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Abstract. We consider the discrete nonlinear Schrödinger equations on a one dimen-
sional lattice of mesh h, with a cubic focusing or defocusing nonlinearity. We prove a
polynomial bound on the growth of the discrete Sobolev norms, uniformly with respect
to the stepsize of the grid. This bound is based on a construction of higher modified
energies.

1. Introduction

We consider the cubic discrete nonlinear Schrödinger equation (called DNLS) on a grid
hZ of stepsize h ą 0. This equation is a differential equation on ChZ defined by (see [12]
and the references therein for details about its derivation)

(1) @g P hZ, iBt ug “ p∆h uqg ` ν|ug |2 ug,

where ν P t´1, 1u is a parameter and ∆h u is the discrete second derivative of u. It is
defined by

@g P hZ, p∆h uqg “ ug`h ´2ug `ug´h

h2
.

We consider both the focusing and the defocusing equations. They correspond respectively
to the choices ν “ 1 and ν “ ´1.

DNLS is a popular model in numerical analysis for the spatial discretization of the cubic
nonlinear Schrödinger equation (NLS), given by:

(2) iBtu “ B2xu ` ν|u|2u,
see, for example, [3],[4],[5],[10],[11],[12]. Motivated by the approximation properties of NLS
by DNLS, we consider the discrete model near its continuous limit i.e. when h goes to 0.
So, we introduce norms consistent with the usual continuous norms and we pay attention
to establish estimates uniform with respect to h.
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2 BOUNDS ON THE HIGH SOBOLEV NORMS OF DNLS

We introduce the discrete L2 space. It is defined by

L2phZq “

$
&
%u P C

hZ, }u }2L2phZq “ h
ÿ

gPhZ

|ug |2 ă 8

,
.
- .

This space is natural to solve DNLS. Indeed, as L2phZq is a Banach algebra (which is
not the case in the continuous setting), Cauchy Lipschitz Theorem can be applied to get
the local well posedness of DNLS in L2phZq. Furthermore, since (1) is invariant by gauge
transform, as a consequence of the Noether Theorem the discrete L2 norm is a constant of
the motion of DNLS. Thus, DNLS is globally well posed in L2phZq.

We introduce the homogeneous discrete Sobolev norms by analogy with respect to the
continuous homogeneous Sobolev norms. If n P N is an integer and u P L2phZq, its discrete
homogeneous Sobolev norm of order n is defined by

(3) }u }29HnphZq
“ xp´∆hqn u,uyL2phZq.

For example, if u P L2phZq, its discrete homogeneous Sobolev norm of order 1 is

}u } 9H1phZq “

gffeh
ÿ

gPhZ

ˇ̌
ˇ̌ug`h ´ug

h

ˇ̌
ˇ̌
2

.

Naturally, we define as usual the non homogeneous discrete Sobolev norms by

}u }2HnphZq “
nÿ

k“0

}u }2
9HkphZq

.

Applying the triangle inequality we can easily prove that all these norms are controlled
by the discrete L2 norm

(4) @u P L2phZq, }u } 9HnphZq ď
ˆ
2

h

˙n

}u }L2phZq.

So, since the discrete L2 norm is a constant of the motion of DNLS, any discrete Sobolev
norm of a solution of DNLS is globally bounded. However, this bound is not uniform with
respect to the stepsize h. Consequently, these estimates are trivial when we consider the
continuous limit.

An uniform control of these norms with respect to h may be crucial to establish aliasing1

or consistency estimates. For example, in [5], the existence and the stability of traveling
waves is studied near the continuous limit of the focusing DNLS. The discrete Sobolev
norms are used to control an aliasing error generated by the variations of the momentum
(see Theorem 1.5 of [5]). It is proven that if for all n P N, the discrete Sobolev norm
of order n of the solutions of the focusing DNLS can be bounded by tαn , uniformly with
respect to h, then DNLS admits solutions whose behavior is similar to traveling waves for
times of order h´β , with β “ lim supn

n
αn

.

1Aliasing usually refers to a default of commutation between a nonlinearity and an interpolation.
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There is a huge literature about the growth of the Sobolev norms for continuous Schrödinger
equations. Since, we are focusing on the continuous limit of DNLS, it is natural to try to
adapt the methods used for these equations. If we focus on the continuous Schrödinger
equations on R, it seems that there are three families of methods and results.

‚ First, there is the cubic nonlinear Schrödinger equation. This equation is known
to be completely integrable. In particular, it admits a sequence of constants of
the motion coercive in HnpRq. Consequently, all the Sobolev norms are globally
bounded (see, for example, [14]).

‚ Second, there is the linear Schrödinger equation with a potential smooth with
respect to t and x. In such case, for all ε ą 0 there is a control of the growth by tε

(see [7]).
‚ Third, in the other cases, there are methods using dispersion and/or higher modified

energy. They were first introduced by Bourgain [6] and continued in the work of
Staffilani [15]. They provide a control of the growth of the Hn norm by tαn`β

for some α, β P R. More recently, applying these methods [14], Sohinger proves

a control of the Hs norm by t
1

3
s` for the nonlinear Schrödinger equation with an

Hartree nonlinearity.

A priori, DNLS is not a completely integrable equation, so we can not control its Sobolev
norms as for its continuous limit (for a completely integrable spatial discretization of NLS,
we can refer to the Ablowitz-Ladik model, see [1]). In this paper, we adapt the last
method to the discrete nonlinear Schrödinger equation. In [16], Stefanov and Kevrekidis
proved that the dispersion is weaker for the linear discrete Schrödinger equation than for

the continuous equation. They got a L8 decay of the form t´ 1

2 ` phtq´ 1

3 (see also [10]).
Using dispersive arguments in our setting seems thus more difficult than in the continuous
case and does not seem to strengthen significantly the results. However, the method of
constructing modified energies can be applied and turns out to yield results comparable to
the continuous case (i.e. a polynomial bound whose exponent is proportional to the index
of the Sobolev norm detailed above). More precisely, with our construction, we get the
following bound.

Theorem 1.1. For all n P N˚, there exists C ą 0, such that for all h ą 0 and all
ν P t´1, 1u, if u P C1pR;L2phZqq is a solution of DNLS then for all t P R

(5) }uptq} 9HnphZq ď C

„
}up0q} 9HnphZq ` M

2n`1

3

up0q
` |t|n´1

2 M
4n´1

3

up0q


,

where

M
up0q “ }up0q} 9H1phZq ` }up0q}3L2phZq.

This theorem is the main result of this paper, it will be proven in the third section. The
second section is devoted to the introduction of tools and notations useful to prove it.

We conclude this introduction with some remarks about estimate (5).

‚ If n “ 1 then the discrete H1 norm is globally bounded, uniformly with respect
to h. It is a consequence of the conservation of the Hamiltonian of DNLS and its
coercivity in H1phZq. In the focusing case this argument is specific to the dimension
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1. It is based on a discrete Gagliardo-Nirenberg inequality. For the defocusing case,
the coercivity is straighforward and can be extended to higher dimensions and with
other nonlinearities.

‚ The factor associated to the growing term t
n´1

2 is M
4n´1

3

up0q . So the growth of the

high Sobolev norms is controlled by the size of the initial condition with respect to
the low Sobolev norms.

‚ The estimate (5) is homogeneous. More precisely, DNLS is invariant by dilatation
in the sense that if u is a solution of DNLS then pt, gq ÞÑ λuλgpλ2tq is a solution
of DNLS with stepsize hλ´1. Estimate (5) is invariant by this transformation (as
can be seen from the exponents of M

up0q). Consequently, to prove Theorem 1.1,
we just have to prove it with h “ 1.

‚ Here, the construction of higher modified energies relies essentially algebraic con-
siderations. In particular, it does not use any dispersion effect. So it seems possible
to realize almost the same proof to get estimate (5) with periodic boundary condi-
tions.

2. Shannon interpolation

In order to use classical analysis tools, it is very useful to identify sequences of L2pZq
with functions defined on the real line through an interpolation method. Here, we choose
the Shannon interpolation (this choice is quite natural, see [10] or [5]). More precisely, it
is the usual interpolation we get extending a sequence into a real function whose Fourier
transform is supported on r´π, πs.

In this section, we introduce this interpolation and we give some of its classical properties
useful to prove Theorem 1.1. For details or proofs of these classical properties the reader
can refer to [5] or [13].

First we need to define the discrete Fourier transform

(6) F :

$
&
%

L2pZq Ñ L2pR{2πZq
u ÞÑ ω ÞÑ

ÿ

gPZ

ug e
igω ,

and the Fourier Plancherel transform

F :

$
&
%

L2pRq Ñ L2pRq
u ÞÑ ω ÞÑ

ż

R

upxqeixω dx

where the right integral is defined by extending the operator defined on L1pRq X L2pRq.
We also use the notation pu “ Fu.

Now, we define the Shannon interpolation , denoted I , through the following diagram

(7) L2pZq F
//

I

11L2pR{2πZq
u ÞÑ1p´π,πqu

// L2pRq F´1

// L2pRq ,

where 1p´π,πq : R Ñ R the characteristic function of p´π, πq and F´1 is the inverse of the
Fourier Plancherel transform.
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It is possible to deduce a very explicit formula to determine I u from u. Indeed, for
u P L2pZq and x P R, we have

I upxq “
ÿ

gPZ

ug sincpπpx ´ gqq,

where the sum converges in L2pRq X L8pRq and sincpxq “ sinpxq
x

, denotes the cardinal sine
function.

In the following proposition, we give some properties of this interpolation useful to prove
Theorem 1.1 .

Proposition 1. (see, for example Chapter 5.4 in [13], for details)

‚ I is an isometry, i.e.

@u P L2pZq,
ÿ

gPZ

|ug |2 “
ż

R

|I upxq|2 dx .

‚ The image of I is the set of functions whose Fourier support is a subset of r´π, πs.
It is denoted by

BL2 :“ IpL2pZqq “ tu P L2pRq | Supp pu Ă r´π, πsu.
‚ If u P L2pZq then I u is an entire function which u is the restriction on Z, i.e.

@g P Z, pI uq pgq “ ug .

Now, we focus on properties more specific to the discrete Sobolev norms.

Proposition 2. (see Proposition 2.6 in [5]) Let u P L2pZq be a sequence and let u “ I u

denote its Shannon interpolation. Then we have for almost all ω P p´π, πq

{I∆1 upωq “ p2 cospωq ´ 2qpupωq “ ´4
´
sin

´ω

2

¯¯2

pupωq

and

{I|u |2 upωq “
ÿ

kPZ

z|u|2upω ` 2kπq “
1ÿ

k“´1

pu ˚ p̄u ˚ pupω ` 2kπq,

where ˚ is the usual convolution product.

We deduce two important direct corollaries of this proposition. In the first one we
identify the differential equation satisfied by the Shannon interpolation of a solution of
DNLS.

Corollary 1. Let u P C1pR;L2pZqq be a solution of DNLS and let u “ I u P C1pR;BL2q
denote its Shannon interpolation, then for all t P R and almost all ω P p´π, πq,

iBtpupt, ωq “ ´4
´
sin

´ω

2

¯¯2

pupωq ` ν

1ÿ

k“´1

pu ˚ p̄u ˚ pupω ` 2kπq.

In the second corollary, we identify the discrete Sobolev norms.
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Corollary 2. Let u P L2pZq be a sequence, let u “ I u denote its Shannon interpolation.
If n P N˚ then

}u }29HnpZq
“ 1

2π

ż
22n

´
sin

´ω

2

¯¯2n

|pupωq|2 dω .

Consequently, the continuous and discrete homogeneous Sobolev norms are equivalents, i.e.
ˆ
2

π

˙n

}Bnxu}L2pRq ď }u } 9HnpZq ď }Bnxu}L2pRq.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The idea is to construct some
higher modified energies controlling HnphZq norms and whose growth can be controlled by
Hn´1phZq norms. The construction of higher modified energies to study growth of Sobolev
norms is a well known method (see [8] or [14]).

As explained at the end of the introduction, since inequality (5) of Theorem 1.1 is
homogeneous, without loss of generality, we just need to prove it when h “ 1.

3.1. Construction of the modified energies. DNLS is a Hamiltonian differential equa-
tion (see [5]) whose Hamiltonian (i.e. its energy) is defined on L2pZq by

HDNLS “ 1

2
} ¨ }29H1pZq

´ ν

4
} ¨ }4L4pZq.

So HDNLSpuq is a constant of the motion (it can be proven directly computing the discrete
L2 inner product of (1) and uptq).

If u P BL2 is the Shannon interpolation of a sequence u P L2pZq this Hamiltonian can
be written as a function of pu (it is a consequence of Proposition 2)

(8) 2πHDNLSpuq “ 1

2

ż ´
2 sin

ω

2

¯2

|pupωq|2 dω

´ ν

4

ż

w1`w2“w´1`w´2 mod 2π

pupw1qpupw´1qpupw2qpupw´2qdw1dw2dw´1.

The principle of the construction of the modified energies is to change the weights of
these integrals to get a control of high Sobolev norms. To explain this construction, we
need to adopt more compact notations. Some of them are classical for NLS (see [14]).

First, if m P N˚, we define Vm by

Vm :“
#
w P R

J´m,mKzt0u |
mÿ

j“1

wj ´ w´j “ 0 mod 2π

+
,

where J´m,mJ denotes the set t´m, . . . ,mu, and we equip it with its natural measure,
denoted dw, induced by the canonical Lesbegue measure of R2m.

If µ P L8pVmq and if v P L2pRq is supported on r´π, πs, we define Λmpµ, vq by

Λmpµ, vq :“
ż

Vm

µpwq
mź

j“1

vpwjqvpw´jqdw.
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To prove that Λm is well defined, we just need to pay attention to the support of

w ÞÑ µpwq
mź

j“1

vpwjqvpw´jq

and to apply a convolution Young inequality (see Lemma 3.3 for details).

For example, with this notation, we have a more compact expression of (8) given by

(9) 2πHDNLSpuq “ 1

2

ż ´
2 sin

ω

2

¯2

|pupωq|2 dω ´ν

4
Λ2p1V2

, puq.

Then, we define a transformation Sm : L8pVmq Ñ L8pVm`1q by

Smµpw´m´1, w,wm`1q “
mÿ

k“1

µpw ` ekpwm`1 ´ w´m´1qq ´ µpw ´ e´kpwm`1 ´ w´m´1qq,

where pekqkPJ´m,mKzt0u is the canonical basis of RJ´m,mKzt0u.

We define another transformation Dm : L8pRq Ñ L8pVmq by

Dmfpwq “
mÿ

j“1

fpwjq ´ fpw´jq.

We say that a function µ P L8pVmq is 2π periodic with respect to each one of its
variables, and we denote it by µ P L8

perpVmq, if

@k P J´m,mKzt0u, µpw ` 2πekq “ µpwq, w a.e.

The following algebraic lemma explains why these notations are well suited to DNLS.

Lemma 3.1. If m P N˚, µ P L8
perpVmq and u P C1pR;L2pZqq is a solution of DNLS whose

Shannon interpolation is denoted u, then we have

(10) iBtΛmpµ, puq “ 2Λm pµDm cos, puq ` νΛm`1pSmµ, puq.

Proof. By definition, the quantity to identify can expanded as follow

iBtΛmpµ, puq “
mÿ

k“1

ż

Vm

µpwq
”

pupw´kqiBtpupwkq ` pupwkqiBtpupw´kq
ı ź

j‰k

pupwjqpupw´jqdw

“:

mÿ

k“1

Ik ` I´k.

Now, we have to expand Ik and I´k using the definition of DNLS. Applying Proposition
2 we get

@wk P p´π, πq, iBtpupwkq “ p2 coswk ´ 2qpupwkq ` ν
ÿ

ℓPZ

z|u|2upwk ` 2πℓq.
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So, since µ is 2π periodic the direction ek, we deduce

Ik ´ Λmpp2 coswk ´ 2qµ, puq

“ ν

ż

Vm

µpwqpupw´kq
˜

1wkPp´π,πq

ÿ

ℓPZ

z|u|2upwk ` 2πℓq
¸ ź

j‰k

pupwjqpupw´jqdw

“ ν

ż

Vm

µpwqpupw´kq z|u|2upwkq
ź

j‰k

pupwjqpupw´jqdw.

However, since for all ω P R, pupωq “ pup´ωq, we have, for all wk P R,

z|u|2upwkq “
ż

wm`1´w´m´1` rwk“wk

pupwm`1qpup rwkqpupw´m´1qdwm`1dw´m´1.

So, realizing the change of variable wk Ð rwk, we getż

Vm

µpwqpupw´kqz|u|2upwkq
ź

j‰k

pupwjqpupw´jqdw “ Λm`1pµpw ` ekpwm`1 ´ wm`1qq, puq.

Similarly, we could prove that

I´k “ ´Λmpp2 cosw´k ´ 2qµ, puq ´ νΛm`1pµpw ´ e´kpwm`1 ´ wm`1qq, puq.
So, finally, we get

iBtΛmpµ, puq “
mÿ

k“1

Ik ` I´k

“ Λm

˜
mÿ

k“1

rp2 coswk ´ 2q ´ p2 cosw´k ´ 2qsµ, pu
¸

` νΛm`1

˜
mÿ

k“1

µpw ` ekpwm`1 ´ wm`1qq ´ µpw ´ e´kpwm`1 ´ wm`1qq, pu
¸

“ 2Λm pµDm cos, puq ` νΛm`1pSmµ, puq.
�

Corollary 3. Let f P L8pRq, let u P C1pR;L2pZqq be a solution of DNLS and let u be its
Shannon interpolation. Then, we have

Bt
ż
fpωq|pupωq|2 dω “ ν

i

2
Λ2pD2f, puq.

Proof. The result only involves values of f for ω P p´π, πq. So we can assume that f is a
2π periodic function. Now, we observe that, by definition, we have

ż
fpωq|pupωq|2 dω “ Λ1pfpw1q, puq.

So, applying Lemma 3.1, we get

Bt
ż
fpωq|pupωq|2 dω “ ´2iΛ1 ppD1 cosqfpw1q, puq ´ iνΛ2pS2 rfpw1qs , puq.
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Since 2π periodic functions clearly belong to the D1 kernel, the first term is zero. So we
just need to identify the second term. Indeed, paying attention to its symmetries and
remembering that we have assumed that f is 2π periodic function, we get

Λ2pS2 rfpw1qs , puq “ Λ2pfpw1 ` w2 ´ w´2q ´ fpw1q, puq
“ Λ2pfpw´1q ´ fpw1q, puq

“ ´1

2
Λ2pfpw1q ` fpw2q ´ fpw´1q ´ fpw´2q, puq.

�

With these notations and results we can explain more precisely the construction of our
higher modified energies . But first, we explain why it is natural to introduce correction
terms in the construction of our modified energy.

In order to control the discrete 9Hn norm, it would seem natural to control its derivative.
Indeed, if u is a solution of DNLS and if u is its Shannon interpolation, applying Corollary
3 (and Corollary 2), we have

(11) Bt}u }29HnpZq
“ ν

i

4π
Λ2

ˆ
D2

´
2 sin

ω

2

¯2n

, pu
˙
.

So a direct estimation of this derivative would naturally lead to (see Lemma 3.3 for a proof
of this estimate) ˇ̌

ˇBt}u }29HnpZq

ˇ̌
ˇ ď C}u }29HnpZq

}u } 9H1pZq}u }L2pZq,

where C ą 0 is an universal constant. Then assuming that the discrete homogeneous H1

norm can be controlled uniformly on time by M
up0q (see Theorem 5 for the definition of

M
up0q and the next subsection for a proof) and applying Grönwall’s inequality, we would

get an universal constant C ą 0 such that, for all t ě 0,

}uptq} 9HnpZq ď }up0q} 9HnpZqe
CM

4
3

up0q
t
.

If we proceed by homogeneity to get a result depending on the stepsize h, we would get

}uptq} 9HnphZq ď }up0q} 9HnphZqe
CM

4
3

up0q
t
.

Such a control is better than the trivial estimate (4) only for times shorter than ´ n
C
logphq.

So it is quite weak, if we compare it with the estimate of Theorem 5 because this later

gives a non trivial control of }uptq} 9HnpZq for times shorter than h
´ 2n

n´1 .

So to improve this exponential bound, the idea of modified energy is to add a corrector
term to }u }2

9HnpZq
in order to cancel its time derivative (11). However, it turns out that

there is an algebraic obstruction to this construction as shows in Lemma 3.2 below. For this
reason, we consider another functional

ş
fnpωq|pupωq|2 dω, where fn is a real function and

such that this last quantity is equivalent to the square of the 9HnpZq norm. More precisely,
observing the formula of the Hamiltonian (see (9)), we consider a modified energy En given
by

Enpuq “
ż
fnpωq|pupωq|2 dω `Λ2pµn, puq,
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where µn P L8pV2q is a function.

Applying Lemma 3.1 and its Corollary 3, if we want the correction term to cancel the
derivative of

ş
fnpωq|pupωq|2 dω then µn has to solve the equation

(12) νD2fn “ 4µnD2 cos .

Furthermore, if µn is a solution of (12), we would have

BtEnpuq “ ´iνΛ3pS2µn, puq.
With this construction, we will be able to prove Theorem 1.1 by induction because we will
prove that Λ2pµn, puq and Λ3pS2µn, puq are controlled by the square of the 9Hn´1pZq norm.

Of course, we would like to iterate this process cancelling the derivative of Enpuq adding
a new term to our modified energy. However, such a construction involve major algebraic
issues and we do not know if it is possible (we should find some criteria of divisibility by
D3 cos on the ring of trigonometric polynomials on V3).

To realize this strategy, we need, on the one hand, to design a function µn satisfying
(12) without any singularity and, on the other hand, we need to control Λ2pµn, puq and

Λ3pS2µn, puq by the square of the 9Hn´1pZq norm. The two following lemmas treat each one
of these issues.

Lemma 3.2. If f P C8pRq satisfies f “
ωÑ0

Opω2nq , where n P N˚, and if f is an even

function and x ÞÑ fpx´ π
2

q ´ fpπ
2

q is an odd function then there exists C ą 0 such that we
have

@w P V2, |D2fpwq| ď C|D2 cospwq|
ÿ

jPt˘1,˘2u

w2n´2
j .

Proof. Since f is an even function and x ÞÑ fpx ´ π
2

q ´ fpπ
2

q is an odd function, f is a 2π

periodic function whose Fourier series is

fpωq “ fpπ
2

q `
ÿ

kPN

βk cospp2k ` 1qωq with pbkqkPN P R
N.

Furthermore, since f is a C8 function, for all m P N˚, there exists Cm ą 0 such that
ÿ

kPN

|βk|p2k ` 1qm ď Cm.

To get compact notations, we define the function cosk (and similarly sink) by

@ω P R, cosk ω :“ cospp2k ` 1qωq.

If we assume that w1 ` w2 “ w´1 ` w´2 ` 2πj, with j P N then we have

D2 cosk w “ 2 cosk

ˆ
w1 ` w2

2

˙
cosk

ˆ
w1 ´ w2

2

˙
´ 2 cosk

ˆ
w´1 ` w´2

2

˙
cosk

ˆ
w´1 ´ w´2

2

˙

“ 2 cosk

ˆ
w1 ` w2

2

˙ „
cosk

ˆ
w1 ´ w2

2

˙
´ p´1qj cosk

ˆ
w´1 ´ w´2

2

˙
.



BOUNDS ON THE HIGH SOBOLEV NORMS OF DNLS 11

But since 2k ` 1 is odd, we have

p´1qj cosk
ˆ
w´1 ´ w´2

2

˙
“ cosk

ˆ
w´1 ´ w´2

2
` πj

˙
.

So, we get

D2 cosk w

“ 2 cosk

ˆ
w1 ` w2

2

˙ „
cosk

ˆ
w1 ´ w2

2

˙
´ cosk

ˆ
w´1 ´ w´2

2
` πj

˙

“ 4 cosk

ˆ
w1 ` w2

2

˙
sink

ˆ
w1 ´ w2 ´ w´1 ` w´2 ` 2πj

4

˙
sink

ˆ
w1 ´ w2 ` w´1 ´ w´2 ` 2πj

4

˙
.

However, we know that

@ω P R, | sink ω| ď p2k ` 1q| sinpωq|.
Consequently, we can prove the same relation for cosk. Indeed, since 2k ` 1 is an odd
number, for all ω P R, we have

ˇ̌
ˇcosk

´
ω ` π

2

¯ˇ̌
ˇ “ | sink ω| ď p2k ` 1q| sinpωq| “ p2k ` 1q

ˇ̌
ˇcos

´
ω ` π

2

¯ˇ̌
ˇ .

So we deduce that for all w P V2, we have

|D2 coskpwq| ď p2k ` 1q3|D2 cospwq|.
Consequently, we have

(13) |D2fpwq| ď C3|D2 cospwq|.

To conclude this proof, we just need to improve (13) when w is small enough. In this case,
we can forget the aliasing terms because if maxjPt˘1,˘2u |wj | ă π

2
then w1`w2 “ w´1`w´2.

Now we realize the following change of variable
$
’’&
’’%

X “ w1´w2`w3´w4

4
,

Y “ w1´w2´w3`w4

4
,

Z “ w1`w2

2
,

H “ w1 ` w2 ´ w3 ´ w4.

Then we define

F pX,Y,Z,Hq “ D2fpwq.

Previously, we have proven that, for all X,Y,Z P R,

F pX,Y,Z, 0q “
ÿ

kPN

βk cosk Z sink X sink Y.

Consequently, we have

F p0, Y, Z, 0q “ 0 and BXF pX, 0, Z, 0q “ 0.
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So applying a Taylor expansion, we get

F pX,Y,Z, 0q “ F p0, Y, Z, 0q ` X

ż 1

0

BXF pαX, Y,Z, 0qdα

“ X

ż 1

0

ż 1

0

BXF pαX, 0, Z, 0q ` Y BXBY F pαX, βY,Z, 0qdβdα

“ XY

ż 1

0

ż 1

0

BXBY F pαX, βY,Z, 0qdβdα.

However, since f “
ωÑ0

Opω2nq, all the derivatives of f of order less than 2n vanish in

0. Thus, we deduce that all the derivative of F of order less than 2n also vanish in
0. Consequently, realising a Taylor expansion, we get a constant c ą 0 such that if
|X| ` |Y | ` |Z| ` |H| ă 1 then

|BXBY F pX,Y,Z,Hq| ď cp|X| ` |Y | ` |Z| ` |H|q2n´2.

So, if |X| ` |Y | ` |Z| ă 1, we have

|F pX,Y,Z, 0q| ď cXY p|X| ` |Y | ` |Z|q2n´2.

Then we get

|F pX,Y,Z, 0q| ď c

cos 1psinc 1q2 cosZ sinX sinY p|X| ` |Y | ` |Z|q2n´2.

We can write this inequality with the variables w1, w2, w´1, w´2. So, since the norms
are equivalent on tw P Rt˘1,˘2u, w1 ` w2 “ w´1 ` w´2u, there exists κ ą 0 such that for

all w P tw P Rt˘1,˘2u, w1 ` w2 “ w´1 ` w´2u, we have

κ´1p|X| ` |Y | ` |Z|q2n´2 ď
ÿ

jPt˘1,˘2u

|wj |2n´2 ď κp|X| ` |Y | ` |Z|q2n´2.

Thus, there exists C P p0, π
2

q such that if w P V2 satisfies maxjPt˘1,˘2u |wj| ă C´1 then

(14) |D2fpwq| ď C|D2 cospwq|
ÿ

jPt˘1,˘2u

|wj |2n´2.

Finally, to prove the lemma we just need to use (14) when w is small enough and (13)
when it is large. �

Lemma 3.3. Let n,m P N, m ě 2. There exists K ą 0 such that for all u P BL2, we have

Λm

˜
mÿ

j“1

w2n
j ` w2n

´j, |pu|
¸

ď K}Bnxu}2L2pRq}Bxu}m´1
L2pRq

}u}m´1
L2pRq

.

Proof. This lemma is somehow a discrete integration by parts. By linearity, we just need
to prove that

Λm

`
|w1|2n, |pu|

˘
ď C}Bnxu}2L2pRq}Bxu}m´1

L2pRq
}u}m´1

L2pRq
.
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Since, supp |pu| Ă r´π, πs we have

Λm

`
|w1|2n, |pu|

˘
“

m´1ÿ

k“1´m

ż

Vm,k

w2n
1

mź

j“1

|pupwjq||pupw´jq|dw.

where

Vm,k :“
#
w P R

J´m,mKzt0u |
mÿ

j“1

wj ´ w´j “ 2kπ

+
.

So, applying Jensen’s inequality to x ÞÑ xn, we get

ż

Vm,k

w2n
1

mź

j“1

|pupwjq||pupw´jq|dw

“
ż

Vm,k

|ω1|n
ˇ̌
ˇ̌
ˇw´1 `

mÿ

j“2

wj ´ w´j ´ 2kπ

ˇ̌
ˇ̌
ˇ

n mź

j“1

|pupwjq||pupw´jq|dw

ď p2mqn´1

ż

Vm,k

|w1|n
˜

|w´1|n `
mÿ

j“2

|wj|n ` |w´j|n ` |2kπ|n
¸

mź

j“1

|pupwjq||pupw´jq|dw

“ p2mqn´1
“
pm ´ 1qp|ω|n|pu|q˚2 ˚ |pu|˚m´2 ˚ |p̄u|˚m ` mp|ω|n|pu|q ˚ p|ω|n|p̄u|q ˚ |pu|˚m´1 ˚ |p̄u|˚m´1

‰
p2kπq

` p2mqn´1

ż

Vm,k

|w1|n |2kπ|n
mź

j“1

|pupwjq||pupw´jq|dw.

The first term can be estimated by an elementary Young convolution inequality to get

“
pm ´ 1qp|ω|n|pu|q˚2 ˚ |pu|˚m´2 ˚ |p̄u|˚m ` mp|ω|n|pu|q ˚ p|ω|n|p̄u|q ˚ |pu|˚m´1 ˚ |p̄u|˚m´1

‰
p2kπ

h
q

ď p2m ´ 1q}ωnpu}2L2pRq}pu}2m´2
L1pRq

.

The second term is an aliasing term. If k “ 0, this term is 0, so we can assume k ‰ 0.
Now observe that if the sum of 2m numbers, all smaller than 1 is larger than 2 then at
least 2 of them are larger to 1

2m´1
. Consequently, applying the same Young convolution

inequality, we have

ż

Vm,k

|w1|n |2kπ|n
mź

j“1

|pupwjq||pupw´jq|dw

ď
ż

wPVm,k

|w´1|ě π
2m´1

|w1|n |2kπ|n
mź

j“1

|pupwjq||pupw´jq|dw `
ż

wPVm,k

|w2|ě π
2m´1

|ω1|n |2kπ|n
mź

j“1

|pupwjq||pupw´jq|dw

ď p2|k|p2m ´ 1qqn
ż

Vm,k

|w1|np|ω2|n ` |ω´1|nq
mź

j“1

|pupwjq||pupw´jq|dw

ď 2p2|k|p2m ´ 1qqn}ωnpu}2L2pRq}pu}2m´2
L1pRq

.
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To conclude rigorously this proof, we just need to control classically }pu}2
L1pRq by }u}L2pRq}Bxu}L2pRq.

Indeed, if v P H1pRq, using Cauchy Schwarz inequality, we get

}pv}L1pRq ď
?
2π}

a
1 ` ω2pv}L2pRq “ 2π}v}H1pRq.

So, optimizing this inequality with respect to λ through the transformation v Ñ vpλxq, we
get

}pv}L1pRq ď
?
8π}v}L2pRq}Bxv}L2pRq.

�

3.2. Proof of Theorem 1.1 by induction. With all these tools, now, we prove Theorem
1.1. As explained at the beginning of this section, we just need to focus on the case h “ 1.
We are going to proceed by induction.

‚ We focus on the case n “ 1. Let u P C1pR;L2pZqq be a solution of DNLS. Since
HDNLS is a constant of the motion of DNLS, for all t P R, we have

(15) }uptq}29H1pZq
´ ν

2
}uptq}4L4pZq “ }up0q}29H1pZq

´ ν

2
}up0q}4L4pZq.

Since }u }2
L2pZq is also a constant of the motion, we have

}uptq}4L4pZq ď }up0q}2L2pZq}uptq}2L8pZq.

Let u be the Shannon interpolation of u. Since u|Z “ u (see Proposition 1), we
have

}uptq}2L8pZq ď }uptq}2L8pRq ď c}Bxuptq}L2pRq}uptq}L2pRq,

where c is an universal constant associated to the classical Sobolev embedding.
Since Shannon interpolation is an isometry we have proven that

}uptq}4L4phZq ď c}up0q}3L2pZq}Bxuptq}L2pRq.

Now applying the estimate of Corollary (2), we get a discrete Gagliardo-Nirenberg
inequality (for a sharper version of this inequality see Lemma 3.4 in [9])

}uptq}4L4pZq ď 2c

π
}up0q}3L2pZq}uptq} 9H1pZq.

Applying this inequality to (15), we get

}uptq}29H1pZq
´ c

π
}up0q}3L2pZq}uptq} 9H1pZq ď }up0q}29H1pZq

.

Consequently, we have proven that

}uptq} 9H1pZq ď c

2π
}up0q}3L2pZq ` 1

2

c´ c

π
}up0q}3

L2pZq

¯2

` 4}up0q}2
9H1pZq

ď C
´

}up0q} 9H1pZq ` }up0q}3L2pZq

¯
,

with C “ maxp1, c
π

q.
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‚ Let n ě 2, let u P C1pR;L2pZqq be a solution of DNLS satisfying for all t P R

(16) }Bn´1
x uptq}2L2pRq ď C

ˆ
}Bn´1

x u0}2L2pRq ` M
4n´2

3
u0

` |t|n´2M
8n´10

3
u0

˙
,

where u is the Shannon interpolation of u and

Mup0q “ }Bxu0}L2pRq ` }u0}3L2pRq.

Here, it is easier to work with an inequality on u instead of u but applying the
estimate of Corollary (2), (16) is equivalent to the inequality of Theorem 1.1.

First, we are going to construct our modified energy with Lemma 3.2. So we
have to choose our function fn. This function has to satisfy some criteria. First,
we want

ş
fn|pupωq|2 dω to be equivalent to square of the homogeneous Hn norm of

u. So we are looking for a regular function fn such that

(17) @ω P p´π, πq, αω2n ď fnpωq ď α´1ω2n.

Second, we want fn ´ fnpπ
2

q to be even in 0 and odd in π
2
. So we cannot choose

fnpωq “ ω2n or fnpωq “
`
2 sinpω

2
q
˘2n

. To satisfy these symmetries it is natural to
look for fn as a trigonometric polynomial.

By performing an analysis involving elementary linear algebra, we find that fn
defined by

(18) fnpωq :“ 1 ´ cospωq
n´1ÿ

k“0

Ck
2k

4k
psinωq2k,

is the trigonometric polynomial of minimal degree (and such fpπ
2

q “ 1) satisfying
the previous hypothesis. Indeed, by construction, fn ´ 1 is even in 0 and odd in
π
2
. Furthermore, in RJXK (i.e. formally), we have (see, for example, formula 3.6.9

in [2])

1?
1 ´ X2

“
ÿ

kPN

Ck
2k

4k
X2k.

Since, for all ω P p´π
2
, π
2

q, cosω “
a

1 ´ psinωq2, we deduce that

fnpωq “ cospωq
ÿ

kěn

Ck
2k

4k
psinωq2k.

Consequently, we get fn ą 0 on ω P p0, π
2

q and fnpωq „
ωÑ0

Cn
2n

4n
ω2n. So, using the

symmetries of fn, we deduce that there exists α ą 0 such that (17) is satisfied.

Then we define on V2 a function µn P L8pV2q by

µn “ ν

4

D2fn

D2 cos
.

In Lemma 3.2, we have proven that µn is well defined as a L8pV2q function (in fact,
we could have proven that it is a regular function). Furthermore, we have proven
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that for all w P V2, we have

(19) |µnpwq| ď Cn

ÿ

jPt˘1,˘2u

|wj |2n´2,

where Cn depends only of n.

Then we define our modified energy, for v P BL2
1 by

Enpvq :“
ż

R

fnpωq|pvpωq|2 dω `Λ2pµn, pvq.

Applying (17), we get, for all t P R,

2πα}Bnxuptq}2L2pRq “ α

ż
ω2n|pupt, ωq|2 dω

ď
ż
fnpωq|pupt, ωq|2 dω

ď |Enpu0q| ` |Λ2pµn, puptqq| `
ż t

0

|BsEnpupsqq|ds .

To conclude the induction step we have to control each one of these terms.

– First, we focus on

ż t

0

|BsEnpupsqq|ds .

Applying Lemma 3.1, we get

BtEnpuptqq “ ´iνΛ3pS2µn,
yuptqq.

So, applying (19) and Jensen’s inequality to x ÞÑ x2n´2, we get

|BtEnpuptqq| ď Cn3
2n´34Λ3p

3ÿ

j“1

w2n´2
j ` w2n´2

´j , | yuptq|q.

Consequently, applying Lemma 3.3, we get a constant Kn ą 0 such that

|BtEnpuptqq| ď Kn}Bn´1
x uptq}2L2pRq}Bxuptq}2L2pRq}uptq}2L2pRq.

However, as we have proven at the initial step, there exists an universal con-
stant c ą 0 such that

@t P R, }Bxuptq}2L2pRq}uptq}2L2pRq ď cM
8

3
u0
.

So, from the induction hypothesis (see (16)), we get

|BtEnpuptqq| ď κ

ˆ
}Bn´1

x u0}2L2pRqM
8

3
u0

` M
4n`6

3
u0

` |t|n´2M
8n´2

3
u0

˙
,

with κ “ cCKn. Consequently, we have
ˇ̌
ˇ̌
ż t

0

|BsEnpupsqq|ds
ˇ̌
ˇ̌ ď κ

ˆ
|t|}Bn´1

x u0}2L2pRqM
8

3
u0

` |t|M
4n`6

3
u0

` |t|n´1

n ´ 1
M

8n´2

3
u0

˙
.
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It is almost the required estimate of the induction. In fact, we just need to
modify it using Young inequalities. Indeed, on the one hand we have

|t|M
4n`6

3
u0

ď |t|n´1

n ´ 1
M

8n´2

3
u0

` n ´ 2

n ´ 1
M

4n`2

3
u0

.

On the other hand, since, by Hölder inequality,

(20) }Bn´1
x u0}2L2pRq ď }Bnxu0}2

n´2

n´1

L2pRq
}Bxu0}

2

n´1

L2pRq
,

we have

|t|}Bn´1
x u0}2L2pRqM

8

3

u0
ď |t|}Bnxu0}2

n´2

n´1

L2pRq
M

8

3
` 2

n´1

u0
ď n ´ 2

n ´ 1
}Bnxu0}2L2pRq ` |t|n´1

n ´ 1
M

8n´2

3

u0
.

– Second, we focus on |Λ2pµn, puptqq|.
Here, we just need to apply (19) to get

|Λ2pµn, puptqq| ď CnΛ2p
2ÿ

j“1

|wj |2n´2 ` |w´j |2n´2, |puptq|q.

So, we deduce of Lemma 3.3, that there exists κn ą 0 such that

|Λ2pµn, puptqq| ď κn}Bn´1
x uptq}2L2pRq}Bxuptq}L2pRq}uptq}L2pRq.

Consequently, applying the induction hypothesis (see (16)), and the initial
step, we have

|Λ2pµn, puptqq| ď K

ˆ
}Bn´1

x u0}2L2pRqM
4

3

u0
` M

4n`2

3

u0
` |t|n´2M

8n´6

3

u0

˙
,

with K “ Cκnc where c is an universal constant.
As previously, we need to apply some Young inequalities to modify this esti-
mate to get the induction estimate. On the one hand, we have

|t|n´2M
8n´6

3
u0

ď n ´ 2

n ´ 1
tn´1M

8n´2

3
u0

` 1

n ´ 1
M

4n`2

3
u0

.

On the other hand, applying (20), we get

}Bn´1
x u0}2L2pRqM

4

3
u0

ď }Bnxu0}2
n´2

n´1

L2pRq
M

4

3
` 2

n´1

up0q ď n ´ 2

n ´ 1
}Bnxu0}2L2pRq ` 1

n ´ 1
M

4n`2

3
u0

.

– Finally, we focus on |Enpu0q|.
We apply the triangle inequality to get

|Enpu0q| ď
ż
fnpωq|xu0pωq|2 dω `|Λ2pµn,xu0q|.

On the one hand, applying (17), we getż
fnpωq|xu0pωq|2 dω ď α´1

ż
ω2n|pupωq|2 dω “ 2πα´1}B2nx u0}2L2pRq.

On the other hand, applying the estimate of Λ2pµn, puptqq, when t “ 0, we get

|Λ2pµn,xu0q| ď K

ˆ
n ´ 2

n ´ 1
}Bnxu0}2L2pRq `

„
1 ` 1

n ´ 1


M

4n`2

3
u0

˙
.
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