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Finite temperature corrections to the energy-momentum tensor
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Finite temperature corrections to the effective potential and the energy-momentum tensor of a
scalar field are computed in a perturbed Minkoswki space-time. We consider the explicit mode
decomposition of the field in the perturbed geometry and obtain analytical expressions in the non-
relativistic and ultra-relativistic limits to first order in scalar metric perturbations. In the static case,
our results are in agreement with previous calculations based on the Schwinger-De Witt expansion
which indicate that thermal effects in a curved space-time can be encoded in the local Tolman
temperature at leading order in perturbations and in the adiabatic expansion. We also study the
shift of the effective potential minima produced by thermal corrections in the presence of static
gravitational fields. Finally we discuss the dependence on the initial conditions set for the mode
solutions.

PACS numbers: 04.62.+v, 98.80.-k, 95.30.Sf, 03.70.+k, 11.10.Wx

I. INTRODUCTION

Finite-temperature corrections to the effective potential in quantum field theory play a fundamental role in the
description of phase transitions in the early universe. In particular, symmetry restoration at high temperatures is
an essential ingredient of the Higgs mechanism for electroweak symmetry breaking. In flat space-time, such thermal
corrections were computed for the first time in the seminal papers of Dolan and Jackiw [1] and Weinberg [2] using
thermal Green functions methods. The possibility of extending those methods to more realistic scenarios incorporating
space-time curvature meets certain difficulties since finite temperature field theory is only well-defined provided the
geometry possesses a global time-like Killing field. Thus for example, for static or stationary space-times, the thermal
Green functions method has been applied for homogeneous and isotropic Einstein static spaces in [3]. These methods
were extended to conformally static Robertson-Walker backgrounds in [4]. The conditions for the construction of
a thermal field theory in more general expanding universes (not strictly static) were discussed in [5, 6] where the
adiabatic techniques were introduced.
An alternative approach to the adiabatic expansion for thermal field theory in general curved space-time is the

so called Schwinger-DeWitt [7, 8] expansion of the effective action. Both approaches are known to agree in the
results for the ultraviolet divergences in zero-temperature field theory. The Schwinger-DeWitt expansion, being a
local curvature expansion, is manifestly covariant but it is not sensitive to the global properties of the space-time
such as the presence of boundaries and does not contain information about the non-local part of the effective action.
Going beyond the Schwinger-DeWitt approximation requires brute force methods based on explicit mode summation
[9]. Thus for example, in [10] phase transitions in homogeneous but anisotropic Bianchi I and Kasner cosmologies
were studied using explicit modes sum. In recent works [11, 12], we started this program in the case of weak
inhomogeneous gravitational fields by studying the one-loop corrections to the vaccum expectation value (VEV) of
the energy-momentum tensor and the effective potential of a massive scalar field. Thus, in [11], using a regularization
procedure based on a simple comoving cutoff, a nonvanishing contribution of metric perturbations to the effective
potential was obtained. However, the renormalization procedure required the use of non-covariant counterterms.
In contrast, dimensional regularization was used in [12] to isolate the divergences, applying techniques developed
specifically to deal with non-rational integrands. In this case, the renormalized effective potential, being explicitly
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covariant, did not contain contributions from the inhomogeneous gravitational fields at the leading order in metric
perturbation and in the adiabatic expansion in both static and cosmological space-times.
In this work, we extend these methods to include finite temperature effects. The inclusion of the Bose-Einstein

factor, accounting for the statstical distribution of the energy states, produces a smooth behavior of all quantities
involved at large energies, not being necessary to apply any regularization technique (once the vacuum contribution is
renormalized). As mentioned above, in order to compute the aforementioned contribution, we apply the ”brute force”
method described in [11, 12], i.e. performing a summation over the perturbed modes of the quantum field obtained
as solutions of the Klein-Gordon equation. We are able to get analytical expressions for the effective potential and
the energy-momentum tensor in the non-relativistic and the ultra-relativistic limits. In the static limit, we find that
local gravitational effects can be taken into account through the Tolman temperature [13]. This is in accordance with
computations of the energy-momentum tensor of a scalar field at finite temperature in a static space-time using the
Schwinger-DeWitt approach, [14] and [15]. However, we also obtain the explicit time dependence of the expectation
values for finite times, which shows that the Tolman temperature can only be defined in the asymptotic time regions.
The work is organized as follows. Section II describes the general approach to compute an expectation value over a

thermal state in a perturbed FRW metric. The particular expressions to be computed in the case of static space-times
are presented in Section III. Section IV and V explain the approximations applied to obtain the final result in the
non-relativitic and ultra-relativistic limits, respectively. Shifts in the minimum of the effective potential produced by
thermal correction are discussed in Section VI. Our conclusions are presented in Section VII.

II. FINITE TEMPERATURE CORRECTIONS

Given a scalar field φ, with potential V (φ), its classical action in a (D + 1)-dimensional space-time with metric
tensor gµν can be written as

S[φ, gµν ] =

∫

dD+1x
√
g

(

1

2
gµν ∂µφ∂νφ − V (φ)

)

. (1)

As is well known, the solutions φ = φ̂ of the classical equation of motion

� φ̂ + V ′(φ̂) = 0 (2)

are those that minimize the action. On the other hand, quantum fluctuations around the classical solution δφ = φ− φ̂
satisfy the equation of motion

(

� + m2(φ̂)
)

δφ = 0 (3)

with

m2(φ̂) = V ′′(φ̂) . (4)

Let us consider a metric which can be written as a scalar perturbation around a flat Robertson-Walker background

ds2 = a2(η)
{

[1 + 2Φ(η,x)] dη2 − [1− 2Ψ(η,x)] dx2
}

(5)

where η is the conformal time, a(η) the scale factor, and Φ and Ψ are the scalar perturbations in the longitudinal
gauge. Given this geometry, the mode solutions δφk to (3) can be found using a WKB approximation to first order
in metric perturbations and to the leading adiabatic order as [12]

δφk(η,x) = δφ
(0)
k (η,x)

(

1 + Pk(η,x) + i δθk(η,x)

)

(6)

where

δφ
(0)
k (η,x) =

1

(2 π)D/2

1

a(η)(D−1)/2
√
2ωk

eik·x−i
∫

η ωk(η
′)dη′

; (7)

are the unperturbed mode solutions with

ω2
k(η) = k2 +m2a2(η) (8)

The explicit expressions for Pk(η,x) and δθk(η,x) in Fourier space are shown in Appendix A.
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The effects of quantum fluctuations on the classical field configuration can be taken into account using the one-loop
effective potential [12, 16]

Veff(φ̂) = V (φ̂) +
1

2

∫ m2(φ̂)

0

dm2〈δφ2〉 (9)

where V (φ̂) is the tree-level potential and the expectation value of the operator 〈δφ2〉 is taken over a particular
quantum state of the field. Taking into account (6) and (7) and assuming that the quantum state has a fixed number
of particles per mode nk, the one-loop contribution to the effective potential reads

1

2

∫ m2(φ̂)

0

dm2 〈δφ2〉 =
1

(2π)D aD−1(η)

1

2

∫ m2(φ̂)

0

dm2

∫

dDk

(

1

2
+ nk

)

1 + 2Pk(η,p)
√

k2 + m2 a2(η)
(10)

=
2

(2π)D aD−1(η)

2 π(D−1)/2

Γ((D − 1)/2)

1

2

∫ m2(φ̂)

0

dm2

∫ ∞

0

dk kD−1

(

1

2
+ nk

)

1 + P̂k(η,p)
√

k2 + m2 a2(η)

where we have defined

P̂k(η,p) =

∫ 1

−1

dx̂
(

1− x̂2
)(D−3)/2

Pk(η,p) , (11)

being x̂ = k · p/(k p) and including the general integration measure in D dimensions.
From now on, we consider a thermal quantum state. Then, the number of particles per mode is given by the

Bose-Einstein distribution

nT
k =

1

eωk/T − 1
, (12)

where T is the temperature of the state, for the moment understood as a parameter of the Bose-Einstein distribution
(see next section).

Let us define V1(φ̂) as the one-loop quantum vacuum contribution, i.e.

V1(φ̂) =
1

(2π)D aD−1(η)

2 π(D−1)/2

Γ((D − 1)/2)

∫ m2(φ̂)

0

dm2

∫ ∞

0

dk kD−1 1

2

1 + P̂k(η,p)
√

k2 + m2 a2(η)
(13)

and VT (φ̂) as the term that includes finite temperature corrections

VT (φ̂) =
1

(2π)D aD−1(η)

2 π(D−1)/2

Γ((D − 1)/2)

∫ m2(φ̂)

0

dm2

∫ ∞

0

dk kD−1 nT
k

1 + P̂k(η,p)
√

k2 + m2 a2(η)
(14)

so that we can write the one-loop effective potential at finite temperature as

Veff(φ̂) = V (φ̂) + V1(φ̂) + VT (φ̂) . (15)

It is important to notice that both the vacuum and the thermal contributions have a homogeneous term, corre-
sponding to the background geometry, and an inhomogeneous one, proportional to the perturbations. Then,

V1(φ̂) = V h
1 (φ̂) + V i

1(φ̂) , (16)

VT (φ̂) = V h
T (φ̂) + V i

T (φ̂) . (17)

The homogeneous part due to vacuum effects V h
1 (φ̂), after applying the minimal substraction scheme MS in dimen-

sional regularization with D = 3 + ǫ, is given by [12]

V h
1 (φ̂) =

m4(φ̂)

64π2

[

ln

(

m2(φ̂)

µ2

)

− 3

2

]

. (18)

A detailed analysis of the inhomogeneous part of the vacuum V i
1(φ̂) was performed in [11] with a cutoff regularization,

and in [12] using dimensional regularization. When a cutoff Λ is used, the result turns out to be proportional to

m2(φ̂)Λ2Φ in the static case, i.e. only the quadratic divergence appears. In dimensional regularization we find to first
order in perturbations and to the leading adiabatic order that

V i
1(φ̂) = 0 (19)
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in agreement with the absence of logarithmic divergences in the cutoff case.

In this work, we focus on the thermal contribution VT (φ̂). The corresponding inhomogeneous contribution can in
turn be split in the terms proportional to Φ and Ψ as

VT (φ̂) = V h
T (φ̂) + V Φ

T (φ̂) + V Ψ
T (φ̂) (20)

It is important to note that expression (9) defines the potential except for the addition of an arbitrary function which
could depend on the space-time coordinates and the temperature. This function does not modify the dynamics of the

field (2) since it does not introduce any dependence on m(φ̂).
In the same fashion, the thermal contribution to the components of the energy-momentum tensor can be obtained

from the expressions given in the reference [12] including the number of particles per mode nT
k , thus

〈T 0
0(η,p)〉 = ρ(η,p) =

1

(2π)D
1

aD+1

∫

dDk

(

1

2
+ nT

k

)

ωk

[

1 + 2
k2

ω2
k

Ψ(p) + 2Pk(η,p) + 2 i
k · p
ω2
k

δθk(η,p)

]

(21)

〈T i
i(η,p)〉 = −pi(η,p) = − 1

(2π)D
1

aD+1

∫

dD k

(

1

2
+ nT

k

)[

k2i
ωk

(

1 + 2Ψ(p) + 2Pk(η,p)

)

+ 2 i
ki pi
ωk

δθk(η,p)

]

(22)

〈T i
0(η,p)〉 =

1

(2π)D
1

aD+1

∫

dDk

(

1

2
+ nT

k

)[

ki

(

1 + 2Pk(η,p) + 2 i
k · p
ω2
k

δθk(η,p)

)

+ i pi δθk(η,p)

]

(23)

〈T i
j(η,p)〉 = − 1

(2π)D
1

aD+1

∫

dDk

(

1

2
+ nT

k

)[

ki kj
ωk

(

1 + 2Ψ(p) + 2Pk(η,p)

)

+ i
ki pj + kj pi

ωk
δθk(η,p)

]

(24)

〈T µ
µ(η,p)〉 =

1

(2π)D
1

aD+1

∫

dDk

(

1

2
+ nT

k

)[

m2

ωk

(

1 + 2Pk(η,p)

)]

. (25)

Let us divide the energy-momentum tensor, in the same way as for the potential case, in a vacuum contribution,
which does not depend on the number of particles per mode nT

k , and a thermal contribution.

〈T µ
ν(η,p)〉 = 〈T µ

ν(η,p)〉vac + 〈T µ
ν(η,p)〉T . (26)

each one having a homogeneous and an inhomogeneous part. It can be shown [12] that the energy-momentum tensor
of the vaccum is given by 〈T µ

ν(η,p)〉vac = ρvac δ
µ
ν , where the energy density ρvac and pressure pvac are given in the

MS renormalization scheme with D = 3 + ǫ by

ρvac = − pvac =
m4

64 π2

[

log

(

m2

µ2

)

− 3

2

]

. (27)

This implies that the inhomogeneous part of the vacuum contribution is zero when dimensional regularization is
used, therefore metric perturbations do not contribute to the leading adiabatic order. In this paper, we compute the
homogeneous and inhomogeneous parts of 〈T µ

ν(η,p)〉T .

III. STATIC SPACE-TIMES

Although the expressions for the perturbed solutions given in Appendix A are valid for general perturbed FRW
space-times, in this work we focus on static space-times, i.e. we will take a = 1 and Φ = Φ(x), Ψ = Ψ(x). The general
case is of great interest for cosmological scenarios, nevertheless the time dependence of the scale factor increases the
complexity of the computations, making extremely difficult to obtain analytical expressions. In addition, in order to
define a thermodynamic temperature, there must be a timelike Killing vector field, namely the space-time must be
static or stationary.

In order to compute VT (φ̂) and the energy-momentum tensor 〈T µ
ν(η,p)〉T thermal contributions, our first step will

be to expand the Pk(η,p) and δθk(η,p) functions in powers of pη [Appendix B]. These expansions, allows us to find
a common structure of the integrals involved.

A. Effective potential

Taking into account (B1) and (10), it is clear that we have to deal with the following kind of integrals

1

2

∫ m2(φ̂)

0

dm2

∫ ∞

0

dk kD−1 1

eωk/T − 1

1

ωk

(

k

ωk

)2α (
m

ωk

)2n

α = 0, 1, 2, ... n = 0, 1, 2 (28)
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to compute the finite temperature correction to the effective potential.
It is convenient to use the dimensionless variables u = ωk/T and x = m/T instead of k and m respectively. In

terms of these new variables the integral reduces to (extracting a global factor TD+1)

IXα,n ≡
∫ X

0

dx

∫ ∞

x

du
1

eu − 1

x1+2n

u2α+2n

(

u2 − x2
)D/2+α−1

(29)

where X ≡ m(φ̂)/T .
It is also useful to interchange the order of integration of this integral and divide it in the following way

IXα,n =

(

∫ X

0

du

∫ u

0

dx +

∫ ∞

X

du

∫ X

0

dx

)

(

1

eu − 1

x1+2n

u2α+2n

(

u2 − x2
)D/2+α−1

)

(30)

where the first part takes into account the contribution from modes with energies below the mass of the field while
the second part includes the contribution from modes with energies above the mass of the field.

B. Energy-momentum tensor

To compute the energy-momentum tensor, the following integrals appear

∫ ∞

0

dk kD−1 1

eωk/T − 1
ωk

(

k

ωk

)2α (
m

ωk

)2n

α = 0, 1, 2, ... n = 0, 1, 2 (31)

Using the same dimensionless variables u and x we get (also extracting a global factor TD+1)

JX
α,n ≡

∫ ∞

X

du
1

eu − 1

X2n

u2α+2n−2

(

u2 −X2
)D/2+α−1

(32)

Only modes with energies above the mass of the field contribute to the energy-momentum tensor.
In the following we compute the integrals IXα,n (30) and JX

α,n (32) in the non-relativistic and the ultra-relativistic
limits.

IV. NON-RELATIVISTIC LIMIT

A. Effective potential

In the non-relativistic limit m(φ̂)/T → ∞ (or X → ∞), the contribution from modes with energies above the
mass of the field is exponentially damped because of the Bose-Einstein factor, hence the leading contribution in the
non-relativistic limit is given by the first part of (30) when taking X = ∞

I∞α,n =

∫ ∞

0

du

∫ u

0

dx
1

eu − 1

x1+2n

u2α+2n

(

u2 − x2
)D/2+α−1

=
Γ(D/2 + α)n!

2 Γ(D/2 + α+ n+ 1)
D! ζ(D + 1) (33)

where ζ(x) is the Riemann Zeta function.

Therefore, using expression (10) together with the result for the integral (33) and the expansion of P̂k(η,p) (B1),
we obtain (assuming D = 3) for the leading contributions after resummation of the series in pη

V h
T (L)(φ̂) =

π2

90
T 4 (34)

V Φ
T (L)(φ̂) =

π2

90
T 4Φ(p) × 4

[

3
sin(p η)

(p η)3
− 3

cos(p η)

(p η)2
− 1

]

(35)

V Ψ
T (L)(φ̂) =

π2

90
T 4Ψ(p) × 12

[(

6

(p η)4
− 1

(p η)2

)

cos(p η) +

(

3

(p η)3
− 6

(p η)5

)

sin(p η)

]

. (36)

Note that there is no dependence on the field (which may appear through mass terms). Therefore these expressions
do not affect the field dynamics and they can be neglected. On the other hand, even though we are considering static
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backgrounds, there is an explicit time dependence of the result. This can be traced back to the particular mode choice
in (A1) and (A2). In particular, taking the η → ∞ limit, which corresponds to setting initial conditions for the modes
in the remote past, we recover static results for the effective potential.
In the static limit η → ∞, the following expression is obtained

VT (L)(φ̂) =
π2

90
T 4 (1 − 4Φ(p)) . (37)

It can be shown that the leading inhomogeneous effect in the static limit only depends on the Φ potential and in fact
it can be obtained from the homogeneous result replacing the temperature by the local Tolman temperature [13]

TTolman =
T√
g00

≃ T (1− Φ(p)) . (38)

Notice however that in the results for finite time given in (35) and (36), the explicit time dependence of the effective
potential prevents the introduction of a Tolman temperature.

The next-to-leading correction, V
(NL)
T , including terms O(T/m(φ̂)), can be obtained by applying a modified version

of the Laplace’s method to the following integral1

IXα,n − I∞α,n ≃ −
∫ ∞

X

du

∫ u

X

dx e−u x1+2n

u2α+2n

(

u2 − x2
)D/2+α−1

=

∫ ∞

X

du
1

2
e−u uD

[

BX2/u2 (1 + n,D/2 + α) − Γ(1 + n) Γ(D/2 + α)

Γ(D/2 + α+ n+ 1)

]

(39)

where we have replaced the Bose-Einstein factor by the Boltzmann factor. Bz(a, b) is the incomplete Beta function.
When u/X ≫ 1, the integrand is exponentially damped as e−u/X . Then, we Taylor expand the expression inside the
brackets around X2/u2 = 1 to obtain

IXα,n − I∞α,n ∼ −
∫ ∞

X

du
1

D + 2α
e−u uD

(

1− X2

u2

)D/2+α

= −
∫ ∞

X

du
1

D + 2α
exp

[

−u + D log(u) +

(

D

2
+ α

)

log

(

1− X2

u2

)]

. (40)

The expression inside the exponential has a maximum at u ∼ X when X → ∞.2 Taylor expanding the argument of
the exponential around u = X up to order O(u) [including the logarithmic divergence] the integration in u can be
performed to get the following result

IXα,n − I∞α,n ∼ −23(D/2+α)+1 Γ(D/2 + α) e−X XD+1

(4X −D + 6α)D/2+α+1

∼ −2D/2+α−1 Γ(D/2 + α) e−X XD/2−α (41)

which does not depend on n. Because of the factor XD/2−α in the last expression, the expansion in pη mixes with

the expansion in X(= m(φ̂)/T ).
Finally, the next to leading contribution to the potential for pη ≪ 1 is given by

VT (NL)(φ̂) = − T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)3/2
(

1 + 3Ψ(p) − (pη)2

2
Φ(p)

)

. (42)

A better approximation for smaller values of X is obtained if we do not drop α in the denominator in (41). This
improved approximation is shown in Figure 1 (right panel). It is important to note that each order in (pη) is suppressed

by a factor (T/m(φ̂)) with respect to the previous order, because of the mixing discussed above. For instance, the

1 The symbol ≃ stands for an approximation in the Taylor sense,
while ∼ stands for an asymptotic approximation, namely the
quotient between both results equals 1 in the appropriate limit.

2 Here we are dropping a term linear in α in the expression for the
maximum. This means that we cannot allow α → ∞. Since α is
related with the order of the expansion in p η, the results are only

valid if the series appearing in (B1) is truncated at some order
such that α ≪ X. Although it could be done for arbitrary α, it
would not be very useful if the expression cannot be ressummed.
Nevertheless, it will be shown that the l-term is supressed by a
factor 1/Xl, thus only the first terms are relevant in this limit
(X → ∞).
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FIG. 1. Left panel: Points correspond to the numerical value of the thermal contributions to the potential proportional to Φ and Ψ
taking m(φ̂)/T = 10, whereas the solid lines represent the leading approximations (35) and (36). Right panel: Points are the difference

between the numerical values of the potential and the approximations (35) (blue points) and (36) (black points) for m(φ̂)/T = 10. The

next-to-leading correction for m(φ̂)/T = 10 up to (pη)2 (dashed lines) and (pη)30 (solid lines) is shown for comparison.

correction proportional to Ψ does not depend on (pη) to leading order in (T/m(φ̂)) [see eq. 42], then the dependence

on (pη)2 proportional to Ψ is suppressed by a factor (T/m(φ̂)) with respect to the (pη)2 correction proportional to
Φ, as shown in Figure 1 (right panel).

Because of the mixing between the expansion in X(= m(φ̂)/T ) and pη we cannot obtain a result valid for arbitrary
scales p and times η. However, it is possible to obtain the static result by taking the limit η → ∞ directly on (10).
According to this procedure, we get

VT (NL)(φ̂) = − T 4

2
√
2 π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)3/2(

1 − 35

8
Φ(p) −

(

m(φ̂)

T

)

Φ(p)

)

. (43)

As can be checked in a straightforward way from (43), also for the next to leading contribution in the static limit,
the inhomogeneous correction can be obtained from the homogeneous result by replacing the temperature with the
Tolman temperature (38).

B. Energy-momentum tensor

The leading order of the energy-momentum tensor is already exponentially damped, since only modes with energies
above the mass of the field contribute. We write the integral (32) as

JX
α,n ≃

∫ ∞

X

du e−u X2n

u2α+2n−2

(

u2 −X2
)D/2+α−1

(44)

where the Bose-Einstein factor has been replaced by the Boltzmann factor. Applying the Laplace’s method again we
get

JX
α,n ≃ X2n

∫ ∞

X

du exp

[

−u − 2 (α+ n− 1) log (u) +

(

D

2
+ α− 1

)

log
(

u2 − X2
)

]

∼ 23(D/2+α)−1 Γ(D/2 + α) e−X XD+1

(4X −D + 6α+ 8n− 6)D/2+α

∼ 2D/2+α−1 Γ(D/2 + α) e−X XD/2−α+1 (45)
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Then, taking into account the expressions given in Section II and the result (45), the energy-momentum tensor for
pη ≪ 1 is given by

ρT ≡ 〈T 0
0(η,p)〉T ∼ T 4

2
√
2 π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)5/2
(

1 + 3Ψ(p) − (pη)2

2
Φ(p)

)

(46)

−pT ≡ 〈T i
i(η,p)〉T ∼− T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)3/2
(

1 + 5Ψ(p) − 5(pη)2

6
Φ(p)

)

(47)

〈T i
0(η,p)〉T ∼− T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)5/2

(ipi) ηΦ(p) (48)

〈T i
j(η,p)〉T ∼− T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)3/2

(i2pipj) η
2 Φ(p) i 6= j (49)

where ρT and pT are the energy density and pressure produced by the thermal corrections. We have only retained

the leading order in m(φ̂)/T . Further corrections O((pη)2l) are suppressed by a factor (m(φ̂)/T )l.

In the non-relativistic case, it is not possible to take the static limit in the final expressions since we only have the
results for pη ≪ 1 as discussed before. However, the static expression can be obtained by taking the static limit in
the original expressions (25)

ρT ≡ 〈T 0
0(η,p)〉T ∼ T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)5/2(

1 − 39

8
Φ(p) −

(

m(φ̂)

T

)

Φ(p)

)

(50)

−pT ≡ 〈T i
i(η,p)〉T ∼− T 4

2
√
2π3/2

e−m(φ̂)/T

(

m(φ̂)

T

)3/2(

1 − 35

8
Φ(p) −

(

m(φ̂)

T

)

Φ(p)

)

. (51)

Once again, in the static limit, the inhomogeneous corrections, depending only on the Φ potential and can be obtained
from the homogenous one by introducing the Tolman temperature.

V. ULTRA-RELATIVISTIC LIMIT

A. Effective potential

In the ultra-relativistic limit, m(φ̂)/T → 0 (or X → 0), the dominant contribution comes from modes with energies
higher than the mass of the field. Therefore, the second part of (30) gives

IXα,n ≃
∫ ∞

X

du

∫ X

0

dx
1

eu − 1

x1+2n

u2α+2n

(

u2 − x2
)D/2+α−1

=

∫ ∞

X

du
1

2

uD

eu − 1
BX2/u2(1 + n, D/2 + α)

≃
∫ ∞

X

du
1

2

uD−2n−2

eu − 1

X2+2n

1 + n
(52)

where we have expanded the incomplete Beta function Bz(a, b) for X ≪ 1 in the last line. The leading contribution
comes from n = 0. Replacing the lower limit of integration by 0 we get in that limit

IXα,0 ≃
∫ ∞

0

du
1

2

uD−2

eu − 1
X2

=
1

2
Γ(D − 1) LiD−1(1)X

2 (53)

where Lin(z) is the polylogarithm function.
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Therefore, from (30) and using the expansion of P̂k(η,p) in (B1) and the result (53), we can resum this contribution
to get the leading contribution

V h
T (L)(φ̂) =

T 4

24

(

m(φ̂)

T

)2

(54)

V Φ
T (L)(φ̂) =

T 4

12

(

m(φ̂)

T

)2

Φ(p) ×
(

sin(p η)

p η
− 1

)

(55)

V Ψ
T (L)(φ̂) =

T 4

12

(

m(φ̂)

T

)2

Ψ(p) ×
(

sin(p η)

p η

)

(56)

The explicit time dependence of the general results obtained in a static metric can be traced back to the initial
conditions of the modes. Taking the limit η → ∞ in (55) and (56), the initial conditions are washed out and the
remaining correction in Fourier space is

VT (L)(φ̂) =
T 4

24

(

m(φ̂)

T

)2
(

1 − 2Φ(p)

)

. (57)

In this case we can also obtain the inhomogeneous result by replacing the temperature by the local Tolman temperature
(38) in the homogeneous result.

To get the real space result in the static limit, one has to compute the Fourier transform of the complete expression
and then take the static limit, η → ∞. Following this procedure, it is possible to get the real space result for arbitrary
perturbation (see Appendix C) which reads

VT (L)(φ̂) =
T 4

24

(

m(φ̂)

T

)2
(

1 − 2Φ(r)

)

. (58)

Therefore, as expected, the static limit and the Fourier transform commute (compare (57) and (58)). This is a general
conclusion for the functions in Fourier space appearing in this paper due to the results of Appendix C.

In real space, the corrections due to Newtonian perturbations ΦN(p) and ΨN (p) given by

ΦN (p) = ΨN (p) = −4 π
GM

p2
(59)

ΦN (r) = ΨN (r) = −GM

r
, (60)

inside the lightcone (r < |η|) are

V ΦN

T (L)(φ̂) =
T 4

12

(

m(φ̂)

T

)2

ΦN (r) ×
(

r

|η| − 1

)

(61)

V ΨN

T (L)(φ̂) =
T 4

12

(

m(φ̂)

T

)2

ΨN(r) ×
(

r

|η|

)

(62)

while on and outside the lightcone (r ≥ |η|) are

V ΦN

T (L)(φ̂) = 0 (63)

V ΨN

T (L)(φ̂) =
T 4

12

(

m(φ̂)

T

)2

ΨN (r) . (64)

The next-to-leading order corrections can be obtained by computing the first part of equation (30) plus next-to-
leading terms coming from equation (52) (see Appendix D). Finally, after resummation of the the series expansion
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(B1) we get for VT (NL), (up to O((m/T )5))

V h
T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3 [

− 1

12 π
+

1

32 π2

(

m(φ̂)

T

)

(

log

(

T

M

)

+
3

4
− γ + log(4 π)

)

]

(65)

V Φ
T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3

Φ(p)



− 1

12 π
(J0(p η) − 1) +

1

32 π2

(

m(φ̂)

T

)

(cos(p η) − 1) +
1

720 π

(

m(φ̂)

T

)2

p η J1(p η)





(66)

V Ψ
T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3

Ψ(p)

[

− 1

12 π

(

J0(p η) +
J1(p η)

p η

)

+
1

32 π2

(

m(φ̂)

T

)

(

cos(p η) +
2 sin p η

p η

)

+

+
1

720 π

(

m(φ̂)

T

)2

(p η J1(p η) − 3 J0(p η))



 (67)

where γ is Euler’s constant and Jn(x) Bessel functions.

Considering Newtonian perturbations ΦN and ΨN , in real space we get for the region inside the lightcone (r < |η|)

V ΦN

T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3

ΦN (r) ×
[

1

12 π
− 1

6 π2
arcsin

(

r

|η|

)]

(68)

V ΨN

T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3

ΨN (r) ×
[

− 1

12 π2

r

η

√

1− r2

η2
− 1

4 π2
arcsin

(

r

|η|

)

]

, (69)

and outside and on the lightcone (r ≥ |η|)

V ΦN

T (NL)(φ̂)= 0 (70)

V ΨN

T (NL)(φ̂)=T 4

(

m(φ̂)

T

)3

ΨN (r) ×
[

− 1

8 π

]

. (71)

Here for simplicity we have only shown the O(m/T )3 contributions.

In the static limit η → ∞ one gets

VT (NL)(φ̂)=− T 4

12 π

(

m(φ̂)

T

)3
(

1 − Φ(p)

)

, (72)

which is also valid in real space replacing Φ(p) by Φ(r) (see Appendix C). Here again we find that the inhomogeneous
result can be obtained by replacing the temperature in the homogeneous contribution by the local Tolman temperature.

B. Energy-momentum tensor

The leading contribution is given by the integral (32) when n = 0

JX
α,0 =

∫ ∞

X

du
1

eu − 1

1

u2α−2

(

u2 −X2
)D/2+α−1

≃
∫ ∞

0

du
uD−2

eu − 1

(

u2 + (1−D/2− α)X2

)

= Γ(D − 1)

[

(D − 1)D ζ(D + 1) + (1 −D/2− α)ζ(D − 1)X2

]

(73)
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FIG. 2. Left upper panel: Points show the numerical value of the thermal contribution to the potential taking m(φ̂)/T = 0.1 and the
continuous line corresponds to the approximations in (55) and (56). Right upper panel: Difference between the numerical value of the

potential for m(φ̂)/T = 0.1 and the approximations (55) (blue points) or (56) (black points). The next-to-leading corrections (O((m/T )3))

given by (66) (green solid line) and (67) (red solid line) for m(φ̂)/T = 0.1. Left bottom panel: Difference between the numerical value
and the O((m/T )3) approximation (blue and black points). The O((m/T )4) correction is plotted as a solid line. Right bottom panel:
Difference between the numerical value and the O((m/T )4) approximation (blue and black points). The O((m/T )5) correction is plotted
as a solid line.
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where we have replaced the lower limit of integration by 0 and expanded the integrand around X = 0 in the second
line. Therefore, we get for the energy-momentum tensor

ρT
T 4

=
〈T 0

0(η,p)〉T
T 4

≃ π2

30

(

1 − 4Φ(p) +
4 sin(pη)

pη
(Φ(p) + Ψ(p))

)

(74)

− 1

24

(

m(φ̂)

T

)2
[

1 +

(

2 cos(pη) +
4 sin(pη)

pη

)

Ψ(p) + (2 cos(pη) − 2)Φ(p)

]

pT
T 4

= −〈T i
i(η,p)〉T
T 4

≃ π2

90

(

1 − 4Φ(p) +
4 sin(pη)

pη
(Φ(p) + Ψ(p))

)

(75)

− 1

24

(

m(φ̂)

T

)2
[

1 +

(

2

3
cos(pη) +

8 sin(pη)

3pη

)

Ψ(p) +

(

2

3
cos(pη) +

4 sin(pη)

3pη
− 2

)

Φ(p)

]

〈T i
0(η,p)〉T
T 4

≃
(

i
pi
p

)

2π2

15

(

cos(pη)

pη
− sin(pη)

(pη)2

)

(Φ(p) + Ψ(p)) (76)

+

(

i
pi
p

)

1

12

(

m(φ̂)

T

)2
[

sin(pη)Φ(p) +

(

sin(pη) + 2
sin(pη)

(pη)2
− 2

cos(pη)

pη

)

Ψ(p)

]

〈T i
j(η,p)〉T
T 4

≃
(

i2
pipj
p2

)

2π2

15

(

sin(pη)

pη
+ 3

cos(pη)

(pη)2
− 3

sin(pη)

(pη)3

)

(Φ(p) + Ψ(p)) (77)

+

(

i2
pipj
p2

)

1

12

(

m(φ̂)

T

)2

×
[(

sin(pη)

pη
− cos(pη)

)

Φ(p) +

(

6
sin(pη)

(pη)3
− sin(pη)

pη
− 6

cos(pη)

(pη)2
− cos(pη)

)

Ψ(p)

]

i 6= j

〈T µ
µ(η,p)〉T
T 4

≃ 1

12

(

m(φ̂)

T

)2
[

1 +

(

2 sin(pη)

pη
− 2

)

Φ(p) +
2 sin(pη)

pη
Ψ(p)

]

(78)

which does not correspond to a perfect fluid3.
In real space, we have for Newtonian perturbations inside the lightcone (r < |η|)

ρT
T 4

=
〈T 0

0(η, r)〉T
T 4

≃ π2

30

{

1 − 4

[(

1− r

|η|

)

ΦN (r) − r

|η|ΨN (r)

]}

− 1

24

(

m(φ̂)

T

)2
[

1 − 2ΦN(r) + 4
r

|η|ΨN(r)

]

(79)

pT
T 4

= −〈T i
i(η, r)〉T
T 4

≃ π2

90

{

1 − 4

[(

1− r

|η|

)

ΦN (r) − r

|η|ΨN (r)

]}

(80)

− 1

24

(

m(φ̂)

T

)2
[

1 − 2

(

1− 2

3

r

|η|

)

ΦN (r) +
8

3

r

|η|ΨN (r))

]

〈T i
0(η, r)〉T
T 4

≃ π2

45 η2
∂i

[

r3 (ΦN (r) + ΨN(r))

]

− 1

36 η2

(

m(φ̂)

T

)2

∂i

(

r3 ΨN(r)

)

(81)

〈T i
j(η, r)〉T
T 4

≃ − π2

300 |η|3∂i∂j
[

r5 (ΦN (r) + ΨN (r))

]

+
1

240 |η|3

(

m(φ̂)

T

)2

∂i∂j

(

r5 ΨN (r)

)

i 6= j

(82)

〈T µ
µ(η, r)〉T
T 4

≃ 1

12

(

m(φ̂)

T

)2
[

1 − 2

(

1− r

|η|

)

ΦN (r) + 2
r

|η|ΨN (r)

]

. (83)

3 The energy-momentum tensor given by equations (74), (75), (76)
and (77) is conserved.
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Outside the lightcone (r > |η|), we get

ρT
T 4

=
〈T 0

0(η, r)〉T
T 4

≃ π2

30

(

1 + 4ΨN(r)

)

− 1

24

(

m(φ̂)

T

)2
[

1 + 6ΨN(r)

]

(84)

pT
T 4

= −〈T i
i(η, r)〉T
T 4

≃ π2

90

(

1 + 4ΨN(r)

)

− 1

24

(

m(φ̂)

T

)2
[

1 +
10

3
ΨN (r))

]

(85)

〈T i
0(η, r)〉T
T 4

≃ −2 π2 η

45
∂i

(

ΦN (r) + ΨN (r)

)

+
η

12

(

m(φ̂)

T

)2

∂i

(

ΦN (r) +
5

3
ΨN (r)

)

(86)

〈T i
j(η, r)〉T
T 4

≃ −2 π2 η2

225
∂i∂j

(

ΦN (r) + ΨN(r)

)

+
η2

36

(

m(φ̂)

T

)2

∂i∂j

(

ΦN (r) +
7

5
ΨN(r)

)

i 6= j

(87)

〈T µ
µ(η, r)〉T
T 4

≃ 1

12

(

m(φ̂)

T

)2
[

1 + 2ΨN(r)

]

, (88)

and on the lightcone (r = |η|) the results are

ρT
T 4

=
〈T 0

0(η, r)〉T
T 4

≃ π2

30

(

1 + 4ΨN(r)

)

− 1

24

(

m(φ̂)

T

)2
[

1 − ΦN (r) + 5ΨN(r)

]

(89)

pT
T 4

= −〈T i
i(η, r)〉T
T 4

≃ π2

90

(

1 + 4ΨN(r)

)

− 1

24

(

m(φ̂)

T

)2
[

1 − 1

3
ΦN (r) + 3ΨN(r)

]

(90)

〈T i
0(η, r)〉T
T 4

≃ −2 π2 η

45
∂i

(

ΦN (r) + ΨN (r)

)

+
η

12

(

m(φ̂)

T

)2

∂i

(

ΦN (r) +
5

3
ΨN (r)

)

(91)

〈T i
j(η, r)〉T
T 4

≃ −2 π2 η2

225
∂i∂j

(

ΦN (r) + ΨN(r)

)

+
η2

36

(

m(φ̂)

T

)2

∂i∂j

(

ΦN (r) +
7

5
ΨN(r)

)

i 6= j

(92)

〈T µ
µ(η, r)〉T
T 4

≃ 1

12

(

m(φ̂)

T

)2
[

1 + 2ΨN(r)

]

. (93)

In the static limit, the energy density and pressure are

ρT
T 4

=
〈T 0

0(η,p)〉T
T 4

≃ π2

30

(

1 − 4Φ(p)

)

− 1

24

(

m(φ̂)

T

)2
(

1 − 2Φ(p)

)

(94)

pT
T 4

= −〈T i
i(η,p)〉T
T 4

≃ π2

90

(

1 − 4Φ(p)

)

− 1

24

(

m(φ̂)

T

)2
(

1 − 2Φ(p)

)

(95)

〈T µ
µ(η,p)〉T
T 4

≃ 1

12

(

m(φ̂)

T

)2
(

1 − 2Φ(p)

)

, (96)

the non-diagonal terms being zero. Once again, these results can be interpreted as being the corresponding energy
density and pressure for a classical gas at the local Tolman temperature (38) in agreement with [14] and [15]. The
same expressions for the static limit apply in real space (see Appendix C).

VI. THERMAL SHIFT OF THE EFFECTIVE POTENTIAL MINIMA

Once the effective potential is obtained, the value of the field for which

Veff
′(φ̂) = 0 (97)
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determines the value attained by the classical field φ̂. The inhomogeneous contributions to the effective potential will

now induce a spatial dependence on φ̂ which can be written as

φ̂(η,x) = φ̂0 +∆φ̂(η,x), (98)

where φ̂0 is the minimum of the potential in the absence of metric perturbations, but including the one-loop corrections,
i.e.

V h
eff

′
(φ̂0) = V ′(φ̂0) + V h

1

′
(φ̂0) + V h

T

′
(φ̂0) = 0, (99)

then to first order in metric perturbations and taking into account that V i
1 = 0 in dimensional regularization, we get

∆φ̂ = − V i
T
′
(φ̂0)

V h
eff

′′
(φ̂0)

= − 1

V h
eff

′′
(φ̂0)

dm2

dφ̂

∣

∣

∣

∣

φ̂=φ̂0

dV i
T

dm2

∣

∣

∣

∣

φ̂=φ̂0

. (100)

Thus, the relative classical field variation is given by the temperature correction

∆φ̂ = − V
′′′

(φ̂0)

V h
eff

′′
(φ̂0)

dV i
T

dm2

∣

∣

∣

∣

φ̂=φ̂0

. (101)

The perturbation is therefore proportional to the third derivative of the tree-level potential, so that variations in the
field expectation value are only generated in theories with self-interactions.
In the non-relativistic limit and in the static limit we get in Fourier space

∆φ̂T (η,p) =
e−m(φ̂)/T

4
√
2 π3/2

(

m(φ̂)

T

)3/2

V
′′′

(φ̂0)

(

T 2

V h
eff

′′
(φ̂0)

)

Φ(p) . (102)

In the ultra-relativistic limit, we obtain for arbitrary η

∆φ̂(η,p) = − V
′′′

(φ̂0)

12

(

T 2

V h
eff

′′
(φ̂0)

)

[(

sin(p η)

p η
− 1

)

Φ(p) +

(

sin(p η)

p η

)

Ψ(p)

]

. (103)

which in the static limit reduces to

∆φ̂(p) =
V

′′′

(φ̂0)

12

(

T 2

V h
eff

′′
(φ̂0)

)

Φ(p), (104)

valid also in real space replacing Φ(p) by Φ(r). In particular, in real space we get for Newtonian potentials inside the
lightcone (r < |η|)

∆φ̂(η, r) = − V
′′′

(φ̂0)

12

(

T 2

V h
eff

′′
(φ̂0)

)

[(

r

|η| − 1

)

ΦN (r) +
r

|η|ΨN (r)

]

(105)

while oustide and on the lightcone (r ≥ |η|)

∆φ̂(η, r) = − V
′′′

(φ̂0)

12

(

T 2

V h
eff

′′
(φ̂0)

)

ΨN (r) . (106)

Thus, we see that outside and on the lightcone (r ≥ |η|), the result reduces to minus the static limit result (104).
Inside the lightcone (r < |η|), the thermal shift depends on time and approaches asymptotically the static case.

From these results we see that there is a negligible shift in the classical field φ̂ at low temperature because of the
exponential suppression, however, depending on the form of the tree-level potential, the shift generated by metric
perturbations in the ultra-relativistic limit could be relevant in certain cases.
Now, let us focus on the critical temperature of the phase transition Tc defined by [16]

Veff(φ̂0 +∆φ̂) = Veff(0) (107)

where Veff, φ̂0 and ∆φ̂ depend on the temperature T . Expanding equation (107) around the critical temperature in
the absence of metric perturbations T 0

c , we get for the leading order

V h
eff(φ̂0) = V h

eff(0) (108)
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which is the definition of T 0
c . Considering the next to leading order and solving for δTc = Tc − T 0

c , we obtain the
following expression for the shift in the critical temperature produced by metric perturbations4

δTc = − V i
eff(φ̂0)

d
dT

(

V h
eff(φ̂0)

)

∣

∣

∣

∣

∣

∣

T=T 0
c

. (109)

It can be shown (see Appendix E) that in the static limit

V i
eff(φ̂0)

d
dT

(

V h
eff(φ̂0)

) = −T Φ(p) (110)

therefore, in that case, the shift in the critical temperature is given by

δTc

T 0
c

= Φ(p) . (111)

i.e. once again the curvature perturbation Ψ does not contribute to the shift.

VII. CONCLUSIONS

Considering a scalar field at finite temperature in an inhomogeneous static space-time, we have computed the
one-loop corrections to the effective potential and to the energy-momentum tensor induced by static scalar metric
perturbations around a Minkowski background to first order in metric perturbations. To this aim, we have applied
the formalism developed in [11, 12]. In particular we have used the explicit expressions for the perturbed field modes
together with the assumptions of adiabatic evolution of the field. In order to obtain analytical expressions, the
non-relativistic and ultra-relativistic limits have been considered.
In the non-relativistic limit, we obtained the corresponding expressions in the static limit and also the limits for

large-scale perturbations (small p) or times close to the initial time. In the ultra-relativistic limit, we obtain the
complete results for arbitrary p and η up to O(m/T )5. In the static limit, our results agree with those in [14] and
[15] which were obtained by means of the Schwinger-de Witt expansion. The energy density and pressure in the
static limit are consistent with a local thermal distributions at the local Tolman temperature. Besides, our results
are sensitive to the initial conditions set at the initial time for the mode solutions.
We have also discussed the space-dependent shift in the classical field induced by the metric perturbations. As

expected, in the non-relativistic limit the shift is Boltzmann suppressed. However, in the ultra-relativistic case and
depending on the shape of the potential, the shift could be non-negligible.
The results of the paper have shown that mode summation is a useful technique to obtain explicit expressions

for one-loop quantities at zero and finite temperature. Unlike the more standard Schwinger-de Witt expansion, this
method allows to calculate not only the local contributions to the effective action, but also the finite non-local ones
which will appear at second order in the perturbative expansion. Future work along this line will allow to explore
this possibility.
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Appendix A: Perturbed mode solution

The expression for Pk(η,p) and δθk(η,p) are given by [12] (see also [18, 19])

4 To get this expression we have redefined the effective potential by
adding a function of the temperature in such a way that V h

eff
(0) =

0 and d

dT
V h

eff
(0) = 0 for every T . This does not change the

dynamics of the field since the aforementioned function of the
temperature does not depend on the field φ
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Pk(η,p) =

∫ η

0

e−ik·pβk(η,η
′)Hk(η

′,p)

2ωk(η′)
dη′ + e−ik·pβk(η,0)Pk(0,p) . (A1)

δθk(η,p) =

∫ η

0

e−ik·pβk(η,η
′) Gk(η

′,p) dη′ + e−ik·pβk(η,0)δθk(0,p) . (A2)

where Pk(0,p), δθk(0,p) are the intial conditions, and

βk(ηf , ηi) =

∫ ηf

ηi

dη′

ωk(η′)
(A3)

Hk(η,p) = ωk Q
′
k(η,p) + Tk(η,p) (A4)

Qk(η,p) = −i
k · p
ω2
k

δθk(η,p) +

[

D − k2

ω2
k

]

Ψ(η,p) (A5)

Tk(η,p) = p2 δθk(η,p)− ik · p [Φ(η,p)− (D − 2)Ψ(η,p)] (A6)

Gk(η,p) = −ωk

[

Φ(η,p) +
k2

ω2
k

Ψ(η,p)

]

. (A7)

Pk(0,p) is fixed by the orthonormalization condition of the modes while δθk(0,p) remains arbitrary. The arbitrari-
ness in δθk(0,p) can also be absorbed in a change of the lower integration limit in (A2). As we will see, only setting
the time origin to η0 → −∞, which is equivalent to taking η → ∞, corresponds to the exact static limit.
Full details about the solutions (A1) and (A2), and about the orthonormalization condition are given in [12].

Appendix B: Expansion in p η for static space-times

The following expansions have been used for the computation of the potential and the energy-momentum tensor

P̂k(η,p) =

(

3− k2

ω2
k

)

Ψ(p) + (B1)

∞
∑

l=1

(−1)l

(2l + 1)!
(p η)2l

(

k

ωk

)2l
1

k2 ω2
k

×
[(

2k4 + (3 + 2l) k2m2

)(

Φ(p) + Ψ(p)

)

+ (1 + 2l) m4 Φ(p)

]

.

∫ 1

−1

dx̂

(

i k p x̂

ω2
k

)

Pk(η,p) = i

∞
∑

l=1

(−1)l

(2l− 1)!
(p η)2l

(

k

ωk

)2l

× (B2)

[

1

(2l + 1)k2 ωk η

(

(2l + 1)m4Φ(p) + 3k4(Φ(p) + Ψ(p)) + k2m2((2l + 3)Ψ(p) + 2(l + 2)Φ(p))

)

− ωk

(2l − 1)k2η

(

m2Φ(p) + k2(Φ(p) + Ψ(p))

)]

δθk(η,p) =
∞
∑

l=0

(−1)l+1

(l + 1)!
ηl+1

(

ik · p
ωk

)l
1

ωk

[

m2 Φ(p) + k2 (Φ(p) + Ψ(p))
]

(B3)

δθ̂k(η,p) = −2

∞
∑

l=0

(−1)l

(2l + 1)!
(pη)2l

(

k

ωk

)2l
ωk η

2l + 1

[

(

m

ωk

)2

Φ(p) +

(

k

ωk

)2

(Φ(p) + Ψ(p))

]

(B4)

∫ 1

−1

dx̂

(

i k p x̂

ω2
k

)

δθk(η,p) = 2

∞
∑

l=1

(−1)l

(2l + 1)!
(pη)

2l

(

k

ωk

)2l
[

(

m

ωk

)2

Φ(p) +

(

k

ωk

)2

(Φ(p) + Ψ(p))

]

. (B5)

∫ 1

−1

dx̂

(

i k p x̂

ω2
k

)2

δθk(η,p) = −4
∞
∑

l=1

(−1)l

(2l + 1)!
(pη)2l

(

k

ωk

)2l
l

ωk η

[

(

m

ωk

)2

Φ(p) +

(

k

ωk

)2

(Φ(p) + Ψ(p))

]

. (B6)

Both P̂k(η,p) and
∫ 1

−1
dx̂
(

i k p x̂
ω2

k

)

δθk(η,p) are the main terms appearing in the computation, while the remaining

ones can be obtained from these expressions.
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Appendix C: Multipole expansion and Fourier transform

1. Fourier transform in three dimensions

In this discussion we follow [17]. The Fourier transform of a function f(r) is defined as5

f(p) =

∫

d3r f(r) e−ip·r (C1)

Then, the inverse transform is given by

f(r) =

∫

d3p

(2 π)3
f(p) eip·r (C2)

We are interested in the following integrals

Ilm(p) =

∫

d3
r f(r)Ylm(r̂) e−ip·r (C3)

Ilm(r) =

∫

d3p

(2π)3
f(p)Ylm(p̂) eip·r , (C4)

where Ylm(x̂) are the usual spherical harmonics. Using the Rayleigh expansion

eip·r =

∞
∑

l=0

(2l + 1) il jl(p r)Pl(p̂ · r̂) (C5)

where jl(x) are spherical Bessel functions and Pl(x) are the Legendre polynomials, the addition theorem for spherical
harmonics

Pl(p̂ · r̂) =
4π

2l + 1

l
∑

m=−l

Ylm(r̂)Y ∗
lm(p̂) (C6)

and the orthonormalization of the spherical harmonics
∫

dΩp Y
∗
lm(p̂)Yl′m′(p̂) = δl l′ δmm′ , (C7)

Ilm(p) and Ilm(r) can be written as

Ilm(p) = 4π (−i)l Ylm(p̂)

∫ ∞

0

dr r2 f(r) jl(p r) (C8)

Ilm(r) =
il

2π2
Ylm(r̂)

∫ ∞

0

dp p2 f(p) jl(p r) . (C9)

2. Multipole expansion in Fourier space

An arbitrary potential generated by a finite static matter distribution ρ(x) can be written as a multipole expansion
in spherical coordinates in the region outside the matter distribution as

Φ(r) = −1

r

∞
∑

l=0

l
∑

m=−l

Qlm

rl

√

4π

2l+ 1
Ylm(r̂) (C10)

5 With the usual abuse of notation for using the same label for
the function and for its Fourier transform. Note the non-unitary

convention (the factor 1/(2π)3 is introduced when going from
Fourier space to real space).
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where Qlm are the spherical multipole moments of the mass distribution given by

Qlm =

∫

ρ(r′) r′ l
√

4π

2l+ 1
Y ∗
lm(r̂′) d3r′ (C11)

The Fourier transform of the potential is

Φ(p) = −4π

p2

∞
∑

l=0

(−i)l

(2l− 1)!!

l
∑

m=−l

Qlm pl
√

4π

2l+ 1
Ylm(p̂) . (C12)

where we have used the following result

lim
λ→0+

∫ ∞

0

dr r2
e−λ r

r(l+1)
jl(p r) =

pl−2

(2l− 1)!!
, (C13)

where we have introduced a regularizing factor e−λ r [which in fact it is only necessary for l = 0, the remaining cases
being convergent].
To get the results for potential and energy-momentum tensor in real space we have to compute the following

integrals

1

(2π)3

∫

Φ(p)
sin(p η)

(p η)2k+1
eip·r d3

p
p′=pη
=

1

η3
1

(2π)3

∫

Φ(p′/η)
sin(p′)

(p′)2k+1
eip

′·r/η d3
p′ . (C14)

(C15)

Taking into account the multipole expansion of the potential in Fourier space (C12), it can be shown for each
multipole that the integral will be proportional to

1

ηl+1

∫ ∞

0

dp′ e−λp p′2 p′l−2 sin(p′)

(p′)2k+1
jl(p

′ r/η) , (C16)

where we have introduced a regularizing factor e−λ p. Since the spherical Bessel functions of the first kind are finite,
in particular at the origin, we get that in the static limit η → ∞, the integral goes to zero. The same argument
applies for the integrals involving cosine functions.

Appendix D: Next to leading terms in the ultrarrelativistic limit

Next to leading order corrections can be obtained by expanding the Bose-Einstein factor and performing the
integration term by term. For instance, the integrals we are interested in are of the following form

X4

∫ ∞

1

f (ũ)

eXũ − 1
dũ (D1)

where ũ = u/X and X = m(φ̂)/T . Using the Taylor expansion of the Bose-Einstein factor

1

eXũ − 1
=

∞
∑

k=0

Bk

k!

ũk

ũ
Xk−1, (D2)

the next to leading corrections in X can be obtained as far as the integrals are convergent. Bk are the Bernoulli
numbers. The function f(ũ) appearing in the calculations behaves as ∼ 1

ũ3 in the limit ũ → ∞, therefore the integrals
can be performed up to k = 2.

Appendix E: Expression for V i

eff and d

dT
V i

eff in the static limit

Let us define (following [16])

Jν(x) =

∫ ∞

x

2
(

u2 − x2
)ν/2

eu − 1
du (E1)

F (ν)(X) =

∫ X

0

x2−ν Jν(x) dx . (E2)
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Then, in the static limit we have

V h
eff =

T 4

4 π2
F (1)

(

m(φ̂)

T

)

(E3)

and

V i
eff = − T 4

4 π2

[

2F (1)

(

m(φ̂)

T

)

+ F (−1)

(

m(φ̂)

T

)]

Φ(p) , (E4)

which can be read from the equation (10). The derivative with respect to the temperature of the homogeneous effective
potential is given by

d

dT

(

V h
eff(φ̂0)

)

=
T 3

4 π2



4F (1)

(

m(φ̂)

T

)

−
(

m(φ̂)

T

)2

J (1)

(

m(φ̂)

T

)



 . (E5)

The second term in the righ-hand side of the last equation can be written as

(

m(φ̂)

T

)2

J (1)

(

m(φ̂)

T

)

=

∫ m(φ̂)/T

0

d

dx

(

x2 J (1)(x)
)

dx = 2F (1)

(

m(φ̂)

T

)

− F (−1)

(

m(φ̂)

T

)

, (E6)

where we have used the following property of J (v)(x)

∂J (ν)(x)

∂x
= −ν x J (ν−2)(x) . (E7)

Therefore, equations (E5) and (E6) give us

V i
eff(φ̂0)

d
dT

(

V h
eff(φ̂0)

) = −T Φ(p) . (E8)
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