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T-SPREAD STRONGLY STABLE MONOMIAL IDEALS

VIVIANA ENE, JÜRGEN HERZOG, AYESHA ASLOOB QURESHI

Abstract. We introduce the concept of t-spread monomials and t-spread strongly
stable ideals. These concepts are a natural generalization of strongly stable and
squarefree strongly stable ideals. For the study of this class of ideals we use the
t-fold stretching operator. It is shown that t-spread strongly stable ideals are
componentwise linear. Their height, their graded Betti numbers and their generic
initial ideal are determined. We also consider the toric rings whose generators
come from t-spread principal Borel ideals.

Introduction

Among the monomial ideals, the squarefree monomial ideals play a distinguished
role as they are linked in many ways to combinatorial objects such as simplicial
complexes and graphs. Squarefree monomials in a polynomial ring K[x1, . . . , xn]
which generate these ideals are monomials of the form xi1 · · · xid

with i1 < i2 <
· · · < id. In this paper, we call a monomial xi1xi2 · · · xid

with i1 ≤ i2 ≤ · · · ≤ id

t-spread, if ij − ij−1 ≥ t for 2 ≤ j ≤ n. Note that, any monomial is 0-spread, while
the squarefree monomials are 1-spread.

A monomial ideal in S is called a t-spread monomial ideal, if it is generated
by t-spread monomials. For example, I = (x1x4x8, x2x5x8, x1x5x9, x2x6x9, x4x9) ⊂
K[x1, . . . , x9] is a 3-spread monomial ideal, but not 4-spread, because x2x5x8 is not
a 4-spread monomial. Note that 2–spread monomial ideals appear as initial ideals
for the defining ideals of the fiber cones of monomial ideals in two variables [6].

There is a well-known deformation, called polarization, which assigns to each
monomial ideal a squarefree monomial ideal, preserving all homological properties
of these ideals. In this way, many problems regarding monomial ideals can be
reduced to the study of squarefree monomial ideals. On the other hand, in shifting
theory, in particular for symmetric algebraic shifting, one used another operator,
called stretching operator, see [9], [5]. To transform an arbitrary monomial u =
xi1 · · · xid

with i1 ≤ i2 ≤ · · · ≤ id into a squarefree monomial, one defines the
stretched monomial σ(u) = xi1xi2+1xi3+2 · · · xid+(d−1). Let I be a monomial ideal
and G(I) = {u1, . . . , um} be the unique minimal monomial set of generators of I.
Then Iσ is defined to be the ideal with G(Iσ) = {σ(u1), . . . , σ(um)}.
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In contrast to polarization, the stretching operator is not a deformation and in
general does not preserve any of the homological properties of the ideal. For example,
if I = (x2

1, x2
2), then Iσ = (x1x2, x2x3). In this example I is a complete intersection,

but Iσ does not have this property. In fact, Iσ has a linear resolution. Applying
again the operator σ to Iσ, we obtain the ideal Iσ2

= (x1x3, x2x4) which again is a
complete intersection.

It can be easily seen that the t-fold iterated operator σt establishes a bijection
between all monomials in the polynomial ring T = K[x1, x2, . . .] and all t-spread
monomials in T ; see Corollary 1.7. While, in general I and Iσ may have different
graded Betti numbers, it turns out that the graded Betti numbers coincide when I is
a strongly stable ideal. This fact has been used in shifting theory to define symmetric
algebraic shifting; see for example [5, Section 11.2.2]. More generally, as one of the
main result of this paper, we show that I is a t-spread strongly stable ideal if and
only if Iσ is a t+ 1-spread strongly stable ideal (Proposition 1.9), and I and Iσ have
the same graded Betti numbers; see Theorem 1.11. The concept t-spread strongly
stable ideal generalizes the concepts of strongly stable and squarefree strongly stable
ideals, and is defined as follows: a monomial ideal I is called t-spread strongly stable,
if for all t-spread monomials u ∈ I, all j ∈ supp(u) and all i < j such that xi(u/xj)
is t-spread, it follows that xi(u/xj) ∈ I.

By using Theorem 1.11 and a well known result of Eliahou-Kervaire [3], we obtain
in Corollary 1.12 an explicit formula for the graded Betti numbers of a t-spread
strongly stable ideal.

As for ordinary strongly stable ideals, one defines Borel generators of a t-spread
strongly stable ideal I as a set of t-spread monomials in I with the property that I is
the smallest t-spread strongly stable ideal containing these generators. Of particular
interest is the case when I has precisely one Borel generator. In the special case
when the Borel generator in K[x1, . . . , xn] is u = xn−t(d−1) · · · xn−txn, the resulting
ideal is called a t-spread Veronese ideal. It is generated by all t-spread monomial
of degree deg(u). Theorem 2.3 lists the homological and algebraic properties of t-
spread Veronese ideals and their Alexander duals. The results of this theorem are
then used in Theorem 2.4 to determine the height of any t-spread strongly stable
ideal. As a consequence, Cohen-Macaulay t-spread strongly stable ideals can be
classified; see Corollary 2.5.

In Section 3, we study the toric K-algebras whose generators are the generators of
a t-spread principal Borel ideal. Generalizing a result of De Negri [2], we show that
these algebras are Koszul, Cohen-Macaulay normal domains. Finally, in Section 4,
we show that the generic initial ideal of a t-spread strongly stable ideal is simply
obtained by the inverse of the t-fold iterated operator σ.

It should be noted that the graded Betti numbers of I and Iσ may coincide not
only for t-spread strongly stable ideals. In fact, it can be easily seen that if I = Jσn

for a monomial ideal J ⊂ K[x1, . . . , xn], then for any t, I and Iσt

have the same
graded Betti numbers, because for such ideals the application of the operator σ
simply amounts to rename the variables. It would be interesting to determine all
monomial ideals for which I and Iσ coincide.
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1. t–spread strongly stable ideals

The section is intended to generalize the concepts of stable and squarefree stable
ideals.

Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n variables over
K. We denote by Mon(S) the set of all the monomials in S. For a monomial u we
denote by max(u) (min(u)) the maximal (minimal) index i for which xi divides u.

Definition 1.1. A t-spread monomial ideal I ⊂ S is called t-spread stable, if for
all t-spread monomials u ∈ I and for all i < max(u) such that xi(u/xmax(u)) is a
t-spread monomial, it follows that xi(u/xmax(u)) ∈ I.

The ideal I is called t-spread strongly stable, if for all t-spread monomials u ∈ I, all
j ∈ supp(u) and all i < j such that xi(u/xj) is t-spread, it follows that xi(u/xj) ∈ I.

Note that a t-spread strongly stable ideal is also t-spread stable.

Lemma 1.2. Let I be a t-spread monomial ideal. The following conditions are

equivalent:

(a) I is t-spread strongly stable.

(b) If u ∈ G(I), j ∈ supp(u) and i < j such that xi(u/xj) is a t-spread mono-

mial, then xi(u/xj) ∈ I.

Proof. (a) ⇒ (b) is obvious. To prove (b) ⇒ (a), let u ∈ I be a t-spread monomial
and i < j such that u′ = xi(u/xj) is a t-spread monomial. Let v ∈ G(I) such
that v|u. If xj /∈ supp(v), then v|u′ and u′ ∈ I. Otherwise, if xj ∈ supp(v), then
v′ = xi(v/xj) ∈ I by our assumption and v′|u′ and again we have u′ ∈ I. �

The following lemma is crucial for the study of t-spread strongly stable ideals.

Lemma 1.3. Let I be a t-spread strongly stable ideal and w ∈ I be a t-spread

monomial. Then w = w1w2 such that max(w1) < min(w2) for some w1 ∈ G(I) and

w2 ∈ Mon(S).

Proof. We may assume that t > 0, because for t = 0 such a decomposition for w is
known; see [3, Lemma 1.1].

Now, let w = w′
1w

′
2 with w′

1 ∈ G(I) such that if some v ∈ G(I) with v|w, then
deg(w′

1) ≤ deg(v). Of course, both w′
1 and w′

2 are t-spread monomials. Suppose that
k = max(w′

1) − min(w′
2) ≥ 0. Then we show that there exists w′′

1 ∈ G(I) such that
w = w′′

1w′′
2 for some monomial w′′

2 ∈ Mon(S) such that max(w′′
1) − min(w′′

2) < k.
Let j = max(w′

1) and i = min(w′
2). Then w′′

1 = xi(w
′
1/xj) is t-spread because

supp(w′′
1) ⊆ supp(w). Let w′′

2 = xj(w
′
2/xi). Then w′′

2 is t-spread as well and w =
w′′

1w′′
2 . Since I is t-spread strongly stable and i < j, we have w′′

1 ∈ I. Also, deg(w′
1) =

deg(w′′
1), and hence, by the assumption on the deg(w′

1), we see that w′′
1 ∈ G(I).

Moreover, max(w′′
1) < max(w′

1) and min(w′
2) < min(w′′

2) and max(w′′
1) − min(w′′

2) <
k. By applying induction on k, we get the desired result. �

A t-spread stable ideal need not to have linear quotients. For example, the ideal
I = (x1x3x5, x1x4x6) is 2-spread stable, but does not have linear quotients. However,
we have
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Theorem 1.4. The t-spread strongly stable ideals have linear quotients. In partic-

ular, they are componentwise linear.

Proof. Let G(I) = {u1, u2, . . . , um} ordered with respect to the pure lexicographical
order. Let r ≤ m and J = (u1, . . . , ur−1). Then in order to show that J : ur

is generated by variables, it is enough to show that for all 1 ≤ k ≤ r − 1 there
exists xi ∈ J : ur such that xi divides uk/ gcd(uk, ur). Let uk = xi1xi2 · · · xis

with i1 ≤ i2 ≤ · · · ≤ is and ur = xj1xj2 · · · xjt
with j1 ≤ j2 ≤ · · · ≤ jt. Since

uk >lex ur, there exists d with 1 ≤ d ≤ t such that i1 = j1, . . . , id−1 = jd−1

and id < jd. Let v = xid
(ur/xjd

). Then v = xj1xj2 · · · xjd−1
xid

xjd+1
· · · xjt

. Since
id − jd−1 = id − id−1 ≥ t and jd+1 − id > jd+1 − jd ≥ t, it follows that v is t-
spread, and so v ∈ I and v >lex ur. In fact, v ∈ J . Indeed, by Lemma 1.3, there
exists ul ∈ G(I) such that v = ulw and max(ul) < min(w). Suppose that v /∈ J .
Then ul ≤lex ur. From the presentation of v = ulw, it follows that v ≤lex ur, a
contradiction.

Now, as we know that v ∈ J , it follows that xid
∈ J : ur. This completes the

proof, since xid
divides uk/ gcd(uk, ur). �

Let I be a t-spread strongly stable ideal with G(I) = {u1, u2, . . . , um} ordered
with respect to the pure lexicographic order. As in [7] we define

set(uk) = {i : xi ∈ (u1, . . . , uk−1) : uk} for k = 1, . . . , m.

The proof of Theorem 1.4 shows that set(uk) is the set of positive integers i satisfying

(1) i < max(uk), i 6∈ supp(uk) and i − j ≥ t for all j ∈ supp(uk) with j < i.

We set Ij = (u1, . . . , uj) for j = 1, . . . , m. Let M(I) be the set of all monomials in
I. The decomposition map g : M(I) → G(I) is defined as follows: for u ∈ M(I) we
let g(u) = uj, where j is the smallest number such that u ∈ Ij . The decomposition
map is regular, if set(g(xiuk)) ⊂ set(uk) for all i ∈ set(uk) and all uk ∈ G(I).

The resolution of monomial ideals with linear quotients and regular decomposition
function can be explicitly described; see [7, Theorem 1.12]. Stable and squarefree
stable ideals have regular decomposition functions. However, even 2-spread strongly
stable monomial ideals in general do not have regular decomposition functions.

For example, consider the 2-spread strongly stable ideal

I = (x1x3, x1x4, x1x5, x1x6, x2x4, x2x5, x2x6, x3x5, x3x6).

Then, set(x3x6) = {1, 2, 5}, g(x2x3x6) = x2x6 and set(g(x2x3x6)) = {1, 4, 5} 6⊆
set(x3x6).

In what follows, we will establish a bijection between t-spread strongly stable
ideals and t + 1-spread strongly stable ideals which preserves the graded Betti num-
bers.

Let T = K[x1, x2, . . .] be a polynomial ring in infinitely many variables. We
denote by Mon(T ; t) the set of all t-spread monomials in T . Then Mon(T ; 0) is just
the set of all monomials of T which we simply denote by Mon(T ).
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Definition 1.5. Let u =
∏d

j=1 xij
∈ T with i1 ≤ i2 ≤ · · · ≤ id. Then we define

σ : Mon(T ) → Mon(T ) by

σ(u) =
d
∏

j=1

xij+(j−1).

Note that, σ induces a map Mon(T ; t) → Mon(T ; t + 1) which we again denote
by σ. Indeed, if u is a t-spread monomial then σ(u) is a t + 1-spread monomial,
because (ij+1 + j) − (ij + (j − 1)) = ij+1 − ij + 1 ≥ t + 1.

Lemma 1.6. The map σ : Mon(T ; t) → Mon(T ; t + 1) is bijective.

Proof. Let u =
∏d

j=1 xij
∈ T with i1 ≤ i2 ≤ · · · ≤ id. We define the inverse map of

σ by τ : Mon(T ; t + 1) → Mon(T ; t) by

τ(u) =
d
∏

j=1

xij−(j−1)
.

�

Corollary 1.7. The iterated map σt : Mon(T ) → Mon(T ; t) establishes a bijection

between the set of all monomial in T and the set of all t-spread monomials in T .

Definition 1.8. Let I be a monomial ideal. Then we let Iσ be the ideal generated
by the monomials σ(u) with u ∈ G(I).

Observe that if I is a t-spread ideal then Iσ is a t + 1-spread ideal.

Proposition 1.9. Let I be a monomial ideal. Then I is a t-spread strongly stable

ideal if and only if Iσ is a t + 1-spread strongly stable ideal.

Proof. Let I be a t-spread ideal and σ(u) =
∏d

j=1 xij+(j−1) with u ∈ G(I). We want
to show that for all j ∈ supp(σ(u)) and k < j such that v = xk(σ(u)/xj) is a t + 1-
spread monomial then v ∈ Iσ. Since xj |σ(u), it follows that j = il + l − 1 for some
1 ≤ l ≤ d. Then

v = xi1xi2+1 · · · xil−1+(l−2)xkxil+1+l · · · xid+(d−1)

Let w = τ(v). Then, first we show that w ∈ I. Indeed,

w = xi1xi2 · · · xil−1
xk−(l−1)xil+1

· · · xid
,

therefore, w = xk−(l−1)(u/xil
) and k − (l − 1) < il . Moreover, w is t-spread.

Indeed, since v is t + 1-spread, we have k − (il−1 + (l − 2)) ≥ t + 1 which implies
k−(l−1)−il−1 ≥ t, and we have il+1+l−k ≥ t+1 which implies il+1−(k−(l−1)) ≥
t + 1. Then, by Lemma 1.3, w = w1w2 such that max(w1) < min(w2). This implies
that v = σ(w) = σ(w1)w

′ where w′ is a monomial. Therefore, v ∈ Iσ.
The converse may be handled in a similar way. �

For the proof of Theorem 1.11, we use the following result which is the immediate
consequence of [7, Lemma 1.5].
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Lemma 1.10. Let I be a monomial ideal with linear quotients. Then

βi,i+j(I) = |{α ⊂ set(u) : u ∈ G(I)j and |α| = i}|,

where G(I)j = {u ∈ G(I) : deg(u) = j}.

Theorem 1.11. Let I be a t-spread strongly stable ideal. Then βi,i+j(I) = βi,i+j(I
σ)

for all i and j.

Proof. Let u = xi1xi2 · · · xid
∈ G(I). Let set(u) = {a1 < · · · < ar} and

bi = ai + max{l : il < ai}

for i = 1, . . . , l.
We claim that b1 < · · · < br and set(σ(u)) = {b1, . . . , br}. The claim together

with Lemma 1.10 yields the desired result.

Proof of the claim: Let k < j and il < ak < il+1 and im < aj < im+1. Then m ≥ l
and bj − bk = aj + m − (ak + l) = aj − ak + (m − l) > 0.

Next, we show that bi ∈ set(σ(u)). Indeed, if ai ∈ set(u) and il < ai < il+1,
then by (1) we have ai − il ≥ t. Therefore, il + (l − 1) < ai + l < il + (l + 1) and
ai + l − (il + (l − 1)) ≥ t + 1. Since, bi = ai + l, this shows that bi ∈ set(σ(u)).

Conversely, let c ∈ set(σ(u)). Then from (1), we see that there exists an integer
l such that il + (l − 1) < c < il+1 + l and c − (il + (l − 1)) ≥ t + 1. This shows
that il < c − l < il+1 and (c − l) − il ≥ t. Therefore, c − l = ai for some i and
c = ai + l = bi. �

In general, Theorem 1.11 is not valid for an arbitrary t-spread monomial ideal.
For example, let I = (x2

1, x2
2). Then Iσ = (x1x2, x2x3), and Iσ has a linear resolution

while I does not.

Corollary 1.12. Let I be a t-spread strongly stable ideal. Then

βi,i+j(I) =
∑

u∈G(I)j

(

max(u) − t(j − 1) − 1

i

)

.

Proof. We know that Iτ t

is strongly stable. From [3], we know that

βi,i+j(I
τ t

) =
∑

u∈G(Iτt )j

(

max(u) − 1

i

)

.

By Theorem 1.11, we have βi,i+j(I
τ t

) = βi,i+j(I), therefore,

βi,i+j(I) =
∑

u∈G(I)j

(

max(τ t(u)) − 1

i

)

.

The proof follows, because max(τ t(u))) = max(u) − t(deg(u) − 1), for all u ∈
G(I). �
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2. t–spread Borel generators

In the theory of stable ideals, Borel generators play an important role. In this
section, we introduce the similar concept of t-spread strongly stable ideals.

Let u1, . . . , um be t-spread monomials in S. There exists a unique smallest t-spread
strongly stable ideal containing u1, . . . , um, which we denote by Bt(u1, . . . , um). The
monomials u1, . . . , um are called the t-spread Borel generators of Bt(u1, . . . , um).

For example, let I = B2(x2x4, x1x5). Then G(I) = {x1x3, x1x4, x1x5, x2x4}.

Proposition 2.1. Let I = Bt(u1, . . . , um). Then Iσ = Bt+1(σ(u1), . . . , σ(um)).

Proof. Let w ∈ G(I) and w = xj1 · · · xjd
. Then there exists ul = xi1 · · · xid

such that
jk ≤ ik for all k = 1, . . . , d. It gives jk + (k − 1) ≤ ik + (k − 1) for all k = 1, . . . , d.
Therefore, σ(w) ∈ Bt+1(σ(ul)) ⊆ Bt+1(σ(u1), . . . , σ(um)). Since Iσ is generated by
elements σ(w) with w ∈ G(I), it shows that Iσ ⊆ Bt+1(σ(u1), . . . , σ(um)). Fur-
thermore, Bt+1(σ(u1), . . . , σ(um)) is the smallest t-spread strongly stable containing
σ(u1), . . . , σ(um). Therefore, Bt+1(σ(u1), . . . , σ(um)) ⊆ Iσ, because σ(u1), . . . , σ(um) ∈
Iσ and Iσ is t-spread strongly stable . �

We call a t-spread strongly stable ideal I t-spread principal Borel, if there exists
a t-spread monomial u ∈ I such that I = Bt(u).

Let u = xi1 · · · xid
. Observe that xj1 · · · xjd

∈ G(Bt(u)) if and only if

(i) j1 ≤ i1, . . . , jd ≤ id, and
(ii) jk − jk−1 ≥ t for k = 2, . . . , d.

In what follows, we study an important special class of t-spread principal Borel
ideals.

Definition 2.2. Let d ≥ 1 be an integer. A monomial ideal in S = K[x1, . . . , xn]
is called a t-spread Veronese ideal of degree d, if it is generated by all t-spread
monomials of degree d.

We denote by In,d,t ⊂ S, the t-spread Veronese ideal in S generated in degree d.
Note that In,d,t 6= (0) if and only if n > t(d −1). Observe that the t-spread Veronese
ideal of degree d is indeed a t-spread principal Borel ideal. In fact,

In,d,t = Bt(
d−1
∏

i=0

xn−it).

Theorem 2.1 implies that

Iσ
n,d,t = In+d−1,d,t+1 and Iτ

n,d,t = In−d+1,d,t−1 if t ≥ 1.

Therefore,

(2) [(x1, . . . , xn−t(d−1))
d]σ

t

= In,d,t.

There exists a simplicial complex ∆ on the vertex set [n] such that In,d,t is the
Stanley-Resner ideal of ∆. We denote by I∨

n,d,t the Stanley-Reisner ideal of the
Alexander dual of ∆.

7



Theorem 2.3. Let t ≥ 1 be an integer and In,d,t ⊂ S the t-spread Veronese ideal

generated in degree d. We assume that
⋃

u∈G(In,d,t) supp(u) = {x1, . . . , xn}. Then we

have the following:

(a) height(In,d,t) = n − t(d − 1).
(b) I∨

n,d,t is generated by the monomials

n
∏

i=1

xi/(vi1,t · · · vid−1,t) with ij+1 − ij ≥ t, for 1 ≤ j ≤ d − 2,

where vik,t = xik
xik+1 · · · xik+t−1 for 1 ≤ k ≤ d − 1.

(c) In,d,t is Cohen-Macaulay and has a linear resolution.

(d) βi(S/In,d,t) =
(

d+i−2
d−1

)(

n−(t−1)(d−1)
d+i−1

)

for all i ≥ 1. In particular, µ(In,d,t) =
(

n−(t−1)(d−1)
d

)

.

(e) βi(S/I∨
n,d,t) =

(

n−t(d−1)+i−1
i−1

)(

n−t(d−1)+d

d−i

)

for all i ≥ 1. In particular, µ(I∨
n,d,t) =

(

n−t(d−1)+d

d−1

)

.

Proof. Let ∆ be the simplicial complex whose Stanley-Reisner ideal is In,d,t and let
F(∆) the set of facets of ∆. We prove that every facet of ∆ is of the form

F = {j1, j1+1, . . . , j1 +(t−1), j2, j2+1, . . . , j2+(t−1), . . . , jd−1, jd−1+1, . . . , jd−1+(t−1)}

for some j1, . . . , jd−1 such that jℓ − jℓ−1 ≥ t for 2 ≤ ℓ ≤ d − 1.
This shows that all the facets of ∆ have the same cardinality, namely t(d−1), thus

dim ∆ = t(d − 1) − 1. It follows that dim(S/In,d,t) = t(d − 1), thus height(In,d,t) =
n − t(d − 1) which proves (a). Moreover, In,d,t has the primary decomposition

In,d,t =
⋂

F ∈F(∆)

P[n]\F

where P[n]\F is the monomial prime ideal generated by all the variables xj with
j ∈ [n] \ F. By [5, Corollary 1.5.5], statement (b) holds.

To begin with, we show that every set

(3) F = {j1, . . . , j1 + (t − 1), j2, . . . , j2 + (t − 1), . . . , jd−1, . . . , jd−1 + (t − 1)}

for some j1, . . . , jd−1 such that jℓ −jℓ−1 ≥ t for 2 ≤ ℓ ≤ d−1 is a facet of ∆. We have
F ∈ ∆ since xF =

∏

j∈F xj 6∈ I∆. On the other hand, we claim that F ∪ {j} 6∈ ∆ for
every j ∈ [n] \ F. This will show that F is indeed a facet of ∆.

Let j ∈ [n] \ F. If j < j1, we get

xjxj1+(t−1) · · · xjd−1+(t−1) ∈ I∆,

thus {j, j1 + (t − 1), . . . , jd−1 + (t − 1)} is a non-face of ∆, which implies that
F ∪ {j} 6∈ ∆. If j ≥ jd−1 + t, we get the non-face {j1, . . . , jd−1, j}, thus F ∪ {j} 6∈ ∆.
Finally, if there exists 2 ≤ ℓ ≤ d − 1 such that jℓ−1 + (t − 1) < j < jℓ, then
{j1, . . . , jℓ−1, j, jℓ + (t − 1), . . . , jd−1 + (t − 1)} is a non-face of ∆. Consequently,
F ∪ {j} 6∈ ∆.

Therefore, we have shown that every set F as in (3) is a facet of ∆.
8



Our purpose is to show that the sets of the form (3) are the only facets. This is
equivalent to showing that for every face G ∈ ∆, there exists F ∈ F(∆) of the form
(3) which contains G.

Let G ∈ ∆ and i1 = min G. Inductively, for ℓ ≥ 2, we set

iℓ = min{i ∈ G : i ≥ iℓ−1 + t}.

The sequence i1 < i2 < · · · has at most d − 1 elements. Otherwise, G ⊇ {i1, . . . , id}
with iℓ ≥ iℓ−1 + t for 2 ≤ ℓ ≤ d. But {i1, . . . , id} 6∈ ∆ since xi1 · · · xid

∈ I∆. Thus
G 6∈ ∆, a contradiction. Therefore, G has the form

G = {i1, i1 + 1, . . . , i1 + q1, . . . , ik, ik + 1, . . . , ik + qk}

for some k ≤ d − 1, 0 ≤ q1, . . . , qk ≤ t − 1, and iℓ ≥ iℓ−1 + t for 2 ≤ ℓ ≤ k. Obviously,
G ⊆ G′ where

G′ = {i1, i1 + 1, . . . , i1 + (t − 1), . . . , ik−1, ik−1 + 1, . . . , ik−1 + (t − 1), ik, . . . , ik + q}

where we set q = qk.
Claim. For k ≤ d − 2, there exists H ∈ ∆, H ⊃ G′ ⊃ G, with

H = {i′
1, . . . , i′

1 + (t − 1), . . . , i′
k, i′

k + 1, . . . , i′
k + (t − 1), i′

k+1, . . . , i′
k+1 + q′}

for some 0 ≤ q′ ≤ t − 1, i′
1 ≤ t, and i′

ℓ ≥ i′
ℓ−1 + t for 2 ≤ ℓ ≤ k + 1.

Proof of the Claim. If i1 = min G′ ≥ t+1, then G ⊂ G′ ⊂ H = {1, . . . , t}∪G′ ∈ ∆
and the claim follows.

Let now i1 ≤ t and assume for the beginning that iℓ = iℓ−1 + t for 2 ≤ ℓ ≤ k.
Then

ik = i1 + (k − 1)t ≤ kt ≤ (d − 2)t ≤ n − t − 1.

In the last inequality we used the condition n ≥ 1 + (d − 1)t which must be satisfied
by n. Then we get ik + t ≤ n − 1 hence we may take

H = {i1, i1 + 1, . . . , i1 + (t − 1), . . . , ik, ik + 1, . . . , ik + (t − 1), ik+1 = ik + t}.

To complete the proof of the Claim, we need to consider a last case, namely when
there exists ν such that iν > iν−1 + t. Let ℓ = max{ν : iν > iν−1 + t}. Then it follows
that ik > iℓ−1 + (k − ℓ + 1)t and we may take

H = {i1, . . . , i1 + (t − 1), . . . , iℓ−1, . . . , iℓ−1 + (t − 1), i′
ℓ, . . . , i′

ℓ + (t − 1), . . . ,

i′
k, . . . , i′

k + (t − 1), i′
k+1 . . . , i′

k+1 + s′}

for some s′ ≥ 0, where i′
ℓ = iℓ−1 + t, i′

ℓ+1 = iℓ−1 + 2t, . . . , i′
k+1 = iℓ−1 + (k − ℓ + 1)t.

By our Claim, it is now clear that every face G ∈ ∆ is contained in a larger face
H of the form

(4) H = {i1, . . . , i1 + (t − 1), . . . , id−2, . . . , id−2 + (t − 1), id−1, . . . , id−1 + s}

for some 0 ≤ s ≤ t − 1, where i1 ≤ t, and iℓ ≥ iℓ−1 + t for 2 ≤ ℓ ≤ d − 1.
It remains to show that there exists F ∈ F(∆) which contains H. But this follows

if we show that for every s ≤ t − 2, H is contained in a face of ∆ of the form

{i′
1, . . . , i′

1 + (t − 1), . . . , i′
d−2, . . . , i′

d−2 + (t − 1), i′
d−1, . . . , i′

d−1 + (s + 1)}.

Let s ≤ t − 2. Of course, if id−1 + s < n, then we may get the larger face
immediately, just by adding to H the vertex id−1 + (s + 1). Let id−1 + s = n. If
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iℓ = iℓ−1 + t for all 2 ≤ ℓ ≤ d − 1, then id−1 = i1 + (d − 2)t, thus i1 + (d − 2)t + s = n
which implies that

i1 = n − (d − 2)t − s ≥ 1 + (d − 1)t − (d − 2)t − s ≥ 3.

Then, we can take

H ⊂ {i′
1, . . . , i′

1 + (t − 1), . . . , i′
d−2, . . . , i′

d−2 + (t − 1), i′
d−1, . . . , i′

d−1 + (s + 1)}

where i′
1 = i1 − 1, i′

2 = i2 − 1, . . . , i′
k = ik − 1.

Finally, let us choose the maximal ℓ such that iℓ > iℓ−1 + t. In this case, we take

H ⊂ {i′
1, . . . , i′

1 + (t − 1), . . . , i′
d−2, . . . , i′

d−2 + (t − 1), i′
d−1, . . . , i′

d−1 + (s + 1)}

with i′
1 = i1, . . . , i′

ℓ−1 = iℓ−1, i′
ℓ = iℓ − 1, i′

ℓ+1 = iℓ+1 − 1, . . . , i′
d−1 = id−1 − 1.

In order to prove that In,d,t has a linear resolution, it is enough to apply Theo-
rem 1.4. Since In,d,t is generated in a single degree, it follows that it has a linear
resolution.

Next, we show that I∨
n,d,t has linear quotients. Then, by [5, Proposition 8.2.5],

it follows that the simplicial complex ∆ is shellable, thus, by [5, Theorem 8.2.6],
I∆ = In,d,t is Cohen-Macaulay.

Let w1, . . . , wq be the minimal monomial generators of I∨
n,d,t ordered decreasingly

with respect to the lexicographic order. Let

wi =
n
∏

i=1

xi/(vi1 · · · vid−1
) and wj =

n
∏

i=1

xi/(vj1 · · · vjd−1
)

with i 6= j. In order to simplify a little the notation, we removed the index t in vjk,t

and vik,t. A simple calculation shows that

wi

gcd(wi, wj)
=

vj1 · · · vjd−1

gcd(vi1 · · · vid−1
, vj1 · · · vjd−1

)
.

Let i < j. Then wi >lex wj, that is, vj1 · · · vjd−1
>lex vi1 · · · vid−1

which is equivalent
to the condition that there exists an integer s ≥ 1 such that j1 = i1, . . . , js−1 = is−1

and js < is.
We first observe that xjs

| (wi/ gcd(wi, wj)) since xjs
| vj1 · · · vjd−1

and it does not
divide the product vi1 · · · vid−1

because is > js.
Let us assume that there exists a least integer ℓ ≤ d − 2 such that jℓ+1 > jℓ + t.

Let

wk =
n
∏

i=1

xi/(vj1 · · · vjs−1vjs+1vjs+2 · · · vjℓ+1vjℓ+1
· · · vjd−1

).

Obviously, wk >lex wj, thus k < j, and we claim that wk/ gcd(wk, wj) = xjs. An
easy calculation shows that

gcd(vj1 · · · vjs−1vjs+1vjs+2 · · · vjℓ+1vjℓ+1
· · · vjd−1

, vj1 · · · vjd−1
) =

vj1 · · · vjd−1

xjs

.

Then,
wk

gcd(wk, wj)
=

vj1 · · · vjd−1

((vj1 · · · vjd−1
)/xjs

)
= xjs

.
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If jℓ+1 = jℓ + t for 2 ≤ ℓ ≤ d − 2, we get

jd−1 = js + (d − s − 1)t < is + (d − s − 1)t ≤ id−1 ≤ n − t + 1.

Thus jd−1 + (t − 1) ≤ n, and we may consider the monomial vjd−1+1. In this case we
take

wk =
n
∏

i=1

xi/(vj1 · · · vjs−1vjs+1vjs+2 · · · vjd−1+1)

and check that wk/ gcd(wk, wj) = xjs
.

Finally, for the calculation of the Betti numbers of In,d,t and I∨
n,d,t, we employ

[1, Theorem 4.5] which gives the Betti numbers of a Cohen-Macaulay ideal I in a
polynomial ring R with pure resolution of type (d1, . . . , dp). We have

βi(R/I) = (−1)i+1
∏

j 6=i

dj

dj − di

, i ≥ 1.

In our case, the type of the resolution of S/In,d,t is given by dj = d + j − 1 for
1 ≤ j ≤ p = n − t(d − 1). Therefore,

βi(S/In,d,t) = (−1)i+1
i−1
∏

j=1

d + j − 1

j − i

p
∏

j=i+1

d + j − 1

j − i
=

=
d(d + 1) · · · (d + i − 2)

(i − 1)!
·

(d + i)(d + i + 1) · · · (d + p − 1)

(p − i)!
=

=

(

d + i − 2

d − 1

)(

n − (d − 1)(t − 1)

d + i − 1

)

.

By Eagon-Reiner Theorem [5, Theorem 8.1.9], it follows that I∨
n,d,t is also Cohen-

Macaulay and has a linear resolution. Thus, we may compute the Betti numbers
of S/I∨

n,d,t as we did for S/In,d,t. Note that, in this case, we have height(I∨
n,d,t) =

proj dim(S/I∨
n,d,t) = d, and the degree of the generators of I∨

n,d,t is equal to the
height of In,d,t. We omit the remaining part of the calculation of Betti numbers since
it is completely similar to the above part of the proof.

We end the proof with the following remark. One may get an alternative proof of
part (d) by using (2) and Theorem 1.11. �

As an application of Theorem 2.3, we prove the following

Theorem 2.4. Let I be t-spread strongly stable ideal. Then

height(I) = max{min(u) : u ∈ G(I)}.

Proof. Let u0 ∈ G(I) such that min(u0) = max{min(u) : u ∈ G(I)}, and let P =
(xi : i ≤ min(u0)). Then I ⊂ P , because for all w ∈ G(I) one has min(w) ≤ min(u0).
This shows that height(I) ≤ min(u0).

Conversely, let u0 = xi1 · · · xid
. Then u′

0 = xi1xi1+t · · · xi1+t(d−1) belongs to I
because I is t-spread strongly stable. Let I ′ = Bt(u

′
0). Then I ′ ⊂ I and Theorem 2.3

implies that

height(I) ≥ height(I ′) = i1 + t(d − 1) − t(d − 1) = i1 = min(u′
0) = min(u0).

�
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Corollary 2.5. Let I ⊂ S = K[x1, . . . , xn] be a t spread strongly stable ideal such

that
⋃

u∈G(I) supp(u) = {x1, . . . , xn}. Then S/I is Cohen-Macaulay if and only if

there exists u ∈ G(I) of degree d such that u = xn+t(d−1) · · · xn−txn.

In particular, if I is generated in a single degree then S/I is Cohen-Macaulay if

and only if I is t-spread Veronese.

Proof. From Corollary 1.12, it follows that

pd(S/I) = max{max(u) − t(deg(u) − 1) : u ∈ G(I)},

and from Theorem 2.4, it follows that

dim(S/I) = n − max{min(u) : u ∈ G(I)}.

By using Auslander-Buchsbaum theorem we conclude that S/I is Cohen-Macaulay
if and only if

(5) max{max(u) − t(deg(u) − 1) : u ∈ G(I)} = max{min(u) : u ∈ G(I)}.

Let u0 ∈ G(I) with min(u0) = max{min(u) : u ∈ G(I)}. Since

min(u) ≤ max(u) − t(deg(u) − 1)

for all u ∈ G(I), equality (5) holds if and only if

min(u0) = max(u0) − t(deg(u0) − 1).

In other words, S/I is Cohen-Macaulay if and only if there exists u0 ∈ G(I) with

min(u0) = max{min(u) : u ∈ G(I)} and u0 = xi1xi1+t · · · xi1+t(d−1)

Since
⋃

u∈G(I) supp(u) = {x1, . . . , xn}, there exists u ∈ G(I) such that max(u) = n
and min(u) ≤ min(u0). Note that

max(u) − t(deg(u) − 1) ≤ i1 = min(u0).

Therefore, this implies that n ≤ i1 +t(deg(u)−1). Suppose that deg(u) ≤ deg(u0) =
d, then it follows that n = i1+t(d−1), as required. On the other hand, if deg(u) > d,
then u = xj1 · · · xjd

xjd+1
· · · xn with j1 ≤ j2 ≤ · · · ≤ n. Let u′ = xj1 · · · xjd

. Since
u ∈ G(I), we have jd > i1 + t(d − 1), otherwise, jk ≤ ik for all 1 ≤ k ≤ d. Then,
since I is t-strongly stable, we obtain u′ ∈ I and u′|u, a contradiction.

Since jd > i1 + t(d − 1), we get

max(u) − t(deg(u) − 1) ≥ max(u′) − t(deg(u′) − 1) > i1,

a contradiction. �

3. t–spread principal Borel algebras

Let t ≥ 1 and u ∈ S be a t-spread monomial. In this section, we consider the
toric algebra K[Bt(u)] which is generated by the monomials v with v ∈ G(Bt(u)).
If u = xn−t(d−1) · · · xn−txn, then Bt(u) = In,d,t and in this case K[Bt(u)] is called a
t-spread Veronese algebra.

Let us first recall the notion of sortable sets of monomials. For more information
we refer to [4, Section 6.2]. Let u, v two monomials of degree d. We write uv =
xi1xi2 · · · xi2d

with 1 ≤ i1 ≤ i2 ≤ · · · ≤ i2d, and consider the monomials u′ =
12



xi1xi3 · · · xi2d−1
, v′ = xi2xi4 · · · xi2d

. The pair (u′, v′) is called the sorting of (u, v). We
write (u′, v′) = sort(u, v). A subset S ⊂ Sd is called sortable if sort(u, v) ∈ S × S for
all (u, v) ∈ S × S.

Proposition 3.1. The set G(Bt(u)) is sortable.

Proof. Let u = xi1 · · · xid
with i1 ≤ · · · ≤ id. Let w, v ∈ G(Bt(u)) and write

wv = xj1xj2 · · · xj2d
. Then w′ = xj1xj3 · · · xj2d−1

, v′ = xj2xj4 · · · xj2d
. By [2, Lemma

2.7], we have j2k, j2k−1 ≤ ik for k = 1 . . . , d.
It remains to be shown that j2ℓ+1 − j2ℓ−1 ≥ t and j2ℓ+2 − j2ℓ ≥ t for all 1 ≤ ℓ ≤

d − 1. We prove only the first inequality since the second one may be proved in a
similar way. If xj2ℓ−1

, xj2ℓ+1
divide the same monomial, say w, then the inequality

holds since w ∈ G(Bt(u)). Else, we may consider that xj2ℓ−1
| w and xj2ℓ+1

| v. If
xj2ℓ

| w, then j2ℓ+1 − j2ℓ−1 ≥ j2ℓ − j2ℓ−1 ≥ t, since w ∈ G(Bt(u)). If xj2ℓ
| v, then

j2ℓ+1 − j2ℓ−1 ≥ j2ℓ+1 − j2ℓ ≥ t since v ∈ G(Bt(u)). �

Let R be the polynomial ring K[tv | v ∈ G(Bt(u))], and ϕ : R → K[Bt(u)] be the
K-algebra homomorphism which maps tv to v for all v ∈ G(Bt(u)). We denote by
Ju, the kernel of ϕ.

By using properties of algebras generated by sortable sets of monomials ([10] or
[4, Theorem 6.16]), we obtain the following result.

Theorem 3.2. The set of binomials G = {tutv − tu′tv′ : (u, v) unsorted , (u′, v′) =
sort(u, v)} is a Gröbner basis of the toric ideal Ju.

Since an algebra whose defining ideal has a quadratic Gröbner basis is Koszul, we
get the following corollary of the above theorem.

Corollary 3.3. K[Bt(u)] is Koszul.

Theorem 3.2 has another nice consequence.

Corollary 3.4. K[Bt(u)] is a Cohen-Macaulay normal domain.

Proof. Theorem 3.2 shows, in particular, that Ju has a squarefree initial ideal. By a
theorem due to Sturmfels [10], it follows that K[Bt(u)] is a normal domain. Next,
by a theorem of Hochster [8], it follows that K[Bt(u)] is Cohen-Macaulay. �

4. The generic initial ideals of t-spread strongly stable ideals

The following theorem generalizes Theorem 11.2.7 in [5]. For a homogeneous
ideal I ⊂ S = K[x1, . . . , xn], Gin(I) stands for the generic initial ideal of I with
respect to the reverse lexicographic order. Throughout this section we assume that
char(K) = 0.

Theorem 4.1. Let I ⊂ S be a t–spread strongly stable ideal. Then I = (Gin(I))σt

.

In particular, Gin(I) = Iτ t

and Gin(Iσt

) = I.

Proof. We may assume t > 0 since the equality I = Gin(I) for strongly stable ideals
is known [5, Proposition 4.2.6].
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The proof is very similar to the proof of [5, Theorem 11.2.7], but we present it in
all the details for the convenience of the reader.

We use induction on the largest max(u) where u ∈ G(I). By [5, Lemma 11.2.8],
we may assume that there exists u ∈ G(I) with max(u) = n. Following the proof
of [5, Theorem 11.2.7], let I ′ = I : (xn) and I ′′ be the ideal generated by all the
monomials u ∈ G(I) with max(u) < n. Then, both ideals I ′ and I ′′ are t-spread
strongly stable and I ′′ ⊂ I ⊂ I ′. By the inductive hypothesis, we have

I ′ = (Gin(I ′))σt

and I ′′ = (Gin(I ′′))σt

which implies that

I ′′ ⊂ (Gin(I))σt

⊂ I ′.

It is enough to show that

(6) I ⊂ (Gin(I))σt

.

Indeed, it is well known that I and Gin(I) have the same Hilbert function. By
Theorem 1.11, it follows that Gin(I) and (Gin(I))σt

have the same Hilbert function
as well, therefore, I and (Gin(I))σt

have the same Hilbert function. This remark
together with (6) show that I = (Gin(I))σt

.
Let us now prove (6). Since I ′′ ⊂ (Gin(I))σt

, we are reduced to proving that all
the monomials u ∈ G(I) with max(u) = n belong to (Gin(I))σt

.
Let w1, . . . , wq be the monomials in G((Gin(I))σt

) with max(wj) = n for all j and

deg w1 ≤ · · · ≤ deg wq. Since (Gin(I))σt

⊂ I ′, we have xnwj ∈ I. As max(wj) = n
and I is a squarefree monomial ideal, it follows that wj ∈ I for 1 ≤ j ≤ q. This
implies that, for every 1 ≤ j ≤ q, there exists uj ∈ G(I) such that uj | wj. Moreover,

if max(uj) < n, then uj ∈ I ′′ ⊂ (Gin(I))σt

, which is impossible since uj 6= wj and

wj is a minimal generator of (Gin(I))σt

. Therefore, max(uj) = n for 1 ≤ j ≤ q.
Let u ∈ G(I) with max(u) = n. By Corollary 1.12, we have

βn−t(deg u−1)−1,n−t(deg u−1)−1+deg u(I) =
∑

v∈G(I)

deg v=deg u

(

max(v) − t(deg u − 1) − 1

n − t(deg u − 1) − 1

)

=

= |{v ∈ G(I) : max(v) = n, deg v = deg u}|.

On the other hand,

βn−t(deg u−1)−1,n−t(deg u−1)−1+deg u((Gin(I))σt

) =

=
∑

w∈G((Gin(I))σt
)

deg w=deg u

(

max(w) − t(deg u − 1) − 1

n − t(deg u − 1) − 1

)

=

= |{w ∈ G((Gin(I))σt

) : max(w) = n, deg w = deg u}|.

But, for every i, j, we have

βi,i+j(I) ≤ βi,i+j(Gin(I)) = βi,i+j((Gin(I))σt

).
14



Thus, we obtain:

|{w ∈ G((Gin(I))σt

) : max(w) = n, deg w = deg u}| ≥(7)

|{v ∈ G(I) : max(v) = n, deg v = deg u}|.

In particular, this implies that deg u1 cannot be strictly smaller than deg w1, hence
deg u1 = deg w1 and u1 = w1. In addition, if we assume that u1 = w1, . . . , uk = wk,
then deg uk+1 cannot be strictly smaller than deg wk+1, which further implies that
uk+1 = wk+1 as well. Thus, wj ∈ G(I) for 1 ≤ j ≤ q, which yields

(8) {w ∈ G((Gin(I))σt

) : max(w) = n} ⊂ {u ∈ G(I) : max(u) = n}.

However, by (7), we have

|{w ∈ G((Gin(I))σt

) : max(w) = n}| ≥ |{u ∈ G(I) : max(u) = n}|.

Consequently, in relation (8) we have equality. This shows that every monomial
u ∈ G(I) with max(u) = n belongs to (Gin(I))σt

. This proves (6) and completes the
proof of the theorem. �
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