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AN UPPER BOUND FOR THE MOMENTS OF A G.C.D.

RELATED TO LUCAS SEQUENCES

DANIELE MASTROSTEFANO

Abstract. Let (un)n≥0 be a non-degenerate Lucas sequence, given by the relation un =
a1un−1 + a2un−2. Let ℓu(m) = lcm(m, zu(m)), for (m, a2) = 1, where zu(m) is the rank of
appearance of m in un. We prove that

∑

m>x
(m,a2)=1

1

ℓu(m)
≤ exp(−(1/

√
6− ε+ o(1))

√

(log x)(log log x)),

when x is sufficiently large in terms of ε, and where the o(1) depends on u. Moreover, if
gu(n) = gcd(n, un), we will show that for every k ≥ 1,

∑

n≤x

gu(n)
k ≤ xk+1 exp(−(1 + o(1))

√

(log x)(log log x)),

when x is sufficiently large and where the o(1) depends on u and k. This gives a partial answer
to a question posed by C. Sanna. As a by-product, we derive bounds on #{n ≤ x : (n, un) > y},
at least in certain ranges of y, which strengthens what already obtained by Sanna. Finally, we
start the study of the multiplicative analogous of ℓu(m), finding interesting results.

1. Introduction

Let (un)n≥0 be an integral linear recurrence, that is, (un)n≥0 is a sequence of integers and
there exist a1, . . . , ak ∈ Z, with ak 6= 0, such that

un = a1un−1 + · · ·+ akun−k,

for all integers n ≥ k, with k a fixed positive integer. We recall that (un)n≥0 is said to be
non-degenerate if none of the ratios αi/αj (i 6= j) is a root of unity, where α1, . . . , αr ∈ C are
all the pairwise distinct roots of the characteristic polynomial

fu(X) = Xk − a1X
k−1 − · · · − ak.

Moreover, (un)n≥0 is said to be a Lucas sequence if u0 = 0, u1 = 1, and k = 2. We note that
the Lucas sequence with a1 = a2 = 1 is known as the Fibonacci sequence. We refer the reader
to [5, Chapter 1] for the basic terminology and theory of linear recurrences.

The function gu(n) := gcd(n, un) has attracted the interest of several authors. For example,
the set of fixed points of gu(n), or equivalently the set of positive numbers n such that n|un,
has been studied by Alba González, Luca, Pomerance, and Shparlinski [1], under the mild
hypotheses that (un)n≥0 is non-degenerate and that its characteristic polynomial has only simple
roots. Moreover, this problem has been studied also by André-Jeannin [2], Luca and Tron [8],
Sanna [11], Smyth [14] and Somer [15], when (un)n≥0 is a Lucas or the Fibonacci sequence.

On the other hand, Sanna and Tron [12,13] have analysed the fiber gu(y)
−1, when (un)n≥0 is

non-degenerate and y = 1, and when (un)n≥0 is the Fibonacci sequence and y is an arbitrary
positive integer. Moreover, the image gu(N) has been investigated by Leonetti and Sanna [7],
again when (un)n≥0 is the Fibonacci sequence.

Other important questions about the function gu(n) are related to its behaviour on average
and its distribution as arithmetic function. From now on, we focus on the specific case in
which (un)n≥0 is a non-degenerate Lucas sequence with non-zero discriminant ∆u = a21 + 4a2.
Otherwise, the sequence reduces to un = nαn, for a suitable α ∈ Z, and gu(n) = n, for every
positive integer n. Even in this particular situation, it is very difficult to find information on
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2 D. MASTROSTEFANO

the distribution of gu(n), because of its oscillatory behaviour. For this reason, it is natural to
consider the flatter function log(gu(n)), for which an asymptotic formula for its mean value,
and more in general for its moments, has been given by Sanna, who proved the following
theorem [10, Theorem 1.1].

Theorem 1.1. Fix a positive integer λ and some ε > 0. Then, for all sufficiently large x, how
large depending on a1, a2, λ and ε, we have

(1.1)
∑

n≤x

(log gu(n))
λ =Mu,λx+ Eu,λ(x),

where Mu,λ > 0 is a constant depending on a1, a2 and λ, and the error term is bounded by

Eu,λ(x) ≪u,λ x
(1+3λ)/(2+3λ)+ε.

Also, Sanna showed that the constant Mu,λ can be expressed through a convergent series.
An immediate consequence of the previous result is the possibility of finding information

about the distribution of gu [10, Corollary 1.3].

Corollary 1.2. For each positive integer λ, we have

(1.2) #{n ≤ x : gu(n) > y} ≪u,λ
x

(log y)λ
,

for all x, y > 1.

In the same article, Sanna raised the question of finding an asymptotic formula for the mo-
ments of the function gu(n) itself. We are not able to answer to this apparently difficult question,
but we can at least give a non-trivial estimate for them. The result is the following.

Theorem 1.3. For every integer k ≥ 1 and un a non-degenerate Lucas sequence, we have

(1.3)
∑

n≤x

gu(n)
k ≤ xk+1 exp

(

− (1 + o(1))
√

(log x)(log log x)
)

,

as x tends to infinity and where the o(1) depends on u and k.

For each positive integer m relatively prime with a2, let zu(m) be the rank of appearance of
m in the Lucas sequence (un)n≥0, that is, zu(m) is the smallest positive integer n such that m
divides un. It is well known that zu(m) exists (see, e.g., [9]). Also, put ℓu(m) := lcm(m, zu(m)).
There is a simple trick to relate the moments of gu(n) with the rate of convergence of the series
∑

m>x,(m,a2)=1 1/ℓu(m), which has been partially studied by several authors. We will deduce a
slightly weaker version of Theorem 1.3, in which the constant in the exponential is replaced by
−1/

√
6 + ε+ o(1), for every ε > 0, from it and the following bound.

Proposition 1.4. For every non-degenerate Lucas sequence un, we have

(1.4)
∑

m>x
(m,a2)=1

1

ℓu(m)
≤ exp(−(1/

√
6− ε+ o(1))

√

(log x)(log log x)),

when x is large in terms of ε and where the o(1) depends on u.

In the proof of Proposition 1.4 we highlight a method, based essentially on the distribution of
smooth numbers, to achieve the above bound. It seems reasonable to think that a deeper analysis
of the structure of ℓu(n) could lead to understand better the behaviour of

∑

m>x,(m,a2)=1 1/ℓu(m)

and consequently to improve the result about the moments of gu(n). Nevertheless, using a
completely different and more direct approach that we will describe later, we can obtain the
stronger stated estimate in Theorem 1.3.

It is immediate to deduce from Theorem 1.3 the following improvement on the distribution
of gu(n) at least when y varies uniformly in a certain range.
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Corollary 1.5. We have

(1.5) #{n ≤ x : gu(n) > y} ≤ x2

y exp((1 + ou(1))
√

(log x)(log log x))
,

for every y ≥ 1, when x is sufficiently large.

Proof. By using (1.5) with k = 1 we obtain

(1.6) #{n ≤ x : gu(n) > y} ≤
∑

n≤x

gu(n)

y

≤ x2

y exp((1 + ou(1))
√

(log x)(log log x))
,

for every y ≥ 1. �

We observe that this is an improvement of (1.2), only for certain values of y, e.g. like for
those satisfying

(1.7) x exp(−(1/2 + ou(1))
√

(log x)(log log x)) ≤ y ≤ x.

Consider now the multiplicative function Lu(n) such that Lu(p
k) = ℓu(p

k), for every prime
number p ∤ a2 and power k ≥ 1, and Lu(p

k) = pk, otherwise. Using arguments coming from the
theory of Dirichlet series of multiplicative functions, we end up with the following estimate.

Proposition 1.6. For every un non-degenerate Lucas sequence, we have

(1.8)
∑

n>x

1

Lu(n)
≪u x

−1/3+ε,

for every ε > 0, when x is sufficiently large with respect to ε.

The above result shows that the lack of multiplicativity of ℓu(n) is the principle cause for the
weaker upper bound in (1.4).

2. Notations

For a couple of real functions f(x), g(x), with g(x) > 0, we indicate with f(x) = O(g(x))
or f(x) ≪ g(x) that there exists an absolute constant c > 0 such that |f(x)|≤ cg(x), for x
sufficiently large. When the implicit constant c depends from a parameter α we indicate the
above bound with f(x) ≪α g(x) or equivalently with f(x) = Oα(g(x)).

Throughout, the letter p is reserved for a prime number. We write (a, b) and [a, b] to denote
the greatest common divisor and the least common multiple of integers a, b. As usual, we denote
with ⌊w⌋ the integer part of a real number w and we indicate with P (n) the greatest prime
factor of a positive integer n.

3. Preliminaries

We begin by recalling the definition of the Jordan’s totient function.

Definition 3.1. The Jordan’s totient function of degree k is defined as

Jk(n) = nk
∏

p|n

(

1− 1

pk

)

,

for every k ≥ 1 and natural integers n.

Clearly, J1(n) = ϕ(n), the Euler’s totient function, and it is immediate to see that Jk(n)
verifies the following identity.

Lemma 3.1. We have

(3.1) nk =
∑

d|n
Jk(d),

for any k ≥ 1 and natural integers n.
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The next lemma summarizes some basic properties of ℓu(n) and zu(n), which we will implicitly
use later without further mention.

Lemma 3.2. For all positive integers m, n and all odd prime numbers p, we have:

(1) m | un if and only if zu(m) | n and (m, a2) = 1.
(2) zu([m,n]) = [zu(m), zu(n)], whenever (mn, a2) = 1.
(3) m | gcd(n, un) if and only if (m, a2) = 1 and ℓu(m) | n.
(4) ℓu([m,n]) = [ℓu(m), ℓu(n)], whenever (mn, a2) = 1.
(5) ℓu(p

j) = pjzu(p) if p ∤ ∆u, and ℓu(p
j) = pj if p | ∆u, for every p ∤ a2 and j ≥ 1.

(6) zu(p)|p± 1, if p ∤ ∆u, and zu(p) = p if p | ∆u, for every p ∤ a2.

For any γ > 0, let us define

Qu,γ := {p : p ∤ a2, zu(p) ≤ pγ}.
The following is [1, Lemma 2.1].

Lemma 3.3. For all xγ , y ≥ 2 and for any non-degenerate Lucas sequence (un)n≥0, we have

#{p : zu(p) ≤ y} ≪u
y2

log y
, Qu,γ(x) ≪u

x2γ

γ log x
.

It has been proven by Sanna and Tron [13, Lemma 3.2] that the series
∑

(n,a2)=1 1/ℓu(n)
converges. We consider the following identity

(3.2)
∑

n>x
(n,a2)=1

1

ℓu(n)
=

∑

n>x
P (n)>y
(n,a2)=1

1

ℓu(n)
+

∑

n>x
P (n)≤y
(n,a2)=1

1

ℓu(n)
.

We note that the first sum in the right hand side of (3.2) has been already investigated by
Sanna [10, Lemma 2.5] and we report here the result which he obtained.

Proposition 3.4. We have

(3.3)
∑

(m,a2)=1
P (m)>y

1

ℓu(m)
≪u

1

y1/3−ε
,

for all ε ∈ (0, 1/4] and y ≫u,ε 1.

Regarding the second sum in the right hand side of (3.2) we provide an estimate in the next
lemma.

Lemma 3.5. Supposing that y > (log x)2 and v = log x/log y tends to infinity as x tends to

infinity, we have

(3.4)
∑

n>x
P (n)≤y
(n,a2)=1

1

ℓu(n)
≪u (log y)e−

√
y/2 log y +

log y

log v
e−v log v.

Proof. Since ℓu(n) ≥ n, we may write
∑

n>x
P (n)≤y
(n,a2)=1

1

ℓu(n)
≤
∫ ∞

x

dψ(t, y)

t
,

where ψ(t, y) is the counting function of the y-smooth numbers less than t. Clearly, we have

(3.5)

∫ ∞

x

dψ(t, y)

t
=
ψ(t, y)

t

∣

∣

∣

∣

∞

x

+

∫ ∞

x

ψ(t, y)

t2
dt.

To estimate the second term on the right hand side of (3.5) we suppose first that y > log2(x)
and then we split it into two parts:

∫ ∞

x

ψ(t, y)

t2
dt =

∫ z

x

ψ(t, y)

t2
dt+

∫ ∞

z

ψ(t, y)

t2
dt,
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where we put z = e
√
y. Using the estimate [16, Theorem 1, §5.1, Chapter III]

(3.6) ψ(t, y) ≪ te− log t/2 log y = t1−1/2 log y,

valid uniformly for t ≥ y ≥ 2, we obtain

(3.7)

∫ ∞

z

ψ(t, y)

t2
≪
∫ ∞

z

t−1−1/(2 log y)dt≪ (log y)z−1/(2 log y) = (log y) exp

(

−
√
y

2 log y

)

.

By the Corollary of the Theorem 3.1 in [4], we know that

ψ(t, y) ≤ t exp

(

−(1 + o(1))
log t

log y
log

(

log t

log y

))

,

in the region y > log2 t. Here the o(1) is with respect to log t/log y → ∞. If v = log x/log y
tends to infinity as x tends to infinity, then we may use the simpler

(3.8) ψ(t, y) ≤ t exp

(

− log t

log y
log

(

log t

log y

))

,

for any x ≤ t ≤ z. Note that equation (3.8) also follows from the aformentioned Corollary
in [4]. Let us suppose to be in this situation. Now, inserting this bound and using the change
of variable s = log t, we get

∫ z

x

ψ(t, y)

t2
dt ≤

∫

√
y

log x

exp

(

− s

log y
log

(

s

log y

))

ds,

which after another change of variable s = w log y becomes

(log y)

∫

√
y/log y

log x/log y

exp(−w logw)dw.

Using that w ≥ v and putting w log v = r, we find

(3.9)

∫ z

x

ψ(t, y)

t2
dt ≤ log y

log v

∫

√
y log v/log y

v log v

e−rdr ≤ log y

log v
e−v log v.

Regarding the first term on the right hand side of (3.5), we note that

ψ(t, y)

t

∣

∣

∣

∣

∞

x

≤ lim
t→∞

ψ(t, y)

t
≪ lim

t→∞
t−1/2 log y = 0,

by (3.6). Collecting the results, we obtain the estimate (3.4). �

Finally, we can deduce the stated estimate on
∑

n>x 1/ℓu(n).

Proof of Proposition 1.4. By Proposition 3.4 and Lemma 3.5 we conclude that

∑

n>x
(n,a2)=1

1

ℓu(n)
≪u

1

y1/3−ε
+

log y

log v
e−v log v,

for every ε > 0, if y is sufficiently large in terms of ε. It is immediate to see that the best choice
for y is of the form y = exp(C

√

(log x)(log log x)), with C a suitable positive constant to be
chosen later. After some easy considerations, we obtain

∑

n>x
(n,a2)=1

1

ℓu(n)
≪u exp

(

−C(1/3− ε)
√

(log x)(log log x)
)

+exp

(

− 1

2C
(1− o(1))

√

(log x)(log log x)

)

,
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where o(1) tends to zero from the right as x goes to infinity. Now, choosing C = 1/
√

2(1/3− ε),
we see that

∑

n>x
(n,a2)=1

1

ℓu(n)
≪u exp

(

−(1− o(1))(1− ε)√
6

√

(log x)(log log x)

)

,

for every ε > 0 and x sufficiently large with respect to ε. �

4. Proof of weak version of Theorem 1.3

Proof. We start inserting equation (3.1) inside our main sums.

(4.1)
∑

n≤x

(n, un)
k =

∑

n≤x

∑

d|(n,un)

Jk(d) =
∑

d≤x

Jk(d)
∑

n≤x
d|(n,un)

1 =
∑

d≤x
(d,a2)=1

Jk(d)
∑

n≤x
ℓu(d)|n

1,

by part (3) of Lemma 3.2. Clearly, the last sum in (4.1) is

(4.2)
∑

d≤x
(d,a2)=1

Jk(d)

⌊

x

ℓu(d)

⌋

≤ x
∑

d≤x
(d,a2)=1

Jk(d)

ℓu(d)
≤ x

∑

d≤x
(d,a2)=1

dk

ℓu(d)
.

But now we observe that
∑

d≤x
(d,a2)=1

dk

ℓu(d)
=

∑

d≤xδ

(d,a2)=1

dk

ℓu(d)
+

∑

xδ<d≤x
(d,a2)=1

dk

ℓu(d)

≪ xkδ + xk
∑

d>xδ

(d,a2)=1

1

ℓu(d)

≪ xk exp(−(1/
√
6− ε+ o(1))

√
δ
√

(log x)(log log x)),

for any δ ∈ (0, 1), using that the series
∑

n 1/ℓu(n) converges and the bound (1.4), and for any
x large in terms of δ and ε. Now, choosing δ close to 1 as a function of ε, and by the arbitrarity
of ε, we find

(4.3)
∑

d≤x
(d,a2)=1

dk

ℓu(d)
≤ xk exp(−(1/

√
6− ε+ o(1))

√

(log x)(log log x)),

where the o(1) depends on u and k and x is chosen large enough with respect to ε. Inserting
(4.3) in (4.2) and (4.2) in (4.1), the proof is finished. �

5. Proof of Theorem 1.3

Proof. Let y := exp(1
2

√

(log x)(log log x)). We define a partition of {n : n ≤ x}, by setting

E1(x) = {n ≤ x : P (n) ∤ un};

E2(x) = {n ≤ x : P (n) ≤ y};

E3(x) = {n ≤ x : P (n) > y6, P (n) ∈ Qu,1/3(x)};

E4(x) = {n ≤ x : P (n) > y6, P (n) 6∈ Qu,1/3(x)};

E5(x) = {n ≤ x} \ E1 ∪ E2 ∪ E3 ∪ E4.

Let Si =
∑

n∈Ei(x)
(n, un)

k, for every i = {1, 2, 3, 4, 5}. We note that if n ∈ E1(x), then

(n, un)|(n/P (n)) and we deduce that

(5.1) S1 ≤
∑

n≤x

(

n

P (n)

)k

≤ xk
∑

n≤x

1

P (n)k
≤ xk+1 exp((−

√
2k + o(1))

√

(log x)(log log x)),
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where the last inequality follows by [6, equation 1.6]. Moreover, it is immediate to see that

S2 ≤ xkψ(x, y) ≤ xk+1 exp(−(1 + o(1))u logu),

by the Corollary of Theorem 3.1 in [4], where u = log x/log y and o(1) tends to zero as u tends
to infinity. We observe that we can apply this result because we chose a value of y sufficiently
large. Notice also that by our choice of y we have actually got

(5.2) S2 ≤ xk+1 exp(−(1 + o(1))
√

(log x)(log log x)),

which dominates (5.1). Regarding the third sum, we simply use S3 ≤ xk#E3(x). Now, if
n ∈ E3(x) we can factorize n = P (n)m, with P (n) > y6 and P (n) ∈ Qu,1/3(x). This implies
that m < x/y6 and that P (n) ∈ Qu,1/3(x/m). Consequently

#E3(x) ≤
∑

m≤x/y6

#Qu,1/3(x/m) ≪ x2/3
∑

m≤x/y6

1

m2/3
≪ x

y2
,

by Lemma 3.3 and a standard final computation. This leads to

(5.3) S3 ≪ xk+1 exp(−2 log y),

which is of the same order of magnitude of (5.2). For what concerns the fourth sum, by part
(1) and (6) of Lemma 3.2, we have that zu(P (n))|n and zu(P (n))|P (n) ± 1, implying that
P (n)zu(P (n))|n. Note that we can affirm the first two divisibility conditions, because we can
suppose P (n) ∤ a2∆u and odd, since y is large enough. We deduce that

#E4(x) ≤
∑

p>y6

p 6∈Qu,1/3(x)

x

pzu(p)
≤
∑

p>y6

x

p4/3
≪ x

y2
,

by a standard computation. Therefore, we find

(5.4) S4 ≤ xk#E4(x) ≪ xk+1 exp(−2 log y),

which coincides with (5.3). We are left then with the estimate of S5(x). To this aim we strictly
follow an argument already employed in the proof of [1, Theorem 2]. For any non-negative
integer j, let Ij := [2j , 2j+1). We cover I := [y, y6) by these dyadic intervals, and we define aj
via 2j = yaj . We shall assume the variable j runs over just those integers with Ij not disjoint
from I. For any integer k, define Pj,k as the set of primes p ∈ Ij with zu(p) ∈ Ik. Note that, by
Lemma 3.3, we have #Pj,k ≪ 4k. We have

(5.5) #E5(x) ≤
∑

j

∑

k

∑

p∈Pj,k

∑

n≤x
P (n)|un

P (n)=p

1 ≤
∑

j

∑

k

∑

p∈Pj,k

ψ

(

x

pzu(p)
, p

)

≤
∑

j

∑

k

∑

p∈Pj,k

x

pzu(p)y2/aj+o(1)
,

as x → ∞, where we have used the Corollary of Theorem 3.1 in [4] for the last estimate. For
k > j/2, we use the estimate

∑

p∈Pj,k

1

pzu(p)
≤ 2−k

∑

p∈Ij

1

p
≤ 2−k

for x large. For k ≤ j/2, we use the estimate

∑

p∈Pj,k

1

pzu(p)
≪ 4k

2j2k
= 2k−j,

since there are at most order of magnitude 4k such primes, as noted before. Thus,

(5.6)
∑

k

∑

p∈Pj,k

1

pzu(p)
=
∑

k>j/2

∑

p∈Pj,k

1

pzu(p)
+
∑

k≤j/2

∑

p∈Pj,k

1

pzu(p)
≪ 2−j/2 = y−aj/2.
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Collecting the above computations, we find

#E5(x) ≤
∑

j

x

yaj/2+2/aj+o(1)
, as x→ ∞.

Since the minimum value of t/2 + 2/t for t > 0 is 2 occuring at t = 2, we may affirm that

#E5(x) ≤ x/y2+o(1), as x→ ∞,

which leads to an estimate for S5 as large as that one for S2. We conclude that

max{S1, S2, S3, S4, S5} ≤ xk+1 exp(−(1 + o(1))
√

(log x)(log log x)),

proving Theorem 1.3. �

6. The multiplicative analogous of ℓu(n)

Let us define the multiplicative function Lu(n) such that Lu(p
k) = ℓu(p

k), for every prime
numbers p ∤ a2 and power k ≥ 1, and Lu(p

k) = pk, otherwise. Now, consider the Dirichlet series
of the function n/Lu(n), given by

α(s) =
∑

n≥1

n

nsLu(n)
.

Suppose that it converges for s > σc, where σc is the abscissa of absolute and ordinary conver-
gence of α(s). Certainly, since ℓu(n) ≤ Lu(n), for every n, and since we know that the series of
the reciprocals of ℓu(n) converges, we have σc ≤ 1. Then, for any s ∈ C with ℜ(s) = σ > σc we
can consider the Euler product and it converges to the Dirichlet series in this range. Therefore,
we can write

α(s) =
∏

p∤2a2∆u

(

1 +
∑

k≥1

f(pk)

pks

)

β(s),

where f(n) = n/Lu(n) and β(s) is an analytic function in ℜ(s) > 0. Since by property (5) of
Lemma 3.2 we find that f(pk) = 1/zu(p), for any k ≥ 1 and prime p ∤ 2a2∆u, we have

(6.1) α(s) =
∏

p∤2a2∆u

(

1 +
f(p)

ps
ps

ps − 1

)

β(s) =
∏

p∤2a2∆u

(

1 +
1

zu(p)(ps − 1)

)

β(s).

Now, the final product in (6.1) converges if and only if
∑

p∤2a2∆u

1

zu(p)(ps − 1)

converges. Therefore, it suffices to prove that

lim
x→∞

∑

p>x

1

zu(p)(pσ − 1)
= 0.

We estimate the last sum separating between primes p ∈ Qu,γ or p 6∈ Qu,γ. In the first case we
obtain

(6.2)
∑

p>x
p∈Qu,γ

1

zu(p)(pσ − 1)
≪
∫ ∞

x

d(#Qu,γ(t))

tσ
≪u

1

(σ − 2γ)xσ−2γ
,

by Lemma 3.3, if we choose σ > 2γ. On the other hand, in the second case we get

(6.3)
∑

p>x
p 6∈Qu,γ

1

zu(p)(pσ − 1)
≪
∑

p>x

1

pσ+γ
≪ 1

(σ + γ − 1)xσ+γ−1
,

if we choose σ + γ > 1. Comparing (6.2) with (6.3), we are led to take γ = 1/3 and we have
showed that

(6.4)
∑

p>x

1

zu(p)(pσ − 1)
≪u

1

εxε
,
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if σ = 2/3+ε, for every ε > 0, and consequently that α(s) converges for every s with ℜ(s) > 2/3,
or equivalently that σc ≤ 2/3. An immediate application of this result is the following. Let us
define

F (s) =
∑

n≥1

1

nsLu(n)
.

Then, F (s) has the abscissa of convergence σ′
c ≤ −1/3. This is equivalent to have obtained a

strong bound on the tail of F (0). The intermediate passage is made explicit in the next lemma
(see e.g. [3, §11.3, Lemma 1]).

Lemma 6.1. Suppose that G(s) =
∑

n≥1 ann
−s is a Dirichlet series of a sequence (an)n≥1 of

positive real numbers, with abscissa of convergence σ′
c. Suppose that G(0) converges. Then, we

have σ′
c = inf{θ :∑n>x an ≪ xθ}.

Since F (s) satisfies the hypotheses of the Lemma 6.1, by (6.4), we deduce that
∑

n>x

1

Lu(n)
≪u x

−1/3+ε,

for every ε > 0, proving Proposition 1.6.

Remark 6.1. We believe that a finer study of Lu(n) could lead to understand better the
structure of ℓu(n), though the lack of multiplicativity of the latter makes difficult its study
starting with information from the former. For instance, it can be shown that the integers n,
which have at least two prime factors p1, p2 such that a fixed prime q divides both zu(p1) and
zu(p2), have asymptotic density 1. Thus, when calculating zu(n) as a least common multiple,
there is a cancellation of a factor q. In other words, for any positive real number C, most integers
n have Lu(n)/ℓu(n) > C. This suggests that the two mentioned functions are not always very
close each other.
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