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ON THE KODAIRA PROBLEM FOR UNIRULED KÄHLER

SPACES

PATRICK GRAF AND MARTIN SCHWALD

Abstract. We discuss the Kodaira problem for uniruled Kähler spaces. Build-
ing on a construction due to Voisin, we give an example of a uniruled Kähler
space X such that every run of the KX -MMP immediately terminates with a
Mori fibre space, yet X does not admit an algebraic approximation. Our example
also shows that for a Mori fibration, approximability of the base does not imply
approximability of the total space.

1. Introduction

A fundamental problem in complex algebraic and Kähler geometry is to determine
the relationship between smooth projective varieties and compact Kähler manifolds.
Since a compact complex manifold is projective if and only if it admits a Kähler form
whose cohomology class is rational, the following question suggests itself.

Question 1.1 (Kodaira problem). Is it possible to make any compact Kähler mani-
fold X projective by an arbitrarily small deformation Xt of its complex structure?

Such a deformation will be called an algebraic approximation of X . See Definition 2.6
for the precise notion.

Kodaira proved that every compact Kähler surface can be deformed to an algebraic
surface [Kod63, Thm. 16.1]. In higher dimensions, the Kodaira problem remained
open until in [Voi04] Voisin gave counterexamples (of Kodaira dimension κ = 0) in
any dimension ≥ 4. In [Voi06], she even constructed examples (uniruled and of even
dimension ≥ 10) of compact Kähler manifolds XVoi such that no compact complex
manifold X ′ bimeromorphic to XVoi admits an algebraic approximation.

At first sight, this seems to provide a definite negative answer to the Kodaira
problem. However, from the viewpoint of the Minimal Model Program (MMP), it
is natural to take into account also singular bimeromorphic models. A most influ-
ential statement in this direction is Peternell’s conjecture that minimal models of
compact Kähler manifolds should admit an algebraic approximation. This conjec-
ture has recently spawned substantial progress on the Kodaira problem in dimension
three [Gra18, CHL19, Lin16, Lin17b, Lin17a].

That said, an obvious desire arises to revisit Voisin’s example XVoi and to investi-
gate whether some singular model of it is approximable. By construction, XVoi comes
equipped with a bimeromorphic map to a mildly singular Kähler space X , and the
map XVoi → X is a (composition of) KX-negative extremal contractions. Our first
result shows that this new space X does not admit an algebraic approximation. Of
course, one would then like to contract (or flip) further extremal rays, hoping to arrive
at an approximable model. We show that this is impossible: X is minimal in the sense
that every run of the KX -MMP immediately yields a Mori fibre space. Actually, we
prove an even stronger statement—see (1.2.2) below.
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In a slightly different direction, one might consider the Mori fibrations of a given
uniruled space and ask whether approximability of the base of such a fibration implies
approximability of the total space. Our example X shows that this is likewise not the
case. Summing up, what we prove is the following:

Theorem 1.2 (Non-approximable minimal uniruled Kähler space). For every even
number n ≥ 10, there exists an n-dimensional uniruled compact Kähler space X with
the following properties:

(1.2.1) X is simply connected and has only terminal quotient singularities.

(1.2.2) Any bimeromorphic map X → X ′ to a normal complex space X ′ is an iso-
morphism. In particular, every run of the KX-MMP immediately terminates
with a Mori fibration.

(1.2.3) There is a Mori fibration X → Y such that Y admits an algebraic approxima-
tion.

(1.2.4) X does not admit an algebraic approximation.

In [Lin17a], Lin has shown that any uniruled Kähler threefold is approximable. Our
result shows that in higher dimensions, the situation becomes considerably more com-
plicated. We are not aware of any natural condition on a uniruled Kähler space that
would guarantee, at least conjecturally, the existence of an algebraic approximation.
This suggests that higher-dimensional uniruled spaces are quite pathological from this
point of view.

Open questions. We cannot exclude the possibility that our example X is bimero-
morphic to an approximable Kähler space X ′ in some haphazard way. But by (1.2.2),
the existence of such an X ′ would not be explained by general principles such as the
MMP. Hence from a systematic viewpoint, we do not expect such an X ′ to exist.

Nevertheless, this is of course an interesting question. All we can say at the moment
is that such an X ′ would necessarily have non-rigid singularities. This follows from
our proof of (1.2.4).

Acknowledgements. This project was started during a stay at the Mathematisches
Forschungsinstitut Oberwolfach, whose hospitality is unmatched. We also thank the
referee for his efforts to improve the paper.

2. Basic facts and definitions

Complex spaces. All complex spaces are assumed to be separated, connected and
reduced, unless otherwise stated.

An irreducible compact complex space X is said to be of Fujiki class C (or in
C, for short) if it is bimeromorphic to a compact Kähler manifold. We say that X
is Moishezon if its field of meromorphic functions M (X) has maximal transcendence
degree trdegC M (X) = dimX . Being Moishezon is equivalent to being bimeromorphic
to a projective manifold. We say that a (not necessarily irreducible) compact complex
space is Moishezon if each of its irreducible components is Moishezon.

Resolution of singularities. A resolution of singularities of a complex space X is

a proper bimeromorphic morphism f : X̃ → X , where X̃ is smooth. We say that the
resolution is projective if f is a projective morphism. In this case, if X is projective

(resp. compact Kähler) then so is X̃. A resolution is said to be strong if it is an isomor-
phism over the smooth locus of X . A log resolution is a resolution whose exceptional

locus is a simple normal crossings divisor in X̃. It will be important for us that
resolving singularities is not only possible any-old-how, but there is a canonical way
of doing so:
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Theorem 2.1 (Functorial resolutions). There exists a resolution functor which as-
signs to any complex space X a strong projective log resolution πX : R(X) → X, such
that R commutes with smooth maps in the following sense: For any smooth morphism
f : W → X, there is a unique smooth morphism R(f) : R(W ) → R(X) such that the
following diagram is a fibre product square.

R(W )
R(f)

//

πW

��

R(X)

πX

��

W
f

// X.

Proof. See [Kol07, Thm. 3.45]. �

Kähler spaces. While we will not work directly with the definition of a singular
Kähler space, we include the definition here for the reader’s convenience.

Definition 2.2 (Kähler space). Let X be a normal complex space. A Kähler form ω
on X is a Kähler form ω◦ on the smooth locus Xreg ⊂ X such that X can be covered
by open sets Uα with the following property: there is an embedding Uα →֒ Wα of Uα

as an analytic subset of an open set Wα ⊂ Cnα and a Kähler form ω̃α on Wα such
that

ω◦
∣∣
Uα∩Xreg

= ω̃α

∣∣
Uα∩Xreg

.

A normal complex space X is said to be Kähler if there exists a Kähler form on X .

For example, the analytification of a normal complex projective variety is a Kähler
space.

Deformation theory. We collect some notation and basic facts from deformation
theory.

Definition 2.3 (Deformations of complex spaces). A deformation of a complex space
X is a flat morphism X → (S, 0) from a (not necessarily reduced) complex space X

to a complex space germ (S, 0), together with the choice of an isomorphism X0
∼= X ,

where we write Xs := π−1(s) for the fibre over any s ∈ S. We usually suppress both
the base point 0 ∈ S and the choice of the isomorphism from notation. Deformations
of complex space germs are defined similarly.

Definition 2.4 (Locally trivial deformations). A deformation π : X → S is called
locally trivial if for every x ∈ X0 there exist open subsets 0 ∈ S◦ ⊂ S and x ∈ U ⊂
π−1(S◦) and an isomorphism

U
∼

//

π
  ❆

❆
❆
❆
❆
❆
❆
❆

(X0 ∩ U)× S◦

pr2
xxqq
qq
qq
qq
qq
q

S◦.

Definition 2.5 (Rigid singularities). A complex space germ (X, x) is called rigid if
every deformation of X is trivial. A complex space X is said to have rigid singularities
if for each x ∈ X , the germ (X, x) is rigid. Equivalently, every deformation of X is
locally trivial.

Definition 2.6 (Algebraic approximations). Let X be a compact complex space and
π : X → S a deformation of X . Consider the set of projective fibres

Salg :=
{
s ∈ S

∣∣ Xs is projective
}
⊂ S

and its closure Salg ⊂ S. We say that X → S is an algebraic approximation of X if

0 ∈ Salg.
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3. Voisin’s example: construction and properties

The aim of this section is threefold. First we recall Voisin’s example from [Voi06] in
order to fix notation and for the reader’s convenience. Second, we investigate some of
its properties which have not been discussed by Voisin. In particular, we take a closer
look at the singularities arising in the construction. Third, we make the example as
concrete as possible by providing an explicit example of Voisin’s “property (∗)”.

Definition 3.1 (Scenic tori). A scenic torus is a pair (T, ϕ) consisting of an n-
dimensional complex torus T and an endomorphism ϕ : T → T such that the in-
duced map ϕ∗ : H1(T,C) → H1(T,C) has the following property: the eigenvalues
µ1, . . . , µ2n of ϕ∗ are pairwise distinct, none of them are real, and the Galois group

Gal
(
Q(µ1, . . . , µ2n)

/
Q

)
is the full symmetric group S2n.

3.A. Polynomials with large Galois group. In [Voi04, §1], it is explained how
to construct a scenic torus starting from a rank 2n lattice Γ and an endomorphism
ϕZ of Γ whose characteristic polynomial has full symmetric Galois group and no real
roots, as above. So for us it only remains to give an example of such a lattice and
endomorphism. We will see that such examples are abundant for any value of n. The
following theorem gives a criterion for the characteristic polynomial f of ϕZ to have
the desired Galois group.

Theorem 3.2 (Polynomials with full symmetric Galois group). Let f ∈ Z[x] be a
monic polynomial of degree d with the following properties:

(3.2.1) The image of f in F2[x] is irreducible.

(3.2.2) The image of f in F3[x] splits into a linear factor and an irreducible factor of
degree d− 1.

(3.2.3) The image of f in F5[x] splits into an irreducible quadratic factor and one or
two irreducible factors of odd degree.

Then the splitting field K of f has Galois group Gal(K/Q) = Sd. �

Proof. See [vdW93, §66, p. 204]. �

For any prime p, there exist irreducible polynomials over Fp of any given degree.
Thus for any d we can find monic polynomials f2, f3, f5 ∈ Z[x] which over F2,F3,F5

split as described in Theorem 3.2. Then f := −15f2 + 10f3 + 6f5 + 30k is, for any
k ∈ Z, a monic polynomial of degree d with Galois group Sd. If d = 2n is even
and k ≫ 0 sufficiently big, then this polynomial does not have any real roots. For a
concrete example, consider the case n = 4, which is the smallest value to which [Voi06]
applies. Then we may take

f = −15 (x8 + x4 + x3 + x+ 1)︸ ︷︷ ︸
irreducible mod 2

+10(x− 1) (x7 + x2 + 2)︸ ︷︷ ︸
irred. mod 3

+ 6 (x2 + 2)(x3 + x+ 1)(x3 + x+ 4)︸ ︷︷ ︸
each factor irreducible mod 5

+120

= x8 − 10x7 + 24x6 + 30x5 + 15x4 + 85x3 + 26x2 + 65x+ 133 ∈ Z[x].

For any f as above, set Γ := Z[x]
/
(f) and take ϕZ : Γ → Γ to be multiplication by x.

Since f is monic, Γ is a lattice and by construction, the minimal polynomial of ϕZ is
f . By degree reasons, f is then also the characteristic polynomial of ϕZ.

3.B. Voisin’s construction. Before we sum up the construction in [Voi06], recall
the following standard definitions.

Definition 3.3 (Dual torus, Poincaré bundle, Kummer construction). Let T be an
n-dimensional complex torus.
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(3.3.1) The dual torus of T is defined as

T ‹ := H1(T,OT )
/
H1(T,Z).

By the exponential sequence on T , the map exp: H1(T,OT ) → H1(T,O∗
T )

induces an isomorphism

T ‹ ∼
−→ Pic◦(T ) := ker

(
H1(T,O∗

T )
c1−−→ H2(T,Z)

)
.

This identifies T ‹ with Pic◦(T ), the group of topologically trivial holomorphic
line bundles on T . For a point t ∈ T ‹, we will denote the corresponding line
bundle by Lt.

(3.3.2) The Poincaré bundle P on T×T ‹ is the line bundle, unique up to isomorphism,
with the following two properties:

◦ For all t ∈ T ‹, we have P
∣∣
T×{t}

∼= Lt.

◦ P
∣∣
{0}×T ‹

∼= OT ‹ is trivial.

If ϕ is an endomorphism of T , we define the twisted Poincaré bundle on T ×T ‹

as Pϕ := (ϕ, idT ‹)∗P. In particular, we have P = PidT
.

(3.3.3) Consider the automorphism i of T given by t 7→ −t. Its fixed points are
exactly the 22n two-torsion points of T , the set of which we denote by τ2(T ).
The (singular) Kummer variety associated to T is

K(T ) := T
/
〈i〉.

Lemma 3.4 (Pulling back the Poincaré bundle). Let T be a complex torus with an
endomorphism ϕ. We have the following isomorphisms:

(−idT , idT ‹)∗Pϕ
∼= P

−1
ϕ ,

(idT ,−idT ‹)∗Pϕ
∼= P

−1
ϕ .

These isomorphisms are unique if we require them to respect a choice of trivialization
P

∣∣
(0,0)

∼= C fixed in advance.

Proof. The involution −idT acts as −id on π1(T ) and hence also on Pic◦(T ). There-
fore, for all t ∈ T ‹ we have

(−idT , idT ‹)∗P
∣∣
T×{t}

∼= (−idT )
∗
Lt

∼= L
−1
t and

(idT ,−idT ‹)∗P
∣∣
T×{t}

∼= P
∣∣
T×{−t}

∼= L−t
∼= L

−1
t ,

as well as

(−idT , idT ‹)∗P
∣∣
{0}×T ‹

∼= id∗T ‹OT ‹ ∼= OT ‹ and

(idT ,−idT ‹)∗P
∣∣
{0}×T ‹

∼= (−idT ‹)∗OT ‹ ∼= OT ‹ .

This shows that (−idT , idT ‹)∗P−1 and (idT ,−idT ‹)∗P−1 both have the defining
properties of the Poincaré bundle. By the uniqueness in (3.3.2), we obtain the de-
sired isomorphisms in case ϕ = idT . These isomorphisms will only be unique up to a
constant. But as (0, 0) is a fixed point of both (−idT , idT ‹) and (idT ,−idT ‹), there will
be only one isomorphism of each kind respecting a fixed trivialization P

∣∣
(0,0)

∼= C.

For the general case, note that pulling back by the map (ϕ, idT ‹) commutes with
both (−idT , idT ‹) and (idT ,−idT ‹), as ϕ is an endomorphism. �

Let T be a complex torus of dimension n ≥ 2 and equipped with an endomor-
phism ϕ. We consider the rank 2 vector bundle Eϕ := Pϕ ⊕ P−1

ϕ and the P1-bundle
pϕ : P(Eϕ) → T×T ‹. By Lemma 3.4, the automorphisms (−idT , idT ‹) and (idT ,−idT ‹)
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of T × T ‹ induce automorphisms iϕ and îϕ of P(Eϕ). These automorphisms generate

a finite group isomorphic to Z
/
2Z× Z

/
2Z. We consider the quotient

(3.4.1) Qϕ := P(Eϕ)
/
〈iϕ, îϕ〉.

Using this notation, we can finally outline Voisin’s example.

Construction 3.5 (Voisin’s example). Let (T, ϕ) be a scenic torus of dimension
n ≥ 4. We do the construction in the above paragraph for the given endomorphism ϕ
and also for the endomorphism idT . In the second case, for the sake of readability, we
drop all the lower indices referring to idT .

The automorphisms i, î, iϕ and îϕ induce automorphisms (i, iϕ) and (̂i, îϕ) of the
fibre product

Z := P(E )×T×T ‹ P(Eϕ).

These automorphisms generate a finite group G, which is isomorphic to Z
/
2Z× Z

/
2Z.

We denote the quotient by X := Z
/
G. We get the following two commutative diagrams,

where the second one is the quotient of the first one by the action of G:

Z P(Eϕ)

P(E ) T × T ‹

qϕ

q

p

pϕ

π

X Qϕ

Q K(T )×K(T ‹)

Here, Q and Qϕ are as defined in (3.4.1).

The interest in this construction stems from the following result of Voisin.

Theorem 3.6 ([Voi06, Theorem 4]). Let X ′ be any compact complex manifold bimero-
morphically equivalent to X. Then X ′ does not have the homotopy type of a complex
projective manifold. In particular, it does not admit an algebraic approximation. �

3.C. Local description of the singularities. The aim of this subsection is to prove
that X has rigid singularities. To this end, we examine the singularities arising in the
above construction more closely.

Lemma 3.7 (Singularities of Q). The spaces Q and Qϕ are (2n + 1)-dimensional,
with only terminal quotient singularities of codimension n+1. Locally analytically the
singularities look like one of the following double points:

(3.7.1) (Cn+1/±)× Cn, or

(3.7.2) (C2n/±)× C, or

(3.7.3) (Cn × Cn × C)
/〈

(−id, id,−id), (id,−id,−id)
〉
.

Proof. The variety Qϕ is smooth except possibly for the image of points x ∈ P(Eϕ)
with non-trivial stabilizer. Let x be such a point and denote the fibre containing it by
F := p−1

ϕ

(
pϕ(x)

)
. Then pϕ(x) ∈ T × T ‹ is a fixed point of (−idT , idT ‹), (idT ,−idT ‹)

or (−idT ,−idT ‹). This means pϕ(x) ∈ τ2(T )× T ‹ ∪ T × τ2(T

‹).
Let ψ1 : U × C → Pϕ be a trivialization of Pϕ near F , where we may as-

sume U ⊂ T × T ‹ to be a symmetric neighbourhood of pϕ(x). Consider the map
(idT ,−idT ‹) : U → U . By Lemma 3.4, there is an isomorphism Pϕ

∣∣
U
×U U ∼= P−1

ϕ

∣∣
U
.

Using this, we obtain trivializations

ψ2 : U × C → P−1
ϕ

∣∣
U
= Pϕ

∣∣
U
×U U,

(u, t) 7→
(
ψ1

(
(idT ,−idT ‹)(u), t

)
, u

)
, and

ψ : U × C2 → Eϕ

∣∣
U
,

(
u, (a, b)

)
7→

(
ψ1(u, a), ψ2(u, b)

)
,
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of P−1
ϕ

∣∣
U

and Eϕ

∣∣
U

, respectively. Projectivizing gives a trivialization

P(ψ) : U × P1 ∼
−→ P(Eϕ)

∣∣
U
.

In these coordinates the automorphisms iϕ, îϕ and their composition are given as

iϕ :
(
u, [a : b]

)
7→

(
(−idT , idT ‹)(u), [b : a]

)
,

îϕ :
(
u, [a : b]

)
7→

(
(idT ,−idT ‹)(u), [b : a]

)
, and

iϕ ◦ îϕ :
(
u, [a : b]

)
7→

(
(−idT ,−idT ‹)(u), [a : b]

)
.

Their fixed point sets are precisely

Fix(iϕ) =
(
U ∩ (τ2(T )× T ‹)

)
×
{
[±1 : 1]

}
,

Fix(̂iϕ) =
(
U ∩ (T × τ2(T

‹))
)
×
{
[±1 : 1]

}
, and

Fix(iϕ ◦ îϕ) =
(
U ∩ (τ2(T )× τ2(T

‹))
)
× P1.

Now, if x is a fixed point of exactly one of iϕ, îϕ, iϕ ◦ îϕ, then the above description
in coordinates shows that locally at x, the quotient Qϕ looks like (3.7.1) or (3.7.2),
respectively. Otherwise x is a common fixed point of all three automorphisms and we
get the local description (3.7.3). All these singularities are terminal by the Reid–Tai
criterion [Kol13, Theorem 3.21]. To be more precise, in our situation that criterion
boils down to having the eigenvalue −1 with multiplicity ≥ 3 in every non-identity
element of G, and this is clearly satisfied. �

Lemma 3.8 (Singularities of X). The space X is (2n+2)-dimensional, with only ter-
minal quotient singularities of codimension n+1. Locally analytically the singularities
look like one of the following double points:

(3.8.1) (Cn+2/±)× Cn, or

(3.8.2) (C2n/±)× C2, or

(3.8.3) (Cn × Cn × C2)
/〈

(−id, id,−id), (id,−id,−id)
〉
.

Proof. The space Z is a P1 × P1-bundle over T × T ‹. As G is finite, the quotient
X = Z

/
G is also a (2n+2)-dimensional complex space with only quotient singularities,

contained in the image of the fixed point set of the automorphisms g ∈ G \ {id}.
The action of these g can be described in local analytic coordinates, analougously to
Lemma 3.7. This gives the above local analytic description of the singularities, and the
Reid–Tai criterion shows again that they are terminal. The singular locus consists of
a section over τ2(T )×T ‹∪T ×τ2(T ‹), together with the fibres over τ2(T )×τ2(T ‹). �

Corollary 3.9 (Local rigidity). X has rigid singularities.

Proof. According to Lemma 3.8, the variety X has only quotient singularities of codi-
mension n+ 1 ≥ 5. Such singularities are rigid by [Ste03, p. 72]. (Actually it suffices
that the codimension is ≥ 3.) �

3.D. The topology of X. The result of this last subsection says that the obstruction
to algebraic approximability is not contained in the fundamental group of X .

Proposition 3.10 (Fundamental group of X). The space X is simply connected.

Proof. To begin with, a resolution of a Kummer variety is simply connected by [Spa56,
Thm. 1]. By [Tak03, Cor. 1.1(1)], also the Kummer varieties K(T ) and K(T ‹) them-
selves are simply connected, so we get that π1

(
K(T )×K(T ‹)

)
= 1. Now, the natural

map X → K(T ) × K(T ‹) is a fibration with general fibre P1 × P1, which is again
simply connected. By construction, this fibration is in fact a (locally trivial) bundle
over the smooth locus of K(T ) ×K(T ‹). In particular, the set of points over which
the fibres are everywhere non-reduced has codimension ≥ 2. We conclude by [Nor83,
Lemma 1.5.C] that π1(X) = 1. �
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4. X does not admit an algebraic approximation

In this section, we prove (1.2.4):

Theorem 4.1. The space X from Construction 3.5 does not admit an algebraic ap-
proximation.

We begin with an auxiliary lemma. It says that for locally trivial deformations, the
functorial resolution of the total space is a deformation of a resolution of the central
fibre. This obviously fails if local triviality is dropped (consider e.g. a deformation
f : X → (S, 0) where X is smooth but f−1(0) is not).

Lemma 4.2 (Resolving locally trivial deformations). Let f : X → S be a locally
trivial deformation of a compact complex space X ∼= X0 over a smooth base S, and
πX : R(X ) → X the functorial resolution of X , as in Theorem 2.1. Then, after
shrinking S around 0, the composition f ◦ πX : R(X ) → S is a locally trivial defor-
mation of its central fibre. Furthermore, that central fibre is a resolution of X.

Proof. As the deformation f is locally trivial, for every point x ∈ X there are open
neighbourhoods 0 ∈ Sx ⊂ S and x ∈ Ux ⊂ X such that Ux is isomorphic to
(Ux ∩X)× Sx over S. As the fibres of f are compact, after shrinking S we can
assume Sx = S for all x ∈ X .

Let x ∈ X and U := Ux ∩X . The projection U × S → U and the open embedding
U × S →֒ X are smooth. Hence we get for the functorial resolutions

R(U × S) = R(U)×U (U × S) = R(U)× S

and that R(U ×S) →֒ R(X ) is also an open embedding. By definition it follows that
R(X ) → S is a locally trivial deformation. It is also clear that the central fibre has
to be smooth. Hence it is a resolution of X , via the restriction of πX . �

Proof of Theorem 4.1. Let f : X → S be an arbitrary deformation of X ∼= X0.
Pulling back the deformation to a resolution of S, we may assume that S is smooth.
As X has rigid singularities by Corollary 3.9, the deformation f is locally trivial. Af-

ter shrinking S, the map R(X ) → S is a deformation of some resolution X̃ of X ,
by Lemma 4.2. According to Theorem 3.6, no fibre of R(X ) → S can be projective.
Then the same holds for the fibres of X → S, because the functorial resolution is a
projective morphism. Therefore f is not an algebraic approximation of X . �

5. Q does admit an algebraic approximation

Keeping notation from Construction 3.5, in this section we will prove a substantial
part of (1.2.3).

Theorem 5.1. The space Q admits an algebraic approximation.

An approximation of Q will be constructed out of an approximation of T , which
is well-known to exist. To this end, we will show that the construction of Q can be
done in families.

5.A. The Poincaré bundle in families. We show in this auxiliary section that for
a family X of complex tori, the Poincaré bundles belonging to the fibres Xs locally
glue together to a line bundle on the total space of the induced family (Xs × X ‹

s )s.

Proposition 5.2 (Deformations of the Poincaré bundle). Let π : X → S be a defor-
mation of a complex torus T ∼= X0. Then:

(5.2.1) Each fibre Xs is a complex torus, and there is a deformation p : Y → S with
fibres Ys = Xs × X ‹

s .

(5.2.2) After shrinking S around 0, there is a line bundle L on Y whose restriction
Ls := L

∣∣
Ys

is isomorphic to Ps, the Poincaré bundle on Ys, for each s ∈ S.
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The proof is based on the following computational lemma. To fix notation, let
T = V

/
Λ be a complex torus. Then we have π1(T ) = Λ and consequently H1(T,Z) =

Λ ‹ := Hom(Λ,Z). By (3.3.1), it follows that H1(T ‹,Z) = Λ ‹ ‹ = Λ.

Lemma 5.3. The identity map of Λ, viewed as an element of H2(T × T ‹,Z) via the
natural maps

(5.3.1) End(Λ) = Λ ‹ ⊗ Λ = H1(T,Z)⊗H1(T ‹,Z) →֒ H2(T × T ‹,Z) ,

is equal to c1(P), the first Chern class of the Poincaré bundle on T×T ‹. In particular,
it is of Hodge type (1, 1).

Proof. The inclusion map in (5.3.1) is given by the Künneth formula, that is, by pulling
back and taking cup product. Furthermore, H2(T × T ‹,Z) is naturally identified with
the set of alternating integral 2-forms on Λ × Λ ‹. Spelled out, this means that an
element g ⊗ µ ∈ Λ ‹ ⊗ Λ is sent to the following 2-form on Λ× Λ ‹:

(
(λ1, f1), (λ2, f2)

)
7→ g(λ1)f2(µ)− g(λ2)f1(µ).

Now, choose a basis γ1, . . . , γ2n of Λ and let γ ‹

1, . . . , γ

‹

2n be the dual basis of Λ ‹. Then

idΛ =
∑2n

i=1 γ

‹

i ⊗ γi and by the above formula, under (5.3.1) this gets sent to
(
(λ1, f1), (λ2, f2)

)
7→ f2(λ1)− f1(λ2).

According to [BL04, Thm. 2.5.1], this form represents c1(P). This proves the first
claim. The second one is then clear since the first Chern class of any line bundle is of
type (1, 1). �

Proof of Proposition 5.2. Any deformation of a complex torus is a complex torus, so
all fibres Xs are complex tori by [Cat02, Theorem 4.1]. Now we consider the total

space of the sheaf X ‹ := R1π∗OX

/
R1π∗ZX

on S. Since R1π∗OX is a vector bundle

and in each fibre we are dividing out a lattice, it is clear that π ‹ : X ‹ → S is a
flat family of complex tori. By definition, the fibres (X ‹)s are the dual tori (Xs)

‹.
Hence π ‹ is a deformation of T ‹, called the dual family of X . The fibre product
Y := X ×S X ‹ fits into a commutative diagram

Y
r′

//

r

��

p

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ X ‹

π ‹

��

X
π

// S,

where p : Y → S is a deformation of T × T ‹. For each s ∈ S, the fibre Ys is the
complex torus Xs × X ‹

s . This proves (5.2.1).
In order to fix the group structure on the complex tori Xs, we pick an arbitrary

section σ : S → X of π and regard it as the zero section. The family X ‹ → S
already comes equipped with a zero section τ : S → X ‹. Pulling back induces sections
j = (σ ◦ π ‹, idX ‹) : X ‹ → Y of r′ and i = (idX , τ ◦ π) : X → Y of r.

After shrinking S, we may assume that S is Stein and contractible and hence
in particular the sheaf R2p∗ZY is trivial. Consider the cohomology class c1(P) on
the central fibre Y0 = T × T ‹. By the triviality of R2p∗ZY , this extends to a global
section ϕ of the latter sheaf and by Lemma 5.3, for all s ∈ S the class ϕ(s) ∈ H2(Ys,Z)
continues to be the first Chern class of the Poincaré bundle Ps on Ys. In particular,
ϕ(s) is of type (1, 1) for all s ∈ S. The pushforward of the exponential sequence on
Y , more precisely the exact sequence

R1p∗O
×
Y

−→ R2p∗ZY −→ R2p∗OY ,

then shows that ϕ lifts to a section ϕ̃ ∈ H0
(
S,R1p∗O

×
Y

)
, at least after shrinking S.

The space S being Stein and contractible, the sheaf cohomology groups Hi(S,OS) and
Hi(S,ZS) vanish for i > 0. By the exponential sequence on S, also Hi

(
S,O×

S

)
vanishes

for i > 0. Hence the five-term exact sequence associated to the Leray spectral sequence
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for p and O
×
Y

induces an isomorphism Pic(Y ) ∼= H0
(
S,R1p∗O

×
Y

)
. This shows that the

germ ϕ̃ comes from a line bundle L on Y . By construction, L has the property that
c1(Ls) = c1(Ps) for each s ∈ S, where Ls := L

∣∣
Ys

. We normalize L by replacing it

with

L ⊗ r∗
(
i∗L −1

)
⊗ r′∗

(
j∗L −1

)
.

Then by the uniqueness in (3.3.2), we have Ls
∼= Ps for each s ∈ S. This is the

statement of (5.2.2). �

5.B. Proof of Theorem 5.1. Consider the miniversal deformation of T = X0,

π : X → S := Def(T ).

Using notation from Proposition 5.2, let p : Y → S be the deformation of T ×T ‹ with
fibres Ys = Xs × X ‹

s , and let L be the line bundle on Y restricting to the Poincaré
bundle on each fibre.

Consider the rank two vector bundle ES := L ⊕ L −1 on Y , as well as its pro-
jectivization P(ES) → Y . It is clear that P(ES) → S is a deformation of P(E ).
Furthermore the action of G = Z

/
2Z × Z

/
2Z on the central fibre described in Sec-

tion 3.B extends to all of P(ES), since the other fibres are built in the same way. We
denote by QS the quotient of P(ES) by G. Then QS → S is a deformation of its
central fibre (QS)0 ∼= Q.

It is well-known that π : X → S is an algebraic approximation of T , see [Voi03,
Ch. 5, Ex. 1]. Also Pic◦ of any projective variety is again projective [Voi02, Prop. 7.16].
Finally, projectivized vector bundles over projective varieties and finite quotients
thereof remain projective [Laz04], [Knu71, Ch. IV, Prop. 1.5]. Taken together, this
shows that QS → S is an algebraic approximation of Q, as desired. �

6. X cannot be contracted further

The purpose of this section is to prove (1.2.2).

Theorem 6.1 (MMP for X). Let X be as in Construction 3.5.

(6.1.1) Any bimeromorphic map X → X ′ onto a normal complex space X ′ is an
isomorphism.

(6.1.2) Every run of the KX-MMP immediately terminates with one of the Mori fibre
spaces X → Q or X → Qϕ.

6.A. Auxiliary results. The following proposition is a strengthening of [Sha13,
Ch. III, §4.3, Lemma] in the analytic setting. If π is a submersion and Z is com-
pact Kähler, then the claim follows easily from the fact that all fibres of π have the
same homology class. However, for the applications we have in mind, Z can only be
assumed to be of class C and then it may contain curves that are homologous to zero.

Proposition 6.2 (Maps contracting fibres of another map). Let π : E → S be a
proper surjective morphism with connected fibres between complex spaces E and S.
Furthermore let f : E → Z be any holomorphic map to another complex space Z.

(6.2.1) If for some s0 ∈ S, the map f contracts the fibre π−1(s0) to a point, then it
contracts all fibres π−1(s) for s in a non-empty Zariski-open subset of S.

(6.2.2) If moreover π is equidimensional and S is locally irreducible and connected
(e.g. if S is normal and irreducible), then f contracts each fibre of π to a
point.

Proof. We denote the fibres of π as Es := π−1(s). For (6.2.1), we want to show that
the set

S0 :=
{
s ∈ S

∣∣ f(Es) is a point
}
⊂ S

is Zariski-open in S. We consider the graph Γ of f , which is closed in E × Z. The
map π × idZ is closed because π is proper [GPR94, Ch. III, Cor. 4.3] and maps Γ
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onto the image Γ′ of π× f . Thus Γ′ is an analytic subspace of S ×Z. The projection
p : Γ′ → S has fibres p−1(s) = {s} × f(Es), and by assumption p−1(s0) is a point.
Hence the subset of S where the fibres of p are zero-dimensional is non-empty, and it
is Zariski-open by [GPR94, Ch. II, Thm. 1.16]. This set equals S0 because the fibres
Es are connected.

For (6.2.2), we assume additionally that S is locally irreducible and connected.
Then equidimensionality of π is equivalent to π being an open map [GPR94, Ch. II,
Thm. 1.18]. We will show that S0 is also closed in S. Then connectedness of S implies
S = S0.

If S \ S0 6= ∅, let s ∈ S \ S0 be arbitrary. Then f(Es) contains at least two
distinct points x, y ∈ Z. As Z is Hausdorff, we can separate these points by disjoint
open analytic neighborhoods Ux, Uy ⊂ S. The preimages f−1(Ux), f

−1(Uy) ⊂ E are
disjoint and open in E. As π is an open map, the set

U := π
(
f−1(Ux)

)
∩ π

(
f−1(Uy)

)

is an open neighborhood of s in S. Note that for any t ∈ U , the set f(Et) contains at
least two distinct points. Hence U ⊂ S \ S0, i.e. S \ S0 is open in S. �

Proposition 6.3 (Bimeromorphic maps contract curves). Let f : X → Y be a proper
bimeromorphic morphism of normal complex spaces. Then for every y ∈ Y , the fibre
f−1(y) is Moishezon. In particular, if f is not an isomorphism then there exists a
compact curve C ⊂ X which is mapped to a point by f .

Proof. By Hironaka’s Chow Lemma [Hir75, Cor. 2], there exists a projective bimero-
morphic morphism g : Y ′ → Y which factors through f via a morphism h : Y ′ → X .
Then h is automatically a bimeromorphism and closed, hence h surjects for any y ∈ Y
the fibre g−1(y) onto the fibre f−1(y). As g−1(y) is projective, the fibre f−1(y) is Moi-
shezon. If f is not an isomorphism, then some fibre f−1(y0) is positive-dimensional.
Being Moishezon, it must contain a curve, which is then mapped to the point y0. �

6.B. Proof of Theorem 6.1. Let ρ : Z → X = Z
/
G be the quotient map. Let

f : X → X ′ be a bimeromorphic map onto a normal complex space X ′. As f ◦ ρ is
proper, we can consider the Stein factorization f ◦ ρ = ρ′ ◦ fZ , where fZ : Z → Z ′

is bimeromorphic, ρ′ is finite and Z ′ is normal. If f is not an isomorphism, then by
Proposition 6.3 it contracts a curve C ⊂ X . Let CZ ⊂ Z be any curve contained in
ρ−1(C). Then fZ contracts CZ and in particular fZ is not an isomorphism. So we
have reduced (6.1.1) to showing that every bimeromorphic map g : Z → Z ′ with Z ′

normal is an isomorphism.
If such g is not an isomorphism, then by Proposition 6.3 it contracts a curve C ⊂ Z.

The image π(C) has to be a point, as T × T ‹ does not contain any curves by [Voi06,
Lemma 7]. Hence C is contained in the fibre π−1

(
π(C)

)
. This fibre is isomorphic to

P1 ×P1 and the restrictions of q and qϕ to it are nothing but the projections onto the
first and second factor, respectively. Any curve C in P1×P1 is numerically equivalent
to an effective linear combination of the horizontal and the vertical fibre. Hence any
morphism from P1×P1 contracting C contracts at least a horizontal or a vertical fibre.
So g contracts a fibre of q or a fibre of qϕ.

If g contracts a fibre of the P1-bundle q : Z → P(E ), then by Proposition 6.2 every
fibre of q is contracted by g. In particular, g factors through q, contradicting the
assumption that g is bimeromorphic. Analogously, if g contracts a fibre of qϕ, then it
factors through qϕ and we get a similar contradiction. This proves (6.1.1).

Concerning (6.1.2), let us first note that both X → Q and X → Qϕ are Mori fibre
spaces since KX is relatively ample and the relative Picard numbers are ρ(X/Q) =
ρ(X/Qϕ) = 1. Conversely, let ψ : X → W be the first map produced by the KX -
MMP. By (6.1.1), ψ can be neither a divisorial nor a small contraction. Hence ψ is a
Mori fibre space. By an argument completely analogous to the proof of (6.1.1), we see
that ψ has to factor through either X → Q or X → Qϕ. In the first case, it has to be
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equal to X → Q since otherwise ρ(X/W ) would be at least two. In the second case,
ψ is equal to X → Qϕ for the same reason. The proof of (6.1.2) is thus finished. �

7. Proof of Theorem 1.2

Let n ≥ 10 be an arbitrary even integer. Pick a scenic torus (T, ϕ) of dimension
(n−2)/2 ≥ 4, and do Construction 3.5 for this choice of T . The resulting space X will
be our example: Using notation from Construction 3.5, we have X = Z

/
G, where Z is

obviously uniruled and Kähler. Hence also X is uniruled, and it is Kähler by [Var89,
Ch. IV, Cor. 1.2]. Now, Lemma 3.8 and Proposition 3.10 imply (1.2.1), and (6.1.1)
is (1.2.2). By (6.1.2) our variety X admits the Mori fibre space X → Q, where the
base Q admits an algebraic approximation by Theorem 5.1. This proves (1.2.3), with
Y = Q. However, we showed in Theorem 4.1 that X itself does not admit an algebraic
approximation. This is (1.2.4).
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