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Abstract. In this paper, we study the root distribution of some univariate
polynomials satisfying a recurrence of order two with linear polynomial coefficients.
We show that the set of non-isolated limits of zeros of the polynomials is either
an arc, or a circle, or a “lollipop”, or an interval. As an application, we
discover a sufficient and necessary condition for the universal real-rootedness
of the polynomials, subject to certain sign condition on the coefficients of the
recurrence. Moreover, we obtain the sharp bound for all the zeros when they are
real.

1. Introduction

Root distribution of polynomials in a sequence discover intensive information
about the interrelations of the polynomials in the sequence, especially when the
sequence satisfies a recurrence. Stanley [14] provides some figures for the root
distribution of some polynomials in a sequence arising from combinatorics.

In the study of the root distribution of sequential polynomials, both the real-
rootedness and the limiting distribution of zeros of the polynomials receive much
attention. Some evidence for the significance of real-rootedness of polynomials
can be found in Stanley [15, §4]. Bleher and Mallison [6] consider the zeros of
Taylor polynomials, and the asymptotics of the zeros for linear combinations of
exponentials. Some study on certain “zero attractor” of particular sequences of
polynomials can be found in [7,10]. The exploration of zero attractors of Appell
polynomials has been regarded as “gems in experimental mathematics” in [8].
Limiting distribution of zeros has been used to study the four-color theorem via the
chromatic polynomials initiated by Birkhoff [5], which amounts to the nonexistence
of a chromatic polynomial with a zero at the point 4. Beraha and Kahane [2]
examine the limits of zeros for the sequence of chromatic polynomials of a special
family of 3-regular graphs, described as to consist of an inner and outer square
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separated by n 4-rings. It turns out that the number 4 is a limit of zeros of
polynomials in this family.

Motived by the LCGD conjecture from topological graph theory, Gross, Mansour,
Tucker and the first author [11, 12] study the root distribution of polynomials
satisfying the recurrence

(1.1) Wn(z) = A(z)Wn−1(z) +B(z)Wn−2(z),

where the functions A(z) and B(z) are polynomials such that one of them is linear
and that the other is constant. They established the real-rootedness subject to
some sign conditions of the coefficients of A(z) and B(z). Since the real-rootedness
implies the log-concavity, they confirm the LCGD conjecture for many graph
families whose genus polynomials satisfy Recurrence (1.1) with the sign conditions.
Orthogonal polynomials and quasi-orthogonal polynomials have closed relations
with Recurrence (1.1); see Andrews, Richard and Ranjan [1] and Brezinski, Driver
and Redivo-Zaglia [9]. Jin and Wang [13] characterized the common zeros of
polynomials Wn(z) for general A(z) and B(z).

Following Gross et al. [11], a sequence {Wn(z)}n of polynomials satisfying
Recurrence (1.1) is said to be of type (degA(z), degB(z)). It is normalized
if W0(z) = 1 and W1(z) = z. When A(z) = az + b and B(z) = cz + d are linear,
Recurrence (1.1) reduces to

(1.2) Wn(z) = (az + b)Wn−1(z) + (cz + d)Wn−2(z).

Concentrating on the root distribution, and considering the polynomials defined by
(−1)nWn(−z), one may suppose without loss of generality that c ≥ 0. We use a
quadruple (sgn(a), sgn(b), sgn(c), sgn(d)), each coordinate of which is either + or −
or 0, to denote the combination of signs of the numbers a, b, c, d.

Gross et al. [11,12], establish the real-rootedness for Cases (+, ∗, 0,−), (0,+,+,+)
and (0,+,+,−), where the symbol ∗ indicates that the number b might be of any
sign. In Case (−,−,+,−), Wang and Zhang [17] establish the real-rootedness of
all polynomials Wn(z) for when ∆g > 0, where ∆g = (b+ c)2 + 4d(1− a). In Case
(+,+,+,+), they [18] show that every polynomial Wn(z) is real-rooted if and only
if ad ≤ bc.

According to Beraha, Kahane, and Weiss’ result [3, 4] on limits of zeros of
polynomials satisfying Recurrence (1.1), polynomials satisfying Recurrence (1.2)
have at most two isolated limits of zeros. In this paper, we show that the set of
non-isolated limits of zeros of polynomials satisfying Recurrence (1.2) is either an
arc, or a circle, or a “lollipop”, or an interval. As an application, we can show
that in Case (+,−,+,−), every polynomial is real-rooted if and only if ad ≤ bc.
Moreover, when the isolated limits are real, the zeros approach to them in an
oscillating manner in Cases (0,+,+,+) and (+,+,+,+), that is, from both the
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left and right sides of the isolated limits, while the convergence way is from only
one side in Case (+,−,+,−); see Theorem 3.4.

We should mention that the generating function of the normalized polynomials
satisfying Recurrence (1.1) is∑

n≥0

Wn(z)tn =
1 + (z − A(z))t

1− A(z)t−B(z)t2
.

In comparison, the root distribution of the polynomials generated by the function∑
n≥0

Wn(z)tn =
1

1− A(z)t−B(z)t2

has been investigated in [16], in which Tran found an algebraic curve containing
the zeros of all polynomials Wn(z) with large subscript n.

This paper is organised as follows. After reviewing necessary notion and and
notation, we interpret Beraha et al.’s characterization for polynomials satisfying
Recurrence (1.2) in Theorem 2.3. In §3, we provide a sufficient and necessary
condition of real-rootedness in Case (+,−,+,−), and the root distribution when
they are real-rooted as an application of Theorem 2.3.

2. Geometry of the limits of zeros

Throughout this paper, we let a, b, c, d ∈ R, ac 6= 0, and let {Wn(z)}n≥0 be a
sequence of polynomials satisfying Recurrence (1.2). Then the polynomial Wn(z)
has leading term an−1zn. For any complex number z = reiθ with θ ∈ (−π, π], we
use the square root notation

√
z to denote the number

√
reiθ/2, which lies in the

right half-plane θ ∈ (−π/2, π/2]. The general formula in Lemma 2.1 is the base of
our study, which can be found in [11,12].

Lemma 2.1. Let A,B ∈ C. Suppose that W0 = 1 and Wn = AWn−1 +BWn−2 for
n ≥ 2. Then

Wn =


α+λ

n
+ + α−λ

n
−, if ∆ 6= 0,

A+ nh

2
·
Ç
A

2

ån−1

, if ∆ = 0,

for n ≥ 0, where h = 2W1 − A and

λ± =
A±
√

∆

2
, α± =

√
∆± h
2
√

∆
, with ∆ = A2 + 4B.

Accordingly, we employ the notations

∆(z) = A(z)2 + 4B(z) = a2z2 + (2ab+ 4c)z + (b2 + 4d),
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h(z) = 2W1(z)− A(z) = (2− a)z − b,

λ±(z) =
A(z)±

»
∆(z)

2
,

α±(z) =

»
∆(z)± h(z)

2
»

∆(z)
,

g(z) = −α+(z)α−(z)∆(z) =
h2(z)−∆(z)

4
= (1− a)z2 − (b+ c)z − d.

Denote by xA = −b/a and xB = −d/c the zeros of A(z) and B(z) respectively.
The function ∆(z) has two zeros

x±∆ = xA +
−2c± 2

√
∆∆

a2
,

where ∆∆ = c2 − a2B(xA) is the discriminant of ∆(z). A number z∗ ∈ C is a limit
of zeros of the sequence {Wn(z)}n of polynomials if there is a zero zn of Wn(z) for
each n such that limn→∞ zn = z∗.

Lemma 2.2 (Beraha et al. [3]). Under the non-degeneracy conditions

(N-i) the sequence {Wn(z)}n does not satisfy a recurrence of order less than two,

(N-ii) λ+(z) 6= ωλ−(z) for some z ∈ C and some constant ω such that |ω| = 1,

a number z is a limit of zeros if and only if it satisfies one of the following conditions:

(C-i) α−(z) = 0 and λ+(z) < λ−(z);

(C-ii) α+(z) = 0 and λ+(z) > λ−(z);

(C-iii) λ+(z) = λ−(z).

A limit z of zeros is said to be non-isolated if it satisfies Condition (C-iii), and
to be isolated if it satisfies Condition (C-i) or Condition (C-ii). We denote the set
of non-isolated limits of zeros of the polynomials Wn(z) by ♣, and denote the set
of isolated limits of zeros by ♠. The clover symbol ♣ is adopted for the leaflets
of a clover are not alone, while the spade symbol ♠ appearing as a single leaflet
represents isolation in comparison.

Theorem 2.3. Let a, b, c, d ∈ R and ac 6= 0. Let {Wn(z)}n be a sequence of
polynomials satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z. Then the
sets of isolated and non-isolated limits of zeros of {Wn(z)}n are respectively

♠ = {z ∈ C : g(z) = 0, <
Ä
A(z)h(z)

ä
< 0} and
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♣ =



˝�x−∆xAx
+
∆, if ∆∆ < 0;

C0, if ∆∆ = 0;

J∆ ∪ C0, if ∆∆ > 0 and B(xA) > 0;

J∆, if ∆∆ > 0 and B(xA) ≤ 0;

where z denotes the complex conjugate of z, ˝�x−∆xAx
+
∆ stands for the circular arc

connecting the points x−∆ and x+
∆, through the point xA,

C0 = {z ∈ C : |z − xB| = |xA − xB|}

is the circle with center xB and radius |xA − xB|, and

J∆ = {x ∈ R : x−∆ ≤ x ≤ x+
∆}

is an interval.

Proof. Condition (N-i) is satisfied since otherwise one would have Wn(z) = zn for
each n, contradicting the fact W2(z) = az2 + (b+ c)z + d. Condition (N-ii) holds
true since |λ−(x)| 6= |λ+(x)| for sufficiently large real number x.

Suppose that z ∈ ♠. From definition, we have α−(z)α+(z) = 0, which implies

0 = g(z) =
h2(z)−∆(z)

4
.

Thus
»

∆(z) ∈ {±h(z)}. If
»

∆(z) = h(z), then α−(z) = 0 from definition. By

Lemma 2.2, we have λ+(z) < λ−(z), i.e., <
Ä
A(z)h(z)

ä
< 0. Along the same line

we can handle the other case
»

∆(z) = −h(z).

It is clear that {xA, x−∆, x+
∆} ⊆ ♣. Let z = x+ yi ∈ ♣ such that A(z)∆(z) 6= 0,

where x, y ∈ R. If y = 0, then z, A(z), ∆(z) ∈ R. In this case, we can infer that

λ−(z) = λ+(z) ⇐⇒ ∆(z) < 0 ⇐⇒ ∆∆ > 0 and x ∈ (x−∆, x
+
∆).

Otherwise y 6= 0. We can infer that

λ−(z) = λ+(z) ⇐⇒ the vectors A(z) and
»

∆(z) are orthogonal

⇐⇒ the vectors A2(z) and ∆(z) have opposite directions

⇐⇒ A2(z) and B(z) have opposite directions, |A2(z)| < |4B(z)|

⇐⇒


<A2(z) · =B(z) = <B(z) · =A2(z)

=A2(z) · =B(z) < 0

|=A2(z)| < 4|=B(z)|
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⇐⇒

 (x− xB)2 + y2 = (xA − xB)2

(x− xA)(x− xA + 2c/a2) < 0

⇐⇒ z ∈ C0 ∩ S0 \ {xA, x−∆, x+
∆},

where S0 = {z ∈ C : |<z − xA| ≤ |2c/a2|, c· (<z − xA) ≤ 0} is the vertical strip
with boundaries <z = xA and <z = xA − 2c/a2. It is clear that the boundary
<z = xA intersects the circle C0 at the point xA. To figure out the intersection of
the other boundary with C0, we proceed according to the sign of ∆∆.

Suppose that ∆∆ < 0. Then J∆ = ∅ from definition, and

<
Ä
x±∆
ä

= xA −
2c

a2
and =

Ä
x±∆
ä

= ±2
√
−∆∆

a2
.

It follows thatÄ
x±∆ − xB

ä2
=

Ç
xA −

2c

a2
− xB

å2

+

Ç
2
√
−∆∆

a2

å2

= (xA − xB)2.

Thus the points x±∆ lie on the intersection of the boundary <z = xA − 2c/a2 and
the circle C0. Since the intersection contains at most two points, the points x±∆

consitute the intersection. Hence the set ♣ = C0 ∩ S0 is the circular arc ˝�x−∆xAx
+
∆.

When ∆∆ = 0, the points x±∆ = xA − 2c/a2 coincide with each other. As a
consequence, we have C0 ∩ S0 = C0 and ♣ = J∆ ∪ C0 = C0.

Below we can suppose that ∆∆ > 0. Note that

(2.1) B(xA) = c(xA − xB).

When B(xA) ≤ 0, we claim that C0 ∩ S0 = {xA}. Let z ∈ C0 ∩ S0. If c > 0, then
xA ≤ xB by Eq. (2.1). Since z ∈ C0, we have <z ≥ xA. Since z ∈ S0, we have
c(<z − xA) ≤ 0. Therefore, we infer that <z = xA, and z = xA consequently.
Otherwise c < 0. Then xA ≥ xB by Eq. (2.1). In this case, z ∈ C0 implies <z ≤ xA,
and z ∈ S0 implies <z ≥ xA. Hence z = xA for the same reason. This proves the
claim. Since ∆(xA) = 4B(xA) ≤ 0, we have xA ∈ J∆. Hence ♣ = J∆.

When B(xA) > 0, we claim that C0 ⊂ S0. Let z ∈ C0. One may show
c(<z−xA) ≤ 0 in the same fashion as when B(xA) < 0. By geometric interpretation
and the condition ∆∆ > 0, we deduce that

|<z − xA| ≤ (the diameter of C0) = 2|xA − xB| < |2c/a2|.

This proves the claim and hence ♣ = J∆ ∪ C0. �

We remark that z ∈ ♠ if and only if z ∈ ♠. Since ∆∆ ≤ 0 implies B(xA) > 0,
the case “∆ > 0 and B(xA) ≤ 0” in Theorem 2.3 can be reduced to “B(xA) ≤ 0”.
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Corollary 2.4. Let a, b, c, d ∈ R and ac 6= 0. Let {Wn(z)}n be a sequence of
polynomials satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z. If every
polynomial Wn(z) for large n is real-rooted, then B(xA) ≤ 0, and ∆ ≥ 0 as a
consequence.

Proof. Since every polynomial Wn(z) for large n is real-rooted, we have ♠∪♣ ⊂ R.
By Theorem 2.3, we find either ♣ = J∆, or ♣ = C0 and C0 degenerates to a single
point. In the former case, we find B(xA) ≤ 0. In the latter case, we have ∆∆ = 0
and xA = xB, which is impossible since otherwise

0 = ∆∆ = c2 − a2B(xA) = c2,

a contradiction. This completes the proof. �

When ♣ = J∆ ∪C0, it turns out that the set ♣ looks like a lollipop; see Fig. 2.1.
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Figure 2.1. The zero distribution of W30(z) for the parameters
(a, b, c, d) = (1, −2, 2, −1) and (a, b, c, d) = (1, 2, −2, −1), for each
of which we have xA = −2, xB = −1/2, and B(xA) = 3.

Theorem 2.5. Suppose ∆∆ > 0 and B(xA) > 0. Then J∆ ∩ C0 = {2xB − xA},
and the part of J∆ outside the circle C0 is longer than the part of J∆ inside C0.

Proof. By Theorem 2.3, we have ♣ = J∆ ∪ C0. First of all, denote x0 = 2xB − xA
to be one of the two real points on C0, other than xA. Since

∆(x0) = −4B(xA)∆∆

c2
< 0,

we have x0 ∈ J∆. Second, the centre of the circle C0 is not on the interval J∆ since
∆(xB) = A2(xB) > 0. It follows that J∆ ∩ C0 = {x0}. Thirdly, note that

(2.2) x0 −
x−∆ + x+

∆

2
=

1

c
· 2∆∆

a2
.
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If c > 0, then xB < xA by Eq. (2.1). It follows that x0 < xB. Thus the interval J∆

intersects the circle C0 from the left of C0. By Eq. (2.2), we have x0 > (x−∆ +x+
∆)/2.

Thus the part of J∆ outside the circle C0 is longer than the part of J∆ inside. The
other case c < 0 can be handled in the same way. �

3. The interlacing zeros for Case (+,−,+,−)

Here is the main result of this section.

Theorem 3.1. Let a, c > 0 and b, d < 0. Let {Wn(z)}n be a sequence of polynomials
satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z. Then Wn(z) is real-
rooted if and only if xA ≤ xB.

The necessity part of Theorem 3.1 can be seen directly from Corollary 2.4. The
sufficiency part will be handled for the case xA < xB in Theorem 3.4, and for the
case xA = xB in Theorem 3.6. Throughout this section, we suppose that xA ≤ xB,
which implies that ∆∆ > 0 and x±∆ ∈ R. The zeros of the function g(z) are

x±g =


b+ c

2(1− a)
±

»
∆g

2|1− a|
, if a 6= 1,

− d

b+ c
, if a = 1 and b+ c 6= 0,

where ∆g = (b+ c)2 + 4d(1− a). We define two numbers u and v by

(3.1) (u, v) =



(x−∆, x
+
∆), if a < 2 and F ≤ 0;

(x−g , x
+
g ), if a > 2 and F < 0;

(x+
g , x

+
∆), if a < 1 and F > 0;

(x−g , x
+
∆), otherwise;

where F = ∆g −∆∆ = d(a− 2)2 + bc(2− a) + b2. Note that (u, v) = (x−∆, x
+
∆) if

a = 1 and b+ c = 0. Furthermore, we have u, v ∈ R since ∆g > ∆∆ > 0 whenever
a ≥ 2 or F > 0. As will be seen in Theorems 3.4 and 3.6, we have u < v and the
interval (u, v) is the best bound for the zeros of Wn(z).

3.1. Case xA < xB. We determine the signs of Wn(u) and Wn(v) in Lemma 3.2.

Lemma 3.2. Let a, c > 0 and b, d < 0. Let {Wn(z)}n be a sequence of polynomials
satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z. Suppose that xA < xB.
Then we have

u ≤ x−∆ < xA < x+
∆ ≤ v < xB,(3.2)

u < 0 < v,(3.3)
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Wn(u)(−1)n > 0,(3.4)

Wn(v) > 0, and(3.5)

{u, v} ⊆ ♠ ∪ ♣.(3.6)

Proof. The premise xA < xB implies ∆(xA) = 4B(xA) < 0. It follows that

xA ∈ (x−∆, x
+
∆), x+

∆ > 0, A(x+
∆) > 0 > A(x−∆), and

h(x+
∆) = (2− a)x+

∆ − b ≥ −b > 0 if a ≤ 2.(3.7)

Since ∆(xB) = A2(xB) > 0 and x−∆ < xA < xB, we have x+
∆ < xB.

To confirm Relation (3.6), by Theorem 2.3, it suffices to show that

(3.8) A(x)h(x) < 0, for any x ∈ {u, v}\{x−∆, x+
∆}.

Let xh be the unique zero of the function h(z) when a 6= 2. Then xh = b/(2− a).
We proceed according to the definition of the numbers u and v.

Case 3.2.1. a < 2, F ≤ 0 and [u, v] = J∆. It is routine to compute that

(3.9) h(x−∆)h(x+
∆) =

4F

a2
.

Together with Ineq. (3.7), we have h(x−∆) ≤ 0 and thus

x−∆ ≤ xh =
b

2− a
< 0,

verifying Ineq. (3.3). By Lemma 2.1, we have

(3.10) Wn(x±∆) =
A(x±∆) + nh(x±∆)

2
·
Ç
A(x±∆)

2

ån−1

,

which implies Ineqs. (3.4) and (3.5).

Case 3.2.2. a > 2, F < 0 and [u, v] = [x−g , x
+
g ]. Observe that

(3.11) g(x±∆) =
h2(x±∆)

4
≥ 0.

Since the polynomial g(z) is quadratic with leading coefficient negative, we can
derive all inequalities in (3.2) except v < xB. Since F < 0, we have d(a−2)−bc < 0
and thus

g(xB) =
−d
c2

Ä
(a− 1)d− bc

ä
<
−d
c2

Ä
(a− 2)d− bc

ä
< 0.

Since x−g < xA < xB, we infer that x+
g < xB.

On the other hand, by Vièta’s theorem, we have

(3.12) x−g x
+
g =

d

a− 1
,
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whose negativity verifies Ineq. (3.3). By Lemma 2.1, we have

(3.13) Wn(x±g ) = (x±g )n,

which implies Ineqs. (3.4) and (3.5). It is routine to compute that

(3.14) h(x−g )h(x+
g ) =

F

a− 1
if a 6= 1.

Thus h(v) < 0 < h(u). By (3.2), we have A(u) < 0 < A(v). This proves Ineq. (3.8).

Case 3.2.3. a < 1, F > 0 and [u, v] = [x+
g , x

+
∆]. In view of Eqs. (3.10) and (3.13)

and Ineq. (3.7), to confirm Ineqs. (3.2) to (3.5) and (3.8), we shall show that

x+
g ≤ x−∆, x+

g < 0, and h(x+
g ) > 0.

In fact, we note that the polynomial g(z) is quadratic with leading coefficient
positive. On the one hand, Eq. (3.14) gives xh ∈ (x−g , x

+
g ). This confirms h(x+

g ) > 0

immediately. By Eq. (3.9), we can deduce that xh < x−∆, since otherwise one would
have the absurd inequality

0 < x+
∆ < xh =

b

2− a
< 0.

Thus Ineq. (3.11) implies (x−g , x
+
g )∩ J∆ = ∅. Moreover, the whole interval (x−g , x

+
g )

lies to the left of J∆. This proves x+
g ≤ x−∆. On the other hand, by Ineq. (3.12) we

have x−g x
+
g > 0. Since x−g < xh < 0, we find x+

g < 0.

Case 3.2.4. For all remaining cases we have [u, v] = [x−g , x
+
∆]. This time, to

confirm Ineqs. (3.2) to (3.5) and (3.8), we shall show that

x−g ≤ x−∆, x−g < 0, h(x+
∆) ≥ 0, and h(x−g ) > 0.

In fact, when a = 1, in view of Case 3.2.1, we now have F > 0 and thus b+ c < 0.
Note that g(z) = −(b+ c)z − d. It follows from Ineq. (3.11) that x−g ≤ x−∆. Since

g(0) = −d > 0, we obtain x−g < 0. By Ineq. (3.7), we have h(x+
∆) ≥ 0. It is routine

to compute that

h(x−g ) = x−g − b = − d

b+ c
− b = − F

b+ c
> 0.

Now, in view of Cases 3.2.1 and 3.2.3, we have a > 1. Consequently, one may derive
J∆ ⊆ [x−g , x

+
g ] and x−g < 0 as in Case 3.2.2. We shall handle the two inequalities

involving h according to the value range of a. If a = 2, then the function h(z) = −b
reduces to a positive constant and we are done. Now we can suppose that a 6= 2.

(1) If a > 2, then

h(x−∆) + h(x+
∆) =

4

a2

Ä
(a− 2)c− ab

ä
> 0.
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In view of Case 3.2.2, we have F ≥ 0. By Eq. (3.9), we have h(x−∆)h(x+
∆) ≥ 0.

Therefore, we infer that h(x+
∆) ≥ 0. Since the polynomial h(z) is strictly

decreasing and x−g < x+
∆, we have h(x−g ) > h(x+

∆) > 0.

(2) If 1 < a < 2, by Ineq. (3.7), it suffices to show that h(x−g ) > 0. In view of

Case 3.2.1, we have F > 0. By Ineq. (3.7) and Eq. (3.9), we have h(x−∆) > 0
and xh < x−∆. By Eq. (3.14), we have h(x−g )h(x+

g ) > 0. Since J∆ ⊆ [x−g , x
+
g ],

we deduce that xh < x−g , i.e., h(x−g ) > 0.

This completes the proof. �

Let X, Y ⊂ R such that |X| − |Y | ∈ {0, 1}. We say that X interlaces Y , if the
elements xi of X and the elements yj of Y can be arranged so that x1 ≤ y1 ≤
x2 ≤ y2 ≤ · · · , and that X strictly interlaces Y if no equality holds in the ordering.
Lemma 3.3 is Lemma 3.3 of [12], wherein used in a proof of the real-rootedness of
polynomials Wn(z) defined by Recurrence (1.2) with a > 0, b ∈ R, c = 0 and d < 0
by induction.

Lemma 3.3 (Gross et al. [12]). Let {Wn(z)}n be a sequence of polynomials sat-
isfying Recurrence (1.1). Let m ≥ 0 and α, β ∈ R. Suppose that the polynomial
Wm+2(x) has degree m+2, and that B(x) < 0 for all x ∈ Rm+1, Wm(α)Wm+2(α) > 0,
Wm(β)Wm+2(β) > 0, |Rm+1| = m + 1, Rm+1 ⊂ (α, β), and Rm+1 strictly inter-
laces Rm. Then we have |Rm+2| = m + 2, Rm+2 ⊂ (α, β), and Rm+2 strictly
interlaces Rm+1.

Now we are in a position to show the real-rootedness with the interlacing property
and the best bound of all zeros.

Theorem 3.4. Let a, c > 0 and b, d < 0 such that xA < xB. Let {Wn(z)}n be a
sequence of polynomials satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z.
Then every polynomial Wn(z) is real-rooted. Denote by Rn the zero set of Wn(z).
Then Rn ⊂ (u, v), and the set Rn+1 strictly interlaces Rn. Moreover, the bound
(u, v) is sharp, in the sense that both the numbers u and v are limits of zeros.

Proof. We prove by induction with aid of Lemma 3.3 for (α, β) = (u, v). Note that
R1 = {0}. By Lemma 3.2, we have u < 0 < v. From definition, any singleton set
strictly interlaces the empty set R0. Now, we can suppose, for some m ≥ 0, that
|Rm+1| = m+ 1, Rm+1 ⊂ (u, v), and Rm+1 strictly interlaces Rm. Let n ≥ 0. From
Recurrence (1.2), every polynomial Wn(z) is of degree n. By Lemma 3.2, we have
B(x) < 0 for x ∈ Rn, Wn(u)Wn+2(u) > 0 and Wn(v)Wn+2(v) > 0. By Lemma 3.3,
we obtain the real-rootedness, the bound (u, v) and the strict interlacing property.
By Theorem 2.3, we have {x±∆} ⊆ ♣. By Lemma 3.2, we have {u, v}\{x±∆} ⊆ ♠.
Hence both the numbers u and v are limits of zeros. This completes the proof. �
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We remark that the sharpness of the bound (u, v) can be shown by using the
totally different method demonstrated in the proof of Theorem 4.5 in [12].

3.2. Case xA = xB. Suppose that xA = xB. Then Eq. (3.1) reduces to

u =


x−∆, if a < 2 and F ≤ 0

x+
g , if a < 1 and F > 0

x−g , otherwise

and v = x+
∆ = xA = xB.

In an analogue with Lemma 3.2, we have Lemma 3.5.

Lemma 3.5. Let a, c > 0 and b, d < 0. If xA = xB, then u ≤ x−∆, u < 0,
Wn(u)(−1)n > 0, and u ∈ ♠ as if u 6= x−∆.

Proof. Same to the proof of Lemma 3.2. �

Now we can demonstrate the root distribution of the polynomials {Wn(z)}.

Theorem 3.6. Let a, c > 0 and b, d < 0 such that xA = xB. Let {Wn(z)}n be a
sequence of polynomials satisfying Recurrence (1.2) with W0(z) = 1 and W1(z) = z.
Then the function Un(z) = Wn(z)/Abn/2c(z) is a polynomial, with all its zeros lying
in the interval (u, xB). Moreover, the interval (u, xB) is sharp in the sense that
both the numbers u and xB are limits of zeros of the polynomials Un(z).

Proof. By Recurrence (1.2), the functions Un(z) satisfy the recurrence

(3.15) Un(z) =

 Un−1(x) + c′ · Un−2(x), if n is even,

A(x)Un−1(x) + c′ · Un−2(x), if n is odd,

where c′ = c/a, with U0(z) = 1 and U1(z) = z. It follows immediately that the
function Un(z) is a polynomial of degree dn/2e. Let R′n be the zero set of Un(z).

We shall show by induction that the zeros zj of Un(z) strictly interlaces the
zeros xj of Un−1(z) from the left, in the interval (u, xB), i.e.,

(3.16)

u < z1 < x1 < z2 < · · · < zdn
2
e < xdn−1

2
e < xB, if n is even;

u < z1 < x1 < z2 < · · · < zdn−1
2
e < xdn−1

2
e < zdn

2
e < xB, if n is odd.

We make some preparations. First, by Recurrence (3.15), it is direct to show by
induction that Un(xB) > 0. Second, by Lemma 3.5, we have u ≤ x−∆ < x+

∆ = xA
and Wn(u)(−1)n > 0. Therefore, we have A(u) < 0 and thus

Un(u)(−1)dn/2e > 0.
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In particular, we have U2(u) < 0. Since U2(u) = z + c′, we have u < −c′ < 0 < xB.
This checks the truth for n = 2. Let n ≥ 3. By induction hypothesis, the set R′n−1

strictly interlaces R′n−2 from the left. Therefore, we have

Un−2(xj)(−1)dn/2+je > 0 for j ≤ d(n− 1)/2e.

By Recurrence (3.15), the number Un(xj) has the same sign as the number Un−2(xj),
that is, Un(xj)(−1)dn/2+je > 0. By using the intermediate value theorem, we derive
the desired (3.16).

Same to the proof of Theorem 3.4, one may show the minimality of the interval
(u, xB) as a bound of the zeros of polynomials Wn(z). Note that x−∆ 6= x+

∆. By
Theorem 2.3, each point in the interval J∆ is a limit of zeros of the polynomi-
als Wn(z). Therefore, each point in J∆ is a limit of zeros of the polynomials Un(z),
and the interval (u, xB) = (u, x+

∆) becomes the best bound of the union of zeros of
all polynomials Un(z). This completes the proof. �
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