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GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR QUANTUM

MHD EQUATIONS

HAO LI YACHUN LI

Abstract. In this paper, we consider the quantum MHD equations with both the
viscosity coefficient and the magnetic diffusion coefficient are depend on the density.
we prove the global existence of weak solutions and perform the lower planck limit in
a 3-dimensional torus for large initial data. The global existence is shown by using
Faedo-Galerkin method and weak compactness techniques for the adiabatic exponent
γ > 1.

1. introduction

Quantum fluid models are used to describe, for instance, superfluids [17], quantum
semiconductors[8], thermistor theory and weakly interacting Bose gases [10], and quan-
tum trajectories of Bohmian mechanics [22]. In this paper we mainly study the quantum
MHD equations in Ω = T

3 (T3 is the 3-dimensional torus in R
3) which read as follows:

(1.1)







































∂tρ+ div(ρu) = 0, x ∈ Ω, t > 0,

∂t(ρu) + div(ρu⊗ u) +∇(P (ρ) + Pc(ρ))− 2 div(ρD(u))

− 2κ2ρ∇
(

∆
√
ρ

√
ρ

)

− (∇×B)×B = 0,

∂tB −∇× (u×B) +∇(νb(ρ)∇×B) = 0,

divB = 0.

with the initial data

(1.2) ρ(0, x) = ρ0(x), (ρu)(0, x) = m0, B(0, x) = B0(x),divB0 = 0.

where the functions ρ, u and B represent the mass density, the velocity field and the
magnetic field respectively. The function P (ρ) = ργ with γ > 1 is the pressure, Pc(ρ) is

a singular continuous functions and called the cold pressure. D(u) = ∇u+(∇u)⊤

2 is the
stress tensor, νb(ρ) is the magnetic diffusion viscosity coefficient, κ > 0 is the quantum
planck constant. The expression 2κρ∇

(

∆
√
ρ/

√
ρ
)

can be interpreted as a quantum
Bohm potential, and has the following identity:

(1.3) 2κ2ρ∇
(

∆
√
ρ

√
ρ

)

= κ2 div(ρ∇2 log ρ) = κ2∇∆ρ− 4κ2 div(∇√
ρ⊗∇√

ρ).

Recently, quantum fluid models have received a great deal of attention of mathemati-
cians. Jüngel[14] derived the dissipative quantum fluid models from Wigner-Boltzmann
equation by a moment method, and the quantum ideal magnetohydrodynamic model
was derived by Hass[12]. The existence of global weak solutions have been studied by
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many authors. For the compressible Navier-Stokes equations with constant viscosity
coefficients, the pioneer work is P.L.Lions [16] who proved the global existence of weak
solutions for the barotropic compressible Navier-Stokes systems with γ > 3n/(n + 2).
Later, Feireisl [5] extend this result to the case γ > n/2. When the viscosity coefficients
µ, λ are density-dependent, the systems become much more difficult due to the velocity
cannot be defined in the vacuum region. Under the assumption on the viscosity coef-
ficients i.e λ(ρ) = 2(ρµ

′

(ρ) − µ(ρ)). Bresch-Desjardins [1, 2, 3, 4] made great progress,
they discover a new mathematical entropy inequality which is not only applied to the
vacuum case but also applied to get the existence of global weak solutions. Mellet-
Vasseur [18] study the stability of the baratropic compressible Navier-Stokes equations.
Later, Vasseur-Yu [20] and Li-Xin [15] independently prove the global weak solution for
3D degenerate compressible Navier-Stokes equation, where they constructed separately
appropriate approximation by different approaches.

Now we recall some results on the compressible quantum Navier-Stokes equations.
Jüngel [13] proved the global existence of weak solutions by choosing ρϕ as test function.
However, this particular choice of test function does not contain the region {ρ(x, t) = 0}
in the weak formulation. Gisclon-Violet [9] also showed the global existence results but
in the classical definition of weak solutions by adding the cold pressure term. They also
pointed that the cold pressure term can be replaced by the drag force term. Vasseur-Yu
[21] also considered the compressible quantum Navier-Stokes equations with damping
term which is helpful to get the result [20].

So far there are few results on the global existence of the quantum MHD equations.
Yang-Ju [23] proved the existence of global weak solutions for a special parabolic systems
on the density ρ and on the momentum ρu by doing a transformation for the velocity.
Very recently, Guo-Xie [11] established the global existence of weak solutions for the 2D
general quantum MHD equations for which both viscosity coefficients and the disper-
sion term are general function. In the present paper, we prove the global existence of
weak solutions for 3D quantum MHD models under special assumption on the viscosity
coefficients and the dispersion term. It should be noted that we also require the mag-
netic diffusion coefficient satisfies the specific condition which is important to get the
BD entropy. In addition, we perform the lower planck limit.

In the present paper we make some assumptions that have a physical background
which is similar to [11]

Assumption 1. µ, λ are respectively the shear and bulk viscosity coefficients and
satisfy the BD entropy relationship i.e λ(ρ) = 2(ρµ

′

(ρ) − µ(ρ)). In this paper,we deal
with µ(ρ) = ρ, λ(ρ) = 0.

Assumption 2. The cold pressure Pc(ρ) is a suitable increasing function satisfying

(1.4) lim
ρ→0

Pc(ρ) = ∞.

More precisely, we assume

(1.5) P
′

c(ρ) =

{

c1ρ
−γ−−1, ρ ≤ 1,

c2ρ
γ−1, ρ > 1,

where γ−, γ ≥ 1, c1, c2 > 0.
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Assumption 3. The magnetic diffusion viscosity coefficient νb(ρ) is a continuous
functions of the density, bounded from above and take large values for both small and
large densities. Furthermore, we assume that there exists M > 0, positive constants
d0, d1, d2, d3 large enough, and 2 ≤ a < a

′

< 3 such that

(1.6)







d0
sa

≤ νb(s) ≤
d1

sa
′ , s < M,

d2 ≤ νb(s) ≤ d2s
b, s ≥ M.

Assumption 4. Functions H(ρ) and Hc(ρ) are satisfy the following relationship:

(1.7) ρH
′

(ρ)−H(ρ) = P (ρ), ρH
′

c(ρ)−Hc(ρ) = Pc(ρ).

Our paper is organized as follows: In section 2 we collect some elementary facts and
some important inequalities which will be used in the proof of our result. In section 3
we state our main result. In section 4, 5 we prove the global existence of weak solution
for the approximate systems by using Faedo-Galerkin method. In section 6 we devoted
to deriving the B-D entropy which plays an important role to perform the limit for the
parameters. In section 7 we justify the vanish lower planck limit.

2. preliminaries

In this section we recall some known facts and inequalities which will be frequently
used through out the paper. The following well-known Gargliardo-Nirenberg inequality
which can be found in [24]

Lemma 2.1. Let Ω ⊂ R
n be a bounded open set with ∂Ω ∈ C0,1, m ∈ N, 1 ≤ p, q, r ≤ ∞.

Then there exists a constant C > 0 such that for all u ∈ Wm,p ∩ Lq

‖Dαu‖Lr ≤ C ‖u‖θWm,p ‖u‖1−θ
Lq ,

where 0 ≤ |α| ≤ m − 1, and 1
r − α

d = θ(1p − m
d ) + (1 − θ)1q . If m − |α| − d

p /∈ N0, then

θ ∈ [|α| /m, 1] is allowed.

The following two lemmas will be used to get the strong convergence of the solutions
through out this paper.

Lemma 2.2 (Aubin-Lions lemma[19]). Let X0,X and X1 be three Banach space with
X0 ⊂ X ⊂ X1. Suppose that X0 is compactly embeded in X and X is continuously
embeded in X1.

(1) Let G be bounded in Lp(0, T ;X0) where 1 ≤ p < ∞ and dG
dt be bounded in

L1(0, T ;X1), Then G is relatively compact in Lp(0, T ;X).
(2) Let F be bounded in L∞(0, T ;X0) and

dF
dt be bounded in Lp(0, T ;X1) with p > 1

then F is relatively compact in C([0, T ];X).

Lemma 2.3. Let K be a compact subset of Rn(n ≥ 1). And a sequence vǫ satisfy

(1) vǫ is uniformly bounded in L1+α(K) with α > 0,
(2) vǫ converge almost everywhere to v,

then vǫ converge strongly to v in L1(K) with v ∈ L1+α(K).
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Lemma 2.4 ([13, 21]). For any smooth positive function ρ(x), we have

C1

∫

∣

∣∇2√ρ
∣

∣

2
dx+ C2

∫

∣

∣

∣
∇ρ1/4

∣

∣

∣

4
dx ≤

∫

ρ |∇ log ρ|2 dx,

where C1, C2 are positive constant.

3. main results

In this section we present two results. The first one gives the existence of weak
solutions to (1.1) without any assumption on γ for 3-dimensional case. The second one
is devoted to lower planck limit and also shows that global weak solution of (1.1) tends
to the weak solution of (1.1) with κ = 0. Next, we will give the definition of the weak
solution to (1.1).

Definition 3.1. Functions (ρ, u,B) are called a weak solution to (1.1) if the following
conditions are satisfied:

(1) The continuity equation holds in the sense of distributions, i.e

(3.1)

∫

ρ0ϕ(0) +

∫∫

(ρϕt +
√
ρ
√
ρu∇ϕ)dxdt = 0,

for any smooth test function with compactly supported ϕ such that ϕ(T, .) = 0.
(2) The momentum equation satisfies

(3.2)
∫

m0ϕ(0) +

∫∫

(
√
ρ(
√
ρu)ϕt +

√
ρu⊗√

ρu∇ϕ+ P (ρ) divϕ+ Pc(ρ) div ϕ) dxdt

−
∫∫

[2(
√
ρu⊗∇√

ρ)∇ϕ)∇ϕ − 2(∇√
ρ⊗√

ρu)∇ϕ−√
ρ
√
ρu∆ϕ−√

ρ
√
ρu∇ divϕ]dxdt

− 4κ2
∫∫

(∇√
ρ⊗∇√

ρ)∇ϕ− 2κ2
∫∫ √

ρ∇√
ρ∇ divϕ−

∫∫

(∇×B)×B · ϕdxdt = 0,

for any smooth test function with compactly supported ϕ such that ϕ(T, .) = 0.
(3) The magnetic field B satisfies

(3.3)

∫

B0ϕ(0) =

∫∫

(Bϕt + (u×B) · (∇× ϕ)− νb(ρ)∇×B : ∇ϕ) dxdt,

for any smooth test function with compactly supported ϕ such that ϕ(T, .) = 0.
Our main results on the weak solutions reads as follows:

Theorem 3.1. Assume T > 0, γ− ≥ 4, γ > 1, and let (ρ0, u0, B0) satisfies ρ0 ≥ 0
and

(3.4)

∫

(

|m0|2
2ρ0

+H(ρ0) +Hc(ρ0) + 2κ2
∣

∣∇√
ρ0
∣

∣

2
+ |B0|2

)

dx ≤ C.

Then, there exists a global weak solution to the problem (1.1)-(1.7) in the sense of
distribution of Definition 3.1. In particular, the weak solution (ρ, u,B) satisfies
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the energy estimate (4.14) and entropy inequality (6.2), (6.20).

ρ ≥ 0,
√
ρ ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2),

ρ ∈ L∞(0, T ;Lγ), ρ−1 ∈ L∞(0, T ;Lγ−), ργ ∈ L5/3(0, T ;L5/3),

√
ρu ∈ L∞(0, T ;L2),∇

(

1√
n

)

∈ L2(0, T ;L2),

B ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1).

Remark 3.1. It should be noted that the Assumption 3 on the magnetic diffusion
coefficient is required, which plays an important role to obtain the B-D entropy
inequality.

Remark 3.2. Compared with Yang-Ju [23] work, we make an improvement in the
present paper. In [23] both the continuity equation and the momentum equation
are become parabolic with respect to ρ and ρu by using a transformation.

Theorem 3.2. Assume T > 0, γ− ≥ 4, γ > 1, and the initial data (ρ0, u0, B0)
satisfies the assumption in Theorem 2.1. If we assume (ρκ, uκ, Bκ) are solutions
of system (1.1) .We have when κ → 0 the limit function (ρ, u,B) is the weak
solution to the problem (1.1)-(1.7) with κ = 0.

4. faedo-galerkin approximation

In this section we proved the existence of approximate solutions to the systems (1.1) by
the Faedo-Galerkin method. Motivated by the work of Feireisl, Novotny and Petzeoltova,
we proceed similarly as in [7, 6].

4.1. Local solvability of the approximate system. This section is dedicated to
prove the local existence of the approximate system. We adopt the following strategy:

• For given u ∈ C([0, T ];Xn), the approximate continuity equation can be solved
directly by means of the classical theory of parabolic equations ρ = S(u).

• Given u, the magnetic equation is also a linear parabolic equation and we can
also find a solution B = G(u) by the standard Galerkin method.

• Having solved the ρ,B, we can treat the approximate momentum equation as a
nonlinear integral equation. The solution of the approximate equation is based
on the fixed point argument in the Banach space C([0, T ];Xn).

We introduce the finite dimensional space Xn = span{e1, e2, . . . , en}, n ∈ N, each ei
is an orthonormal basis of L2 which is also the orthogonal basis of H2 we notice that
u ∈ C([0, T ];Xn) is given by

(4.1) u(t, x) =

n
∑

i=1

λi(t)ei(x), (t, x) ∈ [0, T ]× Ω.

for some functions λi(t), and the norm of u ∈ C([0, T ];Xn) can be define as

‖u(x, t)‖C([0,T ];Xn)
= sup

t∈[0,T ]

n
∑

i=1

|λi(t)| .
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And, u can be bounded in C([0, T ];Ck) for any k ≥ 0, thus we have

(4.2) ‖u‖C([0,T ];Ck) ≤ C(k) ‖u‖C([0,T ];L2) .

(1) Approximate continuity equation

(4.3) ∂tρ+ div(ρu) = ǫ∆ρ,

with the initial data

(4.4) ρ(x, 0) = ρ0(x) ≥ µ > 0, ρ0(x) ∈ C∞.

where µ > 0 is a constant. For given u ∈ C([0, T ];Xn), there exists a classical
solution to (4.3). By the maximal principle we know that the density satisfies
the follows inequality

(4.5) inf
x∈Ω

ρ0(x) exp
−

∫ T
0 ‖div u‖L∞ds ≤ ρ(x, t) ≤ sup

x∈Ω
ρ0(x) exp

∫ T
0 ‖div u‖L∞ds .

for all (x, t) ∈ [0, T ]×Ω. Furthermore, we can also get that there exist a constant
ρ̄ such that

(4.6) 0 < ρ̄ ≤ ρ(x, t) ≤ 1

ρ̄
, (x, t) ∈ [0, T ]× Ω.

Thus, we can introduce a operator S from C([0, T ];Xn) to C([0, T ];Ck) by
S(u) = ρ. and the operator is Lipschitz continuous in the following sense:

(4.7) ‖S(u1)− S(u2)‖C([0,T ];Ck) ≤ C(n, k) ‖u1 − u2‖C([0,T ];L2) .

Since for given u ∈ C([0, T ];Xn), the density is solved in terms of u. The
magnetic equation become a linear parabolic-type equation. we can find a unique
solution B ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) by the standard Galerkin method and
satisfies the following

(4.8)











∂tB −∇× (u×B) +∇× (νb(ρ)∇×B) = 0,

divB = 0,

B(0, x) = B0(x).

In fact, if we assume B = B1 − B2 where B1, B2 are two solutions of equation
with the same data then we know that B also satisfied the (4.8). Multiplying
the equation (4.8)1 by B and integrate over Ω we get

(4.9)

1

2

d

dt

∫

|B|2 dx+

∫

νb(ρ) |∇ ×B|2 dx

=

∫

(u×B) · (∇×B)dx

≤ 1

2

∫

|∇ ×B|2 dx+ C(|u|∞)

∫

|B|2 dx.

Due to the assumption 3, we know that νb(ρ) has lower bound, then by Gronwall
inequality to (4.9) we can get that B = 0 .Furthermore, there exists a continuous
solution operator G from C([0, T ];Xn) to L∞(0, T ;L2)∩L2(0, T ;H1) by G(u) =
B.
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Now we turn to solve the approximate momentum equation on the space Xn.
For ρ = S(u), B = G(u) , we are looking for a function u ∈ C([0, T ];Xn) such
that

(4.10)
∫

Ω
ρu(T )ϕdx−

∫

Ω
m0ϕdx−

∫ T

0

∫

Ω
(ρu⊗ u : ∇ϕ− P (ρ) divϕ− Pc(ρ) divϕ) dxdt

+ 2κ2
∫ T

0

∫

Ω

∆
√
ρ

√
ρ

div(ρϕ)dxdt+ ǫ

∫ T

0

∫

Ω
∇ρ · ∇u · ϕdxdt

− δ

∫ T

0

∫

Ω
∆s(div(ρϕ)) : ∆s+1ρdxdt+ 2

∫ T

0

∫

Ω
ρD(u) · ∇ϕdxdt

+ η

∫ T

0

∫

Ω
∆u ·∆ϕdxdt−

∫ T

0

∫

Ω
((∇×B)×B) · ϕdxdt = 0,

for all ϕ ∈ Xn. we will apply the Banach fixed point theorem to prove the local
existence of solutions for the equation (4.10). Following the same argument [5]
we can solve (4.10). Next, we introduce an operator defined on the set {ρ ∈
L1, ρ ≥ ρ > 0}, and M [ρ] : Xn → X∗

n

(4.11) < M [ρ]v, u >=

∫

ρv · udx, v, u ∈ Xn,

where X∗
n stands for the dual space of Xn. And the operator M [ρ] has the

following properties:
• ‖M [ρ]‖L(Xn,X∗

n)
≤ C(n) ‖ρ‖L1 .

• M−1[ρ] is invertible under the condition ρ ≥ ρ > 0 and

∥

∥M−1[ρ]
∥

∥

L(X∗
n,Xn)

≤ (ρ)−1,

where M−1[ρ] : X∗
n → Xn.

• M−1[ρ] is Lipschtiz continuous.

The first two properties of the operator is easily to get. Since

M−1[ρ1]−M−1[ρ2] = M−1[ρ2](M [ρ2]−M [ρ1])M
−1[ρ1],

where ρ1, ρ2 ∈ {ρ ∈ L1, ρ ≥ ρ > 0}. we can get

∥

∥M−1[ρ1]−M−1[ρ2]
∥

∥

L(X∗
n,Xn)

≤ C(n, ρ) ‖ρ1 − ρ2‖L2 .

Thus, M−1 is Lipschitz continuous. Now, using the definition of the operator M [ρ] the
equation (4.10) can be rewritten as

(4.12) un(t) = M−1[ρ]

(

m∗
0 +

∫ T

0
N [ρ(s), u(s), B(s)]ds

)

.
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where ρ = S(u), B = G(u) and

(4.13)

N [ρ(s), u(s), B(s)] =

∫

Ω
(ρu · ϕt + ρu⊗ u : ∇ϕ+ P (ρ) divϕ+ Pc(ρ) divϕ) dx

− 2κ2
∫

Ω

∆
√
ρ

√
ρ

div(ρϕ)dx − ǫ

∫

Ω
∇ρ · ∇u · ϕdx

− δ

∫

Ω
∆s(div(ρϕ)) : ∆s+1ρdx− 2

∫

Ω
ρD(u) · ∇ϕdx

− η

∫

Ω
∆u ·∆ϕdx+

∫

Ω
((∇×B)×B) · ϕdx, ϕ ∈ Xn.

Due to the operators S,G,M−1 are Lipschitz continuous, the above nonlinear equation
can be solved by the fixed point argument on a short time interval [0, T

′

], T
′ ≤ T in the

Banach space C([0, T ];Xn). Therefore, we can proved the local existence of solutions
(ρn, un, Bn) to the approximate systems (4.3),(4.8) and (4.10).

4.2. Uniform estimate and global existence of solutions. Assume (ρn, un, Bn) is

the approximate solutions exists on the [0, T
′

], T
′ ≤ T . Our goal in this section is to

extend the approximate solutions (ρn, un, Bn) to the whole interval [0, T ], it is sufficient
to establish the uniform bound on the norm ‖un‖Xn

which allows us to iterate the above
procedure many times to reach the whole interval [0, T ].

Lemma 4.1. Assume T
′ ≤ T , (ρn, un, Bn) be the solutions to the (4.3),(4.8) and (4.10).

then we have the following holds:

(4.14)

d

dt
E(ρn, un, Bn) + 2

∫

Ω
ρn |D(un)|2 dx+ ǫ

∫

Ω

(

H
′′

(ρn) +H
′′

c (ρn)
)

|∇ρn|2 dx

+

∫

Ω
νb(ρn) |∇ ×Bn|2 dx+ η

∫

Ω
|∆un|2 dx+ δǫ

∫

Ω

∣

∣∆s+1ρn
∣

∣

2
dx

+ ǫκ2
∫

Ω
ρn
∣

∣∇2 log ρn
∣

∣

2
dx = 0,

where
(4.15)

E(ρn, un, Bn) =

∫

Ω

(

1

2
ρn |un|2 +H(ρn) +Hc(ρn) + κ2

∣

∣∇√
ρn
∣

∣

2
+

1

2
|Bn|2 +

δ

2

∣

∣∇2s+1ρn
∣

∣

2
)

dx.

Proof. Differentiating (4.10) with respect to time and using the test function ϕ = un
we have
(4.16)

d

dt

∫

1

2
ρ |u|2 dx−

∫

(∂tρ+ div(ρu))
|u|2
2

dx+ ǫ

∫

∆ρ |u|2 dx+ ǫ

∫

∇ρ · ∇u · udx

+

∫

∇(P (ρ) + Pc(ρ)) · udx− δ

∫ T

0

∫

Ω
∆s(div(ρu)) : ∆s+1ρdxdt+ 2

∫ T

0

∫

Ω
ρ |D(u)|2 dxdt

η

∫

|∆u|2 dx+ 2κ2
∫

∆
√
ρ

√
ρ

div(ρu)dxdt−
∫

(∇×B)×B · udx = 0.
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due to the fact that

(4.17)

∫

∇(P (ρ) + Pc(ρ)) · udx

=

∫

1

ρ
(P

′

(ρ) + P
′

c(ρ))∇ρ · ρudx

=

∫

∇(H
′

(ρ) +H
′

c(ρ)) · ρudx

= −
∫

(H
′

(ρ) +H
′

c(ρ)) div(ρu)dx

=

∫

(H
′

(ρ) +H
′

c(ρ))(∂tρ− ǫ∆ρ)dx

=
d

dt

∫

(H(ρ) +Hc(ρ))dx + ǫ

∫

(H
′′

(ρ) +H
′′

c (ρ)) |∇ρ|2 dx,

(4.18)

2κ2
∫

∆
√
ρ

√
ρ

div(ρu)dxdt

= 2κ2
∫

∆
√
ρ

√
ρ

∆ρ− 4κ2
∫

∆
√
ρ∂t

√
ρdx

= ǫκ2
∫

ρ
∣

∣∇2 log ρ
∣

∣

2
dx+

κ2

2

d

dt

∫

|∇√
ρ|2 dx.

and similarly calculation

(4.19) δ

∫

Ω
∆s(div(ρu)) : ∆s+1ρdx = ǫδ

∫

∣

∣∆s+1ρ
∣

∣

2
dx+

δ

2

d

dt

∫

∣

∣∇2s+1ρ
∣

∣

2
dx.

Then multiply the magnetic equation by Bn we get

(4.20)
1

2

∫

|Bn|2 −
∫

∇× (u×Bn) · Bndx+

∫

νb(ρ) |∇ ×Bn|2 dx = 0.

where we used the following the identity
∫

(∇×B)×B · udx = −
∫

∇× (u×B) · Bdx.

Summing up (4.16) and (4.20) together, we can get the desire estimate (4.14).

From Lemma 3.1 we have the following estimate

(4.21)

ρn ∈ L∞(0, T ;Lγ), ρ−1
n ∈ L∞(0, T ;Lγ−

),∇√
ρn ∈ L∞(0, T ;L2),

√
ρnun ∈ L∞(0, T ;L2),

√
ρnDun ∈ L2(0, T ;L2),

√
η∆un ∈ L2(0, T ;L2),

∇ρ
γ
2
n ∈ L2(0, T ;L2),

√
δρn ∈ L∞(0, T ;H2s+1),

Bn ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),
√
δǫρn ∈ L2(0, T ;H2s+2),

√
ǫ
√
ρn∇2 log ρn ∈ L2(0, T ;L2),

√

νb(ρn)∇Bn ∈ L2(0, T ;L2).
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By sobolev embedding we have
∥

∥ρ−1
∥

∥

L∞ ≤ C
∥

∥ρ−1
∥

∥

W 3,1 and

(4.22)
∥

∥∇3ρ−1
∥

∥

L1 ≤ C
(

1 +
∥

∥∇3ρ
∥

∥

L∞(0,T ;L2)

)3 (

1 +
∥

∥ρ−1
∥

∥

L∞(0,T ;L4)

)4
.

Therefore, provided that γ− ≥ 4, 2s + 1 ≥ 3 we can get

(4.23)
∥

∥ρ−1
∥

∥

L∞((0,T )×Ω)
≤ C(δ).

Furthermore, by lemma 2.4 we get

(4.24)
√
ǫκ
∥

∥

√
ρn
∥

∥

L2(0,T ;H2)
+ ǫ1/4κ1/2

∥

∥

∥
∇ρ1/4n

∥

∥

∥

L4(0,T ;L4)
≤ C.

Together with (4.21) we get the uniform bound for un, i.e

sup
[0,Tmax]

‖un‖Xn
≤ C.

where C is independent of Tmax. Thus, we get a global existence of approximate solutions.

5. passage to the limit n → ∞
After we have already constructed a family of approximate solutions (ρn, un, Bn).

The purpose of this section is to let n → ∞. This can be achieved by using the uniform
estimate of approximate solutions and Aubin-Lions lemma.

Lemma 5.1. The following estimates holds for some constant C independent of n

(5.1)

‖∂tρn‖L2(0,T ;L2) + ‖ρn‖L2(0,T ;H2s+2) ≤ C,
∥

∥∂t
√
ρn
∥

∥

L2(0,T ;H−1)
+
∥

∥

√
ρn
∥

∥

L2(0,T ;H2)
≤ C,

‖∂t(ρnun)‖L2(0,T ;H−(2s+1)) + ‖(ρnun)‖L2(0,T ;W 1,3/2) ≤ C,

‖P (ρn)‖L5/3 + ‖Pc(ρn)‖L5/3 ≤ C,

‖∂tBn‖L2(0,T ;H−1) + ‖Bn‖L2(0,T ;H1) ≤ C,
∥

∥∂t(1/
√
ρn)
∥

∥

L∞(0,T ;W−1,1)
≤ C.

Proof. By the continuity equation we have

∂tρn = ǫ∆ρn − div(ρnun) ∈ L2(0, T ;L2).

Then since

∂t
√
ρn +

1

2
√
ρ
n

div(ρnun) = ǫ

(

∆
√
ρn +

∣

∣∇√
ρ
n

∣

∣

2

√
ρ
n

)

.

together with the estimate (4.24) yields that

∂t
√
ρn ∈ L2(0, T ;H−1).

due to the momentum equation

∂t(ρnun) = − div(ρnun ⊗ un)−∇(P (ρn) + Pc(ρn)) + 2div(ρnD(un)) + η∆un

+ 2κ2ρn∇
(

∆
√
ρ
n√

ρ
n

)

− (∇×Bn)×Bn + δρn∇∆2s+1ρn + ǫ∇ρn · ∇un.
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we deduce that ∂t(ρnun) ∈ L2(0, T ;H−(2s+1)). Moreover, we also have

∇(ρnun) = 2∇√
ρn

√
ρnun + 2

√
ρn∇un∇

√
ρn ∈ L2(0, T ;L3/2).

then we have P (ρn) ∈ L∞(0, T ;L1) and P (ρn) ∈ L1(0, T ;L3) by the interpolation in-

equality we get P (ρn) ∈ L5/3(0, T ;L5/3). and similarly we can proof Pc(ρn).Finally, by
the magnetic equation and (4.24) we have

∂tB = ∇× (u×B)−∇× (νb(ρ)∇×B) ∈ L2(0, T ;H−1).

Since

∂t

(

1√
ρ
n

)

+
1

2
div(ρ−1/2u)− 3

2
ρ−3/2 div u = −ǫ

(

∆
√
ρ
n√

ρ
n

+

∣

∣∇√
ρ
n

∣

∣

2

ρ
3/2
n

)

.

and using the previous estimate (4.21) we have ∂tρ
−1/2
n ∈ L2(0, T ;W−1,6/5).

By Aubin-Lions lemma and the Lemma 4.1, we have

(5.2)

√
ρn → √

ρ strongly inL2(0, T ;H1),

ρn → ρ strongly in L2(0, T ;H2s+1), and weakly in L2(0, T ;H2s+2),

ρnun → ρu strongly inL2(0, T ;L2),

un → uweakly inL2(0, T ;L2), Bn → B strongly inL2(0, T ;L2),

ρ−1/2
n → ρ−1/2almost everywhere.∇Bn → ∇Bweakly inL2(0, T ;L2).

Moreover, we can get that ρnun ⊗ un → ρu⊗ u in the distribution sense. Together with
the estimate (4.21) and (5.2), we can prove that

P (ρn) → P (ρ) strongly in L1((0, T ) × Ω),

Pc(ρn) → Pc(ρ) strongly in L1((0, T ) ×Ω).

The viscosity term can pass to the limit
∫∫

div(ρnD(un)ϕdxdt →
∫∫

div(ρD(u)ϕdxdt.

due to the fact that
∫∫

ρ(∇u+ (∇u)⊤) : ∇ϕdxdt

=

∫∫

(ρ∂iu
j∂iϕj + ρ∂ju

i∂iϕj)dxdt

=

∫∫

(ρuj)i∂iϕj + (ρui)j∂iϕ
j − ∂iρu

j∂iϕ
j − ∂jρu

i∂iϕ
jdx

= −2

∫∫

(∇√
ρ⊗√

ρu) · ∇ϕdxdt− 2

∫∫

(
√
ρu⊗∇√

ρ) : ∇ϕdxdt

−
∫∫ √

ρ
√
ρu ·∆ϕdxdt−

∫∫ √
ρ
√
ρu∇ divϕdxdt.
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For the quantum term can also pass to the limit by using the convergence of the
√
ρ
n
.

In fact, for any test function

(5.3)

∫

ρn∇
(

∆
√
ρ
n√

ρ
n

)

ϕdx

= −
∫

∆
√
ρ
n√

ρ
n

div(ρnϕ)dx

= −
∫

∆
√
ρn

√
ρn divϕdx− 2

∫

∆
√
ρn∇

√
ρnϕdx

= −
∫

div(
√
ρn∇

√
ρn) divϕdx+

∫

∣

∣∇√
ρn
∣

∣

2
divϕdx

− 2

∫

div(∇√
ρn ⊗∇√

ρn)ϕdx+ 2

∫

(∇√
ρn · ∇)∇√

ρnϕdx

=

∫ √
ρn∇

√
ρn∇ divϕdx+ 2

∫

∇√
ρn ⊗∇√

ρn∇ϕdx.

For the capillarity term we can pass to the limit

δ

∫∫

ρn∇∆2s+1ρnϕdxdt → δ

∫∫

ρ∇∆2s+1ρϕdxdt.

due to the strong convergence of ρn and the following fact

δ

∫∫

ρn∇∆2s+1ρnϕdxdt = δ

∫∫

∇2s+1ρn∆
s div(ρnϕ)dxdt.

From the assumption, we get νb(ρ) has uniform lower bound which yields the weak
convergence of ∇Bn. Then together with the strong convergence of the Bn and weak
convergence of un enable us pass to the limit for the magnetic equation. Therefore, the
proof of pass to limit n → ∞ is completed.Thus, we can show that (ρ, u,B) solve the
following systems

(5.4)







































∂tρ+ div(ρu) = ǫ∆ρ, x ∈ Ω, t > 0,

∂t(ρu) + div(ρu⊗ u) +∇(P (ρ) + Pc(ρ))− 2 div(ρD(u))

+ η∆2u+ ǫ∇ρ · ∇u− δρ∇∆2s+1ρ− 2κ2ρ∇
(

∆
√
ρ

√
ρ

)

− (∇×B)×B = 0,

∂tB −∇× (u×B) +∇(νb(ρ)∇×B) = 0.

in the distribution sense and also satisfies the energy estimate (4.14) and (4.24).

6. B-D entropy estimate and pass to the limit ǫ, η, δ → 0

The purpose of this section is to derive the B-D entropy estimate for the approximated
system (5.4). This estimate first established by Bresch-Desjardin-Lin in [4]. By the (4.23)
and (5.1) we get

(6.1) ρ(x, t) ≥ C(δ) > 0, and ρ ∈ L2(0, T ;H2s+2) ∩ L∞(0, T ;H2s+1).
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then we can choose ∇φ(ρ) = 2∇ρ/ρ as test function to multiply the momentum equation
to derive the entropy estimate.

Lemma 6.1. (B-D entropy estimate) The following equality holds
(6.2)

d

dt

∫
(

1

2
ρ |u+∇φ(ρ)|2 +H(ρ) +Hc(ρ) + κ2 |∇√

ρ|2 + 1

2
|B|2 + δ

2

∣

∣∇2s+1ρ
∣

∣

2
)

dx

+ η

∫

|∆u|2 dx+ 2

∫

ρ |A(u)|2 dx+ 2

∫

1

ρ
(P

′

(ρ) + P
′

c(ρ)) |∇ρ|2 dx

+ 2κ2
∫

ρ
∣

∣∇2 log ρ
∣

∣

2
dx+ ǫκ2

∫

ρ
∣

∣∇2 log ρ
∣

∣

2
dx+

∫

νb(ρ) |∇ ×B|2 dx

+ ǫδ

∫

∣

∣∆s+1ρ
∣

∣

2
dx+ 2δ

∫

ρ
∣

∣∆s+1ρ
∣

∣

2
dx+ ǫ

∫

1

ρ
(P

′

(ρ) + P
′

c(ρ)) |∇ρ|2 dx

= ǫ

∫

∇φ(ρ) · ∇(φ
′

(ρ)∆ρ)dx− ǫ

∫

∇ρ · ∇u · ∇φ(ρ)dx+ ǫ

∫ |∇φ(ρ)|2
2

∆ρdx

− η

∫

∆u · ∇∆φ(ρ)dx− ǫ

∫

div(ρu)φ
′

(ρ)∆ρdx+

∫

(∇×B)×B · ∇φ(ρ)dx.

Proof. We first multiply the approximate continuity equation by |∇φ(ρ)|2
2 , we have

(6.3)

d

dt

∫

1

2
ρ |∇φ(ρ)|2 dx

=

∫

ρ∂t

(

|∇φ(ρ)|2
2

)

dx+

∫

∂tρ
|∇φ(ρ)|2

2
dx

=

∫

ρ∇φ(ρ) · ∇(φ
′

(ρ)∂tρ)dx+

∫

∂tρ
|∇φ(ρ)|2

2
dx

=

∫

ρ∇φ(ρ) · ∇(φ
′

(ρ)∂tρ)dx+ ǫ

∫

∆ρ
|∇φ(ρ)|2

2
dx−

∫ |∇φ(ρ)|2
2

div(ρu)dx.

due to the first term on the right hand side is equal to
(6.4)
∫

ρ∇φ(ρ) · ∇(φ
′

(ρ)∂tρ)dx

= ǫ

∫

ρ∇φ(ρ)∇(φ
′

(ρ)∆ρ)dx−
∫

ρ∇u : ∇φ(ρ)⊗∇φ(ρ)dx+

∫

ρ |∇φ(ρ)|2 div udx

+

∫

ρ2φ
′

(ρ)∆φ(ρ) div udx+

∫

|∇φ(ρ)|2 div(ρu)dx +

∫

ρu · ∇2φ(ρ) · ∇φ(ρ)dx

= ǫ

∫

ρ∇φ(ρ)∇(φ
′

(ρ)∆ρ)dx−
∫

ρ∇u : ∇φ(ρ)⊗∇φ(ρ)dx+

∫

ρ |∇φ(ρ)|2 div udx

+

∫

ρ2φ
′

(ρ)∆φ(ρ) div udx+
1

2

∫

|∇φ(ρ)|2 div(ρu)dx.
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Thus

(6.5)

d

dt

∫

1

2
ρ |∇φ(ρ)|2 dx = ǫ

∫

ρ∇φ(ρ)∇(φ
′

(ρ)∆ρ)dx−
∫

ρ∇u : ∇φ(ρ)⊗∇φ(ρ)dx

+

∫

ρ |∇φ(ρ)|2 div udx+

∫

ρ2φ
′

(ρ)∆φ(ρ) div udx+ ǫ

∫

∆ρ
|∇φ(ρ)|2

2
dx.

Next, we need to calculation the following term

(6.6)

d

dt

∫

ρu · ∇φ(ρ)dx

=

∫

∂t(ρu) · ∇φ(ρ)dx+

∫

ρu · ∇(φ
′

(ρ)∂tρ)dx

=

∫

∂t(ρu) · ∇φ(ρ)dx+ ǫ

∫

ρu · ∇(φ
′

(ρ)∆ρ)dx+

∫

φ
′

(ρ)(div(ρu))2dx.

Combine (6.5) and (6.6) together, we have
(6.7)
d

dt

∫

1

2
ρ |∇φ(ρ)|2 +

∫

ρu · ∇φ(ρ))dx

= ǫ

∫

ρ∇φ(ρ)∇(φ
′

(ρ)∆ρ)dx−
∫

ρ∇u : ∇φ(ρ)⊗∇φ(ρ)dx +

∫

ρ |∇φ(ρ)|2 div udx

+

∫

ρ2φ
′

(ρ)∆φ(ρ) div udx+ ǫ

∫

∆ρ
|∇φ(ρ)|2

2
+

∫

φ
′

(ρ)(div(ρu))2dx

+

∫

div(ρu⊗ u) : ∇φ(ρ)dx− ǫ

∫

div(ρu)φ
′

(ρ)∆ρdx−
∫

∇(P (ρ) + Pc(ρ)) · ∇φ(ρ)dx

+ 2

∫

∇u : ∇ρ⊗∇φ(ρ)dx− 2

∫

∇ρ · φ(ρ) div udx− ǫ

∫

∇ρ · ∇u · ∇φ(ρ)dx

− 2

∫

ρ∆φ(ρ) div udx− 2κ2
∫

ρ
∣

∣∇2 log ρ
∣

∣

2
dx− 2δ

∫

∣

∣∆2s+1ρ
∣

∣

2
dx

− η

∫

∆u · ∇∆φ(ρ)dx+

∫

((∇×B)×B) · ∇φ(ρ)dx.

= ǫ

∫

ρ∇φ(ρ)∇(φ
′

(ρ)∆ρ)dx+ ǫ

∫

∆ρ
|∇φ(ρ)|2

2
−
∫

∇(P (ρ) + Pc(ρ)) · ∇φ(ρ)dx

+ 2

∫

ρ |D(u)|2 dx− 2

∫

ρ |A(u)|2 dx− ǫ

∫

div(ρu)φ
′

(ρ)∆ρdx− 2δ

∫

∣

∣∆2s+1ρ
∣

∣

2
dx

− 2κ2
∫

ρ
∣

∣∇2 log ρ
∣

∣

2
dx− η

∫

∆u · ∇∆φ(ρ)dx− ǫ

∫

∇ρ · ∇u · ∇φ(ρ)dx

+

∫

((∇×B)×B) · ∇φ(ρ)dx.

Together with (6.7) and (4.14) yields the desire estimate. Therefore,the proof of lemma
is completed.
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Next, we turn to estimate each term on the right hand side of (6.2). The sign of the
first term is negative. In fact, integration by parts

(6.8) ǫ

∫

∇φ(ρ) · ∇(φ
′

(ρ)∆ρ)dx = −4ǫ

∫

1

ρ
|∆ρ|2 dx.

For the second term which can be estimate as follows
∣

∣

∣

∣

ǫ

∫

∇ρ · ∇u · ∇φ(ρ)dx

∣

∣

∣

∣

= 2ǫ

∣

∣

∣

∣

∫

1

ρ
∇ρ · ∇u · ∇ρdx

∣

∣

∣

∣

(6.9)

= 2ǫ

∣

∣

∣

∣

∣

∫ |∇ρ|2
ρ3/2

ρ1/2∇udx

∣

∣

∣

∣

∣

≤ ǫ

∫ |∇ρ|4
ρ3

dx+ ǫ

∫

ρ |∇u|2 dx.

due to

ǫ

∫

ρ |∇u|2 dx ≤ 2ǫ(

∫

ρ |A(u)|2 dx+

∫

ρ |D(u)|2 dx),
Therefore, we have

(6.10)

∣

∣

∣

∣

ǫ

∫

∇ρ · ∇u · ∇φ(ρ)dx

∣

∣

∣

∣

≤ ǫ

∫ |∇ρ|4
ρ3

dx+ 2ǫ

∫

ρ |A(u)|2 dx+ 2ǫ

∫

ρ |D(u)|2 dx.

The third term can be estimated as follows
∣

∣

∣

∣

∣

ǫ

∫ |∇φ(ρ)|2
2

∆ρdx

∣

∣

∣

∣

∣

= 2ǫ

∣

∣

∣

∣

∣

|∇ρ|2
ρ2

∆ρdx

∣

∣

∣

∣

∣

(6.11)

= 2ǫ

∣

∣

∣

∣

∣

∫ |∇ρ|2
ρ3/2

∆ρ

ρ1/2
dx

∣

∣

∣

∣

∣

≤ ǫ

∫ |∇ρ|4
ρ3

dx+ ǫ

∫ |∆ρ|2
ρ

dx.

The fourth term estimated as follows

(6.12)

∣

∣

∣

∣

η

∫

∆u · ∇∆φ(ρ)dx

∣

∣

∣

∣

≤ η

2
‖∆u‖22 +

η

2
‖∇∆φ(ρ)‖22 .

and the second term on the right hand side is equal to

∇∆φ(ρ) = 2∂kk

(

∂iρ

ρ

)

= 2∂k

(

− 1

ρ2
∂kρ∂iρ+

∂ikρ

ρ

)

= 2

(

2ρ−3(∂kρ)
2∂iρ−

1

ρ2
∂kkρ∂iρ−

2

ρ2
∂kρ∂ikρ+

∂ikkρ

ρ

)

=
2∇∆ρ

ρ
− 4(∇ρ · ∇)∇ρ

ρ2
+

4 |∇ρ|2 ∆ρ

ρ3
− 2∆ρ∇ρ

ρ2
.

then we get

(6.13) ‖∇∆φ(ρ)‖2 ≤ C(1 + ‖ρ‖H2s+1)3(1 +
∥

∥ρ−1
∥

∥

L∞)3 ≤ C(δ).
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we can choose η small enough with respect to δ such that we can get the uniform bound.
The fifth term on the right hand side of (6.2) is equal to

(6.14) 2ǫ

∫

div(ρu)φ
′

(ρ)∆ρdx = 2ǫ

∫

∆ρdiv udx+ 2ǫ

∫

∆ρ

ρ
∇ρ · udx.

since

2ǫ

∣

∣

∣

∣

∫

∆ρdiv udx

∣

∣

∣

∣

≤ ǫ

∫ |∆ρ|2
ρ

dx+ ǫ

∫

ρ |∇u|2 dx

≤ ǫ

∫ |∆ρ|2
ρ

dx+ 2ǫ

∫

ρ |A(u)|2 dx+

∫

ρ |D(u)|2 dx.

2ǫ

∣

∣

∣

∣

∫

∆ρ

ρ
∇ρ · udx

∣

∣

∣

∣

≤ 2ǫ
∥

∥ρ−1
∥

∥

3/2

L∞ ‖ρ‖H2s+1 .

we can choose ǫ small enough with respect to δ yields the uniform bound.
Finally, we estimate the last term on the right hand side of (6.2).

(6.15)

∫

(∇×B)×B · ∇φ(ρ)dx ≤
∫ |∇ ×B|2

ǫρ2
dx+ ǫ

∫

|∇ρ×B|2 dx.

The first term can be absorbed by the magnetic diffusion term under the Assumption 3,
and the second term estimated as follows

ǫ

∫

|∇ρ×B|2 dx ≤ ǫ ‖∇ρ‖2L∞ ‖B‖22 ≤ ‖∇ρ‖2H2 ‖B‖22 ≤ Cǫ ‖ρ‖2H2s+1 .

we can follow the same argument choose ǫ small enough with respect to δ enable us get
the uniform bound.

6.1. pass to the limits as ǫ, η → 0. In this step we assume (ρǫ,η, uǫ,η, Bǫ,η) are the
approximate solutions. Then from the B-D entropy estimate we can deduce that

(6.16)

ρǫ,η ∈ L∞(0, T ;Lγ), ρ−1
ǫ,η ∈ L∞(0, T ;Lγ−

),∇√
ρǫ,η ∈ L∞(0, T ;L2),

√
ρǫ,ηuǫ,η ∈ L∞(0, T ;L2),

√
ρǫ,ηDuǫ,η ∈ L2(0, T ;L2),

√
η∆uǫ,η ∈ L2(0, T ;L2),

∇ρ
γ
2
ǫ,η ∈ L2(0, T ;L2),

√
δρǫ,η ∈ L∞(0, T ;H2s+1),

Bǫ,η ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),
√
δρǫ,η ∈ L2(0, T ;H2s+2),

√
κ
√
ρǫ,η∇2 log ρǫ,η ∈ L2(0, T ;L2),

√

νb(ρǫ,η)∇Bǫ,η ∈ L2(0, T ;L2).

and also satisfies the following

(6.17)
√
κ
∥

∥

∥

√
ρǫ,η

∥

∥

∥

L2(0,T ;H2)
+ κ1/2

∥

∥

∥
∇ρ1/4ǫ,η

∥

∥

∥

L4(0,T ;L4)
≤ C.

where C is independent of the parameters ǫ, η, δ.

By the above estimate we can get ∇ρ
−1/2
ǫ,η ∈ L2(0, T ;L2). Since

∇ρ−1/2
ǫ,η = −1

2

∇ρǫ,η

ρ
3/2
ǫ,η

= −
∇√

ρ
ǫ,η

ρǫ,η
.
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For the case ρ > 1 then the proof is obvious. then we focus on the case ρ < 1

∇ρ−1/2 = ∇(ρ
γ−−1

2 ρ−
γ−

2 )

= ρ
γ−−1

2 ∇ρ−
γ−

2 +∇ρ
γ−−1

2 ρ−
γ−

2

= ρ
γ−−1

2 ∇ρ−
γ−

2 + (1− γ−)∇ρ−1/2.

so γ−∇ρ−1/2 = ρ
γ−−1

2 ∇ρ−
γ−

2 , due to
∫ T
0

∫

Ω H
′′

c (ρ) |∇ρ|2 dxdt ≤ C together with the rela-

tionship ρH
′′

c (ρ) = P
′

c(ρ) yield
∫ T
0

∫

Ω ργ
−−1

∣

∣

∣

∣

∇ρ−
γ−

2

∣

∣

∣

∣

2

dxdt ≤ C.Thus, we have ∇ρ−1/2 ∈
L2(0, T ;L2).

Following the same procedure as in the proof of the Lemma 4.1. Application to
Aubin-Lions lemma and (6.16) and (6.17) give rise to the following compactness

Lemma 6.2. The following convergence holds

(6.18)

√
ρǫ,η → √

ρ strongly inL2(0, T ;H1),

ρǫ,η → ρ strongly in L2(0, T ;H2s+1), and weakly in L2(0, T ;H2s+2),

ρǫ,ηuǫ,η → ρu strongly inL2(0, T ;L2),

uǫ,η → u strongly inL2(0, T ;L2), Bǫ,η → B strongly inL2(0, T ;L2),

ρ−1/2
ǫ,η → ρ−1/2almost everywhere.∇Bǫ,η → ∇B weakly inL2(0, T ;L2),

P (ρǫ,η) → P (ρ) strongly in L1((0, T ) × Ω),

Pc(ρǫ,η) → Pc(ρ) strongly in L1((0, T )× Ω).

Proof. Here we just show the convergence of velocity other convergence can be referred
to the previous process. It is noted that the strong convergence of velocity u can be
obtained in this step. In fact, since the lower bound of the density is just depend on
the parameter δ and the regularity of

√
ρ∇u ∈ L2(0, T ;L2). Then we get the uniform

bound of ∇u ∈ L2(0, T ;L2) which is independent of ǫ, η. By the strong convergence of
ρǫ,ηuǫ,η → ρu we have ρǫ,ηuǫ,η → ρu almost everywhere in (x, t) ∈ (0, T ) × Ω. together
with the convergence of ρ−1

ǫ,η yields that the strong convergence of velocity uǫ,η.

Thus, we can pass to the limit for the nonlinear term ρǫ,ηuǫ,η ⊗ uǫ,η, Similarly we
can also pass to the limit for the capillarity term δρǫ,η∇∆ρ2s+1

ǫ,η , the quantum term and
viscosity terms. And we have

∣

∣

∣

∣

η

∫∫

∆2uǫ,ηϕdxdt

∣

∣

∣

∣

≤ √
η ‖√η∆uǫ,η‖2 ‖∆ϕ‖L2(0,T ;L2) → 0,

∣

∣

∣

∣

ǫ

∫∫

∆ρǫ,ηϕdxdt

∣

∣

∣

∣

≤
√
ǫ ‖∇ρ‖L2(0,T ;L2) ‖∇ϕ‖L2(0,T ;L2) → 0,

ǫ

∣

∣

∣

∣

∫∫

∇ρǫ,η · ∇uǫ,ηϕdxdt

∣

∣

∣

∣

≤ C
√
ǫ
∥

∥

√
ǫ∇ρǫ,η

∥

∥

L2(0,T ;L2)
‖∇uǫ,η‖L2(0,T ;L2) → 0.
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Thus we have shown that the limit function (ρ, u,B) is the weak solution of the following
system

(6.19)































∂tρ+ div(ρu) = 0, x ∈ Ω, t > 0,

∂t(ρu) + div(ρu⊗ u) +∇(P (ρ) + Pc(ρ))− 2 div(ρD(u))

− δρ∇∆2s+1ρ− 2κ2ρ∇
(

∆
√
ρ

√
ρ

)

− (∇×B)×B = 0,

∂tB −∇× (u×B) +∇(νb(ρ)∇×B) = 0.

and satisfies the BD entropy estimate (6.2) and energy estimate (4.14). Moreover, we
also have the

(6.20) κ ‖√ρ‖L2(0,T ;H2) + κ1/2
∥

∥

∥
∇ρ1/4

∥

∥

∥

L4(0,T ;L4)
≤ C.

where C is independent of δ.

6.2. pass to the limit as δ → 0. Our goal in this step is to perform the limit as δ → 0.
Here we will lose the uniform lower bound of the density. we can also get additional
regularity information. Furthermore the following estimate also holds

(6.21)

ρδ ∈ L∞(0, T ;Lγ), ρ−1
δ ∈ L∞(0, T ;Lγ−

),∇√
ρδ ∈ L∞(0, T ;L2),

√
ρδuδ ∈ L∞(0, T ;L2),

√
ρδDuδ ∈ L2(0, T ;L2),

∇ρ
γ
2
δ ∈ L2(0, T ;L2),

√
δρδ ∈ L∞(0, T ;H2s+1),

Bδ ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1),
√
δρδ ∈ L2(0, T ;H2s+2),

√
κ
√
ρδ∇2 log ρδ ∈ L2(0, T ;L2),

√

νb(ρδ)∇Bδ ∈ L2(0, T ;L2).

and satisfies the estimate

(6.22) κ
∥

∥

√
ρδ
∥

∥

L2(0,T ;H2)
+ κ1/2

∥

∥

∥
∇ρ

1/4
δ

∥

∥

∥

L4(0,T ;L4)
≤ C.

Lemma 6.3. From the above estimate (6.21) and (6.22) , there exists a constant C
independent of δ such that

‖∇u‖Lp(0,T ;Lq) ≤ C, p =
2γ−

γ− + 1
, q =

6γ−

3γ− + 1
,

‖u‖LP (0,T ;Lq∗) ≤ C, q∗ =
3q

3− q
,

‖√ρu‖
Lp

′

(0,T ;Lq
′

)
≤ C, p

′

> 2, q
′

> 2.

Proof. ∇u = 1√
ρ

√
ρu, since

√
ρu ∈ L∞(0, T ;L2) and using the previous estimate we get

1√
ρ ∈ L2γ−

(0, T ;L6γ−

), apply the Hölder inequality yields that desire estimate. Due to

W 1,q embedding Lq∗, we can obtained ‖u‖LP (0,T ;Lq∗) ≤ C. Next we turn to estimate the
√
ρu. First for 0 < r < 1/2 we have

√
ρu = (

√
ρu)2ru1−2rρ1/2−r, by the estimate (6.21)

yield
√
ρ ∈ L∞(0, T ;L3) and we get ρ1/2−r ∈ L∞(0, T ;L3/(1/2−r). As a consequence we

have (
√
ρu)2r ∈ L∞(0, T ;L1/r) and u1−2r ∈ L

p
1−2r (0, T ;L

q∗

1−2r ) By Hölder inequality we
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deduce
∥

∥

√
ρu
∥

∥

Lp
′

(0,T ;Lq
′

)
≤ C, p

′

> 2, q
′

> 2 where 1
p′

= 1−2r
p , 1

q′
= r

1 +
1/2−r

3 + 1−2r
q∗ then

take 1
10 < r < 1

2 can enable us to get the estimate.

Repeated the same procedure as shown in the above part. we can deduce the following
compactness information

(6.23)

√
ρδ →

√
ρ strongly inL2(0, T ;H1),

√
ρδuδ →

√
ρu strongly in L2(0, T ;L2),

ρδuδ → ρu strongly inL2(0, T ;L2),

uδ → uweakly inL2(0, T ;L2), Bδ → B strongly inL2(0, T ;L2),

ρ
−1/2
δ → ρ−1/2almost everywhere.∇Bδ → ∇Bweakly inL2(0, T ;L2),

P (ρδ) → P (ρ) strongly in L1((0, T ) × Ω),

Pc(ρδ) → Pc(ρ) strongly in L1((0, T ) ×Ω).

In this step we can get the strong convergence of
√
ρ
δ
uδ which is different with

the above process. Since from the momentum equation we can get the information
of ∂t(ρδuδ). Apply to the Aubin-Lions lemma yields the almost everywhere convergence
of ρδuδ, which, due to the almost everywhere convergence of

√
ρ. we can get

√
ρ
δ
uδ →√

ρu almost everywhere.Thus we can get the strong convergence of
√
ρ
δ
uδ → √

ρu in

L2(0, T ;L2). The main obstacle in this step is deal with the term δρδ∇∆9ρδ. Other
terms can be easily treated as the above process.

Lemma 6.4. For any test function ϕ we have

δ

∫∫

ρδ∇∆9ρδϕdxdt → 0.

Proof. By (6.21) we have the following uniform estimate

ρδ ∈ L∞(0, T ;L3),
√
δρδ ∈ L∞(0, T ;H2s+1),

√
δρδ ∈ L2(0, T ;H2s+2).

Together with the Gagliardo-Nirenberg inequality yields

(6.24)
∥

∥∇2s+1ρδ
∥

∥

L3 ≤ C ‖ρδ‖αW 2s+2,2 ‖ρδ‖1−α
L3 .

where α ∈ (0, 1) satisfy the following relationship

1

3
− 2s+ 1

3
= α

(

1

2
− 2s+ 2

3

)

+ (1− α)
1

3
, α =

4s+ 2

4s+ 3
.

Moreover, we can also get δ
α
2

∣

∣∇2s+1ρδ
∣

∣ ∈ L
α
2 (0, T ;L3) by using (6.24). Due to

δ

∫∫

ρδ∇∆9ρδϕdxdt = −δ

∫∫

∆2s+1ρδ∆
s div(ρδϕ)dxdt.
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Then we focus on the most difficult term
∣

∣

∣

∣

δ

∫∫

∆s+1ρδ∆∇ρδϕdxdt

∣

∣

∣

∣

≤ C(ϕ)δ
1−α
2

∣

∣

∣
δ

α
2 ∇2s+1ρδ

∣

∣

∣

L
2
α (0,T ;L3)

∣

∣

∣

√
δ∇2s+2ρδ

∣

∣

∣

L2(0,T ;L2)

→ 0 as δ → 0.

Other terms also converge to 0 by the same approach, Thus the proof of the Lemma 6.4
is completed.

7. Lower planck limit

Our goal in this section is to prove the Theorem 3.2. For the sequence of solutions
(ρκ, uκ, Bκ), then we need to prove that we can pass to the limit for each term that
occurs in the equation. Following the same procedure as shown in section 4 we can get
the same compactness information on the solutions. It’s worth noting that the strong
convergence of

√
ρ
κ
in this step is only in the space L2(0, T ;L2) rather than L2(0, T ;H1).

Since the uniform bound of
√
ρ
κ
in the space L2(0, T ;H1) is just only enable us to get

the convergence in L2(0, T ;L2).

Lemma 7.1. Under the condition of Theorem 3.2 and using the uniform estimate we
have

(7.1)

√
ρκ → √

ρ strongly inL2(0, T ;L2),
√
ρκuκ → √

ρu strongly in L2(0, T ;L2),

ρκuκ → ρu almost everywhere,

uκ → uweakly inL2(0, T ;L2),

ρ−1/2
κ → ρ−1/2almost everywhere,

P (ρκ) → P (ρ) strongly in L1((0, T ) × Ω),

Pc(ρκ) → Pc(ρ) strongly in L1((0, T ) × Ω),

Bκ → B strongly inL2(0, T ;L2),
√

νb(ρκ)∇Bκ →
√
νb(ρ)∇B weakly inL2(0, T ;L2).

Proof. We can use the same procedure as shown in section 3 to obtained the convergence
of the above terms. The only different here is the strong convergence of

√
ρ
κ
in the space

L2(0, T ;L2). Due to ∇√
ρ ∈ L2(0, T ;L2) and ∂t

√
ρ ∈ L2(0, T ;H−1), Together with

Aubin-Lions lemma yields
√
ρ
κ
→ √

ρ inL2(0, T ;L2).

Next we focus on the quantum term ρκ∇
(

∆ρκ√
ρ
κ

)

Lemma 7.2. For any test function we have

(7.2) 2κ2
∫∫

ρκ∇
(

∆ρκ√
ρ
κ

)

ϕdxdt → 0.
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Proof. By the inequality (5.3) we get

(7.3)

2κ2
∣

∣

∣

∣

∫∫

ρκ∇
(

∆
√
ρ
κ√

ρ
κ

)

ϕdxdt

∣

∣

∣

∣

≤ 2κ2
∣

∣

∣

∣

∫∫ √
ρκ∇

√
ρκ∇ divϕdxdt

∣

∣

∣

∣

+ 4κ2
∣

∣

∣

∣

∫∫

∇√
ρκ ⊗∇√

ρκ∇ϕdxdt

∣

∣

∣

∣

.

≤ 2κ2
∥

∥

√
ρκ
∥

∥

L∞(0,T ;L2)

∥

∥∇√
ρκ
∥

∥

L(0,T ;L2)
‖∇ divϕ‖L∞((0,T )×Ω)

+ 4κ2
∥

∥∇√
ρκ
∥

∥

2

L(0,T ;L2)
‖∇ϕ‖L∞((0,T )×Ω)

≤ Cκ2 → 0, asκ → 0.

Finally, the proof of Theorem 3.2 is completed.
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