole action would become linear in the lapses N and M and shifts M i. Since the
interaction does not involve derivatives of the metrics, the definitions of the momentum fields
are similar to Hilbert-Einstein action as

πij = −√
g(Kij − gijK), (20)

pij = −
√

f(Lij − f ijL), (21)

PMi
≈ 0, PM ≈ 0, PN ≈ 0, Pni ≈ 0, (22)

where Kij and Lij are three dimensional extrinsic curvatures due to g and f metrics respectively.
As is seen, from Eq. (22) we have 8 primary constraints PM , PN , PMi

and Pni. The Lagrangian
density reads

L = M2
gπ

ij∂tgij +M2
f p

ij∂tfij −Hc, (23)

level of consistency in terms of the canonical variables. Moreover, the corresponding momenta Πã and second
level constraints Ãã constitute a system of second class constraints. Therefore, for the next level of consistency
one should consider the Dirac brackets instead of Poisson brackets. This implies that the constraint equations
Πã ≈ 0 and Ãã ≈ 0 should be imposed as strong equalities, i.e. Πã = 0 and Ãã = 0 . Hence, the terms uãΠã

in the total Hamiltonian disappears at all. So when we say that consistency of the third level constraints may
determine Lagrange multipliers, we mean the remaining ones other than uã’s.
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with the canonical Hamiltonian

Hc = M iRi +MD +NC, (24)

in which

C = M2
gRg

0 +M2
gD

i
kn

kRg
i − 2m4(

√
g
√
xDk

k − 3
√
g), (25)

D = M2
fRf

0 +M2
gn

iRg
i − 2m4(

√
g
√
x−

√

f), (26)

Ri = M2
gRg

i +M2
fRf

i , (27)

where x = 1− nifijn
j . As a special case of equation (9) the total Hamiltonian reads

HT = Hc + uPN + vPM + uiPM i + viPni, (28)

where u, v, ui and vi are 8 undetermined Lagrange multipliers (8 fields, in fact). Since N , M
and Mi appear linearly in the canonical Hamiltonian, consistency of the primary constraints
PM , PN , PMi

(using the fundamental Poisson bracket given in appendix A) gives 5 secondary
constraints as follows

{PN ,HT} = −C ≈ 0, (29)

{PM ,HT} = −D ≈ 0, (30)

{PM i,HT} = −Ri ≈ 0. (31)

However, all the terms of the canonical Hamiltonian involve the variables ni. Hence, for con-
sistency of Pni , we find directly

{Pni, Hc} ≡ −Si = −
(

Mδki +N
∂(Dk

jn
j)

∂ni

)

Uk ≈ 0, (32)

where
Uk = M2

gRk(g)− 2m4√gnlfljδ
j
kx

−1/2 ≈ 0. (33)

In this way, for the current model, the secondary constraints Aa of the previous section are
−C,−D,−Ri and −Si respectively. The matrix within the parenthesis on the right hand side
of Eq. (32) is the Jacobian of the transformation given in Eq. (19) which is invertible. Hence,
Eq. (32) leads to secondary constraint Uk ≈ 0. So, we replace the secondary constraints
with the new set C,D,Ri and Ui. This replacement is important. Notice that one may consider

subregions of the phase space where the matrix (Mδki+N
∂(Dk

jn
j)

∂ni ) is not full rank. This implies
constraints which depend on the lapses N and M , which would be second class with respect to
the primary constraints PN and PM . Here, we choose to put away such possibilities.

Considering the problem from the opposite side, when the consistency condition leads to
equality Si = KijUj ≈ 0, we have two possibilities, either assume |K| 6= 0 which implies Uj ≈ 0
instead of Si ≈ 0; or assume that |K| ≈ 0 and Uj 6= 0 for some nontrivial null-vectors of
K. From this point of view the emerging constraints Si exhibit a bifurcation problem, and we
should decide which way to follow in the rest of the problem. However, we are not allowed to
keep the original form of the constraints Si, since this means we are mixing the two distinct
possibilities simultaneously.

In our case, considering the constraints Si as given in Eq. (32) leads to non vanishing Poisson

brackets {Si, PM} and {Si, PN}. Hence, when we say that the matrix
(

Mδki +N
∂(Dk

jn
j)

∂ni

)

is
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invertible, we mean, in fact, that we choose to leave in regions of phase space where this matrix
is non-singular. 2

Another subtlety concerns the Eq. (32) as an eigenvalue problem for the matrix
∂(Dk

jn
j)

∂ni

with eigenvalue −M
N

and eigenvector Uk. However, since Uk is a definite vector given in Eq.
(33) this exceptional case does not matter.

Therefore, we have 8 primary constraints PN , PM , PM i, Pni and 8 secondary constraints
C,D,Ri, Ui. Now we should consider the consistency of second level constraints. If we wrongly
have not replaced the secondary constraints Si with Ui , the matrix ∂2V/∂La∂Lb in equation
(11) would have rank 5, since terms ∂2V/∂ni∂N and ∂2V/∂ni∂M do not vanish (although
∂2V/∂ni∂M i vanish). This fact contradicts our expectation to have at least 4 null-vectors for
∂2V/∂La∂Lb. However, considering the secondary constraint Ui make the 8×8 matrix ∂Ãa/∂L

b

such that the first five columns and the first five rows vanish and only the elements ∂2Ui/∂n
i

are non vanishing.
Putting all together, the consistency equations for the second level constraints, i.e. Eq.

(14), reads








{C, Hc}
{D, Hc}
{Ri, Hc}
{Ui, Hc}









+









O O

O ∂Ui/∂n
j

















u
v
ui

vi









= 0. (34)

As is seen, the null vectors of the matrix ∂Ãa/∂L
b give the third level constraints {C, Hc},

{D, Hc} and {Ri, Hc} respectively. The constraints Ri have vanishing Poisson brackets with
all the primary as well as secondary constraints, as calculated in full details in Refs. [13, 15].
Since the canonical Hamiltonian (24) is composed of secondary constraints, the Poisson brackets
{Ri, Hc} also vanish. This shows that consistency of Ri neither determines any of the Lagrange
multipliers nor leads to any further constraint. Since Ri is the sum of momentum constraints
due to the individual Einstein-Hilbert actions of gµν and fµν , we expect the set of 6 constraints
PM i and Ri to act as generators of the spacial diffeomorphisms.

Putting aside the 6 first class constraints PM i and Ri, there remain constraints PN , PM and
Pni as primary constraints and C,D and Ui as secondary constraints. Since Ui are functions of
ni such that | ∂Ui

∂nk
| 6= 0, the set of six constraints Pni and Ui are second class. Hence, consistency

of Ui’s leads to determination of Lagrange multipliers vi’s in Eq. (28). These second class
constraints should be imposed strongly on the system, in order to reach the reduced phase
space. Hence, from now on, the momenta Pni should be considered as zero and due to Ui = 0,
the variables ni would be determined in terms of the canonical variables gij, π

ij, fij and pij .
Now we should investigate the time evolution of C and D. Remember that the Poisson

brackets of C and D with Ri vanish since Ri are first class. Moreover, it is directly seen that

2If the matrix elements Kij where constant numbers, there were no difference in employing Si’s or Ui’s as
constraints, since Ui where just linear combinations of Si. However, if Kij ’s depend on phase space variables (as
in our case), then there is difference in choosing the set Si or Ui, in fact one should consider the rank of matrix
K throughout the phase space. There may exist subregions of phase space where K is not full rank. In such
cases no more the sets of constraints Si and Ui are equivalent. In fact, one should use independent combinations
of Ui together with equations which determine the subregion where the rank of K is lowered. Note in general
every multiplicative set of constraints (even in the form of matrices) should be broken in different branches of
satisfaction. In other words, it is not allowed to use the original constraints Si. To see an interesting case of
this point see Ref. [25]. It is well known, on the other hand, that [22] given the constraints ϕ

a
, one can redefine

them as ϕ′

a = Mabϕb provided that Mab is nonsingular on the constraint surface. Otherwise, it is obvious that
the constraint structure may change. For example if we multiply the second class constraints with some other
second class constraints we would find first class constraints.

8



{C, pnj} = Ui
∂(Di

k
nk)

∂nj ≈ 0 and {D, pnj} = Ui ≈ 0 which vanish weakly [13]. It can also be shown
that {C(x), C(y)} ≈ 0 and {D(x),D(y)} ≈ 0 [13, 15]. Hence, consistency of the constraints C
and D by using the canonical Hamiltonian (24) gives the following third level constraints,

{C(x), Hc} =

∫

d3yM(y){C(x),D(y)} = M(x)Γ(x), (35)

{D(x), Hc} =

∫

d3yN(y){C(x),D(y)} = N(x)Γ(x). (36)

where

Γ ≈
(

m4

M2
g

(gmnπ − 2πmn)U
mn

)

+ 2m4√ggniD
i
kn

k
▽mU

mn

+
(

R(g)
j Di

kn
k − 2m4√ggikV̄

ki
)

▽in
j

+
√
g
(

▽i(R0(g)/
√
g) + ▽i(R(g)

j /
√
g)Dj

kn
k
)

ni

−m4

M2
f

√
g√
f
(fmnp− 2pmn) F̄

mn, (37)

in which

Umn = −√
xgmn, (38)

V̄ ki = gkj(− fjl√
x
((D−1)l rg

ri)), (39)

F̄mn = −(D−1)mig
ni − ninmDn

i√
x

. (40)

Historically this point is the most crucial point in the investigation of bi-gravity and proving
that it is ghost free. Obviously the Poisson bracket {C(x),D(y)} is nonzero which states both C
and D are second class constraints. In Ref. [13] which is the main reference of so many papers
using HR model, it is argued that D is first class "since we need it to be first class in order to
generate diffeomorphism". Hence, the authors of [13], just "assume" that Γ ≡ {C(x),D(y)} is
a new constraint (they denote it as C2 ) which constitute a system of second class constraints
together with the constraint C.

Two important points arise here. First, there is no preference between C and D. One could
choose C instead of D as a first class constraint which may generate guage transformations.
In fact, it requires complicated calculations to find which one of C or D, or a combination of
them, is the generator of diffeomorphism. Second, with this logic one may consider Ω ≡ {C,Γ}
as a new constraint and claim that C is also first class. This story may have no end. In fact,
in the general context of constrained systems the Poisson bracket of second class constraints
just act as non vanishing coefficients in determining the Lagrange multipliers [28] and it is not
reasonable to consider them as new constraints. New constraints at each level come out only
as the Poisson brackets of the existing constraints with the canonical Hamiltonian.

This point about the pioneer paper [13] was also observed by Kluson in Ref. [15]. He
investigated similar Hamiltonian analysis as we gave briefly in this section, up to the bottle
neck of calculating {C(x),D(y)}. He found that one is not able to obtain a new constraint out
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of consistency of constraints C and D. However, in Ref. [15] the following differential equations
are derived for consistency of C and D respectively.

C2 ≡ M(F − ∂iV
i) + (W i − V i)∂iM ≈ 0,

D2 ≡ N(F − ∂iV
i) + (W i − V i)∂iN ≈ 0, (41)

with some expressions for F , V i and W i. Since the constraints C and D contain spacial
derivatives of the canonical variables, it does not seem strange to obtain derivatives of the delta
function in the Poisson bracket {C(x),D(y)} which lead to differential equations for M and N
respectively.

Eqs. (41) show the constraints (C2,D2) together with (PM , PN) and (C,D) constitute a
system of 6 second class constraints. In this way we have, at one hand, a system of 6 first class
and 12 second class constraints leading to 16 phase space degrees of freedom which involves
ghost. On the other hand, the gauge symmetry is restricted to spacial diffeomorphism generated
by PMi

and Ri. This objection concerning the existence of ghost in HR model remained
unanswered for almost four years.

In our study of this problem, for time evaluation of the constraints C and D, we ob-
served that both the constraints C2 and D2 in Kluson’s analysis are of the same structure
as C2(x) =

∫

d3yΓ(x, y)M and D2(x) =
∫

d3yΓ(x, y)N where Γ(x, y) ≡ {C(x),D(y)} may con-
tain derivatives of delta function. Apart from dependence of Γ(x, y) on derivative of the delta
function, one may consider the consistency equations Ċ = ΓM = 0 and Ḋ = ΓN = 0 as a
bifurcation problem. In other words, one may consider these equations as something to deter-
mine M and N or they can be satisfied just by one condition Γ = 0. We are mostly familiar
with cases where Γ(x, y) is proportional to δ(x − y). However, in a formal way, one may also
consider the case where Γ also contains ∂iδ(x− y).

During the weeks we were preparing this article a new paper by F. Hassan and A. Lundkvist
[20] was published which shows the correct expressions of C2 and D2 do not contain derivatives of
M and N . Our calculations are also in agreement with this results. In other words, the Poisson
bracket {C,D} does not contain derivatives of delta function, at all. Hence, the consistency
conditions of C2 and D2 do not give equations (41) , but they give ΓN ≈ 0 and ΓM ≈ 0 where
Γ(x) is as given in Eq. (37), in agreement with the result of [20].

We emphasize again that the system of equations ΓN ≈ 0 and ΓM ≈ 0 are, in fact, a real
bifurcation problem, where you need to make a choice to proceed with the problem. Here we
have two choices:

i) Every where in phase space where Γ does not essentially vanish, we should impose M ≈
N ≈ 0, which is more or less similar to the result of Ref. [15] discussed above, i.e. 16 degrees of
freedom containing ghost and lack of complete four parameter diffeomorphism of space-time.
The worst result of the choice Γ 6= 0, N ≈ M ≈ 0 is emerging singular metrics which are not
acceptable physically. However, note that the dynamics of theory, by itself, does not discard
this possibility. This is our physical preference to put this choice away, which is imposed from
outside of the dynamical investigation of the model.

ii) If we restrict ourselves to the subregion Γ ≈ 0 of the phase space, we would have no
restriction on the lapses N and M up to this point, i.e. they remain arbitrary so far. However,
we may encounter some restrictions on the lapse functions (not here but) in the subsequent
levels of canonical investigation of the theory, as we will see.

However, as we mentioned before, Γ is not an ordinary constraint which comes out from the
Poisson brackets of the existing constraints with the canonical Hamiltonian, as is the case, in
Dirac approach, for every constraint system. In other words, Γ = 0 is not a natural consequence
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of the dynamics of the system; it is just a kind of constraint or restriction on the canonical
variables which you impose, in order to escape unwanted results M = 0 and N = 0.

Hence, in our opinion, it needs special care to see what naturally emerges from the dynamics
of the theory and what we "assume" in order to have a consistent theory. In fact, constraints
such as Γ should be viewed as a new kind of constraints, which are different from primary
constraints (which emerge due to definition of momenta) and secondary constraints (which
emerge from the Poisson brackets of the constraints with the canonical Hamiltonian). This
kind of constraints which we denote them as "new kind" are also familiar to us in the canonical
analysis of Chern-Simons like theories in 3 dimensions [25]. 3

Assume, any how, that we have accepted Γ as a new constraint. It is obvious that the system
should not exit from the surface Γ = 0 during the time evaluation. Hence, the consistency
condition Γ̇ = 0 should be imposed further. This gives the fourth level constraint

Ω(x) ≡
∫

d3y{Γ(x), Hc(y)}∗ = E(x)M(x) + F (x)N(x) (42)

where

F (x)N(x) =

∫

d3yN(y){Γ(x), C(y)}∗ (43)

E(x)M(x) =

∫

d3yM(y){Γ(x),D(y)}∗ (44)

The symbol { , }∗ means the Dirac bracket [26] which implies strongly imposing the constraints
pni and Ui (see Eq. (33) ). The constraint Ω(x) contains the lapse functions M and N . So one
combination of the Lagrange multipliers u and v in the total Hamiltonian would be determined
from consistency of Ω, i.e.

∫

d3z{Ω(x),HT (z)}∗ =
∫

d3z{Ω(x), (Hc + uPN + vPM)(z)}∗ ≈ 0. (45)

The good news is that this is the end of the consistency process and one combination of u
and v remain undetermined. In addition to the Lagrange multipliers ui in Eq. (28) we have, in
this way, altogether 4 arbitrary gauge fields corresponding to diffeomorphism parameters. One
may manage the whole structure of the problem in a more clear form if one changes the lapse
variables to N̄,M such that

Hc = N̄C +MD′ +M iRi, (46)

where

N̄ = N +
E

F
M (47)

D′ = D − E

F
C (48)

3The necessity of additional constraints has been observed previously in canonical analysis of Chern-Simons
like theories in Ref. [29]- [31]. However, their special character and distinguishing them from normal Dirac
constraints were not recognized before.
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In this system consistency of D′ is satisfied identically on the surface Γ = 0. Meanwhile,
consistency of Γ gives Ω = N̄F and finally consistency of Ω determine the Lagrange multiplier
of the primary constraint PN̄ in the total Hamiltonian. The interesting point is that at the
final stage the problem bifurcates once more. In other words, we could restrict ourself on the
surface F = 0. However, we do not do this, since it makes our change of variables in Eq. (46)
singular. Hence, our analysis is valid where F 6= 0.

4 Bi-gravity without square root

To see better the general construction of section (2), let us consider a general model as

S =

∫

d4x
(

M2
g

√

−(4)gR(g) +M2
f

√

−(4)fR(f) + 2m4((4)g (4)f)1/4V (Z1, ...,Z4)
)

, (49)

where Zn = Tr[(g−1f)n]. Comparing to HR bi-gravity, this category concerns Zµ
ν = gµλfλν

instead of
√
Zµ

ν . There is also a slight difference in coefficient of the interaction term where
√

−(4)g is replaced by [(4)g(4)f ]1/4 which is more symmetric with respect to the g and f metrics.
For this case, it is convenient to use the following variables [27]

N̄ =
√
NM, n =

√

N

M
, N̄ i =

1

2
(N i +M i), ni =

N i −M i

√
NM

. (50)

Considering Eqs. (2) and (3) together with Eq. (50), one can show directly

Z1 = Zµ
µ = a + aii, (51)

Z2 = Z ν
µ Zµ

ν = a2 + viw
i + aija

i
i (52)

Z3 = Zρ
µZ µ

ν Zν
ρ = a3 + 3viwia+ 3via

i
jw

j + aija
j
ka

k
i (53)

Z4 = Zρ
σZ σ

ρ Z µ
ν Zν

µ

= a4 + 4a2viw
i + 2(viw

i)2 + 4avia
i
jw

j + 4via
i
ja

j
kw

k + aija
j
ka

k
l a

l
i, (54)

where

vi =
fijn

j

n2
, (55)

a =
1

n4
− nifijn

j

2n2
, (56)

aij = gikfkj −
nifjkn

k

2n2
, (57)

wi = nin
mfmnn

n

4n2
− ni

2n4
− 1

2
gimfmkn

k. (58)

These relations show that the interaction potential V (Z1, ...,Z4) is fortunately independent of
N̄ and N̄ i. This enables us to linearize the action with respect to N̄ and N̄ i. In Ref. [16] it is
argued that the characteristic equation of the matrix Zµ

ν is the same as Aµ
ν = Zµ

ν |N̄=1,N̄ i=0.
Hence, it is deduced that, in principle, there exists a similarity transformation which brings
Zµ

ν to Aµ
ν . However, besides to direct calculations of Z1 to Z4 in Eq. (51) to (54), we can

simply argue that since Tr(Zµ
ν)

n is gauge invariant; one can in fact calculate the corresponding
quantities Zn in a special gauge where N̄ = 1 and N̄ i = 0, which gives the same results.
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Including the well-known result for the Einestain-Hilbert parts of the action (49), the La-
grangian density reads as Eq. (5) where

Hc =

∫

d3x(N̄R+ N̄ iRi), (59)

in which
R = nR(g)

0 +
1

n
R(f)

0 +
1

2
niR(g)

i − 1

2
niR(f)

i + 2m4(gf)1/4V (Zµ
ν), (60)

Ri = R(g)
i +R(f)

i . (61)

As usual, the momenta conjugate to the lapse-shift variables N̄ , N̄ i, n and ni are primary
constraints, i.e.

PN̄ ≈ 0, Pi ≈ 0, pn ≈ 0, pi ≈ 0. (62)

Hence, the total Hamiltonian is as follows

HT =

∫

d3x(N̄R+ N̄ iRi + uPN̄ + uiPi + vipi + vpn). (63)

The time evaluation of the primary constraints gives

{PN̄ , HT} = −R ≈ 0, (64)

{Pi, HT} = −Ri ≈ 0, (65)

{pn, HT} = N̄(−R(g)
0 +

1

n2
R(f)

0 − 2m4(gf)1/4
δV

δn
) ≡ N̄ζ, (66)

{pi, HT} = N̄(−1

2
R(g)

i +
1

2
R(f)

i − 2m4(gf)1/4
δV

δni
) ≡ N̄ζi. (67)

Comparing to our general formalism of section (2), the secondary constraints Ra of Eq. (10)
are R, Ri, ζ̃ ≡ N̄ζ and ζ̃ i ≡ N̄ζ i respectively. The constraints Ri are mainly composed of the
Einestain-Hilbert parts R(g)

i and R(f)
i and commute with each other. The constraint R (see Eq.

(60)) is the most important part of the theory which includes the interaction term. Straight-
forward calculations given in Ref. [16] show {R(x),R(y)} ≈ 0 as well as {R(x),Ri(y)} ≈ 0.
Taking a look on the secondary constraints ζ̃ and ζ̃i shows that we have a bifurcation problem
here.

We are in general free to assume different cases N̄ = 0 and N̄ 6= 0. The first choice, leads
to a degenerate metric which is not physical. Hence, the simplified constraints ζ and ζ i are
resulted from the physical assumption N̄ 6= 0. Let us note briefly that, in spite of the approach
of Ref. [16], it is not needed to add the secondary constraints to the total Hamiltonian. In fact,
theoretically as shown in [22, 28], the total Hamiltonian as the generator of time evaluation
should only include the primary constraints.4 Adding the secondary constraints to the total
Hamiltonian, however, makes us to calculate some unnecessary Poisson brackets.

Now we need to consider the consistency of secondary constraints, by using the total Hamil-
tonian (63). This should give us equations similar to Eq. (11) for ua’s as unknowns. Since Ri’s
include non of the laps and shift functions they would commute with all of the primary con-
straints, as well as the canonical Hamiltonian. The constraint R, however, do depend on n and

4Working with the extended Hamiltonian, which includes all constraints may sometimes simplify the problem,
but not for the case at hand. However, the extended Hamiltonian turns out to give the correct time evaluation
for the gauge invariant quantities.
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ni (see Eq. 60). It is easy to see that {R, pµ} = ∂R/∂nµ = ξµ ≈ 0. Hence, consistency of the
constraints R and Ri gives no new constraint and determines non of the Lagrange multipliers.
Therefore, the only non-trivial part of Eq. (11) comes from the consistency of the constraints
ζ and ζi. In this way the consistency conditions of secondary constraints can be given by the
following matrix









0
0

{ζ,Hc}
{ζi, Hc}









+









O O

O △µν

















u
ui

v
vi









= 0. (68)

where

△µν≡ {ζµ, pν} =
∂2Ṽ

∂nµ∂nν
, (69)

in which

Ṽ =
1

n
R(f)

0 + 2m4(gf)1/4V. (70)

As expected, the matrix of the coefficients of u’s and v’s have four null-vector, which do not
lead to any new constraint. Hence, the four variables u and ui remain undetermined through
dynamical investigation of the theory. The only nontrivial part of the consistency procedure of
the secondary constraints then reads

{ζµ, Hc}− △µν vν = 0, (71)

If det(△µν) 6= 0, the constraints pn, ζ and pi, ζi are second class. Hence, we have 8 first
class and 8 second class constraints which gives 16 dynamical phase space variables, (see Eq.
(15)). This involves a scalar ghost. If det(△µν) = 0, we should have at least one null vector
for the matrix △µν , denoted by λµ. Multiplying Eq. (71) by λµ, we find the new constraint
λµ{ζµ, Hc} = 0. Since {ζµ,Ri} = 0, from Eq. (59) the new constraint reads

λµ{ζµ(x), Hc(y)} =

∫

d3yN̄(y)
(

δ(x− y)F(x) +W i(x)∂xiδ(x− y)
)

≈ 0, (72)

for some functions F(x) and W i(x). If W i(x) 6= 0, the equation (72) gives a differential equation
for the lapse function N̄ . However, from the requirement of diffeomorphism, we need N̄ to be
an arbitrary field, while a differential equation restricts our arbitrariness only to it’s initial
condition. Ref. [16] deduces from this point that the case det(△µν) = 0, should not happen;
hence all models of the form of Eq. (49), including HR bi-gravity contain ghost mode. However,
as pointed out in a footnote in the same reference, there is the possibility of vanishing W i(x),
which changes the constraint (72) to bifurcation form N̄(x)F(x). Again, we use the physical
condition N̄ 6= 0 to consider F(x) as a new constraint. Consistency of F(x) may also lead to
a differential equation for N̄ . If we are enough lucky, the coefficient of the derivative of delta
function in this new equation may also vanish. Under these circumstances, we would have
two more second class constraints which cancel the ghost. Although, it seems too improbable,
however, the analysis of HR gravity for the more complicated potential (involving the square
root of g−1f) shows that it may be possible for a specially designed interaction potential to
reach the desired two more constraints needed to omit the ghost.
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We want here to be bold enough to give a new suggestion. Consider the differential equation
(72) for N̄ as an integral equation

∫

d3yΥ(x, y)N̄(y) ≈ 0, (73)

This can also be considered as a bifurcation problem for the two factors Υ̃(x, y) and N̄ . Hence,
implying N̄ 6= 0 may lead us to consider the new constraint Υ(x, y) ≡ δ(x − y)F(x) +
W i(x)∂xiδ(x − y) ≈ 0. This kind of constraint is deviated slightly from being a local con-
straint; so we denote it as a "semi local constraint". Consistency of Υ may give us again a
semi local constraint. We think these new constraints are still strong enough to omit the ghost
degree of freedom. However, further details requires to consider a given model of the form given
in Eq. (49). Here, we just suggested the idea.

To see the above arguments better, consider the concrete example in which the interaction
term is V = Z1 as given in Eq. (51), which is also analyzed in Ref. [32]. Using Eqs. (56) and
(57) we have

V =
1

n4
− nifijn

j

n2
+ gijfij . (74)

For this particular interaction the constraints ζ and ζi and the matrix △µν read

ζ ≡ −R(g)
0 +

1

n2
R(f)

0 − 2m4(gf)1/4
(−4

n5
+

2nifijn
j

n3

)

, (75)

ζi ≡
−1

2
R(g)

i +
1

2
R(f)

i + 2m4(gf)1/4(
2nifij
n2

), (76)

△µν=





−2R(f)
0 /n3 + α(−20/n6 + 6nifijn

j/n4) −4αnifij/n
3

−4αnifij/n
3 2αfij/n

2



 , (77)

where α ≡ (2m4(g)1/4(f)1/4). To find the probable null-vector of the matrix △µν first consider

the last three columns which are proportional to
(

2nifij
nfij

)

. Since fij is considered to be non-

singular, each null-vector λµ of △µν should necessarily be of the form (n, 2ni). However, such a
vector obviously have not vanishing product with the first column. Moreover, direct calculation
shows △µν in Eq. (77) is nonsingular. This analysis indicates a bi gravity theory with interaction
V = Z1 consists ghost. However, one may consider more complicated interactions including Z2,
Z3 and Z4 in Eqs. (51-54). Theoretically it is not impossible to have an interaction for which
the matrix △µν is singular, and subsequent conditions for a ghost-free theory of bi gravity are
satisfied. However, finding such a model seems to be a second realization of the old dream of
having ghost free bi gravity theory (after HR model).

5 Conclusions

We performed the Hamiltonian analysis of four dimensional bi-gravity theories in the context
of ADM formalism. First, we worked in the framework of the original lapse and shift variables.
In order to generate the gauge symmetry, i.e. the diffeomorphism, in the 40 dimensional phase
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space, we need to have 8 first class constraints in the first and second level of consistency of
constraints. Hence, the matrix of the second derivatives of the interaction term with respect to
lapse and shift variables should at least have 4 null-vectors. However, if we demand omitting
the ghost, we need one more null-vector.

This structure is preserved in every reparametrization of the lapse and shift functions. In
fact, the main work done in reference [13] is to find a suitable change of variables, so as to
show that for HR bi-gravity the 8 × 8 matrix of second derivatives of the potential term has
rank three with respect to the new variables. Note, however, that nobody has claimed this
characteristics is exclusive for HR bi-gravity. Although difficult, it is not impossible for future
model builders to introduce new models with the same property.

Suppose that the first condition is fulfilled and we have five constraints at the second level
which are not second class so far. If consistency of these constraints gives no third level
constraint, then we would have 6 second class and 10 first class constraints which corresponds
to a ghost free model with 14 degrees of freedom. However, such a model would have one more
gauge symmetry besides diffeomorphism. Theoretically it does not seem impossible to have a
model of this kind, but there is no known model of this category.

It is more or less known that 6 first class constraints, which generate the spacial diffeomor-
phism, can easily be found in every covariant model of bi-gravity. Hence, the only way to have
a ghost free theory of bi-gravity is finding two more second class constraint after the second
level. Unfortunately, our demand is not satisfied in a straightforward manner. It seems that
we usually find equations to determine the lapse functions due to consistency of the remaining
constraints of second level. In other words, by no means one can find ordinary constraints
which do not depend on the lapse functions in this procedure.

Our important observation in this paper is that at this stage we have in fact a bifurcation
problem. The theory, as it stands, may have dynamical sectors in which the lapse functions are
constrained. This is in contradiction with our physical expectation that lapse function should
act as part of gauge parameters in diffeomorphism.

On the other hand, if we restrict ourselves to a limited subregion of the phase space described
by additional constraints, the consistency condition of the remaining constraints may have
different solution. In other words, if we assume that in the physical sector of the theory the
lapse functions should not vanish (or determined severely) then the only consistent subregion is
achieved by imposing additional constraint. As we found, this constraint in HR bi-gravity gives
under consistency a fourth level constraint, whose consistency determines a special combination
of lapse functions.

We argued that even in case where the consistency condition of remaining second level
constraint leads to differential equations, the bifurcation characteristics of the problem remains
unchanged. In such cases we introduced the notion of semi-local constraints which contain
some limited number of derivatives of delta function.

The interesting point is the original model at the bifurcation point may go through the
branch which fixes the lapse functions. If so, the theory has not advantage of the full capacity of
four dimensional diffeomorphism; i.e. the gauge symmetry is limited to spacial diffeomorphism.
This shows in the Hamiltonian framework we have additional situations which may not occur
in Lagrangian formulation.

However, through the physical branch, in addition to two second class constraints needed for
omitting the ghost, we also have found two more first class constraints needed to generate the
full four dimensional diffeomorphism. Unfortunately, this analysis just relies on counting the
number of first class constraints. A difficult problem concerns how the variations of dynamical
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variables due to diffeomorphism is generated by these first class constraints. This may be the
issue of our future works.

As mentioned in the introduction, the bi-gravity models maybe employed in describing the
observations concerning Neutron star merger GW170817 event. As stated in [4] this event
puts constraints on the physical parameters of the bi-gravity coupled to matter. However, our
investigation in this paper concerns only pure gravity and the problem of ghost. It is obvious
that having a consistent theory of bi-gravity at hand, we are able to adjust its coupling to
matter so as to fulfill the constraints imposed by the observations.

Acknowledgements: The authors would like to thank Claudia de Rham for helpful dis-
cussions. Z.M. thanks IPM for hospitality during the progress of this work.

A Some details of HR bi-gravity

A) elementary symmetric polynomials en(k) as follows

e0(k) = 1,

e1(k) = [k],

e2(k) =
1

2
([k]2 − [k2]),

e3(k) =
1

6
([k]3 − 3[k][k2] + 2[k3]),

e4(k) =
1

24
([k]4 − 6[k]2[k2] + 3[k2]2 + 8[k][k3]− 6[k4]),

ei(k) = 0, i > 4, (A.1)

where [k] ≡ Tr(k) and so on.
B) Di

j should be considered as

Di
j =

√

gidfdmWm
n (W−1)nj , W l

j = [1− nkfkmn
m]δlj + nlfmjn

m. (A.2)

C) The fundamental Poisson brackets to be used in the canonical analysis are as follows

{N(x), PN (y)} = δ(x− y),

{ni, Pnj(y)} = δijδ(x− y),

{gij(x), πkl(y)} = 1/2(δkiδ
l
j + δl iδ

k
j)δ(x− y),

{fij(x), pkl(y)} = 1/2(δkiδ
l
j + δl iδ

k
j)δ(x− y),

{M(x), PM (y)} = δ(x− y),

{Mi(x), PMj (y)} = δijδ(x− y). (A.3)
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