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HYPERPLANE ARRANGEMENTS IN COCOA

ELISA PALEZZATO AND MICHELE TORIELLI

ABSTRACT. We introduce the package arrangements for the software

CoCoA. This package provides a data structure and the necessary meth-

ods for working with hyperplane arrangements. In particular, the pack-

age implements methods to enumerate many commonly studied classes

of arrangements, perform operations on them, and calculate various in-

variants associated to them.

1. INTRODUCTION

An arrangement of hyperplanes is a finite collection of codimension one

affine subspaces in a finite dimensional vector space. Associated to these

spaces, there is a plethora of algebraic, combinatorial and topological in-

variants. Arrangements are easily defined but they lead to deep and beauti-

ful results that put in connection various area of mathematics. We refer the

reader to the seminal text [10] for a comprehensive account of this subject.

One of the main goals in the study of hyperplane arrangements is to de-

cide whether a given invariant is combinatorically determined, and, if so, to

express it explicitly in terms of the intersection lattice of the arrangement.

We describe the new package arrangements that computes several com-

binatorial invariants (like the lattice of intersections and its flats, the Poincaré,

the characteristic and the Tutte polynomials) and algebraic ones (like the

Orlik-Terao and the Solomon-Terao ideals) of hyperplane arrangement for

the software CoCoA ([1], [2] and [3]). Moreover, several functions for

the class of free hyperplane arrangements are implemented. In addition,

this package allows also to do computations with multiarrangements. Fi-

nally, several known families of arrangements (like classic reflection ar-

rangements, Shi arrangements, Catalan arrangements, Shi-Catalan arrange-

ments, graphical arrangements and signed graphical ones) can be easily

constructed.

We introduce this package via several examples. Specifically, in Section

2 we first recall the definitions of various combinatorial invariants of a given

arrangement and then describe how to compute them. In Section 3, we de-

scribe how to work with free hyperplane arrangements, and in Section 4

how to define the Orlik-Terao ideal and the Solomon-Terao one. Finally, in
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Section 5 we describe the class of multiarrangements with particular em-

phasis to the free ones.

This package will be part of the official release CoCoA-5.2.4.

2. COMBINATORIC OF ARRANGEMENTS

Let V be a vector space of dimension l over a field K. Fix a system of co-

ordinate (x1, . . . , xl) of V ∗. We denote by S = S(V ∗) = K[x1, . . . , xl] the

symmetric algebra. A finite set of affine hyperplanes A = {H1, . . . , Hn} in

V is called a hyperplane arrangement.

For each hyperplane Hi we fix a defining equation αi ∈ S such that Hi =
α−1
i (0), and let Q(A) =

∏n

i=1 αi. An arrangement A is called central if

each Hi contains the origin of V . In this case, the defining equation αi ∈ S
is linear homogeneous, and hence Q(A) is a homogeneous polynomial of

degree n.

The operation of coning allows to transform any arrangement A of V
with n hyperplanes into a central arrangement cA in a vector space of di-

mension l + 1 with n + 1 hyperplanes, see [10].

Notice that in CoCoA to compute the cone of an arrangement A, the

homogenizing variable needs to be already present in the ring in which the

equation of A is defined. For example, we can construct the cone of the Shi

arrangement of type A in CoCoA as follows:

/**/ use S::=QQ[x,y,z,w];

/**/ A := ArrShiA(S, 3); A;

[x-y, x-z, y-z, x-y-1, x-z-1, y-z-1]

/**/ ArrCone(A, w);

[x-y, x-z, y-z, x-y-w, x-z-w, y-z-w, w]

Let L(A) = {
⋂

H∈B H | B ⊆ A} be the lattice of intersection of

A. Define a partial order on L(A) by X ≤ Y if and only if Y ⊆ X ,

for all X, Y ∈ L(A). Note that this is the reverse inclusion. The ele-

ments of L(A) are called flats of A. Define a rank function on L(A) by

rk(X) = codim(X). L(A) plays a fundamental role in the study of hyper-

plane arrangements, in fact it determines the combinatoric of the arrange-

ment.

We can compute the flats in the lattice of intersection of the reflection

arrangement of type D in CoCoA in the following way:

/**/ use S::=QQ[x,y,z];

/**/ A := ArrTypeD(S,3); A;

[x-y, x+y, x-z, x+z, y-z, y+z]
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/**/ ArrFlats(A);

[[ideal(0)],

[ideal(x-y), ideal(x+y), ideal(x-z), ideal(x+z),

ideal(y-z), ideal(y+z)],

[ideal(x, y), ideal(x-z, y-z), ideal(x+z, y+z),

ideal(x-z, y+z), ideal(x+z, y-z), ideal(x, z),

ideal(y, z)],

[ideal(x, y, z)]]

Let µ : L(A) −→ Z be the Möbius function of L(A) defined by

µ(X) =

{

1 for X = V,

−
∑

Y <X µ(Y ) if X > V.

The Poincaré polynomial of A is defined by

π(A, t) =
∑

X∈L(A)

µ(X)(−t)rk(X),

and it satisfies the formula

π(cA, t) = (t+ 1)π(A, t).

We now verify the previous result for the Shi arrangement of type A in

CoCoA.

/**/ use S::=QQ[x,y,z,w];

/**/ A := ArrShiA(S, 3);

/**/ pi_A := ArrPoincarePoly(A); pi_A;

9*tˆ2 +6*t +1

/**/ cA := ArrCone(A, w);

/**/ pi_cA := ArrPoincarePoly(cA); pi_cA;

9*tˆ3+15*tˆ2+7*t+1

/**/ pi_A := ArrPoincarePoly(A);

/**/ t := indets(RingOf(pi_A),1);

/**/ pi_cA = (1+t)*pi_A;

true

For any flat X ∈ L(A) define the subarrangement AX of A by

AX = {H ∈ A | X ⊆ H}.

Similarly, define the restriction of A to X as the arrangement AX in X

AX = {X ∩H | H ∈ A \ AX and X ∩H 6= ∅}.

The characteristic polynomial of A is

χ(A, t) = tlπ(A,−t−1) =
∑

X∈L(A)

µ(X)tdim(X).
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The characteristic polynomial is characterized by the following recursive

relation

χ(A, t) = χ(AH , t)− χ(AH , t),

for any H ∈ A.

We verify the previous result for A[−1,2] the Shi-Catalan arrangement of

type A in CoCoA.

/**/ use S ::= QQ[x,y,z];

/**/ A := ArrShiCatalanA(S, 3, [-1, 2]); A;

[x-y, x-z, y-z, x-y-1, x-z-1, y-z-1, x-y+1, x-y+2,

x-z+1, x-z+2, y-z+1, y-z+2]

/**/ A_1 := ArrDeletion(A,4); A_1;

[x-y, x-z, y-z, x-z-1, y-z-1, x-y+1, x-y+2, x-z+1,

x-z+2, y-z+1, y-z+2]

/**/ A_2 := ArrRestriction(A,4); A_2;

[y[1]-y[2]+1, y[1]-y[2], y[1]-y[2]-1, y[1]-y[2]+2,

y[1]-y[2]+3]

/**/ ArrCharPoly(A) = ArrCharPoly(A_1) - ArrCharPoly(A_2);

true

For i = 0, . . . , l we define the i-th Betti number bi(A) by the formula

χ(A, t) =
l

∑

i=0

(−1)ibi(A)tl−i.

The importance of the characteristic polynomial in combinatorics is justi-

fied by the following result from [8], [9] and [21].

Theorem 2.1. We have that

(1) If A is an arrangement in Fl
q (vector space over a finite field Fq),

then |Fl
q \

⋃

H∈AH| = χ(A, q).

(2) If A is an arrangement in Cl, then the topological i-th Betti number

of the complement is bi(C
l \

⋃

H∈AH) = bi(A).
(3) If A is an arrangement in Rl, then |χ(A,−1)| is the number of

chambers and |χ(A, 1)| is the number of bounded chambers.

Using the previous statements, we can compute the Betti numbers, the

number of chambers and the number of bounded chambers of the arrange-

ment in Figure 1 in CoCoA.

/**/ use S ::=QQ[x,y];

/**/ A := [x,x-1,y,y-1,x-y];

/**/ ArrBettiNumbers(A);

[1, 5, 6]
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x = 0 x = 1

y = 0

y = 1

x = y

FIGURE 1. A line arrangement in R2

/**/ NumChambers(A);

12

/**/ NumBChambers(A);

2

Associated to each hyperplane arrangement, it can be naturally defined a

third polynomial. The Tutte polynomial of A is

TA(x, y) =
∑

B⊆A
B central

(x− 1)rk(A)−rk(B)(y − 1)|B|−rk(B).

As shown in [6], it turns out that the Tutte and the characteristic polynomials

are related by

χ(A, t) = (−1)rk(A)t|A|−rk(A)TA(1− t, 0).

We verify the previous result for the Boolean arrangement in CoCoA.

Notice that here, since the Tutte and the characteristic polynomials live in

different rings, we need to construct a ring homomorphism, with the com-

mand PolyRingHom, to check the required equality.

/**/ use S ::= QQ[x,y,z];

/**/ A := ArrBoolean(S, 3);

/**/ Tutte_A := ArrTuttePoly(A); Tutte_A;

t[1]ˆ3

/**/ char_A := ArrCharPoly(A);

/**/ R:=RingOf(Tutte_A);

/**/ P:=RingOf(char_A);

/**/ t:=indets(P,1);

/**/ psi := CanonicalHom(BaseRing(R),P);

/**/ phi := PolyRingHom(R, P, psi, [1-t,0]);
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/**/ char_A=(-1)ˆ3*tˆ(len(A)-3)*phi(Tutte_A);

true

3. FREE HYPERPLANE ARRANGEMENTS

In the theory of hyperplane arrangements, the freeness of an arrangement

is a very important algebraic property. In fact, freeness implies several in-

teresting geometric and combinatorial properties of the arrangement itself.

See for example [18], [20], [4], [7] and [12].

We denote by DerV = {
∑l

i=1 fi∂xi
| fi ∈ S} the S-module of polyno-

mial vector fields on V (or S-derivations). Let δ =
∑l

i=1 fi∂xi
∈ DerV .

iI f1, . . . , fl are homogeneous polynomials of degree d in S, then δ is

said to be homogeneous of polynomial degree d. In this case, we write

pdeg(δ) = d.

For any central arrangement A we define the module of vector fields

logarithmic tangent to A (logarithmic vector fields) by

D(A) = {δ ∈ DerV | δ(αi) ∈ 〈αi〉S, ∀i}.

The module D(A) is obviously a graded S-module and we have that

D(A) = {δ ∈ DerV | δ(Q(A)) ∈ 〈Q(A)〉S}.

Definition 3.1. A central arrangement A is said to be free with expo-

nents (e1, . . . , el) if and only if D(A) is a free S-module and there ex-

ists a basis δ1, . . . , δl ∈ D(A) such that pdeg(δi) = ei, or equivalently

D(A) ∼=
⊕l

i=1 S(−ei).

Let δ1, . . . , δl ∈ D(A). Then det(δi(xj)) is divisible by Q(A). One

of the most famous characterization of freeness is due to Saito [13] and it

uses the determinant of the coefficient matrix of δ1, . . . , δl to check if the

arrangement A is free or not.

Theorem 3.2 (Saito’s criterion). Let δ1, . . . , δl ∈ D(A). Then the following

facts are equivalent

(1) D(A) is free with basis δ1, . . . , δl, i. e. D(A) = S · δ1⊕· · ·⊕S · δl.
(2) det(δi(xj)) = cQ(A), where c ∈ K \ {0}.

(3) δ1, . . . , δl are linearly independent over S and
∑l

i=1 pdeg(δi) = n.

Given a simple graph G, we can define the graphical arrangement A(G),
see [10]. In [15], Stanley showed that A(G) is free if and only if G is a

chordal graph. See also [17] and [16] for more general results.

We verify this result for a given graphical arrangement in CoCoA.

/**/ use S::=QQ[x,y,z,w];

/**/ G:=[[1,2],[1,3],[1,4],[2,4],[3,4]];

/**/ A:=ArrGraphical(S,G);
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/**/ ArrDerMod(A);

matrix( /*RingWithID(18935, "QQ[x,y,z,w]")*/

[[1, 0, 0, 0],

[1, x-y, 0, 0],

[1, x-z, x*z-zˆ2-x*w+z*w, x*y-y*z-x*w+z*w],

[1, x-w, 0, x*y-x*w-y*w+wˆ2]])

/**/ ArrExponents(A);

[0, 1, 2, 2]

/**/ B:=ArrDeletion(A,3);

/**/ IsArrFree(B);

false

4. ALGEBRAS

In [11], Orlik and Terao introduced a commutative analogue of the Orlik-

Solomon algebra in order to answer a question of Aomoto related to coho-

mology groups of a certain “twisted” de Rham chain complex. The crucial

difference between the Orlik-Solomon algebra and Orlik-Terao algebra is

not the difference between the exterior algebra and symmetric algebra, but

rather the fact that the Orlik-Terao algebra actually records the “weights” of

the dependencies among the hyperplanes.

Let A = {H1, . . . , Hn} be an arrangement in V and Λ ⊆ {1, . . . , n}. If
⋂

i∈ΛHi 6= ∅ and codim(
⋂

i∈Λ Hi) < |Λ|, then we say that Λ is dependent.

If Λ is dependent, then there exist ci ∈ K such that
∑

i∈Λ ciαi = 0.

Definition 4.1. Let R be the ring K[y1, . . . , yn]. For each dependent set

Λ = {i1, . . . , ik}, let rΛ =
∑k

j=1 cijyij ∈ R. Define now

fΛ = ∂(rΛ) =

k
∑

j=1

cij (yi1 · · · ŷij · · · yik),

and let I be the ideal of R generated by the fΛ. This ideal is called the

Orlik-Terao ideal of A. The Orlik-Terao algebra OT(A) is the quotient

R/I . The Artinian Orlik-Terao algebra AOT(A) is the quotient of OT(A)
by the square of the variables.

These algebras and their Betti diagrams give us a lot of information on

the given arrangement, for example about its formality. See for example

[14].

We can construct the Orlik-Terao ideal, its Artinian version and the Betti

diagram of the Orlik-Terao algebra of the Braid arrangement in CoCoA as

follows:
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/**/ use S ::= QQ[x,y,z];

/**/ A:=ArrBraid(S,3);

/**/ OT_A := OrlikTeraoIdeal(A); OT_A;

ideal(y[1]*y[2]-y[1]*y[3]+y[2]*y[3])

/**/ PrintBettiDiagram(RingOf(OT_A)/OT_A);

0 1

---------------

0: 1 -

1: - 1

---------------

Tot: 1 1

/**/ ArtinianOrlikTeraoIdeal(A);

ideal(y[1]*y[2]-y[1]*y[3]+y[2]*y[3], y[1]ˆ2, y[2]ˆ2,

y[3]ˆ2)

In [5], the authors introduced a new algebra associated to a hyperplane

arrangement. This algebra can be considered as a generalization of the coin-

variant algebras in the setting of hyperplane arrangements and it contains

the cohomology rings of regular nilpotent Hessenberg varieties.

Definition 4.2. Let A be an arrangement in V and f ∈ S. Then the ideal

a(A, f) = {δ(f) | δ ∈ D(A)} is called the Solomon-Terao ideal of A
with respect to f . The Solomon-Terao algebra of A with respect to f is the

quotient ST(A, f) = S/a(A, f).

We can construct the Solomon-Terao ideal of the reflection arrangement

of type D with respect to f the sum of the square of the variables in the

following way in CoCoA:

/**/ use S ::= QQ[x,y,z];

/**/ A:=ArrTypeD(S,3);

/**/ f:=xˆ2+yˆ2+zˆ2;

/**/ SolomonTeraoIdeal(A,f);

ideal(2*xˆ2+2*yˆ2+2*zˆ2, 6*x*y*z, 2*xˆ2*yˆ2-2*yˆ4+2*xˆ2*zˆ2-2*zˆ4)

5. MULTIARRANGEMENTS OF HYPERPLANES

A multiarrangement is a pair (A, m) of an arrangement A with a map

m : A −→ Z≥0, called the multiplicity. An arrangement A can be iden-

tified with a multiarrangement with constant multiplicity m ≡ 1, which is

sometimes called a simple arrangement. Define Q(A, m) =
∏n

i=1 α
m(Hi)
i

and |m| =
∑n

i=1m(H1). With this notation, the main object is the module

of vector fields logarithmic tangent to A with multiplicity m (logarithmic
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vector field) defined by

D(A, m) = {δ ∈ DerV | δ(αi) ∈ 〈αi〉
m(Hi)S, ∀i}.

The module D(A, m) is a graded S-module. In general, contrarily to the

case of simple arrangements, we have that D(A, m) does not coincide with

{δ ∈ DerV | δ(Q(A)) ∈ 〈Q(A, m)〉S}.

Definition 5.1. Let A be central arrangement. The multiarrangement (A, m)
is said to be free with exponents (e1, . . . , el) if and only if D(A, m) is

a free S-module and there exists a basis δ1, . . . , δl ∈ D(A, m) such that

pdeg(δi) = ei, or equivalently D(A, m) ∼=
⊕l

i=1 S(−ei).

As for simple arrangements, if δ1, . . . , δl ∈ D(A, m), then det(δi(xj)) is

divisible by Q(A, m). Moreover, we can generalize Theorem 3.2.

Theorem 5.2 (Generalized Saito’s criterion). Let δ1, . . . , δl ∈ D(A). Then

the following facts are equivalent

(1) D(A, m) is free with basis δ1, . . . , δl, i. e. D(A, m) = S · δ1⊕· · ·⊕
S · δl.

(2) det(δi(xj)) = cQ(A, m), where c ∈ K \ {0}.

(3) δ1, . . . , δl are linearly independent over S and
∑l

i=1 pdeg(δi) =
|m|.

Given a simple arrangement A and H one of its hyperplane, we can nat-

urally define the Ziegler’s multirestriction (see [22]) as the multiarrange-

ment (AH, mH), where the function mH : AH −→ Z>0 is defined by

X ∈ AH 7→ #{H ′ ∈ A | H ⊃ X} − 1.

Theorem 5.3 ([22]). Let A be a central arrangement. If A is free with ex-

ponents (1, e2, . . . , el), then (AH1 , mH1) is free with exponents (e2, . . . , el).

In general, the converse of the previous theorem is false. However, we

have the following

Theorem 5.4 ([19]). Assume l ≥ 4. Then a central arrangement A is

free with exponents (1, e2, . . . , el) if and only if the following conditions are

satisfied.

(1) A is locally free along H1, i.e. AX is free for any X ∈ L(A) with

X ⊂ H1 and X 6= ∅,

(2) the Ziegler’s multirestriction (AH1, mH1) is a free multiarrange-

ment with exponents (e2, . . . , el).

We can construct the Ziegler’s multirestriction of a given arrangement

and verify the previous statements in CoCoA as follows:
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/**/ use S ::= QQ[x,y,z];

/**/ A:=[x,y,z,x-y,x-y-z,x-y+2*z];

/**/ A_1:=MultiArrRestrictionZiegler(A,z);A_1;

[[y[1], 1], [y[2], 1], [y[1]-y[2], 3]]

/**/ MultiArrDerMod(A_1);

matrix( /*RingWithID(18, "QQ[y[1],y[2]]")*/

[[y[1]*y[2], y[1]ˆ3],

[y[1]*y[2], 3*y[1]ˆ2*y[2]-3*y[1]*y[2]ˆ2+y[2]ˆ3]])

/**/ MultiArrExponents(A_1);

[2, 3]

/**/ ArrExponents(A);

[1, 2, 3]

REFERENCES

[1] J. Abbott and A.M. Bigatti. CoCoALib: a C++ library for

doing Computations in Commutative Algebra. Available at

http://cocoa.dima.unige.it/cocoalib, 2016.
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