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STOCHASTIC SOLUTIONS FOR SPACE-TIME FRACTIONAL

EVOLUTION EQUATIONS ON BOUNDED DOMAIN

Lorenzo Toniazzi

Abstract. Space-time fractional evolution equations are a powerful tool to model diffu-
sion displaying space-time heterogeneity. We prove existence, uniqueness and stochastic
representation of classical solutions for an extension of Caputo evolution equations featur-
ing time-nonlocal initial conditions. We discuss the interpretation of the new stochastic
representation. As part of the proof a new result about inhomogeneous Caputo evolution
equations is proven.

1. Introduction

It is a classical result that the solution to the standard heat equation ∂tu = ∆u, u(0) = φ0
allows the stochastic representation u(t, x) = E[φ0(X

x,2(t))], where Xx,2 is a Brownian
motion started at x ∈ R

d. Space-time fractional evolution equations (EEs) extend the heat
equation by introducing space-time heterogeneity. This often is done by considering the

Caputo EE Dβ
0u = −(−∆)

α
2 u, where one substitutes the local operators ∂t and ∆ with

fractional analogues. Respectively, the Caputo derivative Dβ
0u(t) = cβ

∫ t
0 u

′(r)(t− r)−β dr

and the fractional Laplacian (−∆)
α
2 u(x) = F−1(|ξ|αFu(ξ))(x), where β ∈ (0, 1), α ∈ (0, 2),

cβ = Γ(1 − β)−1 and F is the Fourier transform (for standard references see [21, 14]). It
is well known that the fundamental solution to the Caputo EE is the law of the non-
Markovian anomalous diffusion Y x(t) = Xx,α(τ0(t)) (see, e.g., [39]). Here Xx,α is the
rotationally symmetric α-stable Lévy process started at x ∈ R

d and τ0(t) is the inverse
process of the β-stable subordinator Xβ(t). The density of this beautiful formula was
first observed in [43]. The time change interpretation first appeared in [35, 38], based on
[5]. The process Y x displays space-heterogeneity due to the jump nature of Xx,α. Also
time-heterogeneity features in Y x, as the time change t 7→ τ0(t) is constant precisely when
the subordinator t 7→ Xβ(t) jumps, so that t 7→ Y x(t) is trapped on such time intervals.
This interesting trapping phenomenon leads to the process Y x spreading at a slower rate
than Xx,α. Indeed, in the physics literature the anomalous diffusion Y x is often referred
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to as a sub-diffusion when α = 2 (see, e.g., [48, 42, 33]). See [38] for a characterisation of
Y x as the scaling limit of continuous time random walks with heavy-tailed waiting times.
See [7] for a characterisation of Y x as the scaling limit of random conductance models or
asymmetric Bouchaud’s trap models (α = 2). See [32, 34] for sample path properties of
Y x, and [20, 18] for heat kernel asymptotic formulas. Existence of classical solutions for
Caputo EEs is generally a subtle problem. The works [24, 6, 2] tackle classical solutions
on unbounded domains. Meanwhile the works [19, 36, 37, 31] consider bounded domains,
and all their proofs rely on the spectral decomposition of the spatial operator. Stochastic
representations for solutions to time-nonlocal equations is an active area of theoretical
research (see, e.g., [4, 16, 28, 18]). Partly because they provide formulas in the general
absence of closed forms along with suggesting probabilistic proof methods. Moreover, such
representations can be useful for particle tracking codes (see, e.g., [49]). Let us remark that
Caputo EEs are applied in a variety of fields, such as physics, finance, economics, biology
and hydrogeology (see, e.g., [43, 45, 46, 8, 27]).

In this work we focus on the following extension of the Caputo EE: the inhomogeneous
space-time fractional EE on bounded domain with Dirichlet boundary conditions and time-
nonlocal initial condition











Dβ
∞ũ(t, x) = ∆

α
2

Ω ũ(t, x) + g(t, x), in (0, T ]× Ω,

ũ(t, x) = 0, in [0, T ]× ∂Ω,
ũ(t, x) = φ(t, x), in (−∞, 0]× Ω,

(1.1)

where Ω ⊂ R
d is a regular domain, ∆

α
2

Ω is the restricted fractional Laplacian1, and the time

operator −Dβ
∞ is the generator of the inverted β-stable subordinator2

Dβ
∞f(t) =

∫ ∞

0
(f(t− r)− f(t)) Γ(−β)

−1dr

r1+β
, t ∈ R. (1.2)

As the main result of this work we prove existence and uniqueness of classical solutions to
problem (1.1) along with the stochastic representation for the solution

ũ(t, x) = E
[

φ
(

−Xt,β(τ0(t)),X
x,α(τ0(t))

)

1{τ0(t)<τΩ(x)}

]

+E

[

∫ τ0(t)∧τΩ(x)

0
g
(

−Xt,β(s),Xx,α(s)
)

ds

]

,
(1.3)

where the processes −Xt,β = t−Xβ and Xx,α are independent, and τΩ(x) is the first exit
time of Xx,α from Ω. To see why problem (1.1) extends the Caputo EE, let φ(t) = φ(0)

1We define ∆
α

2

Ω
on functions on Ω, so that the Euclidean boundary ∂Ω makes sense in (1.1). In the

literature the operator ∆
α

2

Ω
is often defined through the application of the singular integral definition of

−(−∆)
α

2 to functions vanishing outside Ω (see, e.g., [13]).
2The operator Dβ

∞ is often referred to as the Marchaud derivative in the fractional calculus literature
(see, e.g., [44]).
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for every t ∈ (−∞, 0) and g = 0 in both (1.1) and (1.3). Then

Dβ
∞ũ(t) =

∫ t

0
(ũ(t− r)− ũ(t)) Γ(−β)

−1dr

r1+β
− φ(0)− ũ(t)

Γ(1− β) t−β = Dβ
0u(t),

where u is the restriction of ũ to t ≥ 0, and one obtains the homogeneous Caputo EE
and its solution, respectively. The recent works [17, 22] introduced a class of EEs that
formally includes (1.1). They are motivated by the success of related nonlocal EEs arising
in image processing, peridynamics and heat conduction (see, e.g., [25, 12, 47, 26]), and the
general lack of alternatives to Caputo-type time-nonlocal models. Part of their intent is to
introduce initial conditions on the ‘past’ (φ on (−∞, 0)×Ω). Our stochastic solution (1.3)
appears to be new, and it provides an interesting interpretation for the time-nonlocal ini-
tial condition φ. This is because the overshoot W (t) = Xt,β(τ0(t)) is the waiting/trapping
time of the anomalous diffusion Xx,α(τ0(t)). We discuss an interpretation where the values
of φ on (−∞, 0) × Ω describe the initial condition at time 0 with respect to the ‘depth’
of Ω, rather than the ‘past’ of Ω. To the best of our knowledge, there are no classical-
wellposedness results for the EE (1.1). Related weak-wellposedness results can be found
in [17, 22] (for certain general Lévy kernels in (1.2)) and indirectly in [40] (for abstract
Markovian generators), meanwhile [1] considers uniqueness of weak solutions. Worth men-
tioning that our simple Lemma 5.5 allows to obtain wellposedness and regularity results for
EEs such as (1.1) as corollaries of theorems concerning inhomogeneous Caputo EEs (see,
e.g., [24, 2]). To see why the stochastic representation (1.3) is natural, one can formally
apply the classical probabilistic intuition for elliptic boundary value problems (see, e.g.,
[23, Introduction, §3]) to problem (1.1) rewritten as

{Lũ = −g, in Γ,

ũ = φ, in ∂Γ,
(1.4)

where L = (−Dβ
∞+∆

α
2

Ω ) is the generator of the process {(−Xt,β(s),Xx,α(s))1{s<τΩ(x)}}s≥0

taking values in (−∞, T ] × Ω, Γ = (0, T ] × Ω, and ∂Γ := (−∞, 0] × Ω ∪ [0, T ] × ∂Ω, with
φ = 0 on (0, T ] × ∂Ω.

To prove our main result, Theorem 5.6, we derive two results of independent interest.
Namely:

• Theorem 4.6: the stochastic representation

u(t, x) = E
[

φ0 (X
x,α(τ0(t))) 1{τ0(t)<τΩ(x)}

]

+E

[

∫ τ0(t)∧τΩ(x)

0
f
(

−Xt,β(s),Xx,α(s)
)

ds

]

,
(1.5)
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is the unique classical solution to the inhomogeneous Caputo EE on bounded do-
main











Dβ
0u(t, x) = ∆

α
2

Ωu(t, x) + f(t, x), in (0, T ]× Ω,

u(t, x) = 0, in [0, T ]× ∂Ω,
u(t, x) = φ0(x), in {0} × Ω;

(1.6)

• Theorem 3.9: the stochastic representation (1.5) is a weak solution to problem
(1.6).

Let us outline our proof strategy for Theorem 5.6. By plugging the values of φ in ũ, it is
not hard to show the equivalence of classical solutions to problem (1.1) and to problem

(1.6) with forcing term f = g − Dβ
∞φ and initial condition φ0 = φ(0) (see Lemma 5.5).

Moreover, a Dynkin formula argument proves that the respective stochastic representations
(1.3) and (1.5) agree (see Lemma 5.1). Hence, it is enough to prove Theorem 4.6. We do
so by proving Theorem 3.9 and then showing the required regularity of the candidate
solution (1.5). The main feature of our regularity assumption on the data φ and g is
the differentiability in time. This is a consequence of the regularity assumption on f in
Theorem 4.6, which we discuss now. Theorem 4.6 extends the proof of [19, Theorem 5.1],
where problem (1.6) is treated for f = 0. This proof uses separation of variables combing

eigenfunction expansions of ∆
α
2

Ω with Mittag-Leffler solutions to the Caputo initial value
problem. Our separation of variables formula for the second term in (1.5) reads

∞
∑

n=1

ψn(x)un(t) =

∞
∑

n=1

ψn(x)

∫ t

0
〈f(s), ψn〉(t− s)β−1βE′

β(−λn(t− s)β) ds,

where Eβ(t) =
∑∞

k=0 t
kΓ(kβ +1)−1 is a Mittag-Leffler function, {λn, ψn}n∈N is the system

of eigenvalues-eigenfunctions of ∆
α
2

Ω and 〈·, ·〉 is the inner product on Ω. Unsurprisingly,

each un is the solution to the inhomogeneous Caputo initial value problem Dβ
0un(t) =

−λnun(t) + 〈f(t), ψn〉, un(0) = 0 (see [21, Theorem 7.2]). As we require differentiability
of t 7→ u(t), we want to differentiate each t 7→ un(t). To compensate for the singularity of
the Mittag-Leffler kernel tβ−1E′

β(−λntβ) we require differentiability of t 7→ f(t). Note that

for the space fractional heat equation (β = 1) the Mittag-Leffler kernel is an exponential,
and so continuity of f is enough to differentiate the un’s. Related results in the literature
also require differentiability on f (see, e.g, [2, Theorem 7.3]). Briefly, the arguments
for Theorem 3.9 reduce the Caputo EE (1.6) to a Poisson equation with zero boundary
conditions on {0} ×Ω ∪ [0, T ]× ∂Ω by constructing space-time sub-Feller semigroups. We

rely on the fact that the generator −Dβ
0 only requires boundary conditions on the trivial set

{0}. These arguments are an extension of the ideas in [28], and they appear versatile. For
example, they can be used to prove stochastic weak solutions for problem (1.1) with general
nonlocal operators in both space and time (ongoing work with the authors in [22]). As far
as we know, stochastic representations for solutions such as (1.5) for time-nonolocal EEs
appear in [28], meanwhile in [3] the solution is given a representation via the superposition
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principle. Possibly worth mentioning that we do not invoke [5, Theorem 3.1] and all our
methods work for the standard Laplacian case α = 2.

This work is structured as follows: in Section 2 we provide general notation and basic
results about several stochastic processes obtained from −Xt,β and Xx,α, with a focus on
semigroup results. In Section 3 we prove Theorem 3.9. In Section 4 we prove Theorem 4.6.
In Section 5 we prove that the stochastic representation (1.3) is the unique classical solution
to the EE (1.1). In Section 6 we discuss an interpretation of the stochastic representation
(1.3).

2. Preliminaries

2.1. General notation. We denote by N, Rd, Γ(·), 1A(·), a ∧ b, a.e., lhs and rhs, the set
of natural numbers, the d-dimensional Euclidean space, the gamma function, the indicator
function of the set A, the minimum between a, b ∈ R, the statements almost everywhere
with respect to Lebesgue measure, left hand side and right hand side, respectively. We
define the one parameter Mittag-Leffler function for β ∈ (0, 1) as Eβ(t) =

∑∞
k=0 t

kΓ(kβ +
1)−1, t ≥ 0. We define the Banach spaces

B(A) = {f : A→ R is bounded and measurable},
C(K) = {f ∈ B(K) : f is continuous},

C∂Ω(Ω) = {f ∈ C(Ω) : f = 0 on ∂Ω},
C0([0, T ]) = {f ∈ C([0, T ]) : f(0) = 0},

C∞((−∞, T ]) = {f ∈ B((−∞, T ]) : f is continuous and vanishes at infinity},
C∂Ω([0, T ] × Ω) = {f ∈ C([0, T ]×Ω) : f = 0 on ∂Ω},
C0,∂Ω([0, T ] × Ω) = {f ∈ C∂Ω([0, T ] × Ω) : f(0) = 0},

C∞,∂Ω((−∞, T ]× Ω) = {f ∈ B((−∞, T ]× Ω) : f is continuous and vanishes at infinity},
Cb,∂Ω((−∞, T ]× Ω) = {f ∈ B((−∞, T ]× Ω) : f is continuous and f = 0 on ∂Ω},

all equipped with the supremum norm, where A is any subset of Rd, the set K ⊂ R
d is

compact, the set Ω ⊂ R
d is bounded and open, T ≥ 0. For a function f : A→ R we denote
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its supremum norm by either ‖f‖∞ or ‖f‖C(A). We define the spaces

C(O) = {f : O → R is continuous},
Ck(Ω) = {f ∈ C(Ω) : f is k-times continuously differentiable},
Ck
c (Ω) = {f ∈ C(Ω) : f ∈ Ck(Ω) and compactly supported},

C∞
c (Ω) = {f ∈ C(Ω) : f is smooth and compactly supported},

C1([0, T ]) = {f, f ′ ∈ C([0, T ])},
C1
0 ([0, T ]) = {f, f ′ ∈ C0([0, T ])},

C1
∞((−∞, T ]) = {f, f ′ ∈ C∞((−∞, T ])},

C1,k((0, T ) × Ω) = {f ∈ C((0, T )× Ω) : f is 1-time and k-times continuously

differentiable in time and space, respectively},
C1,k
c ((0, T ) × Ω) = {f ∈ C1,k((0, T ) × Ω) : f is compactly supported},
C1
∂Ω([0, T ] × Ω) = {f ∈ C∂Ω([0, T ] × Ω) : f ∈ C1,0((0, T ) × Ω), f ′ ∈ C∂Ω([0, T ] × Ω)},

Cn,k
∞,∂Ω((−∞, T ]× Ω) = {f ∈ C∞,∂Ω((−∞, T ]× Ω) : all derivatives up to order n in time

and k in space exist and belong to C∞,∂Ω((−∞, T ]× Ω)},

where the set O ⊂ R
d is open. We write C1,0

∞,∂Ω((−∞, T ] × Ω) = C1
∞,∂Ω((−∞, T ] ×

Ω) and C1
b,∂Ω((−∞, T ] × Ω) = {f, ∂tf ∈ Cb,∂Ω((−∞, T ] × Ω)}. By (L1(O), ‖ · ‖L1(O)),

(L2(O), ‖ · ‖L2(O)) and (L∞(O), ‖ · ‖L∞(O)) we mean the standard Banach spaces of real-
valued Lebesgue integrable, square-integrable and essentially bounded functions on O,
respectively. Without risk of confusion we write ‖ · ‖L∞(O) = ‖ · ‖∞. We denote by ‖L‖
the operator norm of a bounded linear operator L between Banach spaces. Given two
sets of real-valued functions F and F̃ , we define F · F̃ := {f f̃ : f ∈ F, f̃ ∈ F̃}, and
by Span{F} we mean the set of all linear combinations of functions in F . The notation
we use for an E-valued stochastic process started at x ∈ E is Xx = {Xx(s)}s≥0. Note
that the symbol t will often be used to denote the starting point of a stochastic process
with state space E ⊂ R. By a strongly continuous contraction semigroup P we mean a
collection of linear operators Ps : B → B, s ≥ 0, where B is a Banach space, such that
Ps+r = PsPr, for every s, r ≥ 0, P0 is the identity operator, lims↓0 Psf = f in B, for
every f ∈ B, and sups ‖Ps‖ ≤ 1. The generator of the semigroup P is defined as the pair
(L,Dom(L)), where Dom(L) := {f ∈ B : Lf := lims↓0 s

−1(Psf − f) exists in B}. We say
that a set C ⊂ Dom(L) is a core for (L,Dom(L)) if the generator equals the closure of
the restriction of L to C. We say that a set C ⊂ B is invariant under P if PsC ⊂ C for
every s > 0. If a set C is invariant under P and a core for (L,Dom(L)), then we say that
C is an invariant core for (L,Dom(L)). For a given λ ≥ 0 we define the resolvent of P
by (λ − L)−1 :=

∫∞
0 e−λsPsds, and recall that for λ > 0, (λ − L)−1 : B → Dom(L) is a

bijection and it solves the abstract resolvent equation

L(λ− L)−1f = λ(λ− L)−1f − f, f ∈ B,
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see for example [23, Theorem 1.1]. By a sub-Feller semigroup we mean a strongly con-
tinuous contraction semigroup on any of the Banach spaces of continuous functions de-
fined above such that P preserves non-negative functions. A Feller semigroup is a sub-
Feller semigroup such that its extension to bounded measurable functions preserves con-
stants.

2.2. Fractional derivatives, stable processes and related space-time semigroups.

Definition 2.1. For parameters β ∈ (0, 1) and α ∈ (0, 2), we define: the Marchaud

derivative Dβ
∞ by formula (1.2); the Caputo derivative Dβ

0 by

Dβ
0 f(t) =

∫ t

0
(f(t− r)− f(t)) Γ(−β)

−1dr

r1+β
+ (f(0)− f(t))

∫ ∞

t

Γ(−β)−1dr

r1+β
, t > 0,

and Dβ
0 f(0) = limt↓0D

β
0 f(t); the restricted fractional Laplacian ∆

α
2

Ω by

∆
α
2

Ωf(x) = lim
ε↓0

∫

Ω\Bε(x)
(f(y)− f(x)) cα,d dy

|x− y|d+α
− f(x)

∫

Rd\Ω

cα,d dy

|x− y|d+α
, x ∈ Ω,

and ∆
α
2

Ωf(z) = limx→z ∆
α
2

Ωf(x) for z ∈ ∂Ω, where c−1
α,d =

∫

Rd
1−cos y1
|y|d+α dy, | · | denotes the

Euclidean norm on R
d and Bε(x) denotes the Euclidean ball of radius ε > 0 around x ∈ Ω.

We now define several sub-Feller semigroups that relate to the fractional derivatives in
Definition 2.1 and collect some results relevant for us. For β ∈ (0, 1), we denote by

Xβ = {Xβ(s)}s≥0 the standard β-stable subordinator, and by pβs the smooth density of
Xβ(s), s > 0.

Definition 2.2. For β ∈ (0, 1), we denote by −Xt,β = {−Xt,β(s) := t − Xβ(s)}s≥0 the
inverted β-stable subordinator started at t ∈ R, characterised by the Laplace transforms

E[e−X0,β(s)k] = e−kβs, k, s > 0. We define the first exit/passage times τ0(t) = inf{s > 0 :
t−Xβ(s) ≤ 0}, t ∈ R.

Definition 2.3. For α ∈ (0, 2), d ∈ N, we denote by Xx,α = {Xx,α(s)}s≥0 the rotationally
symmetric α-stable Lévy process with values in R

d, started at x ∈ R
d, with characteristic

functions E[eik·X
0,α(s)] = e−s|k|α, k ∈ R

d, s > 0. We define the first exit times τΩ(x) =
inf{s > 0 : Xx,α(s) /∈ Ω}, x ∈ R

d.

Recall that the smooth density of −Xt,β(s), s > 0, is supported (−∞, t) and it equals

pβs (t− ·), and that the law of Xx,α(s) is smooth for each s > 0 (see for example [14, page
10]).

Proposition 2.4. Fix T > 0. For the the inverted β-stable subordinator −Xt,β, denote

the Feller semigroup P β,∞ = {P β,∞
s }s≥0 on C∞((−∞, T ]), by P β,∞

s f(t) := E[f(−Xt,β(s))],
s ≥ 0, denote by (L∞β ,Dom(L∞β )) the generator of P β,∞, and recall that C1

∞((−∞, T ]) is

an invariant core for (L∞β ,Dom(L∞β )) with L∞β = −Dβ
∞ on C1

∞((−∞, T ]).
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(i) Define the absorbed process −Xt,β
0 by

−Xt,β
0 (s) :=

{

−Xt,β(s), if s < τ0(t),

0, if s ≥ τ0(t).
(2.1)

Then the process −Xt,β
0 induces a Feller semigroup on C([0, T ]), denoted by P β =

{P β
s }s≥0, with generator (Lβ,Dom(Lβ)). Moreover, C1([0, T ]) is an invariant core for

(Lβ,Dom(Lβ)) and
Lβ = −Dβ

0 on C1([0, T ]).

(ii) The sub-Feller semigroup P β,kill := P β on C0([0, T ]) is the the sub-Feller semigroup in-
duced by the killed version of the process (2.1), and its generator is (Lkillβ ,Dom(Lkillβ )) =

(Lβ,Dom(Lβ)∩{f(0) = 0}). Moreover, C1
0([0, T ]) is an invariant core for (Lkillβ ,Dom(Lkillβ ))

and
Lkillβ = −Dβ

0 on C1
0 ([0, T ]).

(iii) The following three identities hold

E [τ0(t)] =
tβ

Γ(β + 1)
, E

[

e−λτ0(t)
]

= Eβ(−λtβ), t, λ ≥ 0, and (2.2)

∫ ∞

0
pβs (t− r) ds =

(t− r)β−1

Γ(β)
, t > r. (2.3)

(iv) The alternative representation of the Caputo derivative

Dβ
0u(t) =

∫ t

0
u′(r)

(t− r)−βdr

Γ(1− β) , for 0 < t < T ,

holds if u ∈ C([0, T ]) ∩C1((0, T )) and u′ ∈ L1((0, T )).

Proof.

(i) It is easy to prove that P β
s f(t) :=

∫ t
0 f(r)p

β
s (t−r) dr+f(0)

∫ 0
−∞ pβs (t−r) dr is a Feller

semigroup on C([0, T ]), and the corresponding process is indeed −Xt,β
0 . By using the

proof of [9, Proposition 14]3, it holds that C1([0, T ]) ⊂ Dom(Lβ), and that Lβ = −Dβ
0

on C1([0, T ]). To prove that C1([0, T ]) is invariant under P β , we directly compute
for g ∈ C1([0, T ]), t ∈ (0, T ) and s > 0,

∂tP
β
s g(t) = ∂t

(
∫ t

0
g(t− r)pβs (r) dr + g(0)

∫ −t

−∞
pβs (−r) dr

)

=

∫ t

0
g′(t− r)pβs (r) dr ± g(0)pβs (t).

3We select c+ = Γ(−α)−1 and c− = 0 in [9, Proposition 14]. In the statement of [9, Proposition 14] it
is required that F ∈ C2([0,∞)), but F ∈ C1([0,∞)) is enough.
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Then C1([0, T ]) is a dense subspace of Dom(Lβ) which is invariant under P β, and so
it is a core for (Lβ,Dom(Lβ)) by [15, Lemma 1.34].

(ii) Similarly to part (i), it can be shown that P β,kill
s f(t) =

∫ t
0 f(r)p

β
s (t− r) dr. To show

Dom(Lβ) ∩ {f(0) = 0} ⊂ Dom(Lkillβ ) , let f ∈ Dom(Lβ) ∩ {f(0) = 0}, then for some

λ > 0, let g ∈ C([0, T ]) such that

f(t) =

∫ ∞

0
e−λsP β

s g(t) ds, and g(0)
1

λ
=

∫ ∞

0
e−λsP β

s g(0) ds = f(0) = 0,

and so g ∈ C0([0, T ]). As P β
s = P β,kill

s on C0([0, T ]), it follows that f ∈ Dom(Lkillβ ).

The inclusion Dom(Lβ)∩{f(0) = 0} ⊃ Dom(Lkillβ ) is immediate using P β
s = P β,kill

s on

C0([0, T ]). By equating a resolvent equation, it follows that Lkillβ = Lβ on Dom(Lkillβ ).

Invariance of C1
0 ([0, T ]) can be proven as in part (i). The last statement now follows

from part (i).

(iii) The first identity follows from the third identity (2.3). The second identity follows
by [50, Theorem 2.10.2]. To prove the third identity (2.3), recall that

pβs (t− r) = s−1/βpβ1 (s
−1/β(t− r)), t > r,

and then compute
∫ ∞

0
pβs (t, r) ds = (t− r)β−1

∫ ∞

0
u−1/βpβ1 (u

−1/β) du = (t− r)β−1 1

Γ(β)
,

using the Mellin transform of the β-stable density pβ1 for the last equality (see for
example [50, Theorem 2.6.3]).

(iv) This is a standard computation and we omit it.

�

We say that a bounded open set Ω ⊂ R
d is a regular set if Ω satisfies the exterior cone

condition at every point ∂Ω, i.e. for each x ∈ ∂Ω there exists a finite right circular open
cone Vx with vertex x, such that Vx ⊂ Ωc (see [19, end of Section 4]). From now on Ω is
always a regular set.

Proposition 2.5. Define the sub-process Xx,α
Ω started at x ∈ Ω by

Xx,α
Ω (s) :=

{

Xx,α(s), s < τΩ(x),

cemetery, s ≥ τΩ(x),

(i) Then Xx,α
Ω induces a sub-Feller semigroup on C∂Ω(Ω), which we denote by PΩ =

{PΩ
s }s≥0, and we denote its generator by (LΩ,Dom(LΩ)). Moreover if u ∈ Dom(LΩ)

then there exists a sequence un ∈ C∂Ω(Ω) ∩ C2(Ω) such that un → u uniformly and

∆
α
2

Ωun → LΩu uniformly on compact subsets of Ω. The transition density of Xx,α
Ω (s),

denoted by pΩs (x, y), is jointly continuous in x and y, for every s > 0.
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(ii) For every u ∈ Dom(LΩ) and ϕ ∈ C2
c (Ω) it holds

∫

Ω
LΩuϕdx =

∫

Ω
u∆

α
2

Ωϕdx. (2.4)

(iii) The semigroup PΩ induces a strongly continuous contraction semigroup on L2(Ω), and
we denote its generator by (LΩ,2,Dom(LΩ,2)). Moreover there exists a sequence of pos-
itive numbers 0 < λ1 < λ2 ≤ λ3 ≤ . . . , and an orthonormal basis {ψn}n∈N of L2(Ω),
so that PΩ

s ψn = e−λnsψn in L2(Ω), for every n ∈ N, s > 0. For k ≥ 1, we denote

by Dom(LkΩ,2) the subset of L2(Ω) such that ‖f‖Lk
Ω,2

:=
(
∑∞

n=1 λ
2k
n 〈f, ψn〉2

)1/2
<∞.

Moreover, PΩ on C∂Ω(Ω) has the same set of eigenvalues and eigenfunctions as PΩ

on L2(Ω).

Proof. (i) The first two statements are a consequence of [4, Lemma 2.2 and Theorem 2.7].
The last statement follows by the strong Markov property along with joint continuity of
the transition densities of Xx,α (see for example [19, Section 4]).

(ii) The operator ∆
α
2

Ω is self-adjoint in the sense that
∫

Ω
∆

α
2

Ωuϕdx =

∫

Ω
u∆

α
2

Ωϕdx, (2.5)

if ϕ ∈ C2
c (Ω) and u ∈ C∂Ω(Ω)∩C2(Ω). Now use the approximating sequence from part (i)

of the current proposition to conclude.

(iii) These results can be found in [19, Section 4] and references therein.

�

In the next lemma we construct three sub-Feller semigroups by combining in space-time the
sub-Feller semigroups defined so far. We combine them in a way that allows us to describe
the newly constructed space-time generator as the closure of the sum of the time and space
generators. This is how we give meaning to the boundary value problem viewpoint formally
presented in (1.4).

Lemma 2.6. Consider the four tuples

(P β,∞, C∞((−∞, T ]),L∞β ,Dom(L∞β )), (P β, C([0, T ]),Lβ ,Dom(Lβ)),
(P β,kill, C0([0, T ]),Lkillβ ,Dom(Lkillβ )), (PΩ, C∂Ω(Ω),LΩ,Dom(LΩ)),

defined in Proposition 2.4, Proposition 2.4-(i), Proposition 2.4-(ii) and Proposition 2.5-(i),
respectively. Let C∞β , Cβ, Ckillβ and CΩ be invariant cores for (L∞β ,Dom(L∞β )), (Lβ,Dom(Lβ)),
(Lkillβ ,Dom(Lkillβ )) and (LΩ,Dom(LΩ)), respectively.

(i) Then P β,Ω = {P β
s PΩ

s }s≥0 is a sub-Feller semigroup on C∂Ω([0, T ]×Ω). The generator
(Lβ,Ω,Dom(Lβ,Ω)) of P β,Ω is the closure of

(Lβ + LΩ,Span {Cβ · CΩ}) in C∂Ω([0, T ] × Ω),
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where P β and Lβ act on the [0, T ]-variable, and PΩ and LΩ act on the Ω-variable.

(ii) Then P β,Ω,kill = {P β,kill
s PΩ

s }s≥0 is a sub-Feller semigroup on C0,∂Ω([0, T ] × Ω). The

generator (Lkillβ,Ω,Dom(Lkillβ,Ω)) of P
β,Ω,kill is the closure of

(Lkillβ + LΩ,Span{Ckillβ · CΩ}) in C0,∂Ω([0, T ]× Ω),

where P β,kill and Lkillβ act on the [0, T ]-variable, and PΩ and LΩ act on the Ω-variable.

(iii) Then P β,Ω,∞ = {P β,∞
s PΩ

s }s≥0 is a sub-Feller semigroup on C∞,∂Ω((−∞, T ]×Ω). The

generator (L∞β,Ω,Dom(L∞β,Ω)) of P β,Ω,∞ is the closure of

(L∞β + LΩ,Span{C∞β · CΩ}) in C∞,∂Ω((−∞, T ]× Ω),

where P β,∞ and L∞β act on the (−∞, T ]-variable, and PΩ and LΩ act on the Ω-
variable.

(iv) It holds that P β,Ω
s = P β,Ω,kill

s on C0,∂Ω([0, T ] × Ω), Lβ,Ω = Lkillβ,Ω on Dom(Lkillβ,Ω), and

Dom(Lkillβ,Ω) = Dom(Lβ,Ω) ∩ {f(0) = 0}.

Proof. The proofs of (i), (ii) and (iii) can be found in Appendix A.II.

(iv) The first claim is an immediate consequence of P β,kill = P β on C0([0, T ]). The second
claim follows from the third by considering a resolvent equation. To prove the third claim,
we show the equivalent statement

Dom(Lkillβ,Ω) ⊂ Dom(Lβ,Ω), and if u ∈ Dom(Lβ,Ω), then u− u(0) ∈ Dom(Lkillβ,Ω).

The first inclusion is immediate using P β,Ω
s = P β,Ω,kill

s , on C0,∂Ω([0, T ] × Ω). For the
second part, let u ∈ Dom(Lβ,Ω) and consider its resolvent representation for some λ > 0
and g ∈ C∂Ω([0, T ]× Ω). Then

u(0, x) =

∫ ∞

0
e−λsP β

s P
Ω
s g(0, x) ds =

∫ ∞

0
e−λsP β

s P
Ω
s (g(0))(t, x) ds,

as P β
s g(0, x) = P β

s (g(0))(t, x). Now consider

u(t, x) − u(0, x) =
∫ ∞

0
e−λsPΩ

s P
β
s (g − g(0))(t, x) ds

=

∫ ∞

0
e−λsPΩ

s P
β,kill
s (g − g(0))(t, x) ds ∈ Dom(Lkillβ,Ω),

where we use the fact that P β,kill = P β on C0,∂Ω([0, T ]×Ω) and that g−g(0) ∈ C0,∂Ω([0, T ]×
Ω). �

Remark 2.7. Note that

(−Lkillβ,Ω)
−1g(t, x) =

∫ ∞

0
P β,Ω
s g(t, x) ds = E

[

∫ τ0(t)∧τΩ(x)

0
g
(

−Xt,β(s),Xx,α(s)
)

ds

]

,

for g ∈ C0,∂Ω([0, T ] × Ω). Also, from now on we might write τt,x for τ0(t) ∧ τΩ(x).
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3. Stochastic weak solution for problem (1.6)

3.1. Definition of weak solution. Define the operator

−Dβ,∗
0 ϕ(s) := ∂sI

1−β
T ϕ(s) + δ0(ds)I

1−β
T ϕ(0),

where δ0 is the delta-measure at 0, and the Riemann-Liouville integral I1−β
T is defined

as

I1−β
T f(s) :=

∫ T

s
f(t)

(t− s)−βdt

Γ(1− β) , s < T.

In the current section only the pairing 〈·, ·〉 is defined as

〈f, g〉 :=
∫ T

0

∫

Ω
f(t, x)g(t, x) dx dt.

Definition 3.1. Let f ∈ L∞((0, T )×Ω) and φ0 ∈ C∂Ω(Ω). A function u ∈ L2((0, T )×Ω)
is said to be a weak solution to problem (1.6) if

〈u, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉 = 〈−f, ϕ〉, for every ϕ ∈ C1,2
c ((0, T ) × Ω), (3.1)

and u(t)→ φ0 a.e. as t ↓ 0.

The next proposition motivates Definition 3.1.

Proposition 3.2. Let ϕ ∈ C1
c ((0, T )) and u ∈ C([0, T ]) ∩ C1((0, T )) such that u′ ∈

L1((0, T )). Then
∫ T

0
Dβ

0u(t)ϕ(t) dt = −
∫ T

0
u(t)

(

∂tI
1−β
T ϕ(t)

)

dt− u(0)I1−β
T ϕ(0).

Proof. Using Proposition 2.4-(iv), Fubini’s Theorem and integration by parts, com-
pute

∫ T

0
Dβ

0u(t)ϕ(t) dt =

∫

R

∫

R

u′(s)
(t− s)−β

Γ(1− β) ϕ(t)1{0<t<T}1{0<s<t} ds dt

=

∫

R

u′(s)1{0<s<T}

(
∫ T

s

(t− s)−β

Γ(1− β) ϕ(t) dt
)

ds

=

∫ T

0
u′(s)I1−β

T ϕ(s) ds

= −
∫ T

0
u(s)∂sI

1−β
T ϕ(s) ds − u(0)I1−β

T ϕ(0).

�

From Proposition 3.2 and the identity in (2.5), it is straightforward to prove the following
lemma.
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Lemma 3.3. Let ϕ ∈ C1,2
c ((0, T )×Ω) and u ∈ C∂Ω([0, T ]×Ω)∩C1,2((0, T )×Ω) such that

∂tu ∈ L1((0, T ) × Ω). Then

〈u, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉 = 〈(−D
β
0 +∆

α
2

Ω )u, ϕ〉.

3.2. Existence of a weak solution. Following [28], we define two auxiliary notions of
solution for problem (1.6), starting from the abstract evolution equation

Lβ,Ωu = −f on (0, T ] ×Ω, u = φ0 on {0} ×Ω, u ∈ Dom(Lβ,Ω). (3.2)

Definition 3.4. Let f ∈ C∂Ω([0, T ] × Ω) and φ0 ∈ Dom(LΩ) such that f(0) = −LΩφ0.
We say that a function u ∈ C∂Ω([0, T ]×Ω) is a solution in the domain of the generator to
problem (1.6) if u satisfies (3.2).

The next solution concept for problem (1.6) is defined as a pointwise approximation of
solutions in the domain of the generator {un}n∈N such that the approximating forcing
term {fn}n∈N satisfies a dominated convergence type of condition.

Definition 3.5. Let f ∈ B([0, T ] × Ω) and φ0 ∈ Dom(LΩ). We say that a function
u ∈ B([0, T ]× Ω) is a generalised solution to problem (1.6) if

u = lim
n→∞

un pointwise,

where each un is the solution in the domain of the generator for a corresponding forcing
term fn ∈ C∂Ω([0, T ] × Ω) such that

fn → f a.e. on (0, T ] × Ω, sup
n
‖fn‖∞ <∞, and fn(0) = −LΩφ0 for each n ∈ N.

Remark 3.6. Any generalised solution must satisfy the boundary conditions u = 0 on
[0, T ]× ∂Ω and u = φ0 on {0} × Ω.

Lemma 3.7. Let φ0 ∈ Dom(LΩ). Then
(i) If f + LΩφ0 ∈ C0,∂Ω([0, T ]×Ω), then there exists a unique solution in the domain of

the generator to problem (1.6).

(ii) If f ∈ B([0, T ]×Ω), then there exists a unique generalised solution to problem (1.6).

(iii) Both solutions in part (i) and (ii) allow the stochastic representation (1.5).

Proof. (i) Observe that the potential (−Lkillβ,Ω)
−1 maps C0,∂Ω([0, T ] × Ω) to itself. This

follows from P β,Ω,kill
s g ∈ C0,∂Ω([0, T ]× Ω) for g ∈ C0,∂Ω([0, T ] ×Ω), s ≥ 0, and Dominated

Convergence Theorem (DCT) with dominating function G(s) := ‖g‖∞P[s < τ0(T )]. Note
that we use the first identity in (2.2) to prove thatG ∈ L1((0,∞)). The potential (−Lkillβ,Ω)

−1

is also bounded by the inequality
∣

∣

∣
(−Lkillβ,Ω)

−1g(t, x)
∣

∣

∣
≤ ‖g‖∞E [τ0(T )] , g ∈ C0,∂Ω([0, T ] × Ω).
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It then follows by [23, Theorem 1.1’] that ū := (−Lkillβ,Ω)
−1(f +LΩφ0) is the unique solution

to the abstract evolution equation

Lkillβ,Ωū = −(f + LΩφ0) on (0, T ] ×Ω, ū = 0 on {0} × Ω, and ū ∈ Dom(Lkillβ,Ω). (3.3)

It is now enough to show that ū satisfies (3.3) if and only if u = ū + φ0 satisfies (3.2).
For the ‘if’ direction, let u ∈ Dom(Lβ,Ω) satisfy (3.2). Note that u(0) = φ0. Then ū :=

u− φ0 ∈ Dom(Lkillβ,Ω), and Lβ,Ωū = Lkillβ,Ωū, by Lemma 2.6-(iv). So we can compute

Lkillβ,Ωū = Lβ,Ω(u− φ0) = Lβ,Ωu−LΩφ0 = −f − LΩφ0,
where we use

Lβ,Ω1φ0 = (Lβ + LΩ)1φ0 = LΩφ0,
from Lemma 2.6-(i) taking the invariant cores Cβ = Dom(Lβ) and CΩ = Dom(LΩ) (recalling
that Lβ1 = 0). For the ‘only if’ direction, let ū satisfy (3.3), and define u := ū+ φ0. Then
with the same justifications as just above, compute

Lβ,Ωu = Lkillβ,Ωū+ Lβ,Ωφ0 = −(f + LΩφ0) + LΩφ0 = −f.
It follows that

u = (−Lkillβ,Ω)
−1(f + LΩφ0) + φ0.

(ii) Let f ∈ B([0, T ]×Ω). Then f +LΩφ0 ∈ B([0, T ]×Ω). Now take a sequence {f̃n}nN ∈
C0,∂Ω([0, T ] × Ω) such that f̃n → f + LΩφ0 a.e., and supn ‖f̃n‖∞ < ∞. Define fn :=

f̃n−LΩφ0 for each n ∈ N and note that fn → f a.e., supn ‖f̃n‖∞ <∞ and fn(0) = −LΩφ0,
as required by Definition 3.5. Now, for each fn consider the stochastic representation of
the respective solution in the domain of the generator

un(t, x) = E

[
∫ τt,x

0
fn

(

−Xt,β(s),Xx,α(s)
)

ds

]

+E

[
∫ τt,x

0
LΩφ0 (Xx,α(s)) ds

]

+ φ0(x).

Fix (t, x) ∈ (0, T ] × Ω. Using absolute continuity with respect of Lebesgue measure of the
laws of −Xt,β(s) and Xx,α

Ω (s) for each s > 0, and the bound E [τt,x] ≤ E [τ0(t)] < ∞, we
can apply DCT twice to obtain as n→∞

E

[
∫ τt,x

0
fn

(

−Xt,β(s),Xx,α(s)
)

ds

]

=

∫ ∞

0
P β,kill
s PΩ

s fn(t, x) ds

→
∫ ∞

0
P β,kill
s PΩ

s f(t, x) ds

= E

[
∫ τt,x

0
f
(

−Xt,β(s),Xx,α(s)
)

ds

]

,

using as a dominating function G := supn ‖fn‖∞ to show that for each s > 0

Fn(s) := P β,kill
s PΩ

s fn(t, x)→ P β,kill
s PΩ

s f(t, x) =: F (s),

and the dominating function G(s) := supn ‖fn‖∞P[s < τt,x] to show that
∫ ∞

0
Fn(s) ds→

∫ ∞

0
F (s) ds.
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The convergence on [0, T ] × ∂Ω ∪ {0} × Ω is trivial. It follows that a generalised solution
u exists and it is given by

u = (−Lkillβ,Ω)
−1(f + LΩφ0) + φ0.

Finally, independence of the approximating sequence proves uniqueness.

(iii) This is a standard application of Dynkin formula ([23, Theorem 5.1]) using the finite
stopping times τt,x, (t, x) ∈ (0, T ] × Ω, namely

(−Lkillβ,Ω)
−1(LΩφ0)(t, x) = E

[
∫ τt,x

0
Lβ,Ωφ0 (Xx,α(s)) ds

]

= E [φ0(X
x,α(τt,x))]− φ0(x).

�

We now show that the dual of Lβ,Ω is (−Dβ,∗
0 +∆

α
2

Ω ).

Lemma 3.8. Let u ∈ Dom(Lβ,Ω). Then

〈Lβ,Ωu, ϕ〉 = 〈u, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉, for every ϕ ∈ C1,2
c ((0, T )× Ω).

Proof. By Lemma 2.6-(i) and Proposition 2.4-(i) we can pick a sequence

{un}n∈N ⊂ Span
{

C1([0, T ]) · Dom(LΩ)
}

,

such that un → u and Lβ,Ωun → Lβ,Ωu in C∂Ω([0, T ] × Ω), with the additional prop-
erty

Lβ,Ωun = (−Dβ
0 + LΩ)un, for every n ∈ N. (3.4)

Hence, for every ϕ ∈ C1,2
c ((0, T ) × Ω), as n→∞

〈Lβ,Ωu, ϕ〉 ← 〈Lβ,Ωun, ϕ〉 = 〈un, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉 → 〈u, (−D
β,∗
0 +∆

α
2

Ω )ϕ〉,
where we use DCT for both limits, and for the equality we use the identity (3.4) along with
Proposition 3.2 and the dual identity in Proposition 2.5-(ii). �

We now combine Lemma 3.8 with the notion of generalised solution to obtain the main
theorem of this section.

Theorem 3.9. Let f ∈ L∞((0, T )×Ω) and φ0 ∈ C∂Ω(Ω). Then the function u ∈ B([0, T ]×
Ω) defined in (1.5) is a weak solution to problem (1.6).

Proof. Assume for the moment that φ0 ∈ Dom(LΩ). By the definition of a generalised
solution we can take an approximating sequence of forcing terms {fn}n∈N ⊂ C∂Ω([0, T ]×Ω)
such that fn → f a.e., supn ‖fn‖∞ <∞, and the respective solutions in the domain of the
generator {un}n∈N satisfy

un(0) = φ0 for all n ∈ N, un → u pointwise on [0, T ]× Ω, sup
n
‖un‖∞ <∞,
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where the last property is an immediate consequence of the stochastic representation (1.5).

Hence, we obtain for every ϕ ∈ C1,2
c ((0, T ) × Ω), as n→∞

〈−f, ϕ〉 ← 〈−fn, ϕ〉 = 〈Lβ,Ωun, ϕ〉 = 〈un, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉 → 〈u, (−D
β,∗
0 +∆

α
2

Ω )ϕ〉,
where we applied DCT for both limits, the first equality is due to the un’s being solutions
in the domain of the generator, and the second equality holds as a consequence of Lemma
3.8.
Now, for φ0 ∈ C∂Ω(Ω), let {φ0,n}n∈N ⊂ Dom(LΩ) such that φ0,n → φ0 in C∂Ω(Ω). Let un
be the generalised solution to problem (1.1) for f ∈ B([0, T ]×Ω) and φn ∈ Dom(LΩ), and
u defined as in (1.5). Then un → u pointwise and supn ‖un‖∞ <∞, which in turn implies
by DCT

〈−f, ϕ〉 = lim
n→∞

〈un, (−Dβ,∗
0 +∆

α
2

Ω )ϕ〉 = 〈u, (−D
β,∗
0 +∆

α
2

Ω )ϕ〉.

It is clear that the result holds for f ∈ L∞((0, T ) × Ω). Finally, the required convergence
of u to the initial condition φ0 follows by the argument in Remark 5.3, using the stochastic
representation (1.5). �

4. Stochastic classical solution for problem (1.6)

Definition 4.1. Let f ∈ C((0, T ] × Ω) and φ0 ∈ C(Ω). A function u ∈ C∂Ω([0, T ] × Ω) ∩
C1,2((0, T ) × Ω), such that |∂tu(t, x)| ≤ Ct−γ , for every (t, x) ∈ (0, T ] × Ω, for some γ ∈
(0, 1), C > 0, is said to be a classical solution to problem (1.6) if u satisfies the identities
in (1.6), and for every x ∈ Ω

lim
t↓0
|u(t, x)− φ0(x)| = 0.

In this section the pairing 〈·, ·〉 is defined as

〈f, g〉 :=
∫

Ω
f(x)g(x) dx.

The proof of the main theorem of this section (Theorem 4.6), extends the eigenfunction
expansion argument in [19, Thoerem 5.1], using the next lemma as the key extra ingredient.
Define for λ ∈ R\{0} and f ∈ C([0, T ])

Fλ [f ] (t) := (−λ)−1

∫ t

0
f(r)∂tEβ(−λ(t− r)β) dr, t > 0.

Lemma 4.2. Let λ > 0 and f ∈ C([0, T ]). Then

(i)

E

[

∫ τ0(t)

0
e−λsf(−Xt,β(s)) ds

]

= Fλ [f ] (t), t > 0.
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(ii) The bound

|Fλ [f ] (t)| ≤
c

λ
‖f‖∞, t > 0, (4.1)

holds, and if f ∈ C1([0, T ]) then

|∂tFλ [f ] (t)| ≤
c

λ

(

‖f ′‖∞ + f(0)
λtβ−1

1 + λtβ

)

, t > 0, (4.2)

for some positive constant c.

Proof. (i) Given the second identity in (2.2), it is enough to prove the equivalent iden-
tity

E

[

∫ τ0(t)

0
e−λsf(−Xt,β(s)) ds

]

+ u0E
[

e−λτ0(t)
]

= Fλ [f ] (t) + u0Eβ(−λtβ), (4.3)

where u0 is some constant. We show that the lhs of (4.3) is the unique continuous solution
to the Caputo initial value problem solved by the rhs of (4.3). Let w ∈ C0([0, T ]) such

that w′ ∈ C([0, T ]). Then u(t) := (λ − Lβ)−1w(t) = E[
∫ τ0(t)
0 e−λsw(−Xt,β(s)) ds] solves

the resolvent equation

Lβu = λu− w, u(0) = 0,

and u ∈ Dom(Lβ), by Proposition 2.4-(i). By the following computation

∂tu(t) = ∂t

∫ t

0
w(t− y)

(
∫ ∞

0
e−λspβs (y) ds

)

dy

= w(0)

∫ ∞

0
e−λspβs (t) ds +

∫ t

0
w′(t− y)

∫ ∞

0
e−λspβs (y) ds dy, t > 0,

it follows that u ∈ C1
0 ([0, T ]), and so Lβu = −Dβ

0u by Proposition 2.4-(i). Let u0 ∈ R.
Then ū := u+ u0 is a continuous solution to the Caputo initial value problem

−Dβ
0 ū = Lβu−Dβ

0u0 = λu− w = λū− (w + λu0),

with initial value ū(0) = u0. By [21, Theorem 6.5 and Theorem 7.2] we obtain ū =
rhs of (4.3) for f = w + λu0. Now compute

ū(t) = E

[

∫ τ0(t)

0
e−λs

(

w(−Xt,β(s))± λu0
)

ds

]

+ u0

= E

[

∫ τ0(t)

0
e−λs

(

w(−Xt,β(s)) + λu0

)

ds

]

− λu0
E
[

e−λτ0(t)
]

− 1

−λ + u0

= E

[

∫ τ0(t)

0
e−λs

(

w(−Xt,β(s)) + λu0

)

ds

]

+ u0E
[

e−λτ0(t)
]

.
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Now, for an arbitrary f ∈ C1([0, T ]), by picking w ≡ f −f(0) and u0 ≡ f(0)λ−1, we obtain
the equality (4.3). A straightforward application of DCT proves the claim for f ∈ C([0, T ]).

(ii) Recall that there exists a constant c > 0 such that 0 ≤ −∂tEβ(−λtβ) ≤ c λt
β−1

1+λtβ
by [21,

Theorem 7.3] and [30, Equation (17)], and Eβ(−λtβ) ≤ c
1+λtβ

. Then

∣

∣

∣

∣

(−λ)−1

∫ t

0
f(r)∂tEβ(−λ(t− r)β) dr

∣

∣

∣

∣

≤ ‖f‖∞
1− Eβ(−λtβ)

λ
≤ ‖f‖∞

1 + c

λ
.

For the second inequality we exploit the smoothness of f , computing for t > 0

∂tFλ [f ] (t) = (−λ)−1∂t

(

−
∫ t

0
f(r)∂rEβ(−λ(t− r)β) dr

)

= (−λ)−1∂t

(
∫ t

0
f ′(r)Eβ(−λ(t− r)β) dr − f(t) + f(0)Eβ(−λtβ)

)

= (−λ)−1

(
∫ t

0
f ′(r)∂tEβ(−λ(t− r)β) dr ± f ′(t) + f(0)∂tEβ(−λtβ)

)

= Fλ

[

f ′
]

(t)− λ−1f(0)∂tEβ(−λtβ).

Then

|∂tFλ [f ] (t)| ≤ ‖f ′‖∞
1 + c

λ
+ f(0)c

tβ−1

1 + λtβ
.

�

From the proof of [19, Theorem 5.1], we infer the following lemma.

Lemma 4.3. Working with the notation of Proposition 2.5-(iii):

(i) the system of eigenvectors {ψn}n∈N forms an orthonormal basis of Dom(LkΩ,2) ⊂
L2(Ω). The corresponding eigenvalues can be ordered so that λn ≤ λn+1, and also

λn ≤ c̃1nα/d for some constant c̃1 > 0. Also, for any compact subsetK of Ω, j = 0, 1, 2,
there are constants c1 = c1(K, j, d, α) such that

|∇jψn(x)| ≤ c1λ(d+2j)/(2α)
n , (4.4)

where c1(K, 0, d, α) is independent of K.

(ii) Suppose φ0 ∈ Dom(LkΩ,2) for k > −1+(3d+4)/(2α). ThenN :=
∑∞

n=1 λ
2k
n 〈φ0, ψn〉2 <

∞, and the series

∞
∑

n=1

Eβ(−λntβ)〈φ0, ψn〉ψn(x) = E
[

φ0(X
x,α(τ0(t)))1{τ0(t)<τΩ(x)}

]

,
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defines a function in C∂Ω([0, T ] × Ω) ∩ C1,2((0, T ) ×Ω) , with bounds for j = 1, 2,

∞
∑

n=1

∣

∣

∣
Eβ(−λntβ)〈φ0, ψn〉∇jψn(x)

∣

∣

∣
≤ (c2

√
N)t−β

∞
∑

n=1

λ(d+4)/(2α)−1−k
n <∞, t > 0,

∞
∑

n=1

∣

∣

∣
∂tEβ(−λntβ)〈φ0, ψn〉ψn(x)

∣

∣

∣
≤ c3tγβ−1, x ∈ Ω,

where c2 = c2(K, j, d, α), c3 = c3(Ω, α), and 0 ≤ γ ≤ 1 ∧ (4/(2α) − 1).

We will assume that the forcing term f in (1.6) belongs to the space of functions

C1([0, T ]; Dom(LkΩ,2)) :=

{

f ∈ C1
∂Ω([0, T ] ×Ω) : sup

t
‖f(t)‖Lk

Ω,2
+ sup

t
‖∂tf(t)‖Lk

Ω,2
<∞

}

.

(4.5)
Note that if f ∈ C1([0, T ]; Dom(LkΩ,2)), then there exists M > 0 such that for every
n ∈ N

sup
t∈[0,T ]

|〈f(t), ψn〉| ≤Mλ−k
n , and sup

t∈[0,T ]
|〈∂tf(t), ψn〉| ≤Mλ−k

n . (4.6)

Remark 4.4. The inclusion Span{C1([0, T ])·Dom(LkΩ,2)} ⊂ C1([0, T ]; Dom(LkΩ,2)) is clear.

Moreover, if k ∈ N, then the inclusion C1,2k
c ([0, T ]×Ω) ⊂ C1([0, T ]; Dom(LkΩ,2)) holds

4. To

see this, let f ∈ C1,2k
c ([0, T ]× Ω) and compute for each t ∈ [0, T ]

∞
∑

n=1

λ2kn 〈f(t), ψn〉2 =
∞
∑

n=1

〈f(t),LkΩ,2ψn〉2 =
∞
∑

n=1

〈(∆
α
2

Ω )
kf(t), ψn〉2 = ‖(∆

α
2

Ω )
kf(t)‖2L2(Ω) <∞,

where the second equality holds by the same argument at the end the proof of Theorem

4.6, using (∆
α
2

Ω )
mf(t) ∈ L2(Ω) for each t ∈ [0, T ] and m ≤ k. Now observe that by DCT

the function t 7→ ‖(∆
α
2

Ω )
kf(t)‖L2(Ω) is continuous on [0, T ], because (∆

α
2

Ω )
kf ∈ C([0, T ]×Ω).

Repeat the argument for ∂tf to conclude.

Lemma 4.5. If f(t) ∈ Dom(LkΩ,2) for k > −1 + (3d + 4)/(2α), for every t ∈ [0, T ], and

f ∈ C∂Ω([0, T ]× Ω), then

E

[
∫ τt,x

0
f
(

−Xt,β(s),Xx,α(s)
)

ds

]

=

∞
∑

n=1

ψn(x)Fλn
[〈f(·), ψn〉] (t).

If in addition f ∈ C1([0, T ]; Dom(LkΩ,2)), then there exists a constant C such that for

t ∈ (0, T ]

∞
∑

n=1

|ψn(x)∂tFλn
[〈f(·), ψn〉] (t)| ≤ Ctβ−1. (4.7)

4We define C1,2k
c ([0, T ]×Ω) = C1,2k((0, T )×Ω)∩{f, ∂tf ∈ C([0, T ]×Ω), supp{f} ⊂ [0, T ]×Ω is compact}.
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Proof. We justify the following equalities

E

[
∫ τt,x

0
f
(

−Xt,β(s),Xx,α(s)
)

ds

]

=

∫ ∞

0
P β,kill
s PΩ

s f(t, x) ds

=

∫ ∞

0
P β,kill
s

(

∞
∑

n=1

〈f(t), ψn〉ψn(x)e
−sλn

)

ds

=

∞
∑

n=1

ψn(x)

∫ ∞

0
P β,kill
s 〈f(t), ψn〉e−sλn ds

=

∞
∑

n=1

ψn(x)E

[

∫ τ0(t)

0
〈f(−Xt,β(s)), ψn〉e−sλn ds

]

=
∞
∑

n=1

ψn(x)Fλn
[〈f(·), ψn〉] (t).

We can apply Fubini’s Theorem in the third equality as
∞
∑

n=1

|〈f(t), ψn〉|‖ψn‖∞ ≤ C
∞
∑

n=1

n(α/d)(d/(2α)−k) <∞,

for some constant C > 0, each t ≥ 0 and any k > 3d/(2α), using the bounds in Lemma 4.3-
(i) and in (4.6). We apply Lemma 4.2-(i) in the fifth equality as r 7→ 〈f(r), ψn〉 ∈ C([0, T ])
for each n ∈ N. The other equalities are clear.
For the last claim we use the bounds in (4.2), (4.6) and Lemma 4.3-(i) to obtain

∞
∑

n=1

|ψn(x)∂tFλn
[〈f(t), ψn〉] (t)| ≤

∞
∑

n=1

|ψn(x)|
c

λn

(

sup
r∈[0,T ]

|〈∂rf(r), ψn〉|+
λnt

β−1

1 + λntβ
|〈f(0), ψn〉|

)

≤
∞
∑

n=1

|ψn(x)|
cMλ−k

n

λn

(

1 +
λnt

β−1

1 + λntβ

)

≤ (c1cM)
∞
∑

n=1

λ
d/(2α)
n λ−k

n

λn

(

1 +
λnt

β−1

1 + λntβ

)

≤ (c1cM)tβ−1
∞
∑

n=1

λd/(2α)−k
n

≤ (c̃1c1cM)tβ−1
∞
∑

n=1

n(α/d)(d/(2α)−k) <∞,

for any k > 3d/(2α), where the constants c̃1, c1, c and M follow the notation of the refer-
enced inequalities, and a constant is omitted in the fourth inequality. �

Theorem 4.6. Let Ω ⊂ R
d be a regular set. Assume that φ0 ∈ Dom(LkΩ,2), and f ∈

C1([0, T ];Dom(LkΩ,2)) for some k > −1 + (3d + 4)/(2α), where C1([0, T ];Dom(LkΩ,2)) is
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defined in (4.5). Then

u ∈ C∂Ω([0, T ] × Ω) ∩ C1,2((0, T ) × Ω), and

|∂tu(t, x)| ≤ Ct−γ , for every (t, x) ∈ (0, T ] × Ω, for some γ ∈ (0, 1), C > 0,
(4.8)

where u is defined in (1.5). Moreover, u is the unique classical solution to problem (1.6).

Proof. (The notation for constants is consistent with the referenced inequalities.)
By Lemma 4.3-(ii) and Lemma 4.5 we can write our candidate solution (1.5) as

u(t, x) =
∞
∑

n=1

Eβ(−λntβ)〈φ0, ψn〉ψn(x) +
∞
∑

n=1

Fλn
[〈f(·), ψn〉] (t)ψn(x),

and the first series enjoys the regularity properties stated in (4.8). We now prove the
same regularity for the second series. Observe that

∑∞
n=1 Fλn

[〈f(·), ψn〉] (t)ψn(x) converges
uniformly to a function in C∂Ω([0, T ]× Ω), since we have the uniform bound

∞
∑

n=1

|Fλn
[〈f(·), ψn〉] (t)ψn(x)| ≤

∞
∑

n=1

cλ−1
n ‖〈f(·), ψn〉‖C([0,T ])c1λ

d/(2α)
n

≤ (cc1M)

∞
∑

n=1

λ−1−k+d/(2α)
n

≤ (c̃1c1cM)
∞
∑

n=1

n(α/d)(d/(2α)−k−1) <∞,

for any k > −1 + 3d/(2α), using the bounds in (4.6), (4.1) and Lemma 4.3-(i). Further,
for j = 1, 2, and for any x in a compact subset K of Ω, the term-wise space derivative of
u can be bounded as follows,

∞
∑

n=1

|Fλn
[〈f(·), ψn〉] (t)|‖∇jψn‖∞ ≤

∞
∑

n=1

cλ−1
n ‖〈f(·), ψn〉‖C([0,T ])c1λ

(d+4)/2α
n

≤ (c̃1c1cM)

∞
∑

n=1

n(α/d)((d+4)/(2α)−k−1) <∞,
(4.9)

as
α

d

(

d+ 4

2α
− k − 1

)

< −1 ⇐⇒ k >
3d+ 4− 2α

2α
,

where we use the bounds in (4.6), (4.1) and Lemma 4.3-(i). Thus, Weierstrass M-test
implies that for any t > 0, u(t) is a C2 function on every K ⊂ Ω compact. For the time
regularity we use the inequality (4.7) from Lemma 4.55.
By Theorem 3.9, u is also a weak solution to problem (1.6), and by Lemma 3.3 and standard
approximation arguments, u satisfies the equalities in (1.6). Continuity at t = 0 can be
proved as in Remark 5.3.

5From the proof of Lemma 4.5 it follows that if φ0 = f(0) = 0, then ∂tu is bounded.
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To prove uniqueness, consider two classical solutions to problem (1.6), denoted by u, v.
Then w := u− v is a classical solution to problem (1.6) with f = 0, φ0 = 0. Consider the
continuous functions on [0, T ], t 7→ 〈w(t), ψn〉, n ∈ N. If we can justify

Dβ
0 〈w(t), ψn〉 = 〈Dβ

0w(t), ψn〉 = 〈∆
α
2

Ωw(t), ψn〉 = 〈w(t),LΩ,2ψn〉 = −λn〈w(t), ψn〉, (4.10)

for t > 0, it follows by [21, Theorem 6.5 and Theorem 7.2] that 〈w(t), ψn〉 = 0 for every
t ∈ [0, T ], n ∈ N, and we are done. The first equality is a consequence of |∂rw(r, y)| ≤
Cr−γ, for some γ ∈ (0, 1). The second and fourth equalities in (4.10) are clear. Now, as
ψn ∈ Dom(LΩ,2), there exists a sequence {ψn,j}j∈N ⊂ C∞

c (Ω), such that as j →∞

ψn,j → ψn, and ∆
α
2

Ωψn,j = LΩ,2ψn,j → LΩ,2ψn, in L2(Ω), (4.11)

where the equality in (4.11) holds by [19, Lemma 4.1]. Combining (4.11) with the equality

(2.5) and ∆
α
2

Ωw(t) ∈ L2(Ω) for each t > 0, the third equality in (4.10) is proven. �

5. Stochastic classical solution for problem (1.1)

5.1. Stochastic representation and continuity at t = 0.

Lemma 5.1. Define the function fφ : (0, T ] × Ω→ R as

fφ(t, x) :=

∫ ∞

t
(φ(t− r, x)− φ(t, x))−Γ(−β)

−1dr

r1+β
, (5.1)

assuming that φ ∈ C∞,∂Ω((−∞, 0] × Ω), φ(0) ∈ Dom(LΩ), and the extension of φ to φ(0)

on (0, T ] ×Ω is such that

φ ∈ Dom(L∞β,Ω), and L∞β,Ωφ = (−Dβ
∞ + LΩ)φ. (5.2)

Then fφ ∈ C([0, T ] × Ω) and the function u defined in (1.5) for f = fφ and φ0 = φ(0),
equals the function ũ defined in (1.3) for g = 0, on (0, T ] × Ω.

Proof. The first claim follows from fφ = −Dβ
∞φ ∈ C([0, T ] × Ω), using (5.2) and

LΩφ(t, x) = LΩφ(0, x) for all (t, x) ∈ [0, T ] × Ω. Recall that we write τt,x = τ0(t) ∧ τΩ(x).
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Fix (t, x) ∈ (0, T ]× Ω. It is enough to justify the following equalities

u(t, x) = E

[

φ(0,Xx,α(τ0(t))1{τ0(t)<τΩ(x)} +

∫ τt,x

0
fφ

(

−Xt,β(s),Xx,α(s)
)

ds

]

= E

[

φ(0, x) +

∫ τt,x

0
LΩφ (0,Xx,α(s)) ds+

∫ τt,x

0
fφ

(

−Xt,β(s),Xx,α(s)
)

ds

]

= E

[
∫ τt,x

0
LΩφ

(

−Xt,β(s),Xx,α(s)
)

−Dβ
∞φ

(

−Xt,β(s),Xx,α(s)
)

ds

]

+ φ(0, x)

= E

[
∫ τt,x

0
L∞β,Ωφ

(

−Xt,β(s),Xx,α(s)
)

ds

]

+ φ(0, x)

= E
[

φ
(

−Xt,β(τt,x),X
x,α(τt,x)

)]

± φ(0, x).

For the second equality we use Dynkin formula with Lemma 2.6-(i) and φ(0) ∈ Dom(LΩ);
for the third equality, as we extended φ(t, x) = φ(0, x) on [0, T ] × Ω, we use the identities

fφ(t, x) = −Dβ
∞φ(t, x) and LΩφ(0, x) = LΩφ(t, x) on (0, T ] × Ω; in the fourth equality we

use assumption (5.2); the fifth equality is again an application of Dynkin formula with
Lemma 2.6-(iii) and φ(t, x) = φ(0, x) on (0, T ]× Ω. �

Corollary 5.2. If φ ∈ C1
b,∂Ω((−∞, 0]× Ω), then for (t, x) ∈ (0, T ] × Ω

E

[

φ
(

0,Xx,α(τt,x)
)

+

∫ τt,x

0
fφ

(

−Xt,β(s),Xx,α(s)
)

ds

]

= E
[

φ
(

−Xt,β(τt,x),X
x,α(τt,x)

)]

.

(5.3)

Proof. Step 1. We prove (5.3) for φ ∈ C1
∞,∂Ω((−∞, 0] × Ω) ∩ {∂tf(0) = 0} with compact

support in (−∞, 0]×Ω. For such φ, let K > 0 such that φ is supported in (−K, 0]×Ω. By
the same arguments as in the proof of Lemma 2.6-(ii), it follows that Span{C([−K, 0]) ∩
{f(−K) = f(0) = 0} · C∂Ω(Ω)} is dense in C∂Ω([−K, 0] × Ω) ∩ {f(−K) = f(0) = 0} with
respect to the supremum norm. We can use this fact to construct a sequence {φn}n∈N ∈
Span{C1

∞(−∞, 0]) ∩ {f ′(0) = 0} · C∂Ω(Ω)} such that

‖φn − φ‖C((−∞,0]×Ω) + ‖∂t(φn − φ)‖C((−∞,0]×Ω) → 0, as n→∞.

Moreover, it follows that fφn
→ fφ as n→∞ pointwise on [0, T ]×Ω and supn ‖fφn

‖C([0,T ]×Ω)

is finite. It remains to show that (5.3) holds for functions in Span{C1
∞(−∞, 0]) ∩ {f ′(0) =

0} · C∂Ω(Ω)}, as DCT applied to the sequences above yields the claim. By Lemma 2.6-
(iii) with C∞

β = C1
∞((−∞, T ]), Proposition 2.4 and Lemma 5.1, equality (5.3) holds for

φ ∈ Span{C1
∞((−∞, 0]) ∩ {f ′(0) = 0} · Dom(LΩ))}. As Dom(LΩ) is dense in C∂Ω(Ω),

equality (5.3) holds for φ ∈ Span{C1
∞((−∞, 0]) ∩ {f ′(0) = 0} · C∂Ω(Ω)} by DCT.

Step 2. For φ ∈ C1
b,∂Ω((−∞, 0] × Ω), take a sequence {φn}n∈N ⊂ C1

∞,∂Ω((−∞, 0] ×
Ω) ∩ {∂tf(0) = 0} compactly supported in (−∞, 0] × Ω, such that φn → φ pointwise
on (−∞, 0]×Ω, and supn ‖φn‖C((−∞,0]×Ω) + supn ‖∂tφn‖C((−∞,0]×Ω) <∞. Then fφn

→ fφ
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pointwise on [0, T ]×Ω and supn ‖fφn
‖C([0,T ]×Ω) <∞. Finally, apply DCT to both sides of

(5.3). �

Remark 5.3. If we can apply Corollary 5.2, then we can prove continuity at t = 0 for the
solution (1.3) via the following argument

|Formula (1.5)− φ0(x)| ≤ |E [φ0 (X
x,α(τ0(t) ∧ τΩ(x))) − φ0(x)] |+ ‖f‖∞E [τ0(t)]

= ot↓0(1) + ‖f‖∞
tβ

Γ(β + 1)
,

for each x ∈ Ω, using stochastic continuity of the process6 t 7→ Xx,α(τ0(t)) at t = 0. One
could also use stochastic continuity at t = 0 of −Xt,β(τ0(t)) = t − Xβ(τ0(t)), bypassing
Corollary 5.2. In Proposition A.2 in the Appendix we prove continuity at t = 0 by proving
a bound on big overshootings −Xt,β(τ0(t)) for small times.

5.2. Equivalence of the classical solutions to problems (1.1) and (1.6).

Definition 5.4. Let φ ∈ Cb,∂Ω((−∞, 0] × Ω) and g ∈ C((0, T ] × Ω). A function ũ ∈
Cb,∂Ω((−∞, T ] × Ω) ∩ C1,2((0, T ) × Ω) such that |∂tũ(t, x)| ≤ Ct−γ , for every (t, x) ∈
(0, T ] × Ω, for some γ ∈ (0, 1), C > 0, is said to be a classical solution to problem (1.1) if
ũ satisfies the identities in (1.1), and for every x ∈ Ω

lim
t↓0
|ũ(t, x)− φ(0, x)| = 0.

Lemma 5.5. Let φ ∈ Cb,∂Ω((−∞, 0]×Ω) such that fφ ∈ C((0, T ]×Ω), where fφ is defined
in (5.1), and let g ∈ C((0, T ] × Ω). Then, if u is a classical solution to problem (1.6) with
f = fφ + g and φ0 = φ(0), then the extension

ũ :=

{

u, in (0, T ] ×Ω,

φ, in (−∞, 0]× Ω,

is a classical solution to problem (1.1). Conversely, if ũ is a classical solution to problem
(1.1), then the restriction of ũ to [0, T ] × Ω is a classical solution to problem (1.6) with
f = fφ + g and φ0 = φ(0).

Proof. The equivalence of convergence to initial data and the required regularities are

clear. It is also immediate that ∆
α
2

Ωu = ∆
α
2

Ω ũ on (0, T ]×Ω. Write ν(r) = −Γ(−β)−1r−1−β.

6This follows as Xx,α(s) is right continuous and τ0(t) is right continuous, non-decreasing with τ0(0) = 0.
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On (0, T ]× Ω we have the equality

−Dβ
∞ũ(t, x) =

∫ ∞

0
(ũ(t− r, x)− ũ(t, x)) ν(r)dr

=

∫ t

0
(ũ(t− r, x)− ũ(t, x)) ν(r)dr +

∫ ∞

t
φ(t− r, x) ν(r)dr

− ũ(t, x))
∫ ∞

t
ν(r)dr ± φ(0, x)

∫ ∞

t
ν(r)dr

= −Dβ
0 ũ(t, x) + fφ(t, x).

This is enough to prove both directions. �

5.3. Main result.

Theorem 5.6. Let Ω ⊂ R
d be a regular set. Assume that φ ∈ C1

b,∂Ω((−∞, 0] × Ω) with

φ(0) ∈ Dom(LkΩ,2) and fφ, g ∈ C1([0, T ];Dom(LkΩ,2)), for some k > −1 + (3d + 4)/(2α),

where fφ is defined in (5.1) and C1([0, T ];Dom(LkΩ,2)) is defined in (4.5). Then

ũ ∈ Cb,∂Ω((−∞, T ]× Ω) ∩ C1,2((0, T ) × Ω), and

|∂tũ(t, x)| ≤ Ct−γ, for every (t, x) ∈ (0, T ]× Ω, for some γ ∈ (0, 1), C > 0,

where ũ is defined as in (1.3). Moreover, ũ is the unique classical solution to problem (1.1).

Proof. By the assumptions on φ and g, and Lemma 5.5, existence and uniqueness of
classical solutions follows by Theorem 4.6 with φ0 = φ(0) and f = fφ + g. Now apply
Corollary 5.2 to obtain the stochastic representation (1.3) from the stochastic representa-
tion (1.5). �

Remark 5.7. Using Corollary 5.2 (or [29, Theorem 1 for λ = 0]), P[−Xt(τ0(t)) ∈ {0}] = 0
for every t > 0 (see [10, III, Theorem 4]) and the independence of Xx,α and −Xt,β, one
can show that for (t, x) ∈ (0, T ]× Ω

E
[

φ
(

−Xt,β(τ0(t)),X
x,α(τ0(t))

)

1{τ0(t)<τΩ(x)}

]

=

∫ 0

−∞

∫

Ω
φ(r, y)Ht,x

β,α(r, y) dr dy,

where

Ht,x
β,α(r, y) =

∫ t

0

−Γ(−β)−1

(z − r)1+β

(
∫ ∞

0
pΩs (x, y)p

β
s (t− z) ds

)

dz.

It is straightforward to compute for (t, x) ∈ (0, T ]× Ω

E

[

∫ τ0(t)∧τΩ(x)

0
g
(

−Xt,β(s),Xx,α(s)
)

ds

]

=

∫ t

0

∫

Ω
g(z, y)

(
∫ ∞

0
pΩs (x, y)p

β
s (t− z) ds

)

dz dy.

Remark 5.8. Notice that the value φ(0) does not contribute to the solution (1.3) because
P[−Xt(τ0(t)) ∈ {0}] = 0 for all t > 0. However, u(t) → φ(0) as t ↓ 0. We discuss the
continuity of the solution at t = 0 in more detail in Appendix A.I.
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Remark 5.9. We could drop the condition ‖∂tφ‖∞ < ∞ in Theorem 5.6, by weakening
Corollary 5.2, for example to φ being β∗-Hölder continuous at t = 0, for some β∗ > β
and φ ∈ L∞((−∞, 0) × Ω). This is essentially because limt↓0 fφ(t) remains well-defined.
However, in order to apply Theorem 4.6 in the proof of Theorem 5.6 we need to assume fφ ∈
C1([0, T ]; Dom(LkΩ,2)). Hence, a minimal requirement is that φ is continuously differentiable

in time and both φ and ∂tφ are O(|r|β∗) at −∞ and β∗-Hölder continuous at 0, for some
β∗ < β < β∗, as we need fφ and ∂tfφ to be continuous on [0, T ]× Ω.

Remark 5.10. Suppose that φ ∈ C2,2k
∞,∂Ω((−∞, 0] × Ω) and φ(t) along with its partial

derivatives in space are compactly supported in Ω, for each t ∈ (−∞, 0], where k ∈ N

and k > −1 + (3d + 4)/(2α). Then, an application of Remark 4.4 implies that fφ ∈
C1([0, T ]; Dom(LkΩ,2)).

6. Intuition for the stochastic solution (1.3)

We discuss the intuition for the stochastic representation (1.3) as the solution to the EE
(1.1). Let us write −W (t) = t−Xβ(τ0(t)) = −Xt,β(τ0(t)). Then W (t) is the overshoot of
the subordinator Xβ with respect to the barrier t, recalling that the first exit time/inverse
subordinator is given by τ0(t) = inf{s > 0 : t ≤ Xβ(s)}. To ease notation we write
Y x := {Xx,α(τ0(t))1{τ0(t)<τΩ(x)}}t≥0. Let us start from the intuition of Caputo EEs, as if
φ(t, x) = φ(0, x) =: φ0(x) for every t ∈ (−∞, 0] ×Ω, then the solution (1.3) reads

u(t, x) = E [φ0(Y
x(t))] , (6.1)

and the EE (1.1) equals the Caputo EE (1.6) (for g = f = 0). The probabilistic object
defining the solution (6.1) is the anomalous diffusion Y x. Recall that the particle Y x is
either trapped or diffusing.
Key observation: reasoning path-wise, for some x̄ ∈ Ω

the interval (t1, t2) is the maximal open interval so that t 7→ Y x(t) = x̄ is constant

⇐⇒
the interval (t1, t2) is the maximal open interval so that t 7→ τ0(t) is constant

⇐⇒
the interval (t1, t2) is the maximal open interval so that t 7→ Xβ(τ0(t)) is constant

⇐⇒
Xβ(τ0(t)−) = t1 and Xβ(τ0(t)) = t2, (i.e. X

β jumped from t1 to t2).

The last statement implies that

W (t) = Xβ(τ0(t))− t = t2 − t ∈ (0, t2 − t1) for every t ∈ (t1, t2),

which is the trapping/waiting time of Y x(t). In words: the event of the diffusion Y x being
trapped at a point x̄ ∈ Ω at time t until time t + s happens precisely when W (t) = s.
Hence the law of −W (t) provides a weighting of the initial condition φ(x̄) depending on
the trapping/waiting time of Y x(t). Notice that the process t 7→ −W (t) is self-similar with
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index 1 and it is composed by right continuous 45 degrees increasing slopes with 0 leftmost
limit (see Figure 1).

0.0 0.2 0.4 0.6 0.8 1.0

−
25

0
−

15
0

−
50

t

−
W

(t
)

Figure 1. A typical path of the overshoot t 7→ −W (t) = −Xt,β(τ0(t)), β = 0.9.

6.1. A non-memory interpretation. It is possibly appealing to think about the values
(−∞, 0) × Ω for the initial condition φ as the ‘depth’ underneath the surface {0} × Ω
where the particle Y x moves. Then one can think about the particle Y x(t) as falling
instantaneously at the bottom of a hole/trap of depth |t2 − t1|, and then taking time
|t2 − t1| to climb back up to the surface. Then, at time t one can observe the particle
being |t2 − t|-depth-units down in the hole. From this viewpoint, once the particle is in
the hole it just drifts upward with unit speed. As a quick example, consider the variable
separable initial condition φ(t, x) = p(t)q(x) where p(t) = 1{t<−1}. Then the solution reads
for t > 0

u(t, x) = E
[

q(Y x(t))1{W (t)>1}

]

= E [q(Y x(t))|Y x(t) is more than 1 unit deep in a trap]
(

= E [q(Y x(t))|Y x(t) is trapped for more than 1 time-unit]
)

.

Hence, in this example the diffusive particle Y x will have to be a least a unit deep in a
hole (trapped for at least a unit time) for the values at its trapping point at its depth (in
the past) to contribute to the solution.

A. Appendix

A.I. Continuity of solution (1.3) at t = 0.
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Proposition A.1. For every p, ε > 0, the following bound on small overshootings holds,

P[Xt,β(τ0(t)) ≤ ε] ≥ (1− p), for every t ≤ εp
1

β .

Proof. With the first equality holding by [29, Theorem 1 for λ = 0] along with the identity
(2.3), compute

P[Xt,β(τ0(t)) ≤ ε] =
∫ 0

−ε

(

1

Γ(β)

∫ t

0
(−∂y(y − r)−β)

(t− y)β−1

Γ(1− β) dy

)

dr

=

∫ 0

−ε

(

β

Γ(β)Γ(1− β)

∫ t

0
(y − r)−β−1(t− y)β−1 dy

)

dr

=
−Γ(β)−1

Γ(−β)

∫ t

0
(t− y)β−1

(
∫ 0

−ε
(y − r)−β−1dr

)

dy

=
−Γ(β)−1β−1

Γ(−β) (a− aε(t)),

where aε(t) :=
∫ t
0 (t − y)β−1(y + ε)−β dy and a :=

∫ t
0 (t − y)β−1y−β dy = Γ(β)Γ(1 − β) for

every t > 0. Now pick t̃ = εp1/β . Then for every 0 ≤ y ≤ t̃
(y + ε)−β = (y + p−1/β t̃)−β ≤ pt̃−β ≤ py−β,

hence for every t ≤ t̃
aε(t)

a
=

∫ t
0 (t− y)β−1(y + ε)−βdy
∫ t
0 (t− y)β−1y−β dy

≤ p.

Then aε(t) ≤ pa for every t ≤ t̃, which is equivalent to a− aε(t) ≥ (1− p)a for every t ≤ t̃.
And so we obtain

P[Xt,β(τ0(t)) ≤ ε] ≥ (1− p)−Γ(β)
−1

Γ(−β) β−1Γ(β)Γ(1− β) = (1− p).

�

We now use the bound in Proposition A.1 to prove the following continuity result

Proposition A.2. Consider the function ũ defined in (1.3), with an arbitrary Ω-valued
stochastic (sub-)process Xx in place of Xx,α, such that t 7→ Xx(τ0(t)) is stochastically
continuous at t = 0. Also assume φ ∈ B((−∞, 0]×Ω)) and φ is continuous at every point
in {0} × Ω. Then for every x ∈ Ω

lim
t↓0
|ũ(t, x)− φ(0, x)| = 0.

Proof. Let x ∈ Ω. Let δ > 0 be arbitrary. Pick ε, ε′ > 0 such that

sup
(s,y)∈(−ε,0]×Bε′ (x)

|φ(s, y)− φ(0, x)| ≤ δ.
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Then

|ũ(t, x)− φ(0, x)| ≤
∣

∣

∣
E
[

(φ(−Xt,β(τ0(t)),X
x(τ0(t))− φ(0, x))1{Xt,β (τ0(t))>ε}

]
∣

∣

∣

+
∣

∣

∣
E
[

(φ(−Xt,β(τ0(t)),X
x(τ0(t)))− φ(0, x))1{Xt,β (τ0(t))≤ε}

]
∣

∣

∣

≤ 2‖φ‖∞P[Xt,β(τ0(t)) > ε]

+E
[

|φ(−Xt,β(τ0(t)),X
x(τ0(t))) − φ(0, x)|1{Xt,β (τ0(t))≤ε,|Xx(τ0(t)))−x|≤ε′}

]

+E
[

|φ(−Xt,β(τ0(t)),X
x(τ0(t))) − φ(0, x)|1{Xt,β (τ0(t))≤ε,|Xx(τ0(t)))−x|>ε′}

]

≤ 2‖φ‖∞P[Xt,β(τ0(t)) > ε] + δ + 2‖φ‖∞P[|Xx(τ0(t)))− x| > ε′]

Now, by Proposition A.1, for all t ≤ δ
1

β ε it holds that P[Xt,β(τ0(t)) > ε] ≤ δ. Then the
estimate above reads

|ũ(t, x)− φ(0, x)| ≤ 2‖φ‖∞δ + δ + 2‖φ‖∞P[|Xx(τ0(t)))− x| > ε′], for every t ≤ δ
1

β ε.

To conclude, by stochastic continuity, pick a possibly smaller threshold t̄ to obtain

P[|Xx(τ0(t))) − x| > ε′] ≤ δ for every t ≤ t̄.

�

Remark A.3. The continuity at t = 0 of Proposition A.2 is not obvious. For example it
is clear that Proposition A.2 fails if we replace −Xt,β with a decreasing Poisson process.
In fact Proposition A.2 fails in general if we replace −Xt,β with a decreasing compound
Poisson process −N t(s) with generator

−D(ν)
∞ f(t) :=

∫ ∞

0
(f(t− r)− f(t)) ν(dr), where 0 < λ :=

∫ ∞

0
ν(dr) <∞.

To see this, observe that for every ε, t > 0

P
[

N t (τ0(t)) > ε
]

≥ P
[

first jump of N t is greater than t+ ε
]

=

∫ ∞

t+ε

ν(dr)

λ
,

and note that the right hand side is non-decreasing as t ↓ 0, where τ0 is the left continuous
inverse of N0. As

∫∞
0 ν(dr) > 0 we can choose ε0 > 0 and t̄ > 0 so that

inf
t≤t̄

P
[

N t (τ0(t)) > ε0
]

≥
∫ ∞

t̄+ε0

ν(dr)

λ
=: c > 0.
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Now, consider a continuous non-negative φ with φ(0) = 0, such that infr∈(−∞,−ε0] φ(r) > 0.
Then for every t ≤ t̄

|ũ(t)− φ(0)| = E
[

φ(−N t (τ0(t))
(

1{Nt(τ0(t))>ε0} + 1{Nt(τ0(t))≤ε0}

)]

≥ E
[

φ(−N t (τ0(t)))1{Nt(τ0(t))>ε0}

]

≥ inf
r∈(−∞,−ε0]

φ(r)P
[

N t (τ0(t)) > ε0
]

≥ inf
r∈(−∞,−ε0]

φ(r)c > 0.

A.II. Proof of Lemma 2.6-(i)-(ii)-(iii). The three proofs are essentially the same, hence
we prove only (ii).

Note that P β,kill
s PΩ

r = PΩ
r P

β,kill
s for every s, r ≥ 0, and that

‖PΩ
s f‖C([0,T ]×Ω), ‖P β,kill

s f‖C([0,T ]×Ω) ≤ ‖f‖C([0,T ]×Ω),

for every f ∈ C0,∂Ω([0, T ] × Ω), s ≥ 0. It is then easy to prove that P β,Ω,kill is sub-Feller

semigruop on C0,∂Ω([0, T ]×Ω). We denote the generator of P β,Ω,kill by (Lkillβ,Ω,Dom(Lkillβ,Ω)).

Let f = pq, where p ∈ Ckillβ and q ∈ CΩ. Then, by a standard triangle inequality argument,
we obtain
∣

∣

∣

P β,kill
h PΩ

h f(t, x)− f(t, x)
h

− (Lkillβ + LΩ)f(t, x)
∣

∣

∣

≤ ‖p‖C([0,T ])

∥

∥

∥

∥

PΩ
h q − q
h

− LΩq
∥

∥

∥

∥

C(Ω)

+ ‖LΩq‖C(Ω)

∥

∥

∥
P β,kill
h p− p

∥

∥

∥

C([0,T ])

+ ‖q‖C(Ω)

∥

∥

∥

∥

∥

P β,kill
h p− p

h
− Lkillβ p

∥

∥

∥

∥

∥

C([0,T ])

→ 0,

as h ↓ 0. An induction argument proves that Span{Ckillβ · CΩ} ⊂ Dom(Lkillβ,Ω) and Lkillβ,Ω =

(Lkillβ +LΩ) on Span{Ckillβ ·CΩ}. Observing that Span{Ckillβ ·CΩ} is invariant under P β,Ωkill and

it is a subspace of Dom(Lkillβ,Ω), if we can prove that Span{Ckillβ ·CΩ} is dense in C0,∂Ω([0, T ]×
Ω), we are done by [15, Lemma 1.34]. So proceed by noting that set Span{C∞([0, T ]) ·
C∞(Ω)} is a sub-algebra of C([0, T ] × Ω) that contains constant functions and separates
points. Hence Span{C∞([0, T ]) · C∞(Ω)} is dense in C([0, T ] × Ω) by Stone-Weierstrass
Theorem for compact7 Hausdorff spaces. We now prove density of the following set

Span{C∞
c ((0, T ]) · C∞

c (Ω)} ⊂ C0,∂Ω([0, T ] ×Ω).

For f ∈ C0,∂Ω([0, T ] × Ω) we take a sequence {fn}n∈N ⊂ Span{C∞([0, T ]) · C∞(Ω)} such
that fn → f , where fn(t, x) =

∑Nn

i=1 pi,n(t)qi,n(x), for some Nn ∈ N depending on n ∈ N.
Let 1T,n ∈ C∞

c ((0, T ]) and 1Ω,n ∈ C∞
c (Ω) be smooth functions for each n ∈ N, such that

7In the case of unbounded domains (part (iii) of the current lemma) use the Stone-Weierstrass Theorem
for locally compact Hausdorff spaces.
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0 ≤ 1T,n, 1Ω,n ≤ 1, 1T,n(t) = 1Ω,n(x) = 1 for t ∈ ( 1n , T ] and x ∈ Kn, and 1T,n(t) = 1Ω,n(x) =

0 for t ∈ (0, 1
n+1 ] and x ∈ Ω\Kn+1, where Kn is compact, Kn ⊂ Kn+1 ⊂ Ω for each n, and

∪nKn = Ω. Define for each n ∈ N,

(t, x) 7→ f̃n(t, x) :=

Nn
∑

i=1

pi,n(t)1T,n(t)qi,n(x)1Ω,n(x) ∈ Span{C∞
c ((0, T ]) · C∞

c (Ω)}.

Then, as n→∞

‖f̃n − f‖C([0,T ]×Ω) ≤ ‖fn − f‖C([ 1
n
,T ]×Kn)

+ ‖f̃n − f‖C(( 1

n+1
, 1
n
]×Ω∪[0,T ]×Kn+1\Kn)

+ ‖f‖C([0,T ]×Ω\Kn+1∪[0,
1

n+1
]×Ω) → 0.

As C∞
c (Ω) 6⊂ Dom(LΩ) we need to work a bit more. For any u ∈ C0,∂Ω([0, T ] × Ω) we

can now take a uniformly approximating sequence {un}n∈N ⊂ Span{C∞
c ((0, T ]) · C∞

c (Ω)}.
Denote un(t, x) =

∑Nn

i=1 pi,n(t)qi,n(x), for some Nn ∈ N depending on n ∈ N, where pi,n ∈
C∞
c ((0, T ]), qi,n ∈ C∞

c (Ω) are non-zero, for each i ∈ {1, ..., Nn}, n ∈ N. As Cβ and CΩ
are dense in C0([0, T ]) ⊃ C∞

c ((0, T ]) and C∂Ω(Ω) ⊃ C∞
c (Ω), respectively, we can pick

{(p̃i,n, q̃i,n) : i ∈ {1, ..., Nn}, n ∈ N} ⊂ Cβ × CΩ, in the following fashion: for each triplet
(Nn, pi,n, qi,n), first pick p̃i,n so that

‖pi,n − p̃i,n‖C[0,T ] ≤
1

nNn‖qi,n‖C[0,T ]
,

secondly pick q̃i,n so that

‖qi,n − q̃i,n‖C[0,T ] ≤
1

nNn‖p̃i,n‖C[0,T ]
.

Then, after defining ũn(t, x) :=
∑Nn

i=1 p̃i,n(t)q̃i,n(x), we obtain

‖u− ũn‖∞ ≤ ‖u− un‖∞ + ‖un − ũn‖∞

≤ ‖u− un‖∞ +

Nn
∑

i=1

‖pi,nqi,n − p̃i,nq̃i,n‖∞

≤ ‖u− un‖∞ +

Nn
∑

i=1

(‖qi,n‖∞‖pi,n − p̃i,n‖∞ + ‖p̃i,n‖∞‖qi,n − q̃i,n‖∞)

≤ ‖u− un‖∞ +

Nn
∑

i=1

( ‖qi,n‖∞
nNn‖qi,n‖C[0,T ]

+
‖p̃i,n‖∞

nNn‖p̃i,n‖C[0,T ]

)

= ‖u− un‖∞ +

Nn
∑

i=1

2

nNn

≤ ‖u− un‖∞ +
2

n
→ 0, as n→∞.
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