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A FORMULA FOR THE ASSOCIATED BUCHSBAUM-RIM
MULTIPLICITIES OF A DIRECT SUM OF CYCLIC MODULES II

FUTOSHI HAYASAKA

ABSTRACT. The associated Buchsbaum-Rim multiplicities of a module are a descending
sequence of non-negative integers. These invariants of a module are a generalization
of the classical Hilbert-Samuel multiplicity of an ideal. In this article, we compute the
associated Buchsbaum-Rim multiplicity of a direct sum of cyclic modules and give a for-
mula for the second to last positive Buchsbaum-Rim multiplicity in terms of the ordinary
Buchsbaum-Rim and Hilbert-Samuel multiplicities. This is a natural generalization of a
formula given by Kirby and Rees.

1. INTRODUCTION

Let (R,m) be a Noetherian local ring with the maximal ideal m of dimension d > 0.
The associated Buchsbaum-Rim multiplicities of an R-module C' of finite length, which
is denoted by {e’(C)}o<j<dt+r—1. are a sequence of integers. These are invariants of C
introduced by Kleiman-Thorup [10] and Kirby-Rees [8] independently. For an R-module
C of finite length with a minimal free presentation R™ HR 5 C— 0, the multiplicities
are defined by the so-called Buchsbaum-Rim function of two variables

A(Z% Q) = ER(SP-FQ/Mqu%

where S, (resp. MP) is a homogeneous component of degree p of S = Symp(F') (resp.
R[M] = ImSymp(p)). The function A(p,q) is eventually a polynomial of total degree
d+ r — 1, and then the associated Buchsbaum-Rim multiplicities are defined as for j =
0,1,...,d+7r—1,

¢/ (C) := (The coefficient of p™"~1=J¢7 in the polynomial) x (d+r — 1 — j)!jL.

These are a descending sequence of non-negative integers with e"~(C) is positive, and
¢J(C) = 0 for j > r. This was proved by Kleiman-Thorup [10] and Kirby-Rees [8] indepen-
dently. Moreover, they proved that the first multiplicity e’(C') coincides with the ordinary
Buchsbaum-Rim multiplicity e(C) of C introduced in [2], which is the normalized leading
coefficient of the polynomial function A(p) = A(p,0) = r(Sp/MP) of degree d +r — 1 for
p > 0. Namely,

e(C)=eC)>e(C)>--- > HO)>e"(C)=--- = ed“*l(C) =0.

Note that the ordinary Buchsbaum-Rim multiplicity e(R/I) of a cyclic module defined
by an m-primary ideal I coincides with the classical Hilbert-Samuel multiplicity e(I) of
I. Thus, the ordinary Buchsbaum-Rim multiplicity €(C) = e(C) and the associated
one ¢/(C) are a generalization of the classical Hilbert-Samuel multiplicity. However, as
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compared to the classical Hilbert-Samuel multiplicity, the Buchsbaum-Rim multiplicities
are not well-understood.

There are some cases where the computation of the ordinary Buchsbaum-Rim multiplic-
ity is possible (see [II, 3 6] [7, 8] for instance). In particular, in the case where C'is a direct
sum of cyclic modules, there is an interesting relation between the ordinary Buchsbaum-
Rim multiplicity and the mixed multiplicities of ideals. Let Iy,..., I, be m-primary ideals
in R. Then Kirby and Rees proved that

G(R/Il@@R/L») = Z e’il---’ir(117"'7]—7")7
i1 seerir >0
i1+ tir=d
where e;,..4, (11, ..., I) is the mixed multiplicity of I, ..., I, of type (i1,...,i.) (see [1,[§]
and also [1]). Then we are interested in the other associated Buchsbaum-Rim multiplicities
in this case.

The starting point of this research is the following interesting formula which was also
discovered by Kirby-Rees [7, [8]. Suppose that I; C Iy C --- C I,. Then they proved that
for any j = 1,...,r — 1, the jth Buchsbaum-Rim multiplicity can be expressed as the
ordinary Buchsbaum-Rim multiplicity of a direct sum of (r — ) cyclic modules defined by
the last (r — j) ideals:

R/ @ ®R/) =e(R)Ij41® - @ R/IL).

In particular, the last positive one e" !

multiplicity e(I,.) of the largest ideal:
YR/ ® - ®R/I) = e(R/I,).

Then it is natural to ask the formula for ¢/ (R/I; @ --- ® R/I,) without the assumption
I c I, C --- C I,. However, as compared to the special case considered in [7, [§], it
seems that the problem is more complicated, and we need a different approach to obtain
the formula in general. Recently, we tried to compute the function A(p,q) directly using
some ideas and obtained the formula for e""}(R/I; @ --- @ R/I,) without the assumption
I € --- C I,. Indeed, we proved in our previous work [5, Theorem 1.3] that for any m-
primary ideals Iy, ..., I, the last positive Buchsbaum-Rim multiplicity can be expressed
as the classical Hilbert-Samuel multiplicity e(; 4 - - - + I,-) of the sum of all ideals:

¢ YR/L®-- - ©R/I) =e(R/[I1 + -+ 1]).

The present purpose is to improve the method of computation given in [5] towards a
formula for not only the last positive Buchsbaum-Rim multiplicity e”"~'(R/[; &---® R/I,)
but also the next one e"2(R/I; @ --- @ R/I,) in terms of the ordinary Buchsbaum-Rim
and Hilbert-Samuel multiplicities. Here is the main result.

can be expressed as the classical Hilbert-Samuel

Theorem 1.1. Let I1,..., I, be arbitrary m-primary ideals in R. Then we have a formula
e HR/L®-- ORI =E,_1(I,...,I,) — (d+1)(r — De(R/[I, +--- + 1,]),
where E._1(I1, ..., 1) is a sum of the ordinary Buchsbaum-Rim multiplicities of two cyclic

modules defined by the ideals Il+---+fj+---+lr and Iy +---+ 1, :
Byl L) =Y e(R/[L++ L+ + L] &R/l + - + I,).

j=1
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Let me illustrate the formula when r = 3. Let C = R/I1 ® R/Iy ® R/I3. It is known
that €°(C) coincides with the ordinary Buchsbaum-Rim multiplicity by [8, 0], and e?(C')
can be expressed as the ordinary Hilbert-Samuel multiplicity of the sum of all ideals by
[5]. Theorem [I.1] tells us that there is a similar expression for the remaining multiplicity
e}(C). Namely, if we put Ijo3 := Iy + Io + I3 and I;; := I; + I; for 1 <i < j < 3, then
we can write all the multiplicities in terms of ordinary Buchsbaum-Rim multiplicities and
hence mixed multiplicities.

2(C) =e(R/I, ® R/I, ® R/ I3)
61(0) = B(R/Igg &) R/1123) + G(R/Il3 &) R/1123) + G(R/Iu (&) R/1123) — 2(d + 1)6(R/1123)
62(0) == B(R/Ilzgg).

Our formula can be viewed as a natural generalization of the above mentioned Kirby-
Rees formula for e"“2(R/I; @ --- ® R/I,) in a special case where Iy C Iy C --- C I,.
Indeed, as an immediate consequence of Theorem [T we get the following.

Corollary 4.2. Let I, ..., I, be m-primary ideals in R and assume that I,...,I._y C I,
that is, the ideal I, is the largest ideal. Then we have a formula

e 2R/ & ®R/L)=eR/[[1 + -+ I,_1] ® R/I,).
In particular, if I, C I C --- C I, then
AR/ ® - ®R/IL) =e(R/I,_, ® R/I,).

The contents of the article are organized as follows. In the next section 2, we will recall
some necessary notation and results from our previous work [5]. In section 3, we will
compute the Buchsbaum-Rim function of two variables by improving the method in [5].
In the last section 4, we will give a proof of Theorem [[LT] and its consequence Corollary
We will also discuss the remaining multiplicities e/ (C) for j = 1,...,r — 3.

Throughout this article, we will work in the same manner in our previous work [5].
Let (R,m) be a Noetherian local ring with the maximal ideal m of dimension d > 0.
Let r > 0 be a fixed positive integer and let [r] = {1,...,r}. For a finite set A, *A
denotes the number of elements of A. Vectors are always written in bold-faced letters,
e.g., ¢ = (i1,...,4,). We work in the usual multi-index notation. Let I3,..., I, be ideals
in R and let ty,...,t, be indeterminates. Then for a vector 2 = (i1,...,i,) € ZL,, we

denote I* = Ii*...[ir #* = i*-..tir and |i| = iy + --- +4,. For vectors a,b € 7,

a>b¥ ai > b forall i = 1,...,7. Let 0 = (0,...,0) be the zero vector in Z%,. By
convention, empty sum is defined to be zero.

2. PRELIMINARIES

In this section, we give a few elementary facts to compute the associated Buchsbaum-
Rim multiplicities. See also [5l section 2] for the related facts and the details.

In what follows, let Iy,..., I, be m-primary ideals in R and let C = R/ & --- @& R/I,.
Let S = RJt1,...,t;] be a polynomial ring over R and let R[M]| = R[Iity,...,It,] be
the multi-Rees algebra of Iy,...,I.. Let S, (resp. MP) be a homogeneous component
of degree p of S (resp. R[M]). Then it is easy to see that the function A(p,q) can be
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expressed as

Ap.q)= Y Lr(R/Jpq(n))

ncHy 4
where Hy , :={n € ZL, | |n|=p+q} and Jy4(n) := Z I' for n € H,,. For a subset
|é|=p
0<i<n

A C Hp 4, we set
Aa(p.q) = Z (r(R/Jpq(m)).
neA

As in [5], we consider the following special subsets of Hy, ,, which will play a basic role in
our computation of A(p,q). For p,g >0and k=1,...,r, let

ASZ ={n € Hyy|n1,...,np >p,ngy1+-+n <ph

Then the function A, ) (p,q) can be described explicitly as follows.
P,q

Proposition 2.1. ([5, Proposition 2.3]) Let p,q > 0 with ¢ > (p+1)r and letk =1,...,r.
Then

¢ = (k=1p—1— (k14 +n)
A =
agy P 9) > ( P (r(R/a).
[N PR ny >0
Ngyp1+-+nr<p

where a is an ideal depending on ngy1,...,0y :
T
a=(L+ -+ [k)P*(nkﬂJr'"Jrnr) H (I + -+ I+ [j)"j_
j=k+1
Here we make a slightly different description of the above mentioned basic functions
A AR (p, q). To state it, we first recall some elementary facts about the ordinary Buchsbaum-
P,q

Rim functions and multiplicities of a direct sum of cyclic modules. The ordinary Buchsbaum-
Rim function A(p) of C = R/} & --- & R/I, (we will often denote it Ac(p) to emphasize
the defining module C') can be expressed as follows:

Ap) = Lr(Sp/MP)
= > (r(R/TY)

i>0
li|=p
= > U(r(R/I}---Tir).
>0
li|=p

In particular, if we consider the case where Iy = --- = I, =: I, then

s = (M1 ety

r—1
The function ¢r(R/IP) is just the Hilbert-Samuel function of I so that it is a polynomial
for all large enough p, and one can write
e(R/1) 4

lr(R/IP) = — P + (lower terms),
4



where e(R/I) is the usual Hilbert-Samuel multiplicity of I. Therefore, the ordinary
Buchsbaum-Rim function can be expressed as

e(R/1)

Alp) = mi)dﬂ*1 +

lower terms).

This implies the following elementary formula for the ordinary Buchsbaum-Rim multiplic-
ity:

(1) e(C)=e(R/I®---®R/I) = <d—:i11>e(R/I).

T

Now, let me give another description of A , &) (p,q).
P,q

Proposition 2.2. Let p,q > 0 with ¢ > (p+ 1)r and let k =1,...,r. Then

AA% (p,q) = <q - (kk—_ll)p - 1) ALy (p)

nggp1t++nr—1 .
S <C]—(k‘7€1_)1;—2—z>€R(R/a)’

Mg ny>0 i=0
Ngt1+-+nr<p

where Ly := R/[I; + -+ I] @ @ R/[Ii + -+ I + I;] is a direct sum of (r — k+ 1)

j=k+1
T

cyclic modules and a := (I} + - - - + )P~ (etattne) H (Ih+ -+ Iy + I;)" is an ideal

j=k+1
depending on ngi1,...,Ny.

Proof. The case where k = 1 follows from Proposition 2.1l Indeed,

T

AA(l) (p, q) = Z ER <R/If*(n2+---+nr) H(Il + Ij)nJ')
P gy >0 j=2
not++n.<p
= Y tr(R/IN L+ 1) (I + 1))
i>0
li|=p
= AL (p)



Suppose that & > 2. By using an elementary combinatorial formula (m;g) = (ZL) —
sl (m7€+i), one can see that

i=0 n—1
¢—(k=1p—1— (g1 +--+ny)
k—1
g 1+tne—1 ,
g—(k—1p—1Y k“z q—(k=1)p—1—(ngs1+ - +ny) +j
k-1 par k—2
Ng41++nr—1 .
_ f(a—(k=1)p-1Y '““Z q—(k—1p—2+4j— (psr + - +np — 1)
k-1 par k—2
_ (e (k-1p-1 _n“ﬁim_l q—(k=1)p—2—i
k-1 £ k-2 ’

By Proposition 2.1] we can write the function A A (p,q) as follows:
P,q

AA&& (p’ q)
S S (Rl CERIEER) PO

LTS PPN ny>0
Ngt1++nr<p

- X (q_(kk__lfp_l)—nwjum_l (q_(k?_”;”‘ﬁ (n(Rfa)

~
Il
o

LT PR nyp>0
ngp1t+-+nr<p

o GRS RS SRR

[N PR np >0
Np1+-+nr<p

ngy1t-+nr—1 .
q—(k—1p—-2—i
> > (T
Mg s np>0 =0
Ngy1+-+nr-<p
_ (a—(k=1)p-1
- (O
Ngy1+-+nr—1 .
—(k—1p—2—i
S ("7 ey

LTS PR nyr>0 =0
Ngt1++nr<p

T
where Ly := R/[I1 + -+ + 1] ® @ R/[Iy +--- + I} + I;] is a direct sum of (r —k + 1)
j=k+1
T
cyclic modules and a := (I} 4 - - - + I;,)P~(erattnr) H (I + -+ I, + I;)" is an ideal
j=k+1

depending on ng41,. .., M. O



3. A COMPUTATION OF THE BUCHSBAUM-RIM FUNCTIONS

In this section, we compute the function A(p, ¢) by improving the method in [5] towards
a formula for e"2(R/I; @ --- ® R/I,). The notation we will use here is under the same
manner in [5]. See also [5, Section 3] for more detailed observations.

In order to compute the multiplicity defined by the asymptotic function A(p,q),
may assume that ¢ > (p+ 1)r > 0. In what follows, let p,q be fixed integers satisfying
q> (p+1)r>0. We put H := Hy, , for short. Then the set H can be divided by r-regions

T
H=]]HY,
k=1
where H®) := {n € H | #{i | n; > p} = k}. Moreover, we divide each H*) into (1)-regions

H® = H D

AC(r]
tA=r—k
WhereD —{nEHk)|nz>pforz¢Anz<pf0rZ€A}andD() H®™). Then
a=11 11 o
k=1 Ac[r]
tA=r—k

Let me illustrate this decomposition when r = 3. Figure [II below is the picture where
H®) = Dés) is the region of the pattern of dots, H? = D(2} 11 D{z} 11 D{g} is the region

of no pattern, and H® = DF{II 2 11 D{1 3 11 D{2 3) is the region of lines.

n3

> M1

n9 :

FIGURE 1. A decomposition of H when r = 3
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Therefore, the computation of A(p, q) can be reduced to the one of each A R (p,q):
A

Alp,q) = ZAH(k)(p7Q)

ZZZAk)p,

k;lACr]
PA=r—k

When k = r, DQ()T) =H" = Ag()l so that we get the explicit description of Ay (p,q) by
Proposition Similarly, when k& = r — 1, Dgr} b Ag:q_ Y 5o that we get the explicit
description of ADY;U (p, q) by Proposition 2.2] and hence the one of A1) (p, q)-

Proposition 3.1. We have the following description of Ay (p,q) when k=r,r — 1.
(1) The case where k =1 :

Ao (peg) = (q —r=Up- 1>AL<p>,

r—1

where L := R/[I} + --- 4+ I,] is a cyclic module.
(2) The case where k=1 —1:

—(r=2p-1
Age-(p,q) = (q T_Qp )Z)\L
r p n—

1 .

qg—(r—2)p—2—1

DM )ex(r/as00)
7=1n=0 =0

where Lj := R/[Il—|—---—i—.@—l—---—i—[r]@R/[Il—l—---—{—Ir] is a direct sum of two

cyclic modules and aj(n) == (I +---+ L+ -+ L)V ""(I1 +--- + I,)" is an ideal

depending on j and n.

Proof. These follow directly from Proposition O
We now turn to investigate the remaining functions A ;) (p,q) when k =1,2,...,r—2.

These cases seem to be more complicated than the case of Kk = r,r — 1. Suppose that
kE=1,2,...,7 — 2 and let A be a subset of [r] with *A = r — k. Then we divide the set

fo) into 2-parts as follows:
k) H EAkJ)r ’

where
k k
Eill ={n e Dg) ] an <p},
€A
k k
EY) = {ne D > ni>p}
€A
Let
1T Y.
AC(r]
tA=r—k

8



= [T =4

AC(r]
tA=r—k

Then

A k)(p,Q) AH(k)(p’ )+AHEf)(p’Q)

Let me illustrate this decomposition when r = 3. Figure [2 below is the picture where
H(l) = E{1 2} [IE 13} HE{2 3y I8 the region of the pattern of lines, and Hg_l) =

1 2}+ 11 E{1 31+ 11 Eg 33+ 18 the region of the pattern of dots.

n3

N9 )k
FIGURE 2. A decomposition of H") when r = 3

Here we note that EE?H r = Agfg for any £k = 1,2,...,r — 2. Thus, the function

AH(_’“) (p,q) can be expressed explicitly as follows, similar to the one of Ay (p,q) and
Ape-1(pq).

Proposition 3.2. For any k=1,2,...,r — 2, we have the following description.

AH(k)(Z%Q) <q_(kk_1 > Z ALa(p

AC(r]

tA=r—k
(Xjeans)-1 .
—(k-1p—-2-—1
-y X (TEETT e,
AC[r] n;>0(j€A) =0

fA=r— k(z caTj)<P
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where Ly = (R/[ 3 ISD@EB(R/[ Z I, +I]> is a direct sum of (r —k +1)

se[r\A ]EA
cyclic modules and a := ( Z IS) Zgeal H ( Z I+ 1 ) " is an ideal depending
se[r]\A JEA s€lr
on A andnj (j € A).
Proof. This follows directly from Proposition O

On the other hand, the function A 7k (p, q) seems to be more complicated than the one
+

A N0 (p,q). We do not get the explicit description, but we have the following inequality.

Proposition 3.3. For any k= 1,2,...,7 — 2, there exists a polynomial g3 (X) € Q[X] of
degree d + r — k such that

q— (k - 1)p -1 o
< .
Ay (p,9) < < e 1 9r(p)
Proof. This follows from [5, Lemma 3.5]. O

Here we consider the following functions gi(p) and hg(p,q) appeared in Propositions
B.1] and 3.2}, which will be used in the next section. For any kK =1,...,r — 1, we define

(2) ge@) =Y A.(p)

AC(r]

fA=r—k
(Xjeani)—1 .
q—(k—1p—2—1
Q -y ¥ G T
ACIr] n;>0(j€A) =0

FA=r— k(z eAnJ)<p

where L4 = (R/[ Z IS]> EBGB (R/[ Z I +Ij]> is a direct sum of (r —k+1)
se[r\A JEA s€[r\A
cyclic modules and a := ( Z Is)p Gseans) H ( Z I —|—Ij>n]. When k = r, we
s€[r\A JjeA se[rN\A
set 9-(p) = A/ 4--+1,](P) and hy(p,q) = 0. Note that for p, ¢ > 0, gr(p) is a polynomial
function of degree d + r — k, and hy(p, q) is a non-negative integer valued function.
Then, the above two Propositions and [3.3] imply the following.

Corollary 3.4. For any k = 1,2,...,r — 2, there exists a polynomial fr,(X) € Q[X] of
degree d + r — k such that

Y A YA}

10



Proof. By Propositions and [3.3]

AH(k) (pa Q) = AH(JC) (pa Q) + AHiLk) (pa Q)
< <q - (kk__ll)p - 1> 9k(p) — hie(p, @) + (q N (kk__ll)p N 1) 9% (p)
= (q N (kk__ll)p N 1) (9x(p) + 9i(p)) — Px(p, q)

< (q - (kk__ll)p - 1) (9% (p) + gi(p))-

Thus, fr(X) := gx(X) + g (X) is our desired polynomial. O

4. PROOF OF THEOREM [ 1]

We give a proof of Theorem [Tl In this section, we work in the same situation and
under the same notation as in the previous sections. For k = 1,2,...,r, we consider the
following function:

k .
Fi(p,q) == Alp, q) — Z (q e - 1>9r—z‘+1(17)7

‘ r—1
i=1

which is a polynomial function for p, ¢ > 0 with the total degree is at most d +r — 1. We
begin with the following.

Proposition 4.1. Suppose that p is a large enough fized integer. Then

. 1
lim 5
q—o0 q"

Fy(p,q) = 0.

Proof. Fix p > 0. By Proposition 3] and Corollary 34, we have the following equalities
and inequality.

Fy(p,q) + hr—1(p,q) = Ap,q) — Ager(p,q) — Age—1 (P, q)
r—2
= Y Agw(pq)
k=1
r—2
—(k—=1)p—-1
< ;(q k—lp >fk(P)-

Hence, we have that

r—2
g—(k—1p—1
~hr—1(p,q) < Fa(p,q) < ( ( . _1) )fk(p)-
k=1
Therefore, it is enough to show that
r—2
1 g—(k=1)p—1 _
(1) e ( P ) =0, and
k=1
. 1
(5) lim ——h,1(p,q) =



The first assertion () is clear because the degree of a polynomial function

5 (14

with respect to ¢ is at most (r —2) — 1 = r — 3. We show the second assertion (H). Then
one can see that

—

n—

) = SOSS (02PN )
e ]17;0Z0< -3 >R a]
< Y% (q o 2) tr(R)a;(n)
7=1n=0
~\ (r—2)p—2 .
< Flnzop( ) )eR<R/aj< )
_ q— r—2 L
= p( )]Z;n OKR R/Cl]

where a;(n) == (I1 +--- + IAj +---+L)P""(I1 +---+ I,)". Note that

ZZ@R R/a;(n Z)\L

is a sum of the ordinary Buchsbaum-Rim functions of two cyclic modules, where
Li=R/Ih+-+ L+ -+ LIOR/h +--+ 1]

Hence, noting that h,_1(p,q) > 0, we have that

o<hapa < (70T

for some polynomial function u(p) of degree (d + 1) + 1 = d + 2. Therefore,

i (q— (r—2)p— 2>u(p) _0

q—00 q" 2 r—3

so that limg o q%ghr,l(p, q) =0. O
We are now ready to prove Theorem [11

Proof of Theorem [1.1. The degree of A(p, q) with respect to ¢ is at most r — 1 so that one
can write

r—1 '
q) = Z aiq'
i=0

12



where each a; is a polynomial function of p with degree at most d +r — 1 — ¢. Similarly,

we can write
-1
g—(r—1)p—1 N
< .1 9-(p) = ’
7=0

r—2
<q - (7;__22)1) N 1>9r1(1)) = Zquk
k=0

where each b; (resp. ¢) is a polynomial function of p with degree at most d +r —1—j
(resp. d+r —1—k). Then

bj qj

F(p,q) = (ar—1 — br—1)q" " + (ar—2 — br—2 — cr—2)¢"~? + (lower terms in ).
By Proposition .1, we have the equalities as polynomials of p,
(6) ay—1 = b._1, and
(7) ar—2="br_o+cr 2.

Note that the first equality (B) implies a formula e"*(C) = e(R/[I1 + - - - + I,]) which is

our previous result in [5]. We then look at the second equality (7)). Since the total degree
A(p,q) is d +r — 1, and the coefficient of p%*'¢"~2 is non-zero, which is %, the

polynomial a,_s is of the form:

r—2
ap_9 = Wﬁz)!pdﬂ + (lower terms in p).

Since g,(p) = Ar/(1,+-..+1,](P) is the Hilbert-Samuel function of Iy + --- + I,

(q —lr=bp- 1>gr(p)

r—1

_ <q - (7;—_11)17 - 1> (e(R/[h ‘;!' -t L"])pd + (lower terms in p)>
—(r — r—1 e e r
= (g ET‘ — B?) celi/lh ti! 1 ])pd + (lower terms)
_ e(R/E;(:-_' 1)'+ L)) dg=1 — (r— 1)6(;2(/70[% ;’)' -t I”])deqT*Q + (lower terms in q)

so that
C(r=De(R/[Li+-+1L]) 41
d!(r —2)! '

Similarly, since g,—1(p) = > i_; A;(p), and its normalized leading coefficient is

br72 =

E, 1= Erfl(Il, s ’Ir) = Z B(L]),
j=1
where

Li=R/Ih+-+ L+ -+ LIOoR/h +--+ 1],
13



we have that

(q - (rr—_22)p - 1) gr-1(p) = (q - (7;__22)]9 - 1) ( (f:i)! p1 + (lower terms in p)>

(= (r=2p)"?* E
- 2 g7 1)!pd+1 + (lower terms)
E, 1 d+1 _r—2
d+nir—2n” 1

+ (lower terms in q).

Therefore, we get that

— L d+1
2T — 2
By comparing the coefficient of p¢*! in the equation ([@), we have the equality
e2C) (= De(RJL 4+ L) Bl T,)
(d+ D(r—2)! dl(r —2)! (d+Dl(r—2)!"
By multiplying (d + 1)!(r — 2)! to the above equation, we get the desired formula. O

As stated in the proof, the proof of Theorem [[I] contains our previous result in [5].
Moreover, the obtained formula for ¢"~2(C) can be viewed as a natural generalization of
the Kirby-Rees formula given in [§].

Corollary 4.2. Let I, ..., I, be m-primary ideals in R and assume that I,...,I._y C I,
that is, the ideal I, is the largest ideal. Then we have a formula

¢ *(R/L&---®R/)=eR/[li + -+ I, 1] & R/L).
In particular, if [, C I C --- C I, then
¢ *(R/h&- & R/I,) =e(R/I,.1 & R/I,).
Proof. Suppose that I,...,I._1 C I.. Then by Theorem [I.T],

eHC) = Y e(R/Ih+-+ L+ -+ L@ R/L+ -+ 1)
j=1
—(d+1)(r—De(R/[I1 +---+ I,])
= e(R/[LL+--+ I, _1]®R/L)+ (r —1)e(R/I. ® R/I,)
—(d+1)(r —De(R/I,)
= eR/I1+ - +1,_1]®R/L)+ (r—1)(d+ 1)e(R/I,)
—(d+1)(r —De(R/I,)
= e(R/[L +---+1,-1] D R/I,).
Here the third equality follows from the elementary formula (). O
Before closing this article, we would like to give a few observations on the remaining

multiplicities. We first recall the polynomial function Fy(p,q) defined at the beginning of
this section:

k .
RS URIED 3] Gy ")
=1

The key of our proof of Theorem [LL1is the fact that deg, F>(p,q) < r — 3 (Proposition

[4.1). It would be interesting to know whether this kind of property holds true or not for
which k.
14



Question 4.3. Let p be a fized large enough integer. Then for which k =1,2,...,r —1,
does the following hold true?

lim T
g—oo q"

Fi(p,q) = 0.
In other word, is the degree of Fy(p,q) with respect to q at most r —k — 1%

This holds true when k& = 2 (and also k£ = 1) by Proposition [4.1l We are interested in
the remaining cases. Suppose that k > 3. The affirmative answer to Question [4.3] will tell
us that for any 1 < j < k, the (r — j)th associated Buchsbaum-Rim multiplicity "7 (C')
is determined by the polynomial

(3) 3 (q ~r=ip- 1) g i1(p).

‘ r—1
i=1

Then we will be able to describe the multiplicity e"/(C) as a sum of the ordinary
Buchsbaum-Rim multiplicities of a direct sum of at most (r—j) cyclic modules in the same
manner. Here we would like to record the expected formula. Note that the polynomial
gr—i+1(p) defined in (2)) is of the form

1 -
Gr—i+1(p) = ( ] Z e(La) - p?™~1 + (lower terms)

(d+i—1)!
where Ly := <R/{

AC|r]
tA=i—1

AISD o @ <R/[se%:\AIS +IjD. We put

selr]\ jeEA

Er,ijq = Er,iJrl(Il, e ,Ir) = E G(LA).
AC|r]
tA=i—1

Then for any 1 < j < k, the coefficient of p%*7=1¢"~7 in the polynomial @) is

E_it1 r—1 A\ J—i
(d+i—1)!(r—i)!<r—j>( (r=)""
If Question [£3lis affirmative, then the above coefficient coincides with

e"I(C)
(d+j—1Hr—j)!

so that we can get the formula for ¢"~7(C). Therefore, we can ask the following.

M)~

i=1

Question 4.4. Under the same notation as above, does the formula

IR/ ®---DR/) = Z <d-;J_: 1>(_ (r—i))j*iEr_iH(Il,---aIr)

=1

hold true?

This is affirmative when j = 1 ([4, Theorem 1.3]) and j = 2 (Theorem [[T)). Note that
the affirmative answer to Question [4.3] for some k implies the affirmative one to Question
44 for any 1 < j < k.

15
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