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GRADIENT ESTIMATES FOR STOKES SYSTEMS IN DOMAINS

JONGKEUN CHOI AND HONGJIE DONG

ABSTRACT. We study the stationary Stokes system with Dini mean oscillation
coefficients in a domain having C1-Pini boundary. We prove that if (u,p) is
a weak solution of the system with zero Dirichlet boundary condition, then
(Du, p) is continuous up to the boundary. We also prove a weak type-(1,1)
estimate for (Du, p).

1. INTRODUCTION AND MAIN RESULTS

We consider the stationary Stokes system with variable coefficients

Lu+Vp=Dyfo in Q,
{ . . (1)
divu=g¢g in Q,

where Q is a bounded domain in R?, d > 2. The differential operator L is in
divergence form acting on column vector-valued functions u = (u!,... ,u?)T as
follows:

Lu = Do (AP Dgu),
where the coefficients A%# = A%%(z) are d x d matrix-valued functions on €2, which
satisfy the strong ellipticity condition, i.e., there is a constant A € (0, 1] such that
for any x € R? and &, € RY, o € {1,...,d}, we have

d d
A (@) <AL D A (@)g b =AYl
a,f=1 a=1

In a recent paper [3], we investigated minimal regularity assumptions on coeffi-
cients and data for W1 and C' regularity of weak solutions to the Stokes system
in a ball and a half ball. One of the results in [3] is that every weak solutions of
([T satisty

(u,p) € CHQ) x C(Y), €
provided that the coefficients and data are of Dini mean oscillation. We say that
a function is of Dini mean oscillation if its L'-mean oscillation satisfies the Dini
condition; see Definition [[.T] for more precise definition. This class of functions was
first introduced by Dong-Kim in [§] for C'* and C? regularity of solutions to elliptic
equations in divergence and nondivergence form. A local weak type-(1,1) estimate
for (Du,p) was also proved in [3].
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In this paper, we extend the aforementioned results in [3] to domains up to the
boundary. More precisely, we prove that weak solutions of the Stokes system (L))
with zero Dirichlet boundary condition satisfy

(u,p) € CHEO) x () (1.2)

provided that the coefficients and data are of Dini mean oscillation, and that €2 has
C1Pint houndary. As an application, we obtain Schauder estimate and regularity
for weak solutions, which were studied in [9 Theorem 1.3, p. 198]. We also prove
the global weak type-(1, 1) estimate for (Du, p) under a stronger assumption on the
coefficients and the boundary.

Our argument in establishing (2] is based on the approach used in [6], where
the authors proved boundary C'-estimates for divergence type elliptic equations

D;(a" Dju) = div f

with Dini mean oscillation coefficients on a domain having C*P™ boundary. The
key ingredient is L7-mean oscillation estimates with ¢ € (0,1) for derivatives of
solutions on the boundary. In [6], such mean oscillation estimates were obtained
near a flat boundary and then the boundary C'-estimate follows from that on
the half ball since the mapping of flattening boundary preserves the regularity
assumptions on the coefficients and data. However, this argument does not work for
the Stokes system because after the mapping the pressure term and the divergence
equation give rise to extra terms which are mot of Dini mean oscillation. In this
paper, we establish the L9-mean oscillation estimate near curved boundary. To this
end, we fix a point xg = (201, x)) € O and a coordinate system so that the C1:Dini
function y defining 9 near xq satisfies |V, x(x()| = 0. Then, in this coordinate
system, we employ the mapping of flattening boundary to control the L%-mean
oscillation at xg. Therefore, our mean oscillation estimate at the boundary point
xo depends on the coordinate system and the C1'P™ function y associated with
zo; see Lemma This makes the arguments much more involved.

The remainder of the paper is organized as follows. In the rest of this section,
we state our main results along with some definitions and assumptions. In Section
2 we provide the proofs of the main theorems. In Appendix, we provide the proofs
of some lemmas used in the paper.

For any x € Q and r > 0, we denote Q,(z) = QN B,(z), where B,.(x) is a usual
Euclidean ball of radius r centered at x. We denote B, (z) = B,.(x) N Ri, where

Ri ={z = (11,2 € R?:2 >0,2' € Rd_l}.

For 0 < ¢ < oo, let L(2) be the space consisting of measurable functions on 2
that are g-th integrable. We define

LIQ) = {f € LYQ) : (f)o = 0},
where (f)q is the average of f over Q, i.e.,
1

(fla = Qfd:c:ﬁ Qfd95~

For 1 < ¢ < oo, we denote by Wh4(€2) the usual Sobolev space and by W,(2)
the completion of C§°(2) in W4(Q). We define the Hélder semi-norm by

|f(@) = fy)l
[f]C'f(Q) = JCS;;SQ W

, O0<~vy<l.
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We say that a measurable function w : (0,a] — [0,00) is a Dini function provided
that there are constants c1,co > 0 such that

aw(t) <w(s) < cow(t) whenever — < s<t<a (1.3)

DO =+

and that w satisfies the Dini condition

/aﬂdt < 0. (1.4)
, ¢

Definition 1.1. Let f € L1().
(i) We say that f is uniformly Dini continuous in € if the function ¢y : (0,1] —
[0,00) defined by
of(r):=sup  sup |f(z) - f(y)|
20€EQ x,y€Q(z0)
is a Dini function.

(i4) We say that f is of Dini mean oscillation in  if the function wy : (0,1] —
[0,00) defined by

we(r) == Sup][ |f = (@) | dy
meﬁ QT‘(I)
satisfies the Dini condition

/lwf—(t)dt<oo
o ¢ '

Remark 1.2. Assume that |[Q,.(z)] > Aor? for all z € Qand 0 < » < 1. If f
is of Dini mean oscillation in €2, then f is uniformly continuous in 2 with its
modulus of continuity controlled by w;. Moreover, since w; satisfies the condition
[C3) with (c1,c2) = (c1,¢2)(d, Ag) (see, for instance, [I0, p. 495]), we have that
wyr:(0,1] — [0,00) is a Dini function.

Definition 1.3. Let Q be a domain in R?. We say that  has C*P boundary if
there exist a constant Ry € (0, 1] and a Dini function g : (0, 1] — [0, 00) such that
the following holds: For any xg = (z¢1,zf) € 09, there exists a C1:Pl function
(i.e., C* function whose derivatives are uniformly Dini continuous) y : R™! — R
and a coordinate system depending on zy such that

ov,x(r) < eo(r) forall r € (0, Ro), (1.5)
and that in the new coordinate system, we have
[Varx(25)| =0,  Qr,(w0) = {z € Br,(20) : 21 > x(2')}. (1.6)

Now, we state our main theorems.

Theorem 1.4. Let () be a bounded domain in R? having CVP™ boundary. Assume
that (u,p) € Wy 2(Q)% x L2(Q) is the weak solution of

{Eu—i—Vp:Dafa in €,

divu=g—(g9)a in Q, (17)

where fo € L*(Q)? and g € L?(9).
(a) If A*B, f., and g are of Dini mean oscillation in Q, then we have

(u,p) € CLE)% x C(Q).
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(b) Let 0 < o < 1 and 9Q be C170 i.e., oo(r) = Nr° for some constant N > 0.
If it holds that [AP)cvo () + [falcro @) + [9lcro ) < 00, then we have

(u,p) € CH Q)% x C(Q).

Remark 1.5. By the same reasoning as [3, Remark 2.4], one can extend the results
in Theorem [[4] to the solution of the system

Lu+Vp=f+Dyfo in Q,
divu=g9g—(9)q in £,

where f € L4(Q)? with ¢ > d.

In the next theorem, we prove the global weak type-(1,1) estimate for Du and
.

Theorem 1.6. Let §) be a bounded domain in R? having CTP™ boundary. Assume
that (u,p) € W Y(Q)% x LUQ) is the weak solution of [I0), where fo € LI(Q),
g € LYQ), and q € (1,00). If A*# are of Dini mean oscillation in @ and

00(7) + waes(r) < Co(lnr) ™2, Vr € (0,1/2), (1.8)

then for any t > 0, we have

[z € Q2 [Du(@) +Ip(@)| > 1}] < & / (1fal + |g]) dz, (L9)
Q

where the constant C' depends only on d, A\, Q, Ry, 00, waas, and Cy.

Remark 1.7. Under the hypothesis of Theorem [[4] (a), the unique solvability of
the problem (7) is available in the solution space W, 2(Q)% x L2(Q) as well as
Wyt()% x L9(2) with ¢ € (1,00), when f, € LI(Q)% and g € LI(Q2); see the proof
of Theorem Therefore, in Theorems [[L4] and [[.6] the weak solutions indeed
exist.

We present the W1 9-estimate for a W !-weak solution, which follows from The-
orem[I4] the solvability result mentioned in Remark[[7, and the argument in Brezis
[2] (see also [I, Appendix]). For a proof, one may refer to the proofs of [3| Theorems
2.5 and 5.4], where we proved the Wl4-estimates for Wh!-weak solutions to the

Stokes system with partially Dini mean oscillation coefficients in a ball and a half
ball.

Corollary 1.8. Let q € (1,00) and Q2 be a bounded domain in R? having C1-Pi
boundary. Assume that (u,p) € Wy ()% x LY(Q) is a weak solution of ([IT),
where fo € LY(Q)? and g € LI(Q). If A% are of Dini mean oscillation in 2, then
we have (u,p) € Wy (Q)% x LI(Q) with the estimate

ullwra) + [Plza@) < Clullwra@) + ol + [ falla@) + 9llza@))
where the constant C' depends only on d, A\, , Rg, 00, and w gas .

We finish this section with a remark that, by Corollary [L.§ the results in Theo-
rems [[4] and [ still hold under the assumption that (u,p) € Wy ' (Q)? x L' ().
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2. PROOF OF MAIN THEOREMS
Hereafter in the paper, we use the following notation.

Notation 2.1. For nonnegative (variable) quantities A and B, we denote A < B if
there exists a generic positive constant C such that A < CB. We add subscript
letters like A S B to indicate the dependence of the implicit constant C' on the
parameters a and b.

2.1. Proof of Theorem [I.4l We shall derive a priori estimates for Du and p by
assuming that (u,p) € C1(Q)4 x C(Q). The general case follows from a standard
approximation argument.

Throughout this proof, we use the following notation and properties. Recall that
0o is the Dini function from Definition

i. Weset ¢ =1/2 and
1/q
®(zg,7r) ;= inf <][ |Du—©|7+ |p— 0|4 da:) .
Qr(x[))

ii. For any x € Q and r € (0, 1], we have

! Sd.Roeo |Q(2)]. (2.1)
ili. For v € (0,1) and & € (0,1/2], we define

Bo(r) = 00(r) + > &7 (2ol )7 < 1]+ po(Dlr > 1)),

where we use Inverse bracket notation; i.e., [P] = 1 if P is true and [P] = 0
otherwise. By Lemma Bl g : (0,1] — [0,00) is a Dini function satisfying

t
00(t) Seo 00(8) Seo 00(t) whenever 3 <s<t<l1. (2.2)

Moreover, by the comparison principle for Riemann integrals, we have
oo ) T (t

ulwir) S [ Bt < o0
=0 0

for all r € (0, 1].
iv. For v € (0,1), k € (0,1/2], and f € L'(Q), we denote

Of(r) == Z Y (wy (k™) [ < 1]+ wp (1) [ 'r > 1]).
i=1

By Remark 2] (21]), and Lemma [B1] if f is of Dini mean oscillation in €2,
then @ : (0,1] — [0, 00) is a Dini function satisfying

<s<t<I1

DO | o+

Or(t) Sd,Rovoo D (S) SdoRo.eo @r(t)  whenever

Moreover, we have

for all € (0,1].
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To prove Theorem [[.4] we will use the following three lemmas related to L?-mean
oscillation estimates for Du and p. The first lemma is about the interior estimates,
which is an adaptation of [3, Lemma 4.3].

Lemma 2.1. Let zp € Q and v € (0,1). Under the same hypothesis of Theorem
(a), there exists a constant k1 € (0,1/2] depending only on d, A\, and v, such
that the following hold.

(1) For any 0 < k < k1 and 0 < r < min{1,dist(xg,dN)/4}, we have

oo
Z (I)($07 HJT) Sd,%’y,Ronoﬁ (I)(‘T()v T)
j=0

" D pas(t T (t) 4 Dyt
+||DUHL°°(BT(%))/O Atﬁ()dm-/o @p. () +0g(t)

(1) For any 0 < k < k1 and 0 < p < r < min{l, dist(zo,0)/4}, we have
(w0,0) S (£) ®(e0, ) + DUl (5, 0@ (0) + B, () + 24 ).
Proof. By following the proof of [3, Lemma 4.3], we see that
O (xzg, kr) < Cor®(z0,7)
+ Cor™ (|| Dutl| oo (B, (s wacs (1) + wy, (1) + wy(r))

for all 0 < k < 1/2 and 0 < r < min{1, dist(xq, 9Q)/4}, where Cy = Cy(d, \) > 0.
We take k1 = £1(d, ), 7) € (0,1/2] such that Cor} ” < 1. Then for any 0 < x < ky,
we have

D(xo, k) < K1D(20,7) + C (| Dull oo (B, (20))waes (1) + wp, (7) + wy(r)),
where C' = C(d, \, v, k). By iterating, we obtain for j € {1,2,...} that
®(xg, K1) < K D(z0,7)

o (2.4)
+ O ([ Dull oo (B, (z0))@acs (K1) + O, (K1) + g (K1),
where we used the fact that
J
Z KYO D0 (k770) < ke (KT). (2.5)
=1

Taking the summations of both sides of ([24]) with respect to j = 0,1,2,..., and
using (23], we see that the assertion (7) holds.
For given p € (0,7], let j be an integer such that

Wt o P i
e
If 5 = 0, then obviously we have
.
(@0,p) San ¥(30,7) S (£) @la0,7).
On the other hand, if j > 1, then by (4] with p in place of k77, we get

O (w0, p) S K (x0, 577 p) + [ Dull (s, 5 (wo))Bacs (p) + @r, () + @g(p)

N*]‘p

P\” ~ ~ ~
S (2) @(0,m) + IDull x5, (o @acs (0) + @1 (0) + 24 ).

Therefore, the assertion (i¢) holds. The lemma is proved. O
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In the next lemma, we prove L%-mean oscillation estimates of linear combinations
of Du and p at zyp € 0£2. We note that the LI-mean oscillation and its estimates
depend on the coordinate system associated with xg.

Lemma 2.2. Let 2 € 9 and v € (0,1). Let us fix a CHP™ function y : R~1 —
R and a coordinate system associated with xo satisfying (LI) and ([LG) in Definition
[L3 In this coordinate system, we define

d 1
U(zg,7) := (32}% ( ][Q o |Dyu — ©]7 + Z |DixDyu + Dul? + |p — 0]? dx) /q.
Ocr? e i=2
Then under the same hypothesis of Theorem[1.4) (a), there exist constants
R = Rl(go, Ro) S (0, R0/4) and K9 = Iig(d, )\,’}/, Ry, Qo) S (0, 1/8]
such that the following hold.
(i) For any 0 < k < kg and 0 < r < 2Ry, we have

o0
Z U (o, HjT) Sd Ay, Ro00. Y(T0,T)

7=0
" 00(t) + @ g0 (t)
4 (100l oo + Pt ) [ 25240
" Golt T Qg () 4 @t
+||fOZHL°°(QT(Io))/ #dt—i-/ Mdt,
0 0

(1) For any 0 < k < k2 and 0 < p < r < 2Ry, we have

Y
\IJ(;CO,p) Sd)v’Y,Ro,Qoﬁ (g) \I}(‘TOJ')

+ (IDu]| Lo (9, (o)) + [Pl Loo (@, (20))) (G0(p) + @ as ()
+ [ fall (@, 20))20(p) + @, (p) + @y (p)-
Proof. Recall that we use 0 = (0,0'), 2 = (x1,2’), and y = (y1,v’) to denote points
in R?. Without loss of generality, we assume that 2o = 0 € 99 and x(0’) = 0.
We denote Br = Bg(0), B = B;(0), and Qp = Qg(0). Since |V, x(0))] = 0, it
follows from (LH) that there exists a constant R = R1(00, Ro) € (0, Ro) satisfying
Ve x(z)| <1/2 if |2'| < Ry. (2.6)

Let T'(y) = (y1 + x(v'),y") and A(z) = T 1(2) = (1 — x(2'),2"). We divide the
proof into several steps.
Step 1. In this step, we prove that

Bgl/z C AQry), (2.7)
Q)2 CT(B}) C Qg for € (0,Ry/2]. (2.8)
To prove [27), assume that y € BE1/2' Then we have

lyr + xWOIP+ 1017 < 20 + 20x ()P + [y

< |yl*+ lnl* + 2lx ()12
2

R
< 5 2@
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Notice from (Z6]) that

y/ 2 R2
W) = () — ) < M < B

Combining the above two inequalities, we have |y; + x(v')[* + [¢/|> < R?, which
implies that y € A(Qpg,). Thus we get (27). Using a similar argument, we have

2.3

Step 2. In this step, we use the standard technique of flattening the boundary.
We denote

v(y) = ul(y), 7(y)=pTW). bly)=(0,Dx(y),-... Dax(y)
Since (u,p) satisfies (7)), we have that
Do (AP Dgv) + V7 = Do Fy + Dy(nb) in Bf;
dive =G+ Dyv-b in B;I,
v=0 on Bg, ﬂaRi,

where we set
A = DNP DA AR (), F, = DipA“fi (D), G=g() - (9)a.

Let 0 < 7 < Ry /4. For a given function f, we denote f = (f) g+ Define an elliptic
operator Ly by

Lov = Dy (A*BDgv),

and observe that (v, 7) satisfies
Lov+ V7 = DoFs in Bf,
divi=G+G in BEl,
v=0 on Bpg, ﬂaRi,
where
Fo= (W_AQB)DBU"'Fa — Fy +61a7b, G=G—G+ Dyv-b.
Here, ¢;; is the usual Kronecker delta symbol. We decompose
(v,m) = (vi,m1) + (v2,72), (2.9)
where (v1,m;) € Wy?(B})® x L*(Bj},) is the weak solution of the problem
{ Lovy +Vm = DQ(IBj]-"Q) in By,

divey =I5+ G = (IpG) 5y in Bj.

Here, I+ is the characteristic function. By [3, Lemma 6.5] with scaling, we have
for ¢t > 0 that

1
[ € BE D)+ Im)| > )] San [ (Fal+10Dd.

+
r
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This inequality implies that for 7 > 0,

[ 1o+ iy
= </()T+/Too>qtq1\{yij | Do (y)] + [mi(y)] > £} dt

sigtlet s ([ 1704100y ) e
B

By optimizing over 7 and taking the g-th root, we have

(][Bj(le + |7T1|)qdy>1/q < ][B¢(|fa| +16]) dy. (2.10)

Since (ve,m2) = (v, m) — (v1,71) satisfies
LOUQ +V7T2 =0 in B:r,
divey = (Ip+G) g +G in B,
va=0 on B, ﬂ@Ri,

by [3, Lemma 6.3], we have for any x € (0,1/2],

1/q
(][B+ |D1v2 — (D1112)B¢T |q + |Dy/v2|q + }7‘-2 - (72>B$ |‘1 dy)
x. (2.11)

1/q
Sa koinf (][ |D1vg — O[7 + | Dyrvg|? dy> .
OcRd B

Observe from ([2:9) that

1/q
(][ . ’Dlv — (Dl’l)g)B;rT‘q =+ |Dy/’l)|q =+ ‘TF — (Fg)BiT’qdy)
B

KT

1/q
5 < f + ‘Dlvz B (Dlv2)B¢T |q + |Dy/v2|q + ‘7T2 - (Wz)Bir |q dy)

KT

1/q
+(][ |Dv1|q+|7r1|qdy> .
B+

KT

Using this inequality together with ([2I0) and ([2.I1]), we obtain that

1/q
inf (][ |Div — O+ |Dyvl? + |7 — 0| dy)
+‘

R
eOcRr? o
1/q
Sar ki inf (][ Dy — 0]7 + |Dy/v|qdy> +,fd/q][ (1Ful + 1G]) dy.
OcRd BT+ B:r

Thus, from the definitions of F, and G, and the fact that

]1 |b|dy:][ b b(0)|dy < 0o(r).
B B



10 J. CHOI AND H. DONG

we get

1/q
inf <][ |Div — O]9+ |Dy/v|q—|—|7r—9|qdy)
0cR +
OcRr?

1/q
< k inf < ]l |Dyv — ©|? 4 |Dyv|? dy)
O€cRd B

KT

(2.12)

+ ’“d/q(HDUHLW(Bi) + ||7T||LOO(BT+)) (Qo(r) + ][B+ | AP — AoB| dy)

r

4t ]lB+ (|Fo — Fa + |G =) dy.

We note that

sup [DA(y) — DA(2)| < go(r), sup [DA(y)| <1/2.

y,z€B;T yeB;

Using this and following the proof of [6l Lemma 2.1], we have
F A - T dy Sar o) + {142 (0) - AT dy,
B B
Hence, by the change of variables, [2.8)), and go(r) S, 00(27), we see that
F A =T dy S e0(20) + 0100 (20)
By
Similarly, we have

P =Ta] 516 =) d S ol 20(20) 05, (20) + ).

Therefore, using the change of variables, [210), and (2.8)), we get from ([2.12]) that

d 1/q
inf ][ |D1u—®|q+Z|DixD1u+Diu|q+ lp — 0|7 dx
geeﬂﬂsd Qyir/2 i=2

4 1/q
. 2.13
Sd,A,Ro,Qo K(—)lgugd (J{b |D1U - ®|q ’ Z2 |DiXD1u ! Diur] dw) ( )
+ 679 (| Dul g () + 1Pl L (22,)) (00(27) + waas (2r))
+ 57| fall Lo (20,1 00(27) + wy, (27) + wy(27)).

for 0 <r < Rj/4and k € (0,1/2].
Step 3. We are ready to prove the lemma. By replacing k/4, 2r, and R;/2 by
k, r, and 2Ry in (ZI3]), we obtain for 0 < r < 2R; and x € (0,1/8] that

U(0, k1) < Cor¥(0,71)
+ Cor™ (|| Dull o= (00, + [1Pll Loe(2,)) (00(r) + waas (7))
+ Cor™ V(|| fall L= (2, 0(r) + wy, (1) + wg (1)),
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where Cy = Co(d, A\, Ro, 00) > 0. We take ko = ka(d, \,7, Ro, 00) € (0,1/8] so that
CQK/;_’Y < 1. Then for any 0 < k < Ko, we have
(0, k7) < K7U(0,7) + C([|1Dull oo,y + [Pl L= (0,)) (0(r) + waas (1))
+ Ol fallz=(o,)00(r) + wg, (r) + wy(r)),
where C' = C(d, \,~, Ro, 00, k) > 0. By iterating, we obtain for j € {1,2,...} that
U (0, x7r) < K7U(0,7)
+C(I1Dull @,y + [Pl L ,)) (@o(K71) + Gaas(W77))  (2.14)
+ Cll fallL= (@, 00(877) + @5, (K77) + @g(k'T)),
where we used (23] and
J
Z/{Y(i*l)go(lijfir) < K7 do(KT).
i=1
The estimate (ZI4) corresponds to ([Z4]). The rest of the proof is identical to that
of Lemma [ZT] and is omitted. O

By combining Lemmas 2.1 and 22} we obtain the following L?-mean oscillation
estimates for Du and p.

Lemma 2.3. Let 29 €  and v € (0,1). Under the same hypothesis of Theorem
(a), if R1 = Ri(00, Ro) is the constant from LemmalZ2 and

K= K/(d7 )‘7 Vs R07 :QO) = min{ﬁlu KJ2}7

where k1 and ko are constants from Lemmas[21] and [2.3, then the following hold.

(i) For any 0 <r < Ry, we have

D (20, 577) Sarmrooo T (IDUI L1 o)) + IPIL1 @0 (20))
=0

. ;
0p(t) + w'yas ()
+ (”DUHL“’(Qar(mo))+||p||L°°(Qar(mo)))/O 0 AR tA 2 dt (2.15)

r 4 rof i
oh (1) wh (1) +wi(t)
+ ||fa||L°°(93T(:co))/ = dt +/ % dt,
0 0
where each integration is finite; see Remark[2.4)
(1) For any 0 < p <r < Ry, we have
P\
(@0, ) Sarvroen (£) 77 (1DulL1 0 o)) + [P 2200001

+ (|1 DUl oo (5, (20)) + 1Pl e (25, (o)) ) (25 (0) + ¥y () (2.16)
| fall Lo (@0 (o)) 6(P) + wh_(0) + W (p).

Here, we set

d= o (2) aim), el o (£) G
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Remark 2.4. Note that gg is a Dini function; see [6, pp. 463-464]. By the definition
of o} and ([ZZ), we have

<s<t<R;.

N =+

2779?)@) < gg(s) S0 Qﬁo@)a
Therefore, using the comparison principle for Riemann integrals, we get
oo r ﬁ
; t
3" A7) Sogon /0 QOT() dt < oo, 0<r<R. (2.17)
j=0

Similarly, we have

o "k (1)

foin < f
E Wi (K1) Sd,y, Ros00.5 / — dt < oo, 0<r< Ry, (2.18)
j=0 0

for any f having Dini mean oscillation in (2.

Proof of Lemma[2.3 The estimate ([2.15) is an easy consequence of the estimate
[2I6). Indeed, for j € {0,1,2,...}, by taking p = /r in [2I6]), we have
®(wo, 5'r) S K (| Dull 225, 20)) + 1Pl 22 251 20)
+ (IDull o (0, (w0)) + 1P L (00 (w01 (06 (K 7) + whyas (K77) (2.19)
+ || fall Lo (@ (o)) 05 (K7T) + cha (K77) + wh (k7).
Taking the summations of both sides of (ZI9) with respect to 7 =0,1,2,..., and

using (ZTI7) and 2I1), we conclude 2TH]).

To complete the proof, it suffices to prove that (2I6) holds. Without loss of
generality, we assume that zo = 0 € Q. We denote Br = Bgr(0) and Qr = Qr(0).
Let 0 < p < r < R;. Note that if /6 < p < r, then [2I0) follows from the
definition of ®. Hence we only need to consider the case of 0 < p < r/6. We
consider the following three cases:

r < dist(0,09), dist(0,00) <4p, 4p < dist(0,9Q) < r.
i. r <dist(0,09): Set R =r/4. Since Byr C 2, by Lemma [Z1] (#i), we have

’Y ~ ~ ~
2(0,9) S (£) @0, R) + | Dulle()@acs (0) + 1, (0) + G p):

Thus from the fact that
@a(p) < wi(p), @(0,R) S R (IDullran) + 1Pl 1(0n))

we get (Z10).

ii. dist(0,09) < 4p: We take yo € 99 such that dist(0, 9Q) = |yo|. We fix a C1:Dini
function x and a coordinate system associated with yq satisfying (L5]) and (LGl).
In this coordinate system, using (ZI)) and the fact that Q, C Q5,(yo), we have

d 1/q
®(0,p) Sd.Roeo V(0. 5p) + ( > |DixD1u|‘Zd:c> :
Qs (yo) j=2

where U is given in Lemma 221 Note that

|Darx(2")] = |Darx(2") — Darx(yo)| < 00(5p), " € B, (yp)-
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Using this together with Lemma (i), we obtain that

(0, p) < ¥(yo,5p) + 2o (5p) | Dutl| Lo (25, (y0)) (2.20)
P\ ~ -
S (2) wo.m) + (11Dl + [plll <@ o) (20(50) + @05 (50))
+ [ fallLe (0. (501 0(5p) + @r., (5p) + &g (5p). (2:21)

Since it holds that
(o) C Qar, 8(5p) Sy 0h(p), @a(5p) Sy wi(p),

U(yo,r) S (|| Dullpi(as,) + 1Pl L1 (0s))

we get (216) from (22T]).
iii. 4p < dist(0,09) < r: Set R = dist(0,092)/4, and observe that

p<R, 5R<2r<2R,.
Since Byg C Q, by Lemma 271] (i7), we have

(0,0) S (%) @0, B) + [ Dull g (pr@acs (0) + D1, (0) + Glp). (2:22)

We take yo € 9Q such that dist(0,0Q) = |yo|. We fix a CTPi function x
and a coordinate system associated with yo satisfying ([L3) and (6). In this
coordinate system, similar to (2Z221), we have

(I)(Oa R) 5 \I/(y()a 5R) + QO(SR)HDUHL‘”(QE,R(ZJO))

R\" - -
S () 000,20+ (100 + Dl 0) (B(5T) + 005 1)

+ 1 all (@2 (40)) 00 (5R) + @y, (BR) 4 &g (5R). (2.23)
Combining ([222) and ([Z23), and using the fact that
Q2r(y0) C Q37‘7 \I](yo, 2T) S r_d(”DuHLl(Qgr) + ||p||L1(Q3r))7
we get (210).
The lemma is proved. O

Now we are ready to prove the assertion (a) in the theorem.

Proof of Theorem[I.]] (a). In this proof, we fix v € (0,1). Let R1 = Ri(go, Ro) €
(0, Ro/4) be the constant from Lemma 2.2 and x = k(d, A\, v, Ro, 00) € (0,1/8] be
the constant from Lemma 23] We denote

"k () 4+ wh(t
U = |Dul + p|, g(r):/ wdt'
0

We first derive L*°-estimates for Du and p. Let zp € Q and 0 < r < R;. We
take 05, € R and Oy, ,» € R%*? to be such that

1/q
B (xo, 1) = (][Q | )|Du_@W|q+ |p—ew(,,r|qu) .
r(zo

Similarly, we find 0,, ., € R and 0, ., € R for i € {1,2,...}. Recall the
assumption that (u,p) € C*(Q)? x C(Q). Thus, since the right-hand side of (Z19)
goes to zero as j — 0o, we see that

lim 0, i, = p(x0), lim O, i, = Du(xo). (2.24)
71— 00

1—00
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By averaging the inequality
1O,k — Ougr|? < [Du — O wr|? + [ Du — Oy |
on Q. (x0) and taking the ¢-th root, we have
1Os0.kr — Owo.r| S Do, k1) + P20, 7).

Similarly, we have |0z, xr — Ozo.r| S P(20, k1) + P(20,7). Thus by iterating and

224), we have

|Du(0) = Oyl + [P(x0) = Our| S D Blao, k7). (2.25)
j=0

This inequality together with Lemma 23] () implies
|Du($0) - 610,7‘| + |p($0) - ewo,rl

" Qg(t) + wiaﬁ (t)
t

S 7 Ul + Wl o | @

r f
oy (t
ol oy [ 24 e+ G0,

Note that
1Ozg,r| + [0z0,r| S (0, 7) + r_d||u||L1(Slr(zo)) S T_dHMHLl(QT(mo))-
Combining the above two inequalities, we have

+ w&aﬁ (t)

T u
. 05 (t)
U(zo) < Chr d”u”Ll(Qar(%))+Ol||u||Loo(QST(m0))/O : b "

r 4
op(t
+ il | B+ Crg),
0
where C; = C1(d, A\, 7, Ro, 00). We take rg € (0, R1] so that
"0 f(t) + whos () 1
C1 — " dt < .
Then for any zg € 2 and 0 < r < rg, we have that
U(wo) < Crr™ U (90 (20)) + 37 U Lo (051 (20)) (2.26)
+ 37 fall oo (@ar (20)) + C21G (7).

Here, the constant ry depends only on d, A\, v, Ry, 00, and w 4as.

Now let us fix g € Q and 0 < R < R;. For k € {2,3,...}, we denote r, = R(1—
217F). Since 141 — e = 27FR, we have Qu,(y) C Qp,,, (zo) for any y € Q,, (z0)
and r = 27F"2R. We take ko sufficiently large such that 2=%~2R; < ry. Then by
Z26) with » = 27¥~2R, we have for k > ko that

2k+2 d J
U L= (@, (z0)) < Ch ( 7 ) Ul L@y, o)) + 37 MUl Loy, o))

+37 Y fall Ly, ., (ro)) + C1G(R).
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By multiplying both sides of the above inequality by 3~

with respect to k = kg, ko + 1, ..., we see that

and summing the terms

o0 o0

>3 ¥ UlLe @, o) < CR UL @neony + Y, 3 ¥ IUl L@, o)
k=kgo k=ko+1

+ Cllfall=@n (@) + CG(R),
where each summation is finite and C' = C(d, A, v, Ro, 0o) > 0. By subtracting

Z ‘i)’idk”L{”Lm(ﬂnc (z0))
k=ko+1

from both sides of the above inequality, we get the following L°°-estimate for Du
and p:

U] L= (@ 220y < CR™ U L1 @n(20)) + 1 fall Lo @n(zo) + G(R)) (2.27)

for any 9 € Q and R € (0, Ry], where C = C(d, \, v, Ro, 00, w g08).
Next, we shall derive estimates of the modulus of continuity of Du and p. We
first claim that for any € Q and 0 < p < r < R;/4, we have

%) ) P v
> 0(, 5 p) San.Rooo (;) A 1 (@00 (2
=0 (2.28)

ﬁ f
(Ul + Ul o) [ 22220 i),
We consider the following two cases:
4p < dist(z,0Q) and 4p > dist(x, 09).
i. 4p < dist(z,09): Since Ba,(z) C 2, by Lemma 2T (), we have

P 0 pan(t)
t

>0 109) S blap) + IDulamc, o [ 2 at
Jj=0 ’

P g, (t) + wg(t)
+/O %dt.

From Lemma (44), it follows that
P\Y
©(@,0) 5 (2) r Ul s o) + W e (20,0 (0D P) + s ()
+ | Fallz (@00 (a1 €5 (0) + 5, () + ().
Combining the above two inequalities, and using the fact that

Pt p
Ge(p) <wilp) S /O #dt, 0h(p) S /0 QOT@dt, (2.29)

we get

e ) v
> o(x,wlp) S (5) P Ul (@, o)
= (2.30)

P oh(t) +whas(t)
+ (U] .o (25 (2)) + Hfa||Loo(szgr(m)))/O % dt +G(p).

This inequality implies (Z.28)).
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ii. 4p > dist(z,9Q): Let ig be the integer such that 4k p < dist(x, 9Q) < 4k p.
Since Byiot+1,(x) C Q, by the same reasoning as in (Z.30), we have

oo

; kOH P\
> own'p) Z‘I’ NCAREROBS (T) Ul L@y )

j=io+1

(HMHL“’(Q3T y | fallLee thr(m)))/

Thus we get (using x0T1p < p)

i0+1P QO( ) +wAaﬁ( ) dt+g( i0+1 )

00 ‘ N
> arlp) < (;) r= U 2 (s, (2))
=ttt ﬁ ﬁ (2.31)
? eh() + hos)
L P e e L]

We take yo € 9 such that |yg| = dist(z,09). We fix a coordinate system
associated with yo satisfying (L6). Observe that for j € {0,1,...,io}, we have

anp(x) C QSij(yO)'
Then similar to ([220), we obtain
(I)(:Ev ij) S \I/(y()a 5’{jp) + 90(5ij)||Du||L°°(Qsp(y0))'

Summing the terms with respect to 7 = 0,1,...,17g, and using the fact that

- ; - ; 05 (1)
S 00(5rip) < 3 Go(5p) S / 2w g,
=0 =0

we have
¢ i, j % 0h(t)
PIKICNZIBS Z\I/ Yo, 5K p) + |\Du||Loo(Qsp(y0)) - dt. (2.32)
Jj=0 3=0

Recall that 0 < 5p < 5r < 2R;. Hence, by Lemma [Z2] and ([2Z.29]), we get the
following two inequalities:

i
> W(x,55p) < W(yo,5p)
=0

5p
05 (1) + whys (1)
+ ([l L (25, (w0)) + IIfaIImeSp(yo)))/O A dt+ G (5p),

Wiy 50) 5 (2) w0, 5v)

5p waB
)/ @o()+t,4 (t)

+ (141l oo (95 (o)) + | fall oo (95 (50)) dt + G (5p).

Combining these together, we get from (2.32]) that
‘o . P\ d

> 0@ wp)  (2) Ul @un

j=0

P oh(t) +whas(t)
+ (4]l o (u0r (2)) + 1 fall Lo szmr(m»)/ %dt-ﬁ-g(p)u

(2.33)
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where we used the fact that Qs,(yo) C Qi0r (),

5p p 5p , 4 p 4
0 0 0 3 o U

t t

Therefore, we get (Z28) from (231) and [233).
Now we are ready to estimate the modulus of continuity of Du and p. Let ¢y € Q
and 0 < R < Ry. Let 2,y € Qpa(wo) with p := |z — y| < R/40. Then for any
z € Qy(x) NQ,(y), we have

|Du(z) — Du(y)|
< [Du(z) - ew,p|q + |91,p - 9y,p|q + [Du(y) — 9y,p|q
<2 sup | Du(yo) — 9y07p|q + [Du(z) — ®w7p|q + [Du(z) — ®y7p|q-

YoE€EQ R 4(T0)
By taking average over z € Q,(x) N Q,(y) and taking the ¢g-th root, we have

|Du(z) — Du(y)| S sup  [Du(yo) — Oyl + ®(x, p) + 2(y, p)

YoEQR/4(z0)
< sup > @(yo, 5 p) + B (yo, p)
yUEQR/AL(lEO) j=0

o0
S osup Y ®(yo,kp)
yUEQR/AL(lEO) j=0

where we used ([2.25) in the second inequality. Similarly, we get the same bound
for p, and thus, by using (Z28) and the fact that

Qr/a(yo) C Qrya(wo) for yo € Qrya(wo),
we obtain

P\ p—
|Du() = Du()| + (@) = W) S (%) R IUlls (@0 w00

R
7 0 () + whas (1)
+(HUHLw(nR/z(mo))+|\fa||L°°<szR/2<mo>>)/O At + G (p).

Therefore, by ([227), we have

|Du(z) — Du(y)| + [p(z) — p(y)|
T — 2 lz—y| 8 wﬁ
< CRidHu”Ll(QR(mO)) ((| Ry|> —i—/o M dt)

o § (2.34)
+0HfaHL°°(QR(CE0))/ %dt

(=)

lz—y| 4 wﬁ
o [ AU gy ol —y)

for any @,y € Qg 4(wo) with [z —y| < R/40, where 29 € 2, 0 < R < Ry, and
C > 0 is a constant depending only on d, A, v, Ry, 09, and w4«s. We note that if
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r,y € Qrya(wo) with [z —y| > R/40, then by [Z21), we have
[Du(z) = Du(y)| + |p(z) = p(y)]

S
T —y _ (2.35)
<C (—| 7 |> (R™NUN 1 (o)) + 1 allLo@n(zo)) + G(R))-

The assertion (a) in Theorem [[.4] is proved. O
We now turn to the proof of the assertion (b) in the theorem.

Proof of Theorem[I.7] (b). In this proof, we set v = 1+—27° and po(r) = Nr7, where
v € (0,1) and N > 0. Let Ry = Ri(00,Ro) € (0,Rp/4) be the constant from
Lemma and k = k(d, \,7, Ro, 00) € (0,1/8] be the constant from Lemma 23
Here, we note that

Ry = Rl(’}/OaNa RO) and k= K;(du )‘7’707N7 RO)

By the same reasoning as in [3], Lemma 8.1 (b)], we have

00(1) = 00(r) + Z K7 (0o(K7'r) [k < 1] + 00(1) [k > 1]) Sppe,n 77°
i=1

oo

@y (r) = Z K (wp (57 )T <A+ wp (DT 2 1)) Seao flewo@r™

for any function f satisfying [f]cmo(q) < 0o and 0 < r < R;y. Then it follows from
the definitions of gg and w?v that

oh(r) S0, wi(r) S [flemo@yr™.
Therefore, by 2.27), 234]), and [237]), we conclude that
DUl Lo (@2 ja(w0)) + 1Pl 20 (2 ja(w)) + B ([P0 (2 a(w0)) + [P0 (2 a(20))
< CR™(||Dul 1@ (o)) + P21 @0 (0)))
+ Ol fall Lo (@ (zo)) + CR ([fa)cmo @) + [9lco ()

for any a9 € Q and R € (0, Ry], where C' > 0 is a constant depending only on d,
A, Y0, N, R, and [Aaﬁ]cw()(ﬂ). This completes the proof of the assertion (b) in
Theorem [[4] and that of Theorem [I[.4] O

2.2. Proof of Theorem To prove the theorem, we consider the following two
cases:

2<qg<oo, 1<qg<2.

i. 2 < g < oo: We only need to consider the case when ¢ = 2. We adapt
the arguments in the proof of [6, Theorem 1.9], where the authors proved the
weak type-(1,1) estimate for W1 -2-weak solutions to elliptic equations. By the
hypothesis of the theorem, 2 is a Lipschitz domain, which implies that the
WO1 ’2-solvability of the problem

{Eu—I—Vp:Dafa in Q

divu=g—(g9)o in Q (2:36)
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is available (see, for instance, [4, Lemma 3.2]). Define a bounded linear operator
T on L%(Q)?*4 x L2(Q2) by

T(fla"'afdag) = (Dluv"'aDduap)v

where (u,p) € Wy 2 (Q)% x L*(Q) is the weak solution of (236). To get the
desired estimate ([9), it suffices to show that T satisfies the hypothesis of the
following lemma.

Lemma 2.5. Let Q be a bounded domain in R? satisfying
1Q,.(x)| > Agr®  for all x € Q and r € (0, diam Q. (2.37)

Let T be a bounded linear operator from L?(Q)* to L? (Q)k,Nwhere ke{1,2,...}.
Suppose that for any xo € Q, 0 < r < pdiamQ, and g € L?(Q)* with suppg C

Q- (z0), we have
[ mgarsc [ gas
Q\Bcr(mo) QT(IQ)

where p € (0,1), ¢ € (1,00), and C € (0,00). Then for any t > 0 and
f € L3Q)*, we have

1
o€ Q5T > 0] Sasinecar 7 [ f]d
Q
Proof. See [0l Lemma 4.1]. O

We note that by (21)), Q satisfies 237) with Ay = Ao(d, Ro, 0o, diam Q).
We claim that T satisfies the hypothesis of Lemma 2.5 with

—lmin 1 i
r=7 " diam Q2

}, c=4, C:C(d,)\,Q,Ro,Qo,WAaB,CQ)>0.

Here and in this proof, Ri, K, 0p, e, Qg, and wh are those in the proof of
Theorem [L4l Fix z9 € Q and 0 < r < pdiam . Assume that (u,p) €
Wy2(Q)4 x L*(Q) is the weak solution of (Z38), where f, € L2(Q)% and g €
L?(Q) are supported in Q,(zg). Let R € [4r,diam Q) so that Q\ Br(xo) # 0,
and let £* be the adjoint operator of L, i.e.,
L0 = Do(A% Dgv), A = (AP*)T.
Then by [4, Lemma 3.2], for given
Pa € C5°(Q2r(x0) \ Br(x0))?, ¥ € C5°(Q2r(x0) \ Br(zo)),

there exists a unique (v, 7) € W, 2(Q)% x L?(Q) satisfying

L0+ V1 = Dyo, in Q,
: . (2.38)
divo =1 — (¢Y)q in Q,
and
I1Dv] + |7l 2(0) Saxe lloal + [ 2@k (zo)\Br(zo))- (2.39)

By applying u and v as test functions to ([238)) and ([230]), respectively, we
have

/ (Dot - ¢po + p) da
i (2.40)
N /s (z0) (Dav = (Dav)e, () * fo + (7 = (T)a, (20)) 9 do.
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Observe that
4r < min{Ry, R} < diam .

Since ¢ = ¥ = 0 in Qp(xo), by Z34), (235), and Holder’s inequality, we
obtain that for any =,y € Q,(zo),

[Du(@) = Do(y)] + |m(x) — 7 (y)]
) N 2 b (t) + Wb, (1) (2.41)
<CR d/2|||Dv|+|7r|||L2(QR(zO))((}—%> +/ %dt)
0

where v = 1/2 and C = C(d, \,Q, Ro, 00,waes). Combining [239) — (Z41I),
and then using the duality, we see that

2r M f
1) +wh L (t
/ (|Du|+|p|)dw§M((i)’y+/ Mdt), (2.42)
Qar(z0)\Br(z0) R 0 t

where we set
M = (Ifal + 1g]) dz.
QT(IQ)
Notice from () and [8, Eq. (3.5)] that

d0(p) +@aes(p) < Clnp)~2, Vp e (0,1/2),
where C' = C(v, k,Cy) = C(d, A\, Ro, 00, Co). Then it is routine to verify that

b (p) + whas(p) < Clnp)~2, Vpe (0,Ry],

and thus, we have

2r f # -1
t t
/ Qo()‘f'wAaﬁ()dtS (hll) -
0

t r
This inequality together with (ZZ42]) yields

Y 1\ !
(|Du|+|p|>dxs< r +(1n_> >M,
/921%(%)\31%(10) (R) r

Let N be the smallest positive integer such that Q@ C Bon+1,.(20). By taking
R=2"r ie€{1,2,...,N —1}, and using N — 1 < In(1/r), we have
N—1
/ (|Du| + |p]) dz < C Z (27" + (In(1/r)) )M < CM,
\ By (z0) P
where C = C(d, \,Q, Ry, 00,wpas,Cp). Therefore, the map T satisfies the
hypothesis of Lemma
1 < g < 2: In this case, we use an approximation argument together with
the result in the first case, and the W'4-estimate for the Stokes system in [4]
(see also [7]). By [4, Theorem 5.1 and Corollary 5.3], the W!9-estimate and
solvability are available when the domain §2 has Lipschitz boundary with a small

Lipschitz constant and the coefficients A% have vanishing mean oscillations
(VMO):

lim sup sup ]l | A8 — (Ao‘ﬁ)Br(mﬂ dy = 0. (2.43)
070 peqre(0.6] J Bo(o)
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The coefficients A*? considered in this paper are VMO in the sense that (see
Remark B.3])

lim sup sup ]l | A8 — (Ao‘ﬁ)QT(wﬂ dy =0, (2.44)
07020 re(0.8] J Qr(2)

which is slightly weaker than (2:43). However, it is easy to check that the proofs
of 4, Theorem 5.1 and Corollary 5.3] still work under the condition ([2.44]).

Now, we are ready to prove (LJ) when ¢ € (1,2). Assume that (u,p) €
Wy?(2)4 x L9() is the weak solution of ([IT7), where fo, € LI(Q2)% and g €
LY(Q). Let {far} € L2(Q)? and {gx} C L*(Q) be sequences such that

fak = far g — g in LYQ) as k — . (2.45)
By the W01’2-solvability of the problem (7)), for k € {1,2,...,}, there exists a
unique weak solution (ug, pr) € Wy 2 ()4 x L2(Q2) of (I7) with fax and g in
place of f, and g. Then by the result in the first case, we see that

/

C
[ € 0 Do) + lpnla)l > )] £ S [ (fasl +lg do, vt >0,
Q

where C' = C'(d, \, 2, Ro, 00,w 08, Co). Moreover, since (u — ug,p — pr) €
Wy t(2)4 x LI(Q) satisfies
L(u—uk) +V(p—pr) = Da(fa = far) in €
{ div(u —up) = g — gr — (9)o + (gx)o  in Q,
by the Wl9-estimate and (Z4H), we have
|Du — Dug|| pag) + Ip — PrllLa(o)
S o = faklloae) + 119 — gkllLag) = 0 as k — oco.
Observe that
|{3: € Q: |Du(z)| + |p(z)| > t}‘
< [{z € Q: [Dur(@)| + |pi(@)] > t/2}]
+ {z € Q:|Du(x) — Dug(z)| + [p(z) — pr(x)] > t/2}|
1

1
S [ (osl +loxhdo+ [ (1Du=Dug| +1p— pul)da.
Q Q

Since the right-hand side of the above inequality converges to

1
2 [ sl + oo

we get the desired estimate (L9)).

The theorem is proved. 0

3. APPENDIX

In Appendix, we provide the proofs of some lemmas used in the previous section.

Lemma 3.1. Let w: (0,a] — [0,00) be a Dini function satisfying (L3) and (4.

Set

oo

o(r) == Z Y (w(e™'r) [T < a] + w(a) [k > dl),

=1
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where v € (0,1) and k € (0,1/2]. Then @ : (0,a] — [0,00) is also a Dini function
satisfying

Ot) ey @(8) Sy, w(t)  whenever — <s<t<a (3.1)

N | =+

and that

/a @ dt < oo. (3.2)
0

Proof. Set
w(r) if r <a,

“lr) = {w(a) if r>a,

and observe that
oo

w(r) = Z KTQO(k ™).
i=1
Let £ < s <t < a. To prove (&1, it suffices to show that for any i € {1,2,...},
we have
O(RT%) <oy O(F708) Sep @(KT). (3.3)
For i satisfying k=t < a, by ([3) and the fact that
—i
ot < ks < fi*it,
2
we have
O(E™%) = w(k ™) ey w(kTs) = W(k"8) Sep w(k™) = O(k),

which gives 3. On the other hand, for i satisfying x ‘¢ > a, we consider the two
cases:

Kls < a, K s > a.
If k~%s < a, then by (3] and the fact that
@ —ig o
5 SK's<a
we have
G(k7't) = w(a) Se, w(k™'s) = b(k's) S, wla) = @(x™'t),
which implies ([B3). If £~%s > a, then by the definition of &, we obtain that
O(k™) = O(k"s).
Thus we prove that ([B3]) holds. For the proof of [B2)), we refer to [5, Lemma 1].
The lemma is proved. O

Lemma 3.2. Let w: (0,a] — [0,00) be a Dini function satisfying (L3) and (4.
Then for any e > 0, there exists 6 € (0,1), depending only on ¢1 and e, such that

sup w(r) < e.
r€(0,0]

Proof. Observe that

w(r)<Cy inf w(s)< Co/ w(s) ds
se€r/2,r] rj2 S
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for any r € (0,a], where Cy = Cy(c1). Therefore, for given € > 0, if we take
d = d(c1,e) > 0 such that

5
w(s) €
ds < —
/0 5 s < Co’

then w(r) < e for all r € (0, 4]. O

Remark 3.3. From Remark [[21 and Lemma 3.2 it follows that if f is of Dini mean
oscillation in €2 satisfying Definition [[T] (éi), then f has vanishing mean oscillation
in the sense that

lim sup sup ]l |f = (e, @)l dy =0.
=0 seqre(0,8] J Q. (x)
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