AN UPPER BOUND FOR THE MOMENTS OF A G.C.D. RELATED TO LUCAS SEQUENCES

DANIELE MASTROSTEFANO

ABSTRACT. Let $(u_n)_{n\geq 0}$ be a non-degenerate Lucas sequence, given by the relation u_n $a_1u_{n-1} + a_2u_{n-2}$. Let $\ell_u(m) = lcm(m, z_u(m))$, for $(m, a_2) = 1$, where $z_u(m)$ is the rank of appearance of m in u_n . We prove that

$$
\sum_{\substack{m>x\\(m,a_2)=1}}\frac{1}{\ell_u(m)}\leq \exp(-(1/\sqrt{6}-\varepsilon+o(1))\sqrt{(\log x)(\log\log x)}),
$$

when x is sufficiently large in terms of ε , and where the $o(1)$ depends on u. Moreover, if $g_u(n) = \gcd(n, u_n)$, we will show that for every $k \ge 1$,

$$
\sum_{n \le x} g_u(n)^k \le x^{k+1} \exp(-(1 + o(1))\sqrt{(\log x)(\log \log x)}),
$$

when x is sufficiently large and where the $o(1)$ depends on u and k. This gives a partial answer to a question posed by C. Sanna. As a by-product, we derive bounds on $\#\{n \leq x : (n, u_n) > y\},\$ at least in certain ranges of y, which strengthens what already obtained by Sanna. Finally, we start the study of the multiplicative analogous of $\ell_u(m)$, finding interesting results.

1. INTRODUCTION

Let $(u_n)_{n\geq 0}$ be an integral linear recurrence, that is, $(u_n)_{n\geq 0}$ is a sequence of integers and there exist $a_1, \ldots, a_k \in \mathbb{Z}$, with $a_k \neq 0$, such that

$$
u_n = a_1 u_{n-1} + \cdots + a_k u_{n-k},
$$

for all integers $n \geq k$, with k a fixed positive integer. We recall that $(u_n)_{n\geq 0}$ is said to be non-degenerate if none of the ratios α_i/α_j $(i \neq j)$ is a root of unity, where $\alpha_1, \ldots, \alpha_r \in \mathbb{C}$ are all the pairwise distinct roots of the characteristic polynomial

$$
f_u(X) = X^k - a_1 X^{k-1} - \dots - a_k.
$$

Moreover, $(u_n)_{n\geq 0}$ is said to be a Lucas sequence if $u_0 = 0, u_1 = 1$, and $k = 2$. We note that the Lucas sequence with $a_1 = a_2 = 1$ is known as the Fibonacci sequence. We refer the reader to [[5,](#page-8-0) Chapter 1] for the basic terminology and theory of linear recurrences.

The function $g_u(n) := \gcd(n, u_n)$ has attracted the interest of several authors. For example, the set of fixed points of $g_u(n)$, or equivalently the set of positive numbers n such that $n|u_n$, has been studied by Alba González, Luca, Pomerance, and Shparlinski [[1\]](#page-8-1), under the mild hypotheses that $(u_n)_{n\geq 0}$ is non-degenerate and that its characteristic polynomial has only simple roots. Moreover, this problem has been studied also by André-Jeannin [[2\]](#page-8-2), Luca and Tron $[8]$ $[8]$, Sanna [\[11\]](#page-8-4), Smyth [\[14\]](#page-9-0) and Somer [\[15\]](#page-9-1), when $(u_n)_{n\geq 0}$ is a Lucas or the Fibonacci sequence.

On the other hand, Sanna and Tron [\[12](#page-8-5), [13\]](#page-8-6) have analysed the fiber $g_u(y)^{-1}$, when $(u_n)_{n\geq 0}$ is non-degenerate and $y = 1$, and when $(u_n)_{n \geq 0}$ is the Fibonacci sequence and y is an arbitrary positive integer. Moreover, the image $g_u(\mathbb{N})$ has been investigated by Leonetti and Sanna [[7\]](#page-8-7), again when $(u_n)_{n\geq 0}$ is the Fibonacci sequence.

Other important questions about the function $g_u(n)$ are related to its behaviour on average and its distribution as arithmetic function. From now on, we focus on the specific case in which $(u_n)_{n\geq 0}$ is a non-degenerate Lucas sequence with non-zero discriminant $\Delta_u = a_1^2 + 4a_2$. Otherwise, the sequence reduces to $u_n = n\alpha^n$, for a suitable $\alpha \in \mathbb{Z}$, and $g_u(n) = n$, for every positive integer *n*. Even in this particular situation, it is very difficult to find information on

¹⁹⁹¹ Mathematics Subject Classification. 11B39 11B37 (Primary) 11A05 11N64 (Secondary).

Key words and phrases. G.C.D. function; Lucas sequences; moments of arithmetic functions.

The author is funded by a Departmental Award and by an EPSRC Doctoral Training Partnership Award.

the distribution of $g_u(n)$, because of its oscillatory behaviour. For this reason, it is natural to consider the flatter function $log(g_u(n))$, for which an asymptotic formula for its mean value, and more in general for its moments, has been given by Sanna, who proved the following theorem $[10,$ Theorem 1.1.

Theorem 1.1. Fix a positive integer λ and some $\varepsilon > 0$. Then, for all sufficiently large x, how large depending on a_1, a_2, λ and ε , we have

(1.1)
$$
\sum_{n \leq x} (\log g_u(n))^\lambda = M_{u,\lambda} x + E_{u,\lambda}(x),
$$

where $M_{u,\lambda} > 0$ is a constant depending on a_1, a_2 and λ , and the error term is bounded by

 $E_{u,\lambda}(x) \ll_{u,\lambda} x^{(1+3\lambda)/(2+3\lambda)+\varepsilon}.$

Also, Sanna showed that the constant $M_{u,\lambda}$ can be expressed through a convergent series.

An immediate consequence of the previous result is the possibility of finding information about the distribution of g_u [\[10,](#page-8-8) Corollary 1.3].

Corollary 1.2. For each positive integer λ , we have

(1.2)
$$
\#\{n \le x : g_u(n) > y\} \ll_{u,\lambda} \frac{x}{(\log y)^{\lambda}},
$$

for all $x, y > 1$.

In the same article, Sanna raised the question of finding an asymptotic formula for the moments of the function $g_u(n)$ itself. We are not able to answer to this apparently difficult question, but we can at least give a non-trivial estimate for them. The result is the following.

Theorem 1.3. For every integer $k \geq 1$ and u_n a non-degenerate Lucas sequence, we have

(1.3)
$$
\sum_{n \leq x} g_u(n)^k \leq x^{k+1} \exp\left(-\left(1 + o(1)\right) \sqrt{(\log x)(\log \log x)}\right),
$$

as x tends to infinity and where the $o(1)$ depends on u and k.

For each positive integer m relatively prime with a_2 , let $z_u(m)$ be the rank of appearance of m in the Lucas sequence $(u_n)_{n>0}$, that is, $z_u(m)$ is the smallest positive integer n such that m divides u_n . It is well known that $z_u(m)$ exists (see, e.g., [\[9\]](#page-8-9)). Also, put $\ell_u(m) := lcm(m, z_u(m))$. There is a simple trick to relate the moments of $g_u(n)$ with the rate of convergence of the series $\sum_{m>x,(m,a_2)=1} 1/\ell_u(m)$, which has been partially studied by several authors. We will deduce a slightly weaker version of Theorem [1.3,](#page-1-0) in which the constant in the exponential is replaced by $-1/\sqrt{6} + \varepsilon + o(1)$, for every $\varepsilon > 0$, from it and the following bound.

Proposition 1.4. For every non-degenerate Lucas sequence u_n , we have

(1.4)
$$
\sum_{\substack{m>x \ (m,a_2)=1}} \frac{1}{\ell_u(m)} \le \exp(-(1/\sqrt{6}-\varepsilon+o(1))\sqrt{(\log x)(\log \log x)}),
$$

when x is large in terms of ε and where the $o(1)$ depends on u.

In the proof of Proposition [1.4](#page-1-1) we highlight a method, based essentially on the distribution of smooth numbers, to achieve the above bound. It seems reasonable to think that a deeper analysis of the structure of $\ell_u(n)$ could lead to understand better the behaviour of $\sum_{m>x,(m,a_2)=1} 1/\ell_u(m)$ and consequently to improve the result about the moments of $g_u(n)$. Nevertheless, using a completely different and more direct approach that we will describe later, we can obtain the stronger stated estimate in Theorem [1.3.](#page-1-0)

It is immediate to deduce from Theorem [1.3](#page-1-0) the following improvement on the distribution of $g_u(n)$ at least when y varies uniformly in a certain range.

Corollary 1.5. We have

(1.5)
$$
\#\{n \le x : g_u(n) > y\} \le \frac{x^2}{y \exp((1 + o_u(1))\sqrt{(\log x)(\log \log x)})},
$$

for every $y \geq 1$, when x is sufficiently large.

Proof. By using (1.5) with $k = 1$ we obtain

(1.6)
$$
\#\{n \le x : g_u(n) > y\} \le \sum_{n \le x} \frac{g_u(n)}{y}
$$

$$
\le \frac{x^2}{y \exp((1 + o_u(1))\sqrt{(\log x)(\log \log x)})},
$$
 for every $y \ge 1$.

We observe that this is an improvement of (1.2) , only for certain values of y, e.g. like for those satisfying

(1.7)
$$
x \exp(-(1/2 + o_u(1))\sqrt{(\log x)(\log \log x)}) \leq y \leq x.
$$

Consider now the multiplicative function $L_u(n)$ such that $L_u(p^k) = \ell_u(p^k)$, for every prime number $p \nmid a_2$ and power $k \geq 1$, and $L_u(p^k) = p^k$, otherwise. Using arguments coming from the theory of Dirichlet series of multiplicative functions, we end up with the following estimate.

Proposition 1.6. For every u_n non-degenerate Lucas sequence, we have

(1.8)
$$
\sum_{n>x} \frac{1}{L_u(n)} \ll_u x^{-1/3+\varepsilon},
$$

for every $\varepsilon > 0$, when x is sufficiently large with respect to ε .

The above result shows that the lack of multiplicativity of $\ell_u(n)$ is the principle cause for the weaker upper bound in (1.4) .

2. NOTATIONS

For a couple of real functions $f(x)$, $g(x)$, with $g(x) > 0$, we indicate with $f(x) = O(g(x))$ or $f(x) \ll g(x)$ that there exists an absolute constant $c > 0$ such that $|f(x)| \leq cg(x)$, for x sufficiently large. When the implicit constant c depends from a parameter α we indicate the above bound with $f(x) \ll_{\alpha} g(x)$ or equivalently with $f(x) = O_{\alpha}(g(x))$.

Throughout, the letter p is reserved for a prime number. We write (a, b) and $[a, b]$ to denote the greatest common divisor and the least common multiple of integers a, b . As usual, we denote with $|w|$ the integer part of a real number w and we indicate with $P(n)$ the greatest prime factor of a positive integer n .

3. Preliminaries

We begin by recalling the definition of the Jordan's totient function.

Definition 3.1. The Jordan's totient function of degree k is defined as

$$
J_k(n) = n^k \prod_{p|n} \left(1 - \frac{1}{p^k}\right),
$$

for every $k \geq 1$ and natural integers *n*.

Clearly, $J_1(n) = \varphi(n)$, the Euler's totient function, and it is immediate to see that $J_k(n)$ verifies the following identity.

Lemma 3.1. We have

(3.1)
$$
n^k = \sum_{d|n} J_k(d),
$$

for any $k \geq 1$ and natural integers n.

The next lemma summarizes some basic properties of $\ell_u(n)$ and $z_u(n)$, which we will implicitly use later without further mention.

Lemma 3.2. For all positive integers m , n and all odd prime numbers p , we have:

- (1) $m \mid u_n$ if and only if $z_u(m) \mid n$ and $(m, a_2) = 1$.
- (2) $z_u([m,n]) = [z_u(m), z_u(n)],$ whenever $(mn, a_2) = 1.$
- (3) m $\gcd(n, u_n)$ if and only if $(m, a_2) = 1$ and $\ell_u(m) \mid n$.
- (4) $\ell_u([m, n]) = [\ell_u(m), \ell_u(n)],$ whenever $(mn, a_2) = 1.$
- (5) $\ell_u(p^j) = p^j z_u(p)$ if $p \nmid \Delta_u$, and $\ell_u(p^j) = p^j$ if $p \mid \Delta_u$, for every $p \nmid a_2$ and $j \ge 1$.
- (6) $z_u(p)|p\pm 1$, if $p \nmid \Delta_u$, and $z_u(p) = p$ if $p | \Delta_u$, for every $p \nmid a_2$.

For any $\gamma > 0$, let us define

$$
Q_{u,\gamma} := \{ p : p \nmid a_2, z_u(p) \le p^{\gamma} \}.
$$

The following is [\[1,](#page-8-1) Lemma 2.1].

Lemma 3.3. For all $x^{\gamma}, y \ge 2$ and for any non-degenerate Lucas sequence $(u_n)_{n\ge 0}$, we have

$$
\#\{p: z_u(p) \le y\} \ll_u \frac{y^2}{\log y}, \quad \mathcal{Q}_{u,\gamma}(x) \ll_u \frac{x^{2\gamma}}{\gamma \log x}
$$

.

It has been proven by Sanna and Tron [\[13,](#page-8-6) Lemma 3.2] that the series $\sum_{(n,a_2)=1} 1/\ell_u(n)$ converges. We consider the following identity

(3.2)
$$
\sum_{\substack{n>x \ (n,a_2)=1}} \frac{1}{\ell_u(n)} = \sum_{\substack{n>x \ p(n)>y \ (n,a_2)=1}} \frac{1}{\ell_u(n)} + \sum_{\substack{n>x \ p(n)\leq y \ (n,a_2)=1}} \frac{1}{\ell_u(n)}.
$$

We note that the first sum in the right hand side of [\(3.2\)](#page-3-0) has been already investigated by Sanna [\[10,](#page-8-8) Lemma 2.5] and we report here the result which he obtained.

Proposition 3.4. We have

(3.3)
$$
\sum_{\substack{(m,a_2)=1\\P(m)>y}}\frac{1}{\ell_u(m)} \ll_u \frac{1}{y^{1/3-\varepsilon}},
$$

for all $\varepsilon \in (0, 1/4]$ and $y \gg_{u,\varepsilon} 1$.

Regarding the second sum in the right hand side of [\(3.2\)](#page-3-0) we provide an estimate in the next lemma.

Lemma 3.5. Supposing that $y > (\log x)^2$ and $v = \log x/\log y$ tends to infinity as x tends to infinity, we have

(3.4)
$$
\sum_{\substack{n>x \ p(n) \le y}} \frac{1}{\ell_u(n)} \ll_u (\log y) e^{-\sqrt{y}/2 \log y} + \frac{\log y}{\log v} e^{-v \log v}.
$$

Proof. Since $\ell_u(n) \geq n$, we may write

$$
\sum_{\substack{n>x \ p(n) \le y \\ P(n) \le y}} \frac{1}{\ell_u(n)} \le \int_x^\infty \frac{d\psi(t,y)}{t},
$$

where $\psi(t, y)$ is the counting function of the y-smooth numbers less than t. Clearly, we have

(3.5)
$$
\int_x^{\infty} \frac{d\psi(t, y)}{t} = \frac{\psi(t, y)}{t} \bigg|_x^{\infty} + \int_x^{\infty} \frac{\psi(t, y)}{t^2} dt.
$$

To estimate the second term on the right hand side of (3.5) we suppose first that $y > \log^2(x)$ and then we split it into two parts:

$$
\int_x^{\infty} \frac{\psi(t, y)}{t^2} dt = \int_x^z \frac{\psi(t, y)}{t^2} dt + \int_z^{\infty} \frac{\psi(t, y)}{t^2} dt,
$$

where we put $z = e^{\sqrt{y}}$. Using the estimate [\[16,](#page-9-2) Theorem 1, §5.1, Chapter III]

(3.6)
$$
\psi(t,y) \ll t e^{-\log t/2 \log y} = t^{1-1/2 \log y},
$$

valid uniformly for $t \ge y \ge 2$, we obtain

$$
(3.7) \qquad \int_z^{\infty} \frac{\psi(t,y)}{t^2} \ll \int_z^{\infty} t^{-1-1/(2\log y)} dt \ll (\log y) z^{-1/(2\log y)} = (\log y) \exp\left(-\frac{\sqrt{y}}{2\log y}\right).
$$

By the Corollary of the Theorem 3.1 in [\[4\]](#page-8-10), we know that

$$
\psi(t,y) \le t \exp\left(-(1 + o(1)) \frac{\log t}{\log y} \log\left(\frac{\log t}{\log y}\right)\right),\,
$$

in the region $y > \log^2 t$. Here the $o(1)$ is with respect to $\log t / \log y \to \infty$. If $v = \log x / \log y$ tends to infinity as x tends to infinity, then we may use the simpler

(3.8)
$$
\psi(t,y) \leq t \exp\left(-\frac{\log t}{\log y} \log\left(\frac{\log t}{\log y}\right)\right),
$$

for any $x \le t \le z$. Note that equation [\(3.8\)](#page-4-0) also follows from the aformentioned Corollary in [\[4\]](#page-8-10). Let us suppose to be in this situation. Now, inserting this bound and using the change of variable $s = \log t$, we get

$$
\int_x^z \frac{\psi(t,y)}{t^2} dt \le \int_{\log x}^{\sqrt{y}} \exp\left(-\frac{s}{\log y} \log\left(\frac{s}{\log y}\right)\right) ds,
$$

which after another change of variable $s = w \log y$ becomes

$$
(\log y) \int_{\log x / \log y}^{\sqrt{y}/\log y} \exp(-w \log w) dw.
$$

Using that $w \geq v$ and putting $w \log v = r$, we find

(3.9)
$$
\int_x^z \frac{\psi(t,y)}{t^2} dt \le \frac{\log y}{\log v} \int_{v \log v}^{\sqrt{y} \log v / \log y} e^{-r} dr \le \frac{\log y}{\log v} e^{-v \log v}.
$$

Regarding the first term on the right hand side of (3.5) , we note that

$$
\left. \frac{\psi(t,y)}{t} \right|_x^{\infty} \le \lim_{t \to \infty} \frac{\psi(t,y)}{t} \ll \lim_{t \to \infty} t^{-1/2 \log y} = 0,
$$

by (3.6) . Collecting the results, we obtain the estimate (3.4) .

Finally, we can deduce the stated estimate on $\sum_{n>x} 1/\ell_u(n)$.

Proof of Proposition [1.4.](#page-1-1) By Proposition [3.4](#page-3-3) and Lemma [3.5](#page-3-4) we conclude that

$$
\sum_{\substack{n>x \ (n,a_2)=1}} \frac{1}{\ell_u(n)} \ll_u \frac{1}{y^{1/3-\varepsilon}} + \frac{\log y}{\log v} e^{-v \log v},
$$

for every $\varepsilon > 0$, if y is sufficiently large in terms of ε . It is immediate to see that the best choice for y is of the form $y = \exp(C\sqrt{(\log x)(\log \log x)})$, with C a suitable positive constant to be chosen later. After some easy considerations, we obtain

$$
\sum_{\substack{n>x \ (n,a_2)=1}} \frac{1}{\ell_u(n)} \ll_u \exp\left(-C(1/3-\varepsilon)\sqrt{(\log x)(\log \log x)}\right)
$$

$$
+ \exp\left(-\frac{1}{2C}(1-o(1))\sqrt{(\log x)(\log \log x)}\right),
$$

where $o(1)$ tends to zero from the right as x goes to infinity. Now, choosing $C = 1/\sqrt{2(1/3 - \varepsilon)}$, we see that

$$
\sum_{\substack{n>x \ (n,a_2)=1}} \frac{1}{\ell_u(n)} \ll_u \exp\left(-\frac{(1-o(1))(1-\varepsilon)}{\sqrt{6}}\sqrt{(\log x)(\log \log x)}\right),
$$

for every $\varepsilon > 0$ and x sufficiently large with respect to ε .

4. Proof of weak version of Theorem 1.3

Proof. We start inserting equation [\(3.1\)](#page-2-1) inside our main sums.

$$
(4.1) \qquad \sum_{n\leq x} (n, u_n)^k = \sum_{n\leq x} \sum_{d|(n, u_n)} J_k(d) = \sum_{d\leq x} J_k(d) \sum_{\substack{n\leq x \\ d|(n, u_n)}} 1 = \sum_{\substack{d\leq x \\ (d, a_2)=1}} J_k(d) \sum_{\substack{n\leq x \\ (u(d)|n}} 1,
$$

by part (3) of Lemma [3.2.](#page-3-5) Clearly, the last sum in (4.1) is

(4.2)
$$
\sum_{\substack{d \le x \\ (d,a_2)=1}} J_k(d) \left\lfloor \frac{x}{\ell_u(d)} \right\rfloor \le x \sum_{\substack{d \le x \\ (d,a_2)=1}} \frac{J_k(d)}{\ell_u(d)} \le x \sum_{\substack{d \le x \\ (d,a_2)=1}} \frac{d^k}{\ell_u(d)}
$$

But now we observe that

$$
\sum_{\substack{d \le x \\ (d,a_2)=1}} \frac{d^k}{\ell_u(d)} = \sum_{\substack{d \le x^\delta \\ (d,a_2)=1}} \frac{d^k}{\ell_u(d)} + \sum_{\substack{x^\delta < d \le x \\ (d,a_2)=1}} \frac{d^k}{\ell_u(d)}
$$
\n
$$
\ll x^{k\delta} + x^k \sum_{\substack{d > x^\delta \\ (d,a_2)=1}} \frac{1}{\ell_u(d)}
$$
\n
$$
\ll x^k \exp(-(1/\sqrt{6} - \varepsilon + o(1))\sqrt{\delta}\sqrt{(\log x)(\log \log x)}),
$$

for any $\delta \in (0,1)$, using that the series $\sum_{n=1}^{\infty} 1/\ell_u(n)$ converges and the bound [\(1.4\)](#page-1-3), and for any x large in terms of δ and ε . Now, choosing δ close to 1 as a function of ε , and by the arbitrarity of ε , we find

(4.3)
$$
\sum_{\substack{d\leq x\\(d,a_2)=1}}\frac{d^k}{\ell_u(d)}\leq x^k\exp(-(1/\sqrt{6}-\varepsilon+o(1))\sqrt{(\log x)(\log\log x)}),
$$

where the $o(1)$ depends on u and k and x is chosen large enough with respect to ε . Inserting (4.3) in (4.2) and (4.2) in (4.1) , the proof is finished.

5. Proof of Theorem 1.3

Proof. Let
$$
y := \exp(\frac{1}{2}\sqrt{(\log x)(\log \log x)})
$$
. We define a partition of $\{n : n \leq x\}$, by setting $E_1(x) = \{n \leq x : P(n) \nmid u_n\};$ \n $E_2(x) = \{n \leq x : P(n) \leq y\};$ \n $E_3(x) = \{n \leq x : P(n) > y^6, \ P(n) \in Q_{u,1/3}(x)\};$ \n $E_4(x) = \{n \leq x : P(n) > y^6, \ P(n) \notin Q_{u,1/3}(x)\};$ \n $E_5(x) = \{n \leq x\} \setminus E_1 \cup E_2 \cup E_3 \cup E_4.$

Let $S_i = \sum_{n \in E_i(x)} (n, u_n)^k$, for every $i = \{1, 2, 3, 4, 5\}$. We note that if $n \in E_1(x)$, then $(n, u_n)|(n/P(n))$ and we deduce that

$$
(5.1) \qquad S_1 \le \sum_{n \le x} \left(\frac{n}{P(n)} \right)^k \le x^k \sum_{n \le x} \frac{1}{P(n)^k} \le x^{k+1} \exp((-\sqrt{2k} + o(1))\sqrt{(\log x)(\log \log x)}),
$$

.

where the last inequality follows by $[6, \text{ equation } 1.6]$. Moreover, it is immediate to see that

$$
S_2 \le x^k \psi(x, y) \le x^{k+1} \exp(-(1 + o(1))u \log u),
$$

by the Corollary of Theorem 3.1 in [\[4\]](#page-8-10), where $u = \log x / \log y$ and $o(1)$ tends to zero as u tends to infinity. We observe that we can apply this result because we chose a value of y sufficiently large. Notice also that by our choice of y we have actually got

(5.2)
$$
S_2 \le x^{k+1} \exp(-(1 + o(1))\sqrt{(\log x)(\log \log x)}),
$$

which dominates [\(5.1\)](#page-5-3). Regarding the third sum, we simply use $S_3 \leq x^k \# E_3(x)$. Now, if $n \in E_3(x)$ we can factorize $n = P(n)m$, with $P(n) > y^6$ and $P(n) \in Q_{u,1/3}(x)$. This implies that $m < x/y^6$ and that $P(n) \in Q_{u,1/3}(x/m)$. Consequently

#E3(x) ≤ X ^m≤x/y⁶ #Qu,1/3(x/m) ≪ x ²/³ X ^m≤x/y⁶ 1 m²/³ ≪ x y 2 ,

by Lemma [3.3](#page-3-6) and a standard final computation. This leads to

$$
(5.3) \tS_3 \ll x^{k+1} \exp(-2\log y),
$$

which is of the same order of magnitude of (5.2) . For what concerns the fourth sum, by part (1) and (6) of Lemma [3.2,](#page-3-5) we have that $z_u(P(n))|n$ and $z_u(P(n))|P(n) \pm 1$, implying that $P(n)z_u(P(n))|n$. Note that we can affirm the first two divisibility conditions, because we can suppose $P(n) \nmid a_2 \Delta_u$ and odd, since y is large enough. We deduce that

#E4(x) ≤ X p>y⁶ p6∈Qu,1/3(x) x pzu(p) ≤ X p>y⁶ x p ⁴/³ ≪ x y 2 ,

by a standard computation. Therefore, we find

(5.4)
$$
S_4 \le x^k \# E_4(x) \ll x^{k+1} \exp(-2 \log y),
$$

which coincides with (5.3) . We are left then with the estimate of $S_5(x)$. To this aim we strictly follow an argument already employed in the proof of $[1,$ Theorem 2. For any non-negative integer j, let $I_j := [2^j, 2^{j+1})$. We cover $I := [y, y^6)$ by these dyadic intervals, and we define a_j via $2^{j} = y^{a_j}$. We shall assume the variable j runs over just those integers with I_j not disjoint from I. For any integer k, define $\mathcal{P}_{j,k}$ as the set of primes $p \in I_j$ with $z_u(p) \in I_k$. Note that, by Lemma [3.3,](#page-3-6) we have $\#\mathcal{P}_{j,k} \ll 4^k$. We have

(5.5)
$$
\#E_5(x) \le \sum_j \sum_k \sum_{p \in \mathcal{P}_{j,k}} \sum_{\substack{n \le x \\ P(n)|u_n \\ P(n)=p}} 1 \le \sum_j \sum_k \sum_{p \in \mathcal{P}_{j,k}} \psi\left(\frac{x}{pz_u(p)}, p\right)
$$

$$
\le \sum_j \sum_k \sum_{p \in \mathcal{P}_{j,k}} \frac{x}{pz_u(p)y^{2/a_j + o(1)}},
$$

as $x \to \infty$, where we have used the Corollary of Theorem 3.1 in [\[4\]](#page-8-10) for the last estimate. For $k > j/2$, we use the estimate

$$
\sum_{p \in \mathcal{P}_{j,k}} \frac{1}{p z_u(p)} \le 2^{-k} \sum_{p \in I_j} \frac{1}{p} \le 2^{-k}
$$

for x large. For $k \leq j/2$, we use the estimate

$$
\sum_{p \in \mathcal{P}_{j,k}} \frac{1}{p z_u(p)} \ll \frac{4^k}{2^j 2^k} = 2^{k-j},
$$

since there are at most order of magnitude 4^k such primes, as noted before. Thus,

(5.6)
$$
\sum_{k} \sum_{p \in \mathcal{P}_{j,k}} \frac{1}{p z_u(p)} = \sum_{k > j/2} \sum_{p \in \mathcal{P}_{j,k}} \frac{1}{p z_u(p)} + \sum_{k \le j/2} \sum_{p \in \mathcal{P}_{j,k}} \frac{1}{p z_u(p)} \ll 2^{-j/2} = y^{-a_j/2}.
$$

Collecting the above computations, we find

#E5(x) ≤ X j x y ^aj/2+2/aj+o(1) , as x → ∞.

Since the minimum value of $t/2 + 2/t$ for $t > 0$ is 2 occuring at $t = 2$, we may affirm that

#E5(x) [≤] x/y2+o(1) , as x → ∞,

which leads to an estimate for S_5 as large as that one for S_2 . We conclude that

$$
\max\{S_1, S_2, S_3, S_4, S_5\} \le x^{k+1} \exp(-(1 + o(1))\sqrt{(\log x)(\log \log x)}),
$$

proving Theorem [1.3.](#page-1-0)

6. THE MULTIPLICATIVE ANALOGOUS OF $\ell_n(n)$

Let us define the multiplicative function $L_u(n)$ such that $L_u(p^k) = \ell_u(p^k)$, for every prime numbers $p \nmid a_2$ and power $k \geq 1$, and $L_u(p^k) = p^k$, otherwise. Now, consider the Dirichlet series of the function $n/L_u(n)$, given by

$$
\alpha(s) = \sum_{n \ge 1} \frac{n}{n^s L_u(n)}.
$$

Suppose that it converges for $s > \sigma_c$, where σ_c is the abscissa of absolute and ordinary convergence of $\alpha(s)$. Certainly, since $\ell_u(n) \leq L_u(n)$, for every n, and since we know that the series of the reciprocals of $\ell_u(n)$ converges, we have $\sigma_c \leq 1$. Then, for any $s \in \mathbb{C}$ with $\Re(s) = \sigma > \sigma_c$ we can consider the Euler product and it converges to the Dirichlet series in this range. Therefore, we can write

$$
\alpha(s) = \prod_{p \nmid 2a_2 \Delta_u} \left(1 + \sum_{k \ge 1} \frac{f(p^k)}{p^{ks}} \right) \beta(s),
$$

where $f(n) = n/L_u(n)$ and $\beta(s)$ is an analytic function in $\Re(s) > 0$. Since by property (5) of Lemma [3.2](#page-3-5) we find that $f(p^k) = 1/z_u(p)$, for any $k \ge 1$ and prime $p \nmid 2a_2\Delta_u$, we have

(6.1)
$$
\alpha(s) = \prod_{p \nmid 2a_2 \Delta_u} \left(1 + \frac{f(p)}{p^s} \frac{p^s}{p^s - 1} \right) \beta(s) = \prod_{p \nmid 2a_2 \Delta_u} \left(1 + \frac{1}{z_u(p)(p^s - 1)} \right) \beta(s).
$$

Now, the final product in [\(6.1\)](#page-7-0) converges if and only if

$$
\sum_{p\nmid 2a_2\Delta_u} \frac{1}{z_u(p)(p^s-1)}
$$

converges. Therefore, it suffices to prove that

$$
\lim_{x \to \infty} \sum_{p > x} \frac{1}{z_u(p)(p^{\sigma} - 1)} = 0.
$$

We estimate the last sum separating between primes $p \in \mathscr{Q}_{u,\gamma}$ or $p \notin \mathscr{Q}_{u,\gamma}$. In the first case we obtain

(6.2)
$$
\sum_{\substack{p>x \ p \in \mathcal{Q}_{u,\gamma}}} \frac{1}{z_u(p)(p^{\sigma}-1)} \ll \int_x^{\infty} \frac{d(\#\mathcal{Q}_{u,\gamma}(t))}{t^{\sigma}} \ll_u \frac{1}{(\sigma-2\gamma)x^{\sigma-2\gamma}},
$$

by Lemma [3.3,](#page-3-6) if we choose $\sigma > 2\gamma$. On the other hand, in the second case we get

(6.3)
$$
\sum_{\substack{p>x \ p \notin \mathcal{Q}_{u,\gamma}}} \frac{1}{z_u(p)(p^{\sigma}-1)} \ll \sum_{p>x} \frac{1}{p^{\sigma+\gamma}} \ll \frac{1}{(\sigma+\gamma-1)x^{\sigma+\gamma-1}},
$$

if we choose $\sigma + \gamma > 1$. Comparing [\(6.2\)](#page-7-1) with [\(6.3\)](#page-7-2), we are led to take $\gamma = 1/3$ and we have showed that

(6.4)
$$
\sum_{p>x} \frac{1}{z_u(p)(p^{\sigma}-1)} \ll_u \frac{1}{\varepsilon x^{\varepsilon}},
$$

if $\sigma = 2/3 + \varepsilon$, for every $\varepsilon > 0$, and consequently that $\alpha(s)$ converges for every s with $\Re(s) > 2/3$, or equivalently that $\sigma_c \leq 2/3$. An immediate application of this result is the following. Let us define

$$
F(s) = \sum_{n \ge 1} \frac{1}{n^s L_u(n)}.
$$

Then, $F(s)$ has the abscissa of convergence $\sigma'_c \leq -1/3$. This is equivalent to have obtained a strong bound on the tail of $F(0)$. The intermediate passage is made explicit in the next lemma (see e.g. [\[3,](#page-8-12) §11.3, Lemma 1]).

Lemma 6.1. Suppose that $G(s) = \sum_{n\geq 1} a_n n^{-s}$ is a Dirichlet series of a sequence $(a_n)_{n\geq 1}$ of positive real numbers, with abscissa of convergence σ'_{c} . Suppose that $G(0)$ converges. Then, we have $\sigma'_c = \inf \{ \theta : \sum_{n>x} a_n \ll x^{\theta} \}.$

Since $F(s)$ satisfies the hypotheses of the Lemma [6.1,](#page-8-13) by [\(6.4\)](#page-7-3), we deduce that

$$
\sum_{n>x} \frac{1}{L_u(n)} \ll_u x^{-1/3+\varepsilon},
$$

for every $\varepsilon > 0$, proving Proposition [1.6.](#page-2-2)

Remark 6.1. We believe that a finer study of $L_u(n)$ could lead to understand better the structure of $\ell_u(n)$, though the lack of multiplicativity of the latter makes difficult its study starting with information from the former. For instance, it can be shown that the integers n , which have at least two prime factors p_1, p_2 such that a fixed prime q divides both $z_u(p_1)$ and $z_u(p_2)$, have asymptotic density 1. Thus, when calculating $z_u(n)$ as a least common multiple, there is a cancellation of a factor q . In other words, for any positive real number C , most integers n have $L_u(n)/\ell_u(n) > C$. This suggests that the two mentioned functions are not always very close each other.

Acknowledgements

I would like to thank Carlo Sanna for suggesting this problem and for introducing me to the theory of linear recurrences. A special thanks goes also to the anonymous referee, for careful reading and useful advice.

REFERENCES

- 1. J. J. Alba González, F. Luca, C. Pomerance, and I. E. Shparlinski, On numbers n dividing the nth term of a linear recurrence, Proc. Edinb. Math. Soc. (2) 55 (2012), no. 2, 271–289.
- 2. R. André-Jeannin, Divisibility of generalized Fibonacci and Lucas numbers by their subscripts, Fibonacci Quart. 29 (1991), no. 4, 364–366.
- 3. T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- 4. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 No. 1, 1–28 (1983).
- 5. G. Everest, A. van der Poorten, I. Shparlinski, T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, vol.104, American Mathematical Society, Providence, RI, 2003.
- 6. A. Ivić and C. Pomerance, *Estimate for certain sums involving the largest prime factor of an integer*, Topics in classical number theory (Budapest, 1981), 769–789, North Holland, 1984.
- 7. P. Leonetti and C. Sanna, On the greatest common divisor of n and the nth Fibonacci number, Rocky Mountain J. Math. (2018).
- 8. F. Luca and E. Tron, The distribution of self-Fibonacci divisors, Advances in the theory of numbers, Fields Inst. Commun., vol. 77, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 149–158.
- 9. M. Renault, The period, rank, and order of the (a, b)-Fibonacci sequence mod m, Math. Mag. 86 (5) (2013) 372–380.
- 10. C. Sanna, The moments of the logarithm of a G.C.D. related to Lucas sequences, J. of Number Theory (2018).
- 11. C. Sanna, On numbers n dividing the nth term of a Lucas sequence, Int. J. Number Theory 13 (2017), no. 3, 725–734.
- 12. C. Sanna, On numbers n relatively prime to the nth term of a linear recurrence, Bull. Malays. Math. Sci. Soc.
- 13. C. Sanna, E. Tron, The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number, Indagationes Mathematicae (2018).
- 14. C. Smyth, The terms in Lucas sequences divisible by their indices, J. Integer Seq. 13 (2010), no. 2, Article 10.2.4, 18.
- 15. L. Somer, Divisibility of terms in Lucas sequences by their subscripts, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 515–525.
- 16. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge U. P., 1995.

Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, UK E-mail address: Daniele.Mastrostefano@warwick.ac.uk