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UNIQUE RECTIFICATION IN d-COMPLETE POSETS: TOWARDS
THE K-THEORY OF KAC-MOODY FLAG VARIETIES

RAHUL ILANGO, OLIVER PECHENIK, AND MICHAEL ZLATIN

Abstract. The jeu-de-taquin-based Littlewood-Richardson rule of H. Thomas and
A. Yong (2009) for minuscule varieties has been extended in two orthogonal direc-
tions, either enriching the cohomology theory or else expanding the family of vari-
eties considered. In one direction, A. Buch and M. Samuel (2016) developed a com-
binatorial theory of ‘unique rectification targets’ in minuscule posets to extend the
Thomas-Yong rule from ordinary cohomology to K-theory. Separately, P.-E. Cha-
put and N. Perrin (2012) used the combinatorics of R. Proctor’s ‘d-complete posets’
to extend the Thomas-Yong rule from minuscule varieties to a broader class of Kac-
Moody structure constants. We begin to address the unification of these theories.
Our main result is the existence of unique rectification targets in a large class of
d-complete posets. From this result, we obtain conjectural positive combinatorial
formulas for certain K-theoretic Schubert structure constants in the Kac-Moody
setting.

1. Introduction

The 1970s saw a major advance in the combinatorial approach to enumerative
geometry when M.-P. Schützenberger proved the Littlewood-Richardson rule for de-
scribing the cohomology rings of Grassmannians. Since then, the modern Schubert
calculus has turned to extending this understanding in two different directions: on the
one hand to replace the Grassmannian with a more complicated homogeneous space,
and on the other hand to replace ordinary cohomology with a richer generalized co-
homology theory. Along these lines, the goal of this paper is to begin unraveling
the K-theoretic Schubert calculus of Kac-Moody homogeneous spaces. Our results
are purely combinatorial in nature, but allow us to conjecture explicit Littlewood-
Richardson-style rules in this geometric context.

Let G be a complex Kac-Moody group with Borel and opposite Borel subgroups B+

and B−, respectively. Let B+ ⊆ P ⊂ G be a parabolic subgroup. The homogeneous
space X = G/P is aKac-Moody flag variety. The Zariski closures of the B−-orbits
are the Schubert varieties {Xw}w∈WP and give a cell decomposition of X ; here, W P

denotes the set of minimal-length representatives of the quotient W/WP , where W is
the Weyl group of G and WP is the parabolic Weyl group for P . The cohomology ring
H⋆(G/P ) thereby has a distinguished Schubert basis {σw}w∈WP , where σw is Poincaré
dual to Xw. Thus, to determine multiplication in H⋆(X), it suffices to determine the
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Schubert structure constants cwu,v defined by

(1.1) σu · σv =
∑

w∈WP

cwu,vσw.

In the case that X = Grk(C
n) is a Grassmannian, the parameter space of k-

dimensional linear subspaces of Cn, this problem is solved in a positive combinato-
rial manner by any of the various Littlewood-Richardson rules (e.g., [LR34, Sch77,
Vak06]). For a general Kac-Moody flag variety X , these cwu,v are also non-negative
integers, but it is generally a major open problem to give an analogous Littlewood-
Richardson-style rule to determine them.

For X = Grk(C
n), M.-P. Schützenberger’s Littlewood-Richardson rule is stated

in terms of the jeu de taquin for standard Young tableaux [Sch77] fitting inside a
k × (n− k) rectangle. One may realize this rectangle as a subposet of positive roots
for GLn(C) in such a way that the inversion set of w ∈ W P is an order ideal in this
subposet. One may further realize standard Young tableaux as linear extensions of
intervals in this poset. Using this perspective, H. Thomas and A. Yong [TY09a] gave
a uniform extension of Schützenberger’s rule to compute all cohomological Schubert
structure constants for the larger family of minuscule varieties. This was further
extended by P.-E. Chaput and N. Perrin [CP12] to a positive combinatorial formula for
computing certain Λ-minuscule Schubert structure constants for general Kac-Moody
X . In the Chaput-Perrin rule, the role of the k × (n − k) rectangle is played by the
d-complete posets introduced by R. Proctor [Pro99a, Pro99b]; d-complete posets are
exactly those posets encoding the containment relations among Λ-minuscule Schubert
varieties.

Much work in the modern Schubert calculus has been devoted to studying homoge-
neous spaces through richer cohomology theories. In these theories, there are Schubert
bases analogous to the cohomological σw and the structure constants defined analo-
gously to Equation (1.1) enjoy various positivity properties. Hence, it makes sense to
attempt to develop positive combinatorial formulas for these structure constants in
the style of the classical Littlewood-Richardson rules. In the Grassmannian case, one
has, for example: the equivariant cohomology rule of A. Knutson and T. Tao [KT03],
the K-theory rule of A. Buch [Buc02]; the equivariant K-theory rule of O. Pechenik
and A. Yong [PY17a]; the quantum cohomology rule of A. Buch, A. Kresch, K. Purb-
hoo, and H. Tamvakis [BKPT16]; and the equivariant quantum cohomology rule
of A. Buch [Buc15]. Our interest is in the ordinary K-theory ring K(X) of the
Kac-Moody flag variety X , where the K-theoretic Schubert classes {[OXw

]}w∈WP are
represented by the structure sheaves of the Schubert varieties. Specifically, we are
interested in the structure constants Kw

u,v of K(X) defined by

(1.2) [OXu
] · [OXv

] =
∑

w∈WP

Kw
u,v[OXw

].

For Grassmannians, various alternatives to Buch’s original rule [Buc02] for Kw
u,v

are now known [Vak06, TY09b, PY17b]. However, only the rule of H. Thomas
and A. Yong [TY09b] is currently known to extend to all of the minuscule varieties
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[BR12, CTY14, BS16]. This Thomas-Yong rule is based on a jeu de taquin theory
for increasing tableaux. This combinatorial theory displays a number of additional
subtleties when compared to Schützenberger’s jeu de taquin for standard tableaux.
In particular, a key ingredient is the need to identify increasing tableaux with the
unique rectification target property. (These combinatorial notions are reviewed in
Section 2.)

In [TY09b, Problem 9.1] and [BS16, Remark 3.24], the authors ask to what extent
their combinatorial theory extends to the case of d-complete posets. The missing
ingredient is that it is not currently known whether general d-complete posets have
“enough” unique rectification targets. We conjecture, however, that they do.

Conjecture 1.1. Let P be a d-complete poset and let λ ⊆ P be an order ideal. Then
there is an (explicitly-defined) unique rectification target supported on λ.

We initiate a study of the existence and structure of unique rectification targets in
the d-complete posets. As shown by R. Proctor [Pro99a], every d-complete poset can
be constructed by gluing together (in prescribed ways) certain irreducible d-complete
posets. These irreducible pieces are classified in [Pro99a] and include all of the mi-
nuscule posets (i.e., the posets describing the Schubert stratification of minuscule
varieties). The informal version of our main result is the following special case of
Conjecture 1.1.

Theorem 1.2. Conjecture 1.1 holds in the case that P is built from minuscule posets.

For an example of such a poset covered by Theorem 1.2, see Figure 1. We also
demonstrate the extent to which Conjecture 1.1 is sensitive to the poset P being
d-complete. We establish general results on the failure of Conjecture 1.1 to extend to
posets that are slight deformations of d-complete posets.

For any P satisfying Conjecture 1.1, one obtains (as in [BS16, §3.5]) a corresponding
combinatorially-defined associative commutative unital algebra K(P) with a basis
{λ} indexed by order ideals of P. The structure constants tνλ,µ of K(P) are defined
in such a way as to transparently alternate in degree. (This construction is discussed
in Section 6.) For w ∈ W P Λ-minuscule, the interval [id, w] in Bruhat order is
isomorphic to the poset of order ideals of a certain d-complete poset Pw constructed
from w. Building on Conjecture 1.1, we propose the following.

Conjecture 1.3. Let X = G/P be a Kac-Moody flag variety and let m ∈ W P be
Λ-minuscule. Then, for u, v, w ≤ m in Bruhat order, we have the equality of structure
constants

Kw
u,v = tνλ,µ,

between the rings K(X) and K(Pm), where the order ideals λ, µ, ν ⊆ Pm correspond
to the the Weyl group elements u, v, w ∈ W P , respectively.

In Section 6, we give the precise versions of Conjecture 1.1 and Theorem 1.2,
as well as the details necessary for a precise understanding of Conjecture 1.3. In
light of Conjecture 1.3, Theorem 1.2 should be understood as giving a conjectural
positive combinatorial rule for certain K-theoretic Schubert structure constants of
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Figure 1. The Hasse diagram of a representative d-complete poset P
that is “built from minuscule posets” in the sense of Theorem 1.2. In
P, every order ideal λ ⊆ P has a unique rectification target, provided
by Theorem 1.2.

Kac-Moody flag varieties. Several cases of Conjecture 1.3 are known to be true or have
been previously conjectured. If the flag variety X is minuscule, then Conjecture 1.3
reduces to the main theorem of [BS16]. If, on the other hand, X is general but
|ν| − |λ| − |µ| = 0, then Conjecture 1.3 reduces to [CP12, Conjecture 1.1], many
cases of which are proved in [CP12, Theorem 1.3]. Assuming one followed the general
structure utilized by [CP12, BS16], the main ingredients one would need in a proof
of Conjecture 1.3 are

(1.) a proof of the remaining cases of Conjecture 1.1 and
(2.) ad hoc geometric verifications of Conjecture 1.3 for special u lying in a gener-

ating set of classes.

For a large class of such Schubert problems, Theorem 1.2 provides the necessary first
ingredient, so it only remains to establish the second in those cases.

Another potential application of Theorem 1.2 (or more generally Conjecture 1.1)
is to establishing plane partition identities. In [HPPW16], the authors use the exis-
tence of unique rectification targets in minuscule posets to give bijective proofs of the
equinumerosity of various classes of plane partitions, in particular resolving a 1983
question of R. Proctor [Pro83]. The main technology of [HPPW16] applies equally
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to any d-complete poset satisfying Conjecture 1.1; hence, we expect Theorem 1.2 to
yield analogous identities. Further discussion may appear elsewhere.

This paper is organized as follows. In Section 2, we fix notation for posets and
describe the Thomas-Yong theory of jeu de taquin for increasing tableaux. We then
recall the definition of unique rectification targets (URTs). Section 3 studies the
behavior of URTs when two posets are combined via Proctor’s slant sum operation.
Section 4 builds on Section 3 by introducing the notion of a p-chain URT, a stronger
version of a URT that we will later need. Section 5 establishes the necessary technical
fact that all increasing tableaux of straight shape in a double-tailed diamond poset
are p-chain URTs. In Section 6, we first recall background on d-complete posets. We
also recall needed notions to make Conjectures 1.1 and 1.3 precise. We then apply
the results from Section 4 and Section 5 to the study of d-complete posets and prove
Theorem 1.2, our main result.

2. posets, skew shapes, and rectifications

All posets in this paper will be finite, nonempty, and connected. These assumptions
are made for convenience and clarity only; many of our results do not fundamentally
rely on these properties, although the statements and proofs become messier without
them. Moreover, the original definition of d-complete posets (which we follow in this
paper) requires finiteness. Although there is now a more general notion of infinite d-
complete posets (see the “Added Notes” at the very end of [PS17] for discussion), we
will not explicitly consider such objects. In this section, P will denote an otherwise
arbitrary poset.

We begin by fixing necessary terminology regarding posets. For x, y ∈ P, we say
that z covers x (written x ⋖ z), if x < z and there does not exist a y ∈ P with
x < y < z. Let x, y ∈ P. If x < y, we say that x is an ancestor of y and that y is
a descendant of x. If x ⋖ y, we say that x is a parent of y and that y is a child
of x. Adding “weak” to any of these terms also allows for equality, e.g. x is a weak
descendant of y if x ≥ y. We denote the minimum element (if it exists) of the poset
P by 0̂P . We say a poset P has a 0̂P to mean that it has a minimum, which is 0̂P .

We often visualize posets using Hasse diagrams, where each element is represented
by a circle, and a⋖ b if there is a line that goes up from a to b.

Example 2.1. Let Q be the poset on the elements

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}

of Z2 under the natural order (a, b) ≤ (c, d) if both a ≤ c and b ≤ d. As a Hasse
diagram, we have

Q =

We will use this Q as a running example throughout this section. ♦

A shape ν of P is any subset of P. The shape ν has a natural poset structure
given by restricting that of P. A shape ν of P is called an order ideal of P if it is
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closed downwards, i.e. if y ∈ ν and x < y together imply x ∈ ν. Similarly, an order
filter of P is a subset that is closed upwards. For historical reasons, we will also refer
to the order ideals of P as straight shapes.

Example 2.2. The following are all the straight shapes of the poset Q from Exam-
ple 2.1. For greater visual context, we represent elements not in the straight shape
with solid black circles.

♦

If λ ⊆ ν are straight shapes of P, then the shape ν \ λ is called a skew shape of
P and is denoted ν/λ. Note that every straight shape λ can also be realized as the
skew shape λ/∅.

An element x ∈ λ is called an inner corner of the skew shape ν/λ if x is maximal
in λ. We write IC(ν/λ) to denote the set of inner corners of ν/λ.

Clearly, we have the following.

Lemma 2.3. Let ν/λ be a skew shape of the poset P. If c ∈ IC(ν/λ) and b < c, then
b /∈ IC(ν/λ). �

For a skew shape ν/λ of P, a function T : ν/λ → Z>0 is called a skew increasing
P-tableau of shape ν/λ if T is a strictly order preserving map, i.e. if x < y implies
T (x) < T (y). If, in addition, T is a bijection onto an initial segment of Z>0, we say
T is a skew standard P-tableau. In both cases, if ν/λ is a straight shape, we drop
the word “skew.”

We depict a skew increasing P-tableau T using Hasse diagrams with labels. For
an element x ∈ P, we put the value of T (x) in the circle of the Hasse diagram
corresponding to x. Also, to make clear what the ambient poset is we represent
skewed out elements (the elements in λ) with unlabeled hollow circles.

Example 2.4. If P is the numbers 1, 2, 3, 4 with the usual order and ν/λ = P and
T (x) = x+ 5, then T can be visualized as

6

7

8

9
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♦

Example 2.5. The following is an example of a skew increasing Q-tableau T of shape
ν/λ

ν = , λ = , T =

1

2

3

4 4

.

♦

For a skew shape ν/λ of P, we say a function T : ν/λ → Z>0 ∪ {•} is a skew
dotted increasing P-tableau of shape ν/λ if there is a rational number q such
that T becomes a strictly order preserving map (ν/λ → Q) when we replace each •
with that fixed q.

Example 2.6. The following is a skew dotted increasing Q-tableau

1

•

2

•

3 2

and the following is not (because one cannot replace the • with one fixed q and make
it an order preserving map)

1

•

3

3

• 4

♦

Definition 2.7. Let T be a skew increasing P-tableau of shape ν/λ. If γ is a
nonempty set of inner (or outer) corners of ν/λ, then AddDotsγ(T ) is the skew in-
creasing P-tableau S of shape ν/λ ∪ γ defined by

S(x) =

{

T (x), if x ∈ ν/λ;

•, if x ∈ γ.

Example 2.8. For

T =

31 2

let γ be the set of blue shaded inner corners. Then, we have

AddDotsγ(T ) =

•

3

•

1 2

♦
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Definition 2.9. Let T be a skew dotted increasing P-tableau. For n ∈ Z>0, Swap•,n(T )
is the skew dotted increasing P-tableau S defined by

S(x) =











n, if T (x) = • and T (y) = n for some y ⋖ x;

•, if T (x) = n and T (y) = • for some y ⋗ x;

T (x), otherwise.

Example 2.10. We have

Swap•,1



 •

3

•

1 2


 = •

3

1

• 2

Swap•,2



 1

2

•

2 2


 = 1

2

2

• •

Swap•,1



 •

2

•

1 1


 = 1

2

1

• •

Swap•,1



 •

1

•

1 1


 = 1

•

1

• •

Swap•,1



 •

3

1

2 3


 = •

3

1

2 3

♦

Definition 2.11. Let T be a skew dotted increasing P-tableau. Let Q be the subset
of P which T maps to an integer, i.e.

Q = {x : T (x) ∈ Z>0}.

Then, we define RemoveDots(T ) = T |Q.

Example 2.12. For example,

RemoveDots





1

2

•

2

• •


 =
1

22
.

♦

Definition 2.13. Let T be a skew increasing P-tableau of shape ν/λ and let γ ⊆
IC(ν/λ). Let n = max(Range(T )). The slide of γ in T is the skew increasing
P-tableau

Slideγ(T ) = RemoveDots ◦ Swap•,n ◦ · · · ◦ Swap•,1 ◦ AddDotsγ(T ).

We will also use the notation Slideγ1,...,γn to denote iterated slides, i.e.

Slideγ1,...,γn(T ) = Slideγn ◦ · · · ◦ Slideγ1(T ).

Example 2.14. As an example, let T be an increasing P tableau

T =

1

2

2

3

2

3 4

, P =

a b
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where a, b are the two inner corners for T . We compute Slideγ for various values
of γ, beginning after addDots, showing the intermediate swaps, and ending after
removeDots:

γ = {a}
•

1

2

2

3

2

3 4

1

•

2

2

3

2

3 4

1

2

•

2

3

2

3 4

1

2 2

3

2

3 4

γ = {b}
1

2

•

2

3

2

3 4

1

2

2

•

3

•

3 4

1

2

2

3

•

3

• 4

1

2

2

3 3

4

γ = {a, b}
•

1

2

•

2

3

2

3 4

1

•

2

•

2

3

2

3 4

1

2

•

2

•

3

•

3 4

1

2

•

2

3

•

3

• 4

(continued)
1

2

2

3 3

4

♦

For a tableau T of shape ν/λ, we use the notation IC(T ) to mean IC(ν/λ).

Definition 2.15. Let T be a skew increasing P-tableau. We define its rectification
step sets, Si, recursively. First, S0 = {T}. Next,

Sn+1 = {Slideγ(S) : S ∈ Sn and ∅ 6= γ ⊆ IC(S)}.

The rectifications of T are the elements of the rectification set

rects(T ) = {U : U ∈ Sn for some n ∈ Z≥0 and U is of straight shape}.

To denote that U is a rectification of T given by sliding the sequence of sets of inner

corners (γ1, . . . , γn), we write T
γ1,...,γn−−−−→ U .

Example 2.16. We do an example which has two rectifications. Let

P = , T =

2 2

1

3

4

.
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One possible rectification follows this path

•

2 2

1

3

4

2

4

1

3

2 •

4

1

3

2 3

4

1

•

2

•

3

4

1

2

4

1

3

•

2

4

1

3

1

2

4

3

so one rectification of T is
1

2

4

3 .

Another rectification follows this path

•

2

•

2

1

3

4

2 2

4

1

3

2

•

2

4

1

3

2

1

2

4

3

•

2

1

2

4

3

2

4

1

4 3

•

2

4

1

4 3

1

2

4

3

4

so another rectification of T is
1

2

4

3

4

. One can check that these two are the only

rectifications of T . ♦

We say a skew increasing P-tableau rectifies uniquely if it has exactly one recti-
fication. We say an increasing P-tableau T of straight shape is a unique rectifica-
tion target (URT) if every skew increasing P-tableau which rectifies to T rectifies
uniquely.

3. Unique rectification in slant sums

In this section, we explore the structure of URTs in posets that are built out of
smaller posets by a slant sum operation.
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Definition 3.1. [Pro99a] Let P,Q be disjoint posets. Assume Q has a minimum

element 0̂Q. Let p ∈ P. The slant sum of Q to P at p, denoted P p/
0̂Q Q is the

poset on P ⊔ Q induced by imposing 0̂Q ⋗ p together with the orders on P and Q.
Because a poset’s minimum is unique, we will usually drop the 0̂Q and denote the slant
sum as P p/Q. If Q1, . . . ,Qn are pairwise disjoint posets which each have minima,
then P p/ (Q1, . . . ,Qn) denotes the iterated slant sum of posets at p. (Clearly, the
order of the Qis does not matter.) Finally, given p1, . . . , pm ∈ P and pairwise disjoint
posets Qj

i with minima, we write

P p1/ (Q
1
1, . . . ,Q

1
r1) p2/ · · · pm/ (Q

m
1 , . . . ,Q

m
rm)

to denote the result of slant summing each Qj
i onto pj (in any order).

We say that a poset P is a chain if all pairs of elements of P are comparable, that
is, if P is a total order. The size of a chain P is the number of its elements.

Proposition 3.2. Let P be a poset with 0̂P and let C = {c} be a chain of size 1. Let
R = C c/P.

If T is a a skew increasing P-tableau that rectifies uniquely (in P), then the skew
increasing R-tableau TR of shape ν⊔c/λ⊔c defined by TR(x) = T (x) rectifies uniquely
(in R).

Proof. Suppose U is the unique rectification of T . Let p be the minimum of P.
When we rectify TR in R, since c is covered only by p, the last step of rectification

is to slide c. Just before this final step, one has a tableau S whose shape is an order
ideal in P ⊂ R. Clearly, a process of slides producing S from TR (in R) corresponds
to a sequence of slides rectifying T (in P). Thus, since T rectifies uniquely to U , we
have S(x) = U(x) for all x ∈ P.

The final slide is necessarily Slide{c}, since c is the only inner corner of S. Hence,
there are no further choices to make and thus TR rectifies uniquely. �

Remark 3.3. The converse of Proposition 3.2 is false. Let

P = and R = .

For the skew increasing P-tableaux TP = 1

2

, we have

rects(TP) =















1

2
,

1

2
, and

1

2 2















.
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However, the skew R-tableaux TR =
1

2

rectifies uniquely to

1

2

.

Remark 3.4. Extending a poset by a new maximum element does not preserve

unique rectification targets. For example, it is easy to check that
1

2 is a unique

rectification target in the poset . However, as shown in Remark 3.3,

1

2

is not a unique rectification target in the poset .

We now introduce some useful notation and terminology that we will need. Suppose
Q is a shape of P, and T is a skew increasing P-tableau. Then, the restriction of T
to Q, denoted T |Q is the increasing Q-tableau given by restricting the domain of T
to those elements that are in Q.

Definition 3.5. Suppose F is an order filter of a poset P with a 0̂F . We say F is a
funnel if, for all p ∈ P \ F with p < f for some f ∈ F , we have p < 0̂F .

Note that, in particular, the embedded copy of Q in any slant sum P p/
0̂Q Q forms

a funnel.

Definition 3.6. Let F be a funnel of a poset P. Suppose T is a skew increasing
P-tableau of shape ν/λ with a rectification U . Then, the corresponding skew
increasing F -tableau of T for U , denoted as (T → U)|F , is the increasing F -tableau
defined by

(T → U)|F = T |E ,

where

E :=

{

{x ∈ ν/λ ∩ F : T (x) ≥ U(0̂F )}, if 0̂F ∈ ν/λ;

∅, if 0̂F /∈ ν/λ.

Proposition 3.7. Let F be a funnel of a poset P and let T be a skew increasing
P-tableau. If U is a rectification of T , then U |F is a rectification of (T → U)|F .

Proof. For concision, write F for (T → U)|F . The proposition is trivial if F is the
empty tableau, so we assume F is supported on at least one element of F .

Let T
γ1,...,γn−−−−→ U . Using the sequence of sets of inner corners γ1, . . . , γn, we will

recursively construct sets of inner corners θ1, . . . , θn that rectify F to S|F .
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We write T j
i to represent T after i slides and just before the jth swap; that is,

T j
i :=

{

Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsγi+1
◦ Slideγ1,...,γi(T ), if j ≥ 1;

Slideγ1,...,γi(T ), if j = 0.

In particular, T 0
0 = T and T 1

0 = AddDotsγ1(T ).
Let F0 := F . For 1 ≤ i ≤ n, recursively define θi and Fi as follows

θi := {c ∈ IC(Fi−1) : there exists a j with T j
i (c) = • and

T j+1
i (f) = • for some f ⋗ c with f ∈ Dom(Fi−1)}

and

Fi := Slideθ1,...,θi(F ).

Similar to T j
i , we let F j

i be

F j
i :=

{

Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsθi+1
(Fi), if j ≥ 1;

Fi, if j = 0.

Finally, we define certain subsets of θi which will be useful in our analysis. Let θ0i = ∅
and, for k > 0, let

θki := {c ∈ IC(Fi−1) : there exists a j⋆ ≥ k with T j⋆

i (c) = • and

T j⋆+1
i (f) = • for some f ⋗ c with f ∈ Dom(Fi−1)}.

Note that θ1i = θi.
Set m := U(0̂F) = minRange(F ). For the remainder of this proof, we say F j

i and

T j
i N-agree if F j

i and T j
i agree on all numeric labels within F greater than or equal

to m; that is, for all f ∈ F , if T j
i (f) ≥ m or F j

i (f) ∈ Z, then T j
i (f) = F j

i (f).

Additionally, for the remainder of this proof, we say that F j
i and T j

i agree if they
satisfy all the conditions:

(A.0) F j
i and T j

i N-agree;

(A.1) F j
i |Dom(Fi) = T j

i |Dom(Fi);

(A.2) for all c ∈ IC(Fi), F
j
i (c) = • if and only if c ∈ θji+1.

We now establish inductively that F j
i and T j

i agree for all i and j.
First, note that, since F 0

0 = F = (T → U)|F is by definition a restriction of T = T 0
0

to the subposet of F consisting of those x ∈ F with T 0
0 (x) ≥ m, F 0

0 and T 0
0 satisfy

(A.0) and (A.1). Furthermore, θ01 = ∅ and F 0
0 has no •s, which proves (A.2).

Now, inductively assume that F h
ℓ and T h

ℓ agree for all ℓ ≤ i and h ≤ j. Let

M = maxRange(T |F) = maxRange(F ).

(Case 1: j = M + 1): Since the largest label in F and T |F is M , our inductive
step is to show that F 0

i+1 and T 0
i+1 agree. We have F 0

i+1 = RemoveDots(FM+1
i ) and

T 0
i+1 = RemoveDots(TM+1

i ). Hence, since FM
i and TM

i satisfy (A.0), it is clear that
F 0
i+1 and T 0

i+1 satisfy (A.0) since removing •s does not change numeric values. Since
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F 0
i+1 and T 0

i+1 satisfy (A.0) and F 0
i+1 has no •s, we have that F 0

i+1 and T 0
i+1 satisfy

(A.1). Furthermore, by definition θ0i+1 = ∅ and F 0
i+1 has no •s, proving (A.2).

(Case 2: j = 0): In this case, F 1
i = AddDotsθi+1

(F 0
i ) and T 1

i = AddDotsγi+1
(T 0

i ). (We
note that, by definition, θi+1 is a subset of Fi’s inner corners, so AddDotsθi+1

(F 0
i ) is

valid.) To show that F 1
i and T 1

i agree, we must verify (A.0)–(A.2).
Proof of (A.0): Since F 0

i and T 0
i N-agree by assumption and AddDotsθi+1

does
not affect numerical labels, it is clear that F 1

i and T 1
i N-agree.

Proof of (A.1): Let f ∈ Dom(Fi). Then Fi(f) ∈ Z, so

F 1
i (f) = Fi(f) = Ti(f) = F 1

i (f) ∈ Z,

where the first and last equalities are by adding •s not affecting numeric labels and
the middle equality is by (A.0) for F 0

i and T 0
i .

Proof of (A.2): Since F 1
i = AddDotsθi+1

(Fi), we have that Fi(c) = • if and only
if c ∈ θi+1 = θ1i+1.

(Case 3: 0 < j < M + 1): We must verify (A.0)–(A.2) for F j+1
i and T j+1

i . First, we
prove some helpful claims.

Claim 3.7.1. For all c ∈ IC(Fi), if F
j
i (c) = •, then either T j

i (c) = • or else, for all
f ∈ Dom(F j

i ) with c⋖ f , we have F j
i (f) = T j

i (f) > j;

Proof of Claim 3.7.1. Let c ∈ IC(Fi) and suppose F j
i (c) = •. Then, by (A.2), f ∈

θji+1, so there exists a j⋆ ≥ j such that T j⋆

i (c) = • and T j⋆+1
i (f0) = •. There are two

cases to consider: either j⋆ = j or j⋆ > j.
First, suppose j⋆ = j. Then T j

i (c) = T j⋆

i (c) = •, as desired.
Otherwise, suppose j⋆ > j. Since T j⋆

i (c) = •, we have that for all c′ ∈ P with c′⋗ c

that T j
i (c

′) ≥ j⋆ > j. Thus, by the inductive (A.1), we have for all f ∈ Dom(Fi) with

f ⋗ c that F j
i (f) = T j

i (f) > j. �

Claim 3.7.2. Suppose p ∈ P\(Dom(Fi) ∪ IC(Fi)). Further suppose p⋖f with f ∈ F
and F j

i (f) = j. Then, F j
i (p) 6= • and T j

i (p) 6= •.

Proof of Claim 3.7.2. Since p /∈ Dom(Fi) ∪ IC(Fi), we have p /∈ Dom(F j
i ), and so it

is not the case that F j
i (p) = •.

Suppose T j
i (p) = •. We will obtain a contradiction by deriving that p ∈ IC(Fi).

Suppose p′ ⋗ p and p′ /∈ Dom(Fi).
If p′ ∈ Dom(T j

i ), then since T j
i (p) = •, we have that T j

i (p
′) ≥ j (since it above a

• after the (j − 1)st swap), and we know j ≥ m since F j
i (f) = j and m is the least

label in F . Hence, by the inductive (A.1), we have T j
i (p

′) = F j
i (p

′) ≥ j. Therefore,

F j
i (p

′) = Fi(p
′), so p′ ∈ Dom(Fi), in violation of our assumption. Thus, p′ /∈ Dom(T j

i ).

Let p′′ > p′. Because the domain of T j
i is a skew shape and p′ /∈ Dom(T j

i ), we

know that p′′ /∈ Dom(T j
i ). Thus, since Dom(Fi) ⊆ Dom(Ti) ⊆ Dom(T j

i ), we have
p′′ /∈ Dom(Fi). Thus, for any p′ ⋗ p with p′ /∈ Dom(Fi), we then have, for all p′′ > p′,
that p′′ /∈ Dom(Fi). Thus, p ∈ IC(Fi), which is our desired contradiction. �
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Proof of (A.0): By the inductive (A.0), F j
i and T j

i agree on numeric labels greater

than or equal to m. Since F j+1
i and T j+1

i are just F j
i and T j

i after applying Swap•,j ,
it suffices to consider the movement of the j labels. If j < m, we are done. Hence,
assume j ≥ m. We know by (A.0) that for all f ∈ F , that T j

i (f) = j if and only if

F j
i (f) = j. Hence, it suffices to show that whenever f ∈ F with F j

i (f) = T j
i (f) = j

and whenever f̂⋖f , we have F j
i (f̂) = • if and only if T j

i (f̂) = •. Fix f ∈ F and f̂⋖f .

Suppose T j
i (f) = F j

i (f) = j. We must show F j
i (f̂) = • if and only if F j

i (f̂) = •.

Either f̂ ∈ Dom(Fi), f̂ ∈ IC(Fi), or f̂ /∈ Dom(Fi) ∪ IC(Fi).

Suppose f̂ ∈ Dom(Fi). Then, the inductive (A.1) directly gives that F j
i (f̂) = • if

and only if T j
i (f̂) = •, as desired.

Suppose f̂ /∈ Dom(Fi) ∪ IC(Fi). Then, Claim 3.7.2 gives that F j
i (f̂) 6= • and

T j
i (f̂) 6= •.

Finally, suppose f̂ ∈ IC(Fi). If F j
i (f̂) = •, then Claim 3.7.1 gives that T j

i (f̂) = •.
Conversely, if T j

i (f̂) = •, then T j+1
i (f) = • by the definition of swapping, so by

definition f̂ ∈ θji+1. Hence, F
j
i (f̂) = • by the inductive (A.2).

Proof of (A.1): Let f ∈ Dom(Fi). Then by the inductive (A.0), we have that

f ∈ Dom(Ti), so either T j+1
i (f) ∈ Z or T j+1

i (f) = •.
If T j+1

i (f) ∈ Z, then by construction of the swapping process T j+1
i (f) ≥ Ti(f).

Moreover, Ti(f) = Fi(f) ≥ m by the inductive (A.0). Hence, T j+1
i (f) ≥ m. Thus,

we have F j+1
i (f) = T j+1

i (f) by (A.0) for F j+1
i and T j+1

i (which has already been
established at this point).

Now, suppose that T j+1
i (f) = •. If F j+1

i (f) 6= •, then F j+1
i (f) ≥ m. Hence, by

(A.0) for F j+1
i and T j+1

i (which has already been established at this point), we have

• 6= F j+1
i (f) = T j+1

i (f) = •,

which is a contradiction. Thus, F j+1
i (f) = •.

Proof of (A.2): We have

{f ∈ IC(Fi) : F
j+1
i (f) = •} = {f ∈ IC(Fi) : F

j
i (f) = • and F j

i (f
′) 6= j for all f ′ ⋗ f}.

By the inductive (A.2), this equals

{f ∈ θji : F
j
i (f

′) 6= j for all f ′ ⋗ f},

which in turn equals

{f ∈ θji : T
j
i (f

′) 6= j for all f ′ ∈ Dom(Fi) with f ′ ⋗ f}

by the inductive (A.0). As this last set is the definition of θj+1
i , this completes the

proof of (A.2) and hence the induction.
As a consequence of our induction, we have F 0

n = T 0
n |F = U |F . Hence,

F
θ1,...,θn−−−−→ U |F ,

as desired. �
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We now derive a few straightforward corollaries of Proposition 3.7. We will not use
these corollaries in the sequel; however, they seem interesting to us for elucidating
some of the structure of URTs among collections of related posets.

Corollary 3.8. Let T be a skew increasing P-tableau and let F be a funnel of P.
Let U, V be rectifications of T . If U |F is a URT in F and U(0̂F) = V (0̂F), then
U |F = V |F .

Proof. By definition, (T → U)|F = (T → V )|F , since U(0̂F ) = V (0̂F). By Propo-
sition 3.7, (T → U)|F rectifies to U |F and (T → V )|F rectifies to V |F . Since by
assumption U |F is a URT in F , it follows that U |F = V |F . �

Definition 3.9. The bottom chain C of a poset P is the order ideal of P constructed
as follows. Define

min(P) :=

{

{0̂P}, if P has a 0̂P ;

∅, otherwise.

We construct the shapes Ci recursively. Let C0 := min(P) and let Ci+1 := Ci ∪
min(P \ Ci). Finally, the bottom chain of P is

C :=
⋃

n∈Z≥0

Cn.

Lemma 3.10. Let C be the bottom chain of a poset P. Let U, V be rectifications of a
skew increasing P-tableau T . Then U |C = V |C.

Proof. In any rectificationW of T , the labels ofW |C must be just the smallest numbers
in the range of T in increasing order. �

Corollary 3.11. Let P1, . . . ,Pn be pairwise disjoint posets with minimum elements
0̂Pk

. Let C = {c} be a chain of size 1. Construct the slant sum R := C c/ (P1, . . . ,Pn).
For U a straight-shaped increasing R-tableau, if U |Pk

is an URT in Pk for each
1 ≤ k ≤ n, then U is a URT in R.

Proof. Suppose U, V are rectifications of some skew increasing R-tableau T . Since c
is in the bottom chain of R, U |C = V |C by Lemma 3.10. Let m := U(c) = V (c). It
remains to show that U |Pk

= V |Pk
for all k. Fix some Pk. By the increasingness of

U and V , we have U(0̂Pk
) > m and V (0̂Pk

) > m, but both U(0̂Pk
) and V (0̂Pk

) must
also be less than all the other labels in their respective tableaux for elements in Pk

that are greater than 0̂Pk
. Thus, since 0̂Pk

only covers c and all the Pk are disjoint
funnels, it is easy to see that

U(0̂Pk
) = V (0̂Pk

) = min(Range(T |Pk
) \ {m}).

Finally, since U(0̂Pk
) = V (0̂Pk

), we have U |Pk
= V |Pk

by applying Corollary 3.8. �

We will say a poset T is a tree if T has a 0̂T and if each other x ∈ T has exactly
one parent.
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Corollary 3.12. Let T be a tree. Let t1, . . . , tn be (not necessarily distinct) elements
of T . Let P1, . . . ,Pn be pairwise disjoint posets with minimum elements. Define

R0 := T

and
Ri+1 = Ri ti+1

/Pi+1 for i = 0, . . . , n− 1.

Let U be a straight-shaped increasing Rn-tableau. If U |Pk
is an URT in Pk for all

1 ≤ k ≤ n, then U is a URT in Rn.

Proof. By repeated application of Corollary 3.11. �

4. Restricted rectifications and p-chain URTs

Most of the results in this section are fairly technical lemmas that we will need
later.

Definition 4.1. Let P be a poset, let Q be a subset of P, and let T be a skew in-
creasing P-tableau. Then, the rectifications of T restricted to Q are the elements
of the set

rects|Q(T ) := {U |Q : U ∈ rects(T )}.

Lemma 4.2.

(1) Fix p ∈ P and let k := |{x ∈ P : x ≤ p}| be the cardinality of the principal
order ideal generated by p. Let C be a chain poset of size k. If

R = P p/ (Q1, . . . ,Qn)

for pairwise disjoint posets Q1, . . . ,Qn with minimum elements and T is a
skew increasing R-tableau, then there is a skew increasing (P p/ C)-tableau C
such that

rects|P(T ) = rects|P(C).

(2) More generally, if p1, .., pn ∈ P are distinct, define ki := |{x ∈ P : x ≤ pi}|
and let Ci be the chain poset of size ki. Then, if

R = P p1/ (Q
1
1, . . . ,Q

1
m1

) p2/ . . . pn/ (Q
n
1 , . . . ,Q

n
mn

)

for pairwise disjoint posets Q1
1, . . . ,Q

n
mn

with minimum elements and T is a
skew increasingR-tableau, then there is a skew increasing (P p1/ C1 p2/ . . . pn/ Cn)-
tableau C such that

rects|P(T ) = rects|P(C).

Proof. We first prove (1). Since there are k weak ancestors of p, there are at most
k distinct labels from

⋃

hQh that can swap into P during rectification of the skew
increasing R-tableau T . Let q1 < · · · < qm ∈ Z>0 be the m smallest labels of elements
in T |⋃

h Qh
, where m is the lesser of k and the number of distinct labels in T |⋃

h Qh
.

Fix a chain C = {c1 < · · · < ck} of size k. Define the skew increasing P p/ C-tableau
C as follows:

C(x) =

{

T (x), x ∈ P ∩Dom(T );

qr, x = cr and 1 ≤ i ≤ m.
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We will show rects|P(T ) = rects|P(C). First, we show that rects|P(T ) ⊆ rects|P(C).

To do this, suppose T
γ1,...,γn
−−−−→ U in R. We must show that U |P ∈ rects|P(C). We use

the sequence of inner corners θi := γi ∩ P to rectify C.
Write T j

i to represent T after i slides and just before the jth swap; that is,

T j
i :=

{

Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsγi+1
◦ Slideγ1,...,γi(T ), if j ≥ 1;

Slideγ1,...,γi(T ), if j = 0.

Similarly, let Cj
i be

Cj
i :=

{

Swap•,j−1 ◦ · · · ◦ Swap•,1 ◦ AddDotsθi+1
◦ Slideθ1,...,θi(C), if j ≥ 1;

Slideθ1,...,θi(C), if j = 0.

For the rest of this proof, we say T j
i and Cj

i are similar if they satisfy both of the
following conditions:

(S.0) T j
i |P = Cj

i |P ;
(S.1) {T j

i (q) ∈ Z : q ∈
⋃

h Qh and T j
i (q) ≤ qm} = {Cj

i (c) ∈ Z : c ∈ C and Cj
i (c) ≤

qm}.

We show by induction that T j
i and Cj

i are similar for all i and j. In particular, this

will yield T j
i |P = Cj

i |P , proving that U |P = T 0
n |P = C0

n|P ∈ rects|P(C), as desired.
By construction, we have that T 0

0 |P = T |P = C|P = C0
0 |P so T 0

0 and C0
0 satisfy

(S.0). Condition (S.1) for T 0
0 and C0

0 is also by construction.
Now, inductively assume T j

i and Cj
i are similar. For concision, write S

j
i for the set

{T j
i (q) ∈ Z : q ∈

⋃

h

Qh and T j
i (q) ≤ qm} = {Cj

i (c) ∈ Z : c ∈ C and Cj
i (c) ≤ qm}

considered in the inductive (S.1) condition. Let

M = maxRange(T ) ≥ maxRange(C).

(Case 1: j = M + 1): We have that

T 0
i+1|P = RemoveDots(TM+1

i )|P = RemoveDots(TM+1
i |P)

= RemoveDots(CM+1
i |P) = RemoveDots(CM+1

i )|P

= C0
i+1|P ,

so T 0
i+1 and C0

i+1 satisfy (S.0). Removing •s does not affect the numerical labels in
⋃

hQh or C, so (S.1) for T 0
i+1 and C0

i+1 is immediate from (S.1) for TM+1
i and CM+1

i .
This completes this case.

Before turning to the next case, note that if none of the weak ancestors of p are
skewed out of T 0

i |P = C0
i |P , then (S.0) and (S.1) continue holding in perpetuity since

no elements of
⋃

hQh or C will be involved in any swaps. Thus, for the remaining
cases, assume at least one weak ancestor of p is skewed out.

Further, note that if Sj
i = ∅, then since at least one weak ancestor of p is skewed

out, we have {T j
i (q) ∈ Z : q ∈

⋃

hQh} = {Cj
i (c) ∈ Z : c ∈ C} = ∅ by the definition of
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qm. Hence if S
j
i = ∅, then (S.0) and (S.1) continue to hold in perpetuity, since neither

tableau has labels outside of P. Thus, for the remaining cases, we may further assume
S
j
i 6= ∅.

(Case 2: j = 0): First, we verify that θi+1 ⊆ IC(C0
i ). Let t ∈ θi+1. Since t ∈ θi+1, we

have that t ∈ γi+1 ∩ P, so t is an inner corner in T 0
i |P = C0

i |P . (This equality is by
the inductive (S.0).) Hence, since C has skewed out nodes only in P, it follows that
t ∈ IC(C0

i ). Thus, θi+1 ⊆ IC(C0
i ).

Since θi+1 = γi+1 ∩ P, we have

T 1
i |P = AddDotsγi+1

(T 0
i )|P = AddDotsθi+1

(T 0
i )|P

= AddDotsθi+1
(T 0

i |P) = AddDotsθi+1
(C0

i |P)

= C1
i |P ,

proving (S.0) for T 1
i and C1

i . Similarly to the previous case, since adding •s does not
affect the numerical labels in

⋃

hQh or C, (S.1) for T 1
i and C1

i is immediate from (S.1)
for T 0

i and C0
i .

(Case 3: 0 < j < M + 1): We show (S.0) first. Observe that the structure of R,
P p/ C, and P easily ensures that if q ∈ P, then

(F.1) for all q̂ ⋖ q (in either R or P p/ C), q̂ ∈ P, and
(F.2) if q 6= p, then for all q′ ⋗ q (in either R or P p/ C) we have that q′ ∈ P.

Now (F.1), (F.2), the fact that T j
i |P = Cj

i |P , and the local nature of the swapping pro-

cess, together ensure that T j+1
i (q) = F j+1

i (q) for all q ∈ P with q 6= p. Furthermore,

if T j
i (p) 6= •, then (F.1) ensures T j+1

i (p) = F j+1
i (p).

Hence, it remains to consider the situation where T j
i (p) = Cj

i (p) = •. Then

T j+1
i (p) =

{

j, if j = min{T j
i (p

′′) ∈ Z : p′′ ∈ R and p′′ > p}

•, otherwise

=

{

j, if j = min{Cj
i (p

′′) ∈ Z : p′′ ∈ P p/ C and p′′ > p}

•, otherwise

= Cj+1
i (p).

Here, the first and third equalities are by the definition of the swapping process and
the increasingness of the tableaux. The second equality is because

min {T j
i (p

′′) ∈ Z : p′′ ∈ R and p′′ > p} = min {Cj
i (p

′′) ∈ Z : p′′ ∈ P p/ C and p′′ > p},

as follows from the inductive (S.0), (S.1), and the assumption that S
j
i 6= ∅. This

proves (S.0).
It remains to show (S.1). The swapping process only affects labels with value j.

We already have

{T j
i (q) ∈ Z : q ∈

⋃

Qh and T j
i (q) ≤ qm} = {Cj

i (c) ∈ Z : c ∈ C and Cj
i (c) ≤ qm},
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so it just remains to show that

j ∈ {Cj+1
i (c) ∈ Z : c ∈ C and Cj+1

i (c) ≤ qm}

m

j ∈ {T j+1
i (q) ∈ Z : q ∈

⋃

Qh and T j+1
i (q) ≤ qm}.

Either T j+1
i (p) = j or not. If T j+1

i (p) = j, then (S.0) for T j+1
i and Cj+1

i (which is

already established at this point) implies Cj+1
i (p) = j. Hence, the increasingness of

T j+1
i and Cj+1

i ensures that

j /∈ {T j+1
i (q) ∈ Z : q ∈

⋃

Qh and T j+1
i (q) ≤ qm}

and

j /∈ {Cj+1
i (c) ∈ Z : c ∈ C and Cj+1

i (c) ≤ qm}.

Otherwise, T j+1
i (p) 6= j. Then, nothing could have been swapped into p at this

stage. Thus, since p is the only element connecting P to
⋃

Qh or C, in this situation
(S.1) for T j+1

i and Cj+1
i is immediate from (S.1) for T j

i and Cj
i . This completes the

induction and shows that rects|P(T ) ⊆ rects|P(C).
To show the reverse containment rects|P(C) ⊆ rects|P(T ), we follow the same strat-

egy, except that we first remove any skewed out nodes in
⋃

hQh. Suppose C
θ1,...,θn−−−−→ V .

We must find a sequence of inner corners that yields a rectification U of T such that
U |P = V |P . First, we remove any skewed nodes in

⋃

h Qh, as follows. Let T0 = T .
Recursively define

αi+1 := IC(Ti) ∩ (
⋃

h

Qh)

and

Ti+1 := Slideαi+1
(Ti).

Let k be least such that αk = ∅. Then Tk has no skewed out nodes in
⋃

hQh. Finally,
let γi := θi ∩P. Then Slideγ1,...,γn(Tk) = U |P . The proof is exactly the same as before
except C, V , Tk, θi, and γi play the respective roles of T , U , C, γi, and θi. This
completes the proof of (1).

The proof for (2) is by induction on n. The base case n = 1 is the previously proven
statement (1). For n > 1, let

P ′ = P p1/ (Q
1
1, . . . ,Q

1
m1

)

and let

S = P ′
p2/ C2 p3/ . . . pn/ Cn.

By the inductive hypothesis, there is a skew increasing S-tableau TS such that

rects|P ′(TS) = rects|P ′(T ),

so furthermore by restriction we have

rects|P(TS) = rects|P(T ).
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Observe that

S = P ′
p2/ C2 p3/ . . . pn/ Cn = (P p2/ C2 p3/ . . . pn/ Cn) p1/ (Q

1
1, . . . ,Q

1
m1

).

Then, by (1), there is an increasing skew P p1/ C2 p2/ . . . pn/ Cn-tableau TC such that

rects|(P p2
/ C2 p3

/ ... pn/ Cn)(TS) = rects|(P p2
/ C2 p3

/ ... pn/ Cn)(TC)

so furthermore by restriction

rects|P(TS) = rects|P(TC).

Thus,
rects|P(TC) = rects|P(TS) = rects|P(T ),

as desired. �

Definition 4.3. Let P be a poset and fix p ∈ P. Let U be a URT in P. Then U
is a p-chain unique rectification target in P if U is a URT in P p/ C for every
chain poset C. More generally, U is a {p1, . . . , pn}-chain URT in P if U is a URT
in P p1/ C1 p2/ · · · pn/ Cn for all pairwise disjoint chains C1, . . . , Cn.

Being a p-chain URT is a strictly stronger notion than being a URT. For an example
of a URT that is not a p-chain URT, see Remark 3.4.

Proposition 4.4. Let R be the slant sum

R := P p1/ (Q
1
1, . . . ,Q

1
m1

) p2/ · · · pn/ (Q
n
1 , . . . ,Q

n
mn

),

for pi distinct and Qj
i all pairwise disjoint with minimum elements. Let T be a skew

increasing R-tableau with rectifications U and V . If U |P is a {p1, .., pn}-chain URT
in P, then U |P = V |P.

Proof. By Lemma 4.2, there exist chain posets C1, . . . , Cn and a skew increasing
P p1/ C1 p2/ · · · pn/ Cn-tableau TC such that

rects|P(T ) = rects|P(TC).

Since U |P is a {p1, .., pn}-chain URT, we know |rects|P(TC)| = 1, so |rects|P(T )| = 1.
Hence U |P = V |P . �

Proposition 4.5.

(1) Let R be the slant sum P p/Q and let U be an increasing R-tableau of straight
shape. Suppose A ⊆ P and B ⊆ Q. If p ∈ A and U |P is an A-chain URT in
P and U |Q is a B-chain URT in Q, then U is an A ∪ B-chain URT in R.

(2) More generally, let

R := P p1/ (Q
1
1, . . . ,Q

1
m1

) p2/ · · · pn/ (Q
n
1 , . . . ,Q

n
mn

)

and let U be an increasing R-tableau of straight shape. Suppose {p1, . . . , pn} ⊆
A ⊆ P and Bj

i ⊆ Qj
i . Set

D := A ∪

(

⋃

i,j

Bj
i

)

.
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If U |P is an A-chain URT in P and U |Qj
i
is a Bj

i -chain URT in Qj
i for each

i, j, then U is a D-chain URT in R.

Proof. For simplicity, we only explicitly prove part (1). The proof of part (2) follows
the same strategy.

Let C be a poset formed by taking R and slant summing chains on top of elements
in A∪B. We must show that U is a URT in C. Hence, suppose some skew increasing
C-tableau C rectifies to U and V . Then, we must show U = V . Since U is an A-chain
URT in P, by Proposition 4.4, we have that U |P = V |P .

It is easy to see that since U and V agree on P, they must also agree on any chain
Ca slant summed onto an element a ∈ A ⊆ P. This is since, in any such chain, the
labels of Ca in U and V must be exactly those labels of Ca in T that have values greater
than U(a) = V (a). By increasingness of U and V , these are necessarily written in
increasing order along Ca in both tableaux. Thus, U |Ca = V |Ca .

Let QC be the principal order filter of C generated by 0̂Q. Since QC is a funnel in
C, we may consider the tableaux (T → U)|QC

and (T → V )|QC
. By Definition 3.6, we

have (T → U)|QC
= (T → V )|QC

, since both tableaux defined to the the restriction
of T to the set

E := {q ∈ Q : T (q) > U(p)} = {q ∈ Q : T (q) > V (p)},

where the second equality is by recalling U(p) = V (p) (since p ∈ P) and noting that
p is the only element of C covered by 0̂Q. By Proposition 3.7, U |QC

and V |QC
are

rectifications of (T → U)|Q = (T → V )|Q. However, since U |Q is a B-chain URT in
Q, we have that U |Q is a URT in QC . Hence U |QC

= V |QC
.

Thus, we have shown that U(c) = V (c) for all c ∈ C, so U = V , as desired. �

The following result follows inductively from Corollary 3.11; we, however, prove it
here as a useful demonstration of working with p-chain URTs in preparation for more
sophisticated uses later.

Corollary 4.6. Let T be a tree. Let U be any increasing T -tableau of straight shape.
Then U is a URT in T .

Proof. Let n = |T |. Define T1 ⊆ · · · ⊆ Tn such that for all i, Ti is an order ideal of
T and |Ti| = i. In particular, we have T1 = {0̂T } and Tn = T . We claim that for
all i, U |Ti

is a Ti-chain URT in Ti. We work by induction on i. First, we note that in
any singleton poset P, every increasing P-tableau of straight shape is a P-chain URT
by Lemma 3.10. Thus, since |T1| = 1, U |T1

is a T1-chain URT in T1. Now suppose
i > 1. Let t be the unique element in Ti \Ti−1 and let p be the unique parent of t in
T . Then Ti = Ti−1 p/ {t}. By the inductive hypothesis, U |Ti−1

is a Ti−1-chain URT
in Ti−1. Because |{t}| = 1, U |{p} is a {t}-chain URT in {t}. Thus by Proposition
4.5, U |Ti

is a Ti-chain URT in Ti. This completes the induction. Hence U |Tn
= T is

a URT in Tn = T . �

Trees are a particularly simple subfamily of the d-complete posets studied in this
paper. Corollary 4.6 should be understood as a particularly strong version of Theo-
rem 1.2 for this special subfamily.
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5. Double-tailed diamonds

In this section, we investigate the p-chain unique rectification targets of certain
posets, called double-tailed diamonds. This special family of d-complete posets plays
a central role in the study of general d-complete posets. We will apply the results
developed here to the general case in Section 6.

For k ≥ 3, a double-tailed diamond D(k) has 2k− 2 elements, two of which are
incomparable elements in the middle with chains of size k−2 above and below them.
Figure 2 illustrates the Hasse diagrams of some of these posets. It is easy to work out
that any increasing tableau on any order ideal of a double-tailed diamond is a URT.
(This is even explicitly observed in [BS16, Proof of Theorem 3.12].) For application
in Section 6, we need to strengthen this observation to the setting of p-chain URTs.

D(3) D(4) D(5)

Figure 2. The Hasse diagrams of the three smallest double-tailed diamonds.

To study the p-chain URTs of double-tailed diamonds, we introduce a chained
double-tailed diamond. A chained double-tailed diamond is formed by slant sum-
ming a chain onto each of the two middle elements of the double-tailed diamond. We
index the elements of a chained double-tailed diamond as shown in Figure 3. We
refer to the set of elements indexed as ℓk as the left chain of the poset, and those
indexed as rk as the right chain. In this notation, a chained double-tailed dia-
mond corresponds to a triple of positive integers m,n, p ≥ 1. We denote the chained
double-tailed diamond for (m,n, p) by D(m,n, p). In particular, D(k) = D(1, k, 1).

Proposition 5.1. Let T be a skew increasing D(m,n, p)-tableau. Then, T rectifies
uniquely.

Proof. Suppose T has shape ν/λ. If {ℓ1, r1} 6⊆ λ, then there are no choices to be
made during rectification and hence T rectifies uniquely. Thus, assume {ℓ1, r1} ⊆ λ.
We can repeatedly perform slides on inner corners not equal to ℓ1 or r1 because all the
descendants of ℓ1 and r1 are in disjoint chains and hence these slides clearly commute.
Thus, we may assume T has exactly two inner corners ℓ1 and r1. Write I := {ℓ1, r1}.
Let s ∈ Z be largest such that ts ∈ ν (set s = 0 if t1 /∈ ν).

We induct on s. If s = 0, then ν is a tree, and so T rectifies uniquely by Corol-
lary 4.6. Assume s ≥ 1 and that the proposition holds for smaller s.
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tn

...

t2

t1

ℓ1 r1

b1

b2

...

bn

ℓ2

..
.

ℓm

r2

. .
.

rp

Figure 3. Our standard indexing of the nodes of the chained double-
tailed diamond poset D(m,n, p).

(Case 1: T (t1) 6= minRange(T )): Without loss of generality, we may assume T (ℓ2) <
T (t1). There are three possibilities for γ ⊆ I: either γ = {ℓ1}, γ = {r1}, or γ =
{ℓ1, r1}. If we choose γ = {ℓ1}, then after Slide{ℓ1} is completed, r1 will be the unique
inner corner; thus, the following slide is necessarily at r1. Similarly, if we choose
γ = {r1}, the next slide is necessarily at ℓ1.

By routine case analysis, one checks that

Slide{ℓ1},{r1}(T ) = Slide{r1},{ℓ1}(T ) = Slide{r1,ℓ1}(T )

in any of the various cases: T (t1) < T (r2), T (t1) = T (r2), or T (t1) > T (r2). Thus,
any choice made at this first step of rectifying T yields the same tableau after one
or two slides. That latter tableau has a unique rectification, as there are no further
choices to be made. Hence, T rectifies uniquely.

(Case 2: T (t1) = minRange(T )):

(Case 2.1: s = 1): Then T looks like the following.

T (t1)

...

bn

T (ℓ2)

..
.

T (ℓm)

T (r2)

. .
.

T (rp)
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Consider any rectifications U and V of T . By Lemma 3.10, for all k we have
U(bk) = V (bk) is the (n−k+1)st smallest element of Range(T ). Thus, since T (t1) =
minRange(T ) by assumption, we have U(bn) = T (t1). Hence, t1 /∈ Dom(R) and so U
looks like:

R(b1)

R(ℓ1) R(r1)

R(b2)

...

R(bn)bn

R(ℓ2)

..
.

R(ℓm)

R(r2)

. .
.

R(rp)

Consulting these pictures, one observes that

U(ℓ1) = min({T (ℓi) : 2 ≤ i ≤ m and T (ℓi) > U(b1)}

and similarly for V . Since U(b1) = V (b1) by Lemma 3.10, this means U(ℓ1) = V (ℓ1).
Clearly, the labels of U in the left chain of D(m,n, p) are exactly the labels on the
left chain of D(m,n, p) in T that are at least U(ℓ1) written in increasing order. Since
the same is true for V , we have U(ℓq) = V (ℓq) for all q. The same argument shows
U(rq) = V (rq). Thus, U = V and T rectifies uniquely.

(Case 2.2: s ≥ 2): Let U, V be rectifications of T . As in Case 2.1, we have U(bn) =
V (bn) = T (t1). Let Q := D(m,n, p) \ {bn}. We must show U |Q = V |Q. Since n ≥
s ≥ 2, Q has a minimum and is a funnel of D(m,n, p). Then by Proposition 3.7, U |Q
is a rectification of SU := (T → U)|Q and V |Q is a rectification of SV := (T → V )|Q.
Since U(bn) = V (bn) = T (t1), it follows from the definition of corresponding tableaux
that SU = SV . In fact, SU and SV are merely T restricted by deleting all labels of
value T (t1). Hence, write S := SU = SV . It remains to show that S rectifies uniquely
in Q.

Since S is T restricted by deleting all labels of value T (t1) = minRange(T ) and
the inner corners of T are exactly {ℓ1, r1}, it follows that the inner corners of S are
exactly those elements q ∈ Q with T (q) = T (t1). The structure of Q ensures that ℓ2
and r2 are the only two nodes q besides t1 that could possibly have the label T (t1).
Let J ⊆ {t1, ℓ2, rr} be the set of inner corners of S. Clearly, since the various slides
only affect disjoint chains, for any set partitions (γ1, . . . , γh) and (δ1, . . . , δk) of J , we
have

Slideγh ◦ · · · ◦ Slideγ1(T ) = Slideδk ◦ · · · ◦ Slideδ1(T ).

Hence, without loss of generality, we may assume that we perform Slide{t1} first. That
is, set S ′ := Slide{t1}(S) and observe that Rects(S ′) = Rects(S).
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Finally, we must show that S ′ rectifies uniquely. Let the shape of S ′ be η/θ.
Recall, s is defined to be the largest integer with ts ∈ Dom(T ), so by the construction
of S, we also have that s is the largest integer with ts ∈ Dom(S). Hence, since
S ′ := Slide{t1}(S), we have that ts /∈ Dom(S ′). Since s ≤ n, this ensures that η is an
order ideal of

Q \ {tn} = D(m,n, p) \ {bn, tn} = D(m,n− 1, p),

where the first equality is by the definition of Q and the second equality follows from
n ≥ s ≥ 2. Hence, S ′ is a skew increasing D(m,n − 1, p)-tableau. Moreover, the
largest i such that S ′(ti) is defined is s−1, so by the inductive hypothesis, S ′ rectifies
uniquely in D(m,n− 1, p). Thus, S rectifies uniquely in Q, and so W |Q is the same
for all rectifications W of T , so T rectifies uniquely. �

Corollary 5.2. Every increasing D(m,n, p)-tableau of straight shape is a URT.

Proof. Immediate from Proposition 5.1. �

Corollary 5.3. Every increasing D(n)-tableau of straight shape is an {ℓ1, r1}-chain
URT.

Proof. Immediate from Corollary 5.2 �

Proposition 5.1 is a special case of the following more general conjecture, for which
we have some additional experimental evidence. (For the definition of ‘d-complete’,
see Section 6.)

Conjecture 5.4. Let P be a d-complete poset with bottom tree B. If T is a skew
increasing P-tableau with rectifications R and S, then we have R|B = S|B.

Special cases of Conjecture 5.4 are key lemmas in [TY09b] and [CTY14]. These
lemmas have additional combinatorial applications [TY11, Pec17]; Conjecture 5.4
might have similar applications.

6. d-complete posets and minuscule posets

In this section, we recall the definition of d-complete posets following [Pro99a], and
prove our main result Theorem 1.2 regarding slant sum trees of minuscule posets. (We
use, however, the convention of [Pro99b] regarding the orientation of our posets; the
paper [Pro99a] uses the opposite convention, so the posets in [Pro99a] are the duals
of ours.) The proofs presented in this section are all straightforward, relying on the
technical results of the previous sections. We also develop appropriate terminology
here to give precise interpretations of Conjectures 1.1 and 1.3.

If x, y ∈ P, the interval [x, y] is the set {z ∈ P : x ≤ z ≤ y}. We call an interval
[x, y] in P a Q-interval if it is isomorphic to the poset Q. We will be especially
interested in D(k)-intervals (k ≥ 3). Let D0(k) := D(k) \ {t}, where t is the minimal
element of D(k). We will also be interested in D0(k)-intervals (k ≥ 4). Examples of
D0(k)-intervals are shown in Figure 4; the corresponding posets D(k) are shown in
Figure 2.
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D0(4) D0(5)

Figure 4. The Hasse diagrams of some small truncated double-tailed
diamonds D0(k).

Definition 6.1. A poset P is D(3)-complete if it satisfies the following three con-
ditions:

(1) anytime an element z covers two distinct elements x and y, there exists a
fourth element w that x and y both cover;

(2) if [w, z] is a D(3)-interval in P with elements {w, x, y, z}, then w is only
covered by x and y in P; and

(3) in such a D(3)-interval, there is no w′ 6= w that both x and y cover.

Let k ≥ 4. Suppose [x, z] is a D0(k)-interval in which y is the unique element with
y ⋗ x. If there is no w ∈ P with w ⋖ x such that [w, z] is a D(k)-interval, then [x, z]
is an incomplete D0(k)-interval. If there exists x

′ 6= x with y⋗x′ such that [x′, z] is
also a D0(k)-interval, then we say that [x, z] and [x′, z] overlap.

Definition 6.2. For any k ≥ 4, a poset P is D(k)-complete if it satisfies the
following three conditions:

(1) there are no incomplete D0(k)-intervals;
(2) if [w, z] is a D(k)-interval, then w is covered by only one element in P; and
(3) there are no overlapping D0(k)-intervals.

A poset P is d-complete if it is D(k)-complete for every k ≥ 3.

Briefly, the algebraic context of d-complete posets is as follows. (For further details,
see [Ste96, Pro99b, CP12].) Let Λ be a dominant integral weight of a Kac-Moody Lie
algebra g with (generally infinite) Weyl group W . The Weyl group element w ∈ W
is called Λ-minuscule if it can be written as a reduced word in the simple reflections
as

w = si1si2 · · · siℓ ,

so that for all j
(sij+1

· · · siℓ − sij · · · siℓ)Λ = αij ,

where αij is the simple root for sij . (In fact, this property is independent of the
choice of reduced word [Ste01, Proposition 2.1].) Now, if w is Λ-minuscule, then the
interval [id, w] in Bruhat order is a distributive lattice. A poset P is d-complete if
and only if it is isomorphic to the poset of join irreducibles of such a ‘Λ-minuscule
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distributive lattice’; equivalently, a poset Q is isomorphic to a Bruhat interval [id, w]
for some Λ-minuscule w if and only if Q is isomorphic to the poset of order ideals of
a d-complete poset. Since Bruhat order on W also describes containment of Schubert
varieties in the Kac-Moody homogeneous space X = G/B, we have for u, v ≤ w all
Λ-minuscule that the inclusion of Schubert varieties Xu ⊆ Xv is equivalent to the
reverse inclusion λv ⊆ λu of the corresponding order ideals in the d-complete poset
for w. In addition to their algebraic relations, d-complete posets enjoy a number of
beautiful combinatorial properties, including an analogue of the classical hook-length
formula (for a full proof of this fact, see [KY17]). Figure 1 shows an example of a
reasonably large d-complete poset.

Say a d-complete poset is irreducible if it is not the slant sum of two d-complete
posets. R. Proctor [Pro99a] showed that all d-complete posets can be uniquely decom-
posed as a slant sum of irreducible d-complete components. In this decomposition,
irreducible components are only slant summed onto special nodes of other irreducible
components, called acyclic nodes [Pro99a]; that is, if P = Q q/R is d-complete and R
is irreducible, then q is an acyclic node of its irreducible component. (We avoid giving
the somewhat technical definition of acyclic nodes, as it is sufficient for our purposes
to use Proctor’s explicit identification [Pro99a] of all acyclic nodes of all irreducible
d-complete posets.) The irreducible d-complete posets are classified into 15 (mostly
infinite) families; we follow Proctor’s numbering and naming conventions for these
families from [Pro99a]. Of these 15 families, only the components from families 1–9
and 11 have any acyclic nodes.

For a poset P, we say an increasing P-tableau T of straight shape λ ⊆ P is
minimally-labeled if it is minimal among all increasing P-tableaux of shape λ
under nodewise comparison of labels; that is, if U is another increasing tableau of
shape λ, then U(x) ≥ T (x) for all x ∈ λ. It is easy to see that there exists a unique
minimally-labeled P-tableau of each straight shape λ. We write Mλ for this unique
tableau. The precise version of Conjecture 1.1 is the following.

Conjecture 6.3. Let P be d-complete and let λ ⊆ P be an order ideal. Then, the
minimally-labeled increasing P-tableau Mλ of shape λ is a unique rectification target.

In light of the slant sum structure of d-complete posets, Conjecture 6.3 would
follow from Proposition 4.5 together with information about (p-chain) URTs in the
15 families of irreducible d-complete posets. Specifically, it remains to show that

• for each irreducible d-complete poset Q with acyclic nodes, that Mλ is a p-
chain URT for each order ideal λ ⊆ Q and each acyclic node p ∈ Q, and
that

• for each irreducible d-complete poset Q without acyclic nodes, that Mλ is a
URT for each order ideal λ ⊆ Q.

Unfortunately, we are unable to establish the necessary results for some of these
families; hence, we can only leverage Proposition 4.5 to prove a weaker version of
Conjecture 6.3, namely Theorem 1.2. First, we recall the minuscule posets, a special
subset of d-complete posets. Except for some trivial instances, all minuscule posets
are irreducible.
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Algebraically, one obtains the minuscule posets as follows. Suppose the Kac-Moody
group G is in fact complex reductive. Put a partial order on the positive roots Φ+ of
G by taking the transitive closure of the covering relation α⋖β if and only if β−α is a
simple root. The simple root δ is a minuscule root if for every positive root α ∈ Φ+,
the multiplicity of δ∨ in the simple coroot expansion of α∨ is at most 1. For each
minuscule root, one obtains a corresponding minuscule poset Pδ by restricting the
partial order on Φ+ to those positive roots that use δ in their simple root expansion.
There is also a corresponding minuscule variety obtained as the quotient G/Pδ,
where Pδ is the maximal parabolic subgroup associated to the minuscule root δ.
The minuscule poset Pδ encodes the Schubert stratification of G/Pδ; specifically, the
Schubert varieties are naturally indexed by the order ideals of Pδ, and inclusions of
order ideals correspond to reverse inclusions of Schubert varieties.

Minuscule poset Minuscule variety Irreducible d-complete classification

rectangle Grassmanian shapes (family 1)
shifted staircase orthogonal Grassmanian shifted shapes (family 2)
double-tailed diamond quadric hypersurface insets (family 4–special case)
Cayley-Moufang swivel octonion projective plane swivels (family 8–special case)
bat Freudenthal variety bat (family 12)

Table 1. The 5 families of minuscule posets are named in the first
column. The second column identifies the corresponding minuscule
homogeneous space. The third column shows how the minuscule posets
fall into R. Proctor’s classification of irreducible d-complete posets from
[Pro99a].

Combinatorially, the minuscule posets are completely classified. Minuscule posets
consist of three infinite families together with a pair of exceptional examples. This
classification is given in Table 1, with examples shown in Figure 5. One infinite family
of minuscule posets is the rectangles; combinatorially, these are the products Ci×Cj
of two chain posets. Another infinite family is the double-tailed diamonds studied in
Section 5. The final infinite family is the shifted staircases; identifying the chain
Ci with the natural order on {1, . . . , i}, shifted staircases are of the form

{(x1, x2) ∈ Ci × Ci : x1 ≥ x2},

with the order structure restricted from Ci×Ci. For convenience, we will assume that
shifted staircases have at least 10 nodes, as the smaller shifted staircases coincide with
small rectangles/double-tailed diamonds. Lastly, for the definitions of the exceptional
Cayley-Moufang swivel and bat, see their Hasse diagrams depicted in the second
row of Figure 5. The acyclic nodes of the minuscule posets are also shown in Figure 5;
we will use the indexing of these nodes as L and R, as in that figure.

We will only use the following proposition in the case k = 1 of rectangles; however,
for possible future use, we note that it is equally true for four of Proctor’s other
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rectangle
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shifted staircase
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L R
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double-tailed diamond

Cayley-Moufang swivel bat

Figure 5. Examples of the 5 families of minuscule posets. The labeled
red nodes mark the acyclic nodes of these posets. The exceptional
posets of the bottom row have no acyclic nodes.

families: birds (family 3), tailed insets (family 5), banners (family 6), and nooks
(family 7).

Lemma 6.4. Let k ∈ {1, 3, 5, 6, 7}. Let P be an irreducible d-complete poset from
family k and let A ⊆ P be the set of all acyclic nodes in P. If a straight-shaped
increasing P-tableau U is a URT for all posets in family k, then U is a A-chain URT
in all such posets.
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Proof. Suppose A = {a1, ..., ak}. Let i1, ..., ik be arbitrary positive integers. Let R be
the iterated slant sum P a1/ Ci1 a2/ . . . ak/ Cik of P with a collection of chains. Observe
that R is an order ideal of a larger poset in the same irreducible family. Thus, U is
a URT in R, as desired. �

Theorem 6.5 ([BS16]). Let P be a minuscule poset. Then, for every order ideal
λ ⊆ P, the minimally-labeled increasing P-tableau Mλ of shape λ is a URT in P. �

Corollary 6.6. Let P be a rectangle. Let Mλ be an minimally-labeled P-tableau of
straight shape. Then, Mλ is an {L,R}-chain URT in P.

Proof. This follows from Lemma 6.4 and Theorem 6.5. �

Corollary 6.7. Let P be a shifted staircase with at least 10 nodes. If Mλ is a
minimally-labeled P-tableau of straight shape, then Mλ is an {R}-chain URT in P.

Proof. If S is the slant sum P R/ Cj of P with a chain, then S is an order ideal of
a larger shifted staircase, in which minimally-labeled tableaux are URTs by Theo-
rem 6.5. �

In order to state the following, we adopt the convention that an ∅-chain URT in
P is just a URT in P.

Proposition 6.8. Let P be a minuscule poset. Let A be the set of acyclic nodes in
P. Let Mλ be a minimally-labeled increasing P-tableau of straight shape. Then, Mλ

is an A-chain URT in P.

Proof. If P is the Cayley-Moufang swivel or the bat, then it has no acyclic nodes, so
A = ∅. Hence, in these cases, it suffices to verify that Mλ is a URT in P. This fact
is a special case of Theorem 6.5.

If P is a rectangle, then A = {L,R}, and Mλ is a {L,R}-chain URT in P by
Corollary 6.6. If P is a double-tailed diamond, then A = {L,R}, and Mλ is a {L,R}-
chain URT in P by Corollary 5.3. Finally, if P is a shifted staircase with at least 10
nodes, then Mλ is an A-chain URT in P by Corollary 6.7. �

Proposition 4.5 allows us to extend Proposition 6.8 to show that minimally-labeled
tableaux are unique rectification targets in iterated slant sums of minuscule posets.

Theorem 6.9. Let P be a d-complete poset. If P is an iterated slant sum of minuscule
posets, then all minimally-labeled increasing P-tableaux of straight shape are unique
rectification targets.

Proof. We prove the stronger statement that all minimally-labeled increasing P-
tableaux of straight shape are A-chain URTs in P, where A denotes the set of acyclic
nodes in P. We induct on the number n of irreducible components in the slant sum
decomposition of P. For Q an irreducible component of P, write AQ for the set of
acyclic nodes of Q.

The base case, n = 1 is provided by Proposition 6.8.
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Otherwise, P is the slant sum of irreducible components. One of these components
contains the minimum 0̂P ; call this component M. By R. Proctor’s classification of
acyclic nodes [Pro99a], M has at most two acyclic nodes. Then,

P = M L/ {L1, . . . ,Lℓ} R/ {R1, . . . ,Rr},

where L and R are the acyclic nodes of M (if L or R is not an acyclic node, then
we have ℓ = 0 or r = 0 respectively), and L1, . . . ,Lℓ and R1, . . . ,Rr are disjoint
d-complete posets that are slant sum trees of minuscule components. Note that each
Ri and Lj is a slant sum of strictly fewer than n irreducible components.

Suppose T is a minimally-labeled increasing P-tableau of straight shape. Then,
T |Ri

is a minimally-labeled Ri-tableau of straight shape (modulo shifting the al-
phabet), so by the inductive hypothesis, T |Ri

is an ARi
-chain URT in Ri for all i.

Similarly, T |Li
is an ALi

-chain URT in Li for all i. Finally, T |M is a minimally-labeled
M-tableau of straight shape, so by the inductive hypothesis it is AM-chain URT in
M. Thus, by Proposition 4.5, we have that T is an A-chain URT in P, where A is
the set of acyclic nodes in P. �

The following is the precise version of Theorem 1.2.

Corollary 6.10. Let P be a d-complete poset. If P is an iterated slant sum of
minuscule posets and Q ⊆ P is an order ideal, then all minimally-labeled increasing
Q-tableaux of straight shape are unique rectification targets.

Proof. Let Mλ be a minimally-labeled increasing Q-tableau of straight shape. Since
Q is an order ideal of P, Mλ is also a minimally labeled increasing P-tableau of
straight shape. Hence by Theorem 6.9, Mλ is a unique rectification target in P, so it
is a unique rectification target in Q. �

Finally, we recall the construction necessary to make precise sense of Conjecture 1.3.
Let P be any poset satisfying the conclusion of Conjecture 6.3. Then, as in [BS16,
§3.5], we construct a combinatorial K-theory ring associated to P. Let K(P) be the
free abelian group on the set of order ideals of P. Define a product structure on K(P)
by setting

λ · µ :=
∑

ν

tνλ,µ ν,

where the Greek letters denote order ideals of P and tνλ,µ is defined to be (−1)|ν|−|λ|−|µ|

times the number of skew increasing P-tableaux of shape ν/λ that rectify to the
minimally-labeled tableauMµ. (Since Mµ is by hypothesis a URT in P, this number is
well-defined.) By [BS16, Proposition 3.17], this product structure makes K(P) into a
commutative associative algebra with the empty order ideal as multiplicative identity.
Conjecture 1.3 claims then that, when P is d-complete, the structure constants of the
algebra K(P) coincide with corresponding Λ-minuscule Schubert structure constants
of the K-theory ring K(X), where X = G/P is a Kac-Moody homogeneous space,
w ∈ W P is a Λ-minuscule Weyl group element for P , and P is the poset of join
irreducibles of the distributive lattice [id, w].
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