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GRADIENT ESTIMATES FOR STOKES SYSTEMS IN DOMAINS

JONGKEUN CHOI AND HONGJIE DONG

Abstract. We study the stationary Stokes system with Dini mean oscillation
coefficients in a domain having C1,Dini boundary. We prove that if (u, p) is
a weak solution of the system with zero Dirichlet boundary condition, then
(Du, p) is continuous up to the boundary. We also prove a weak type-(1, 1)
estimate for (Du, p).

1. Introduction and main results

We consider the stationary Stokes system with variable coefficients
{

Lu+∇p = Dαfα in Ω,

div u = g in Ω,
(1.1)

where Ω is a bounded domain in R
d, d ≥ 2. The differential operator L is in

divergence form acting on column vector-valued functions u = (u1, . . . , ud)⊤ as
follows:

Lu = Dα(A
αβDβu),

where the coefficients Aαβ = Aαβ(x) are d×d matrix-valued functions on Ω, which
satisfy the strong ellipticity condition, i.e., there is a constant λ ∈ (0, 1] such that
for any x ∈ R

d and ξα ∈ R
d, α ∈ {1, . . . , d}, we have

|Aαβ(x)| ≤ λ−1,
d
∑

α,β=1

Aαβ(x)ξβ · ξα ≥ λ
d
∑

α=1

|ξα|
2.

In a recent paper [3], we investigated minimal regularity assumptions on coeffi-
cients and data for W 1,∞ and C1 regularity of weak solutions to the Stokes system
in a ball and a half ball. One of the results in [3] is that every weak solutions of
(1.1) satisfy

(u, p) ∈ C1(Ω′)d × C(Ω′), Ω′ ⋐ Ω

provided that the coefficients and data are of Dini mean oscillation. We say that
a function is of Dini mean oscillation if its L1-mean oscillation satisfies the Dini
condition; see Definition 1.1 for more precise definition. This class of functions was
first introduced by Dong-Kim in [8] for C1 and C2 regularity of solutions to elliptic
equations in divergence and nondivergence form. A local weak type-(1, 1) estimate
for (Du, p) was also proved in [3].
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In this paper, we extend the aforementioned results in [3] to domains up to the
boundary. More precisely, we prove that weak solutions of the Stokes system (1.1)
with zero Dirichlet boundary condition satisfy

(u, p) ∈ C1(Ω)d × C(Ω) (1.2)

provided that the coefficients and data are of Dini mean oscillation, and that Ω has
C1,Dini boundary. As an application, we obtain Schauder estimate and regularity
for weak solutions, which were studied in [9, Theorem 1.3, p. 198]. We also prove
the global weak type-(1, 1) estimate for (Du, p) under a stronger assumption on the
coefficients and the boundary.

Our argument in establishing (1.2) is based on the approach used in [6], where
the authors proved boundary C1-estimates for divergence type elliptic equations

Di(a
ijDju) = div f

with Dini mean oscillation coefficients on a domain having C1,Dini boundary. The
key ingredient is Lq-mean oscillation estimates with q ∈ (0, 1) for derivatives of
solutions on the boundary. In [6], such mean oscillation estimates were obtained
near a flat boundary and then the boundary C1-estimate follows from that on
the half ball since the mapping of flattening boundary preserves the regularity
assumptions on the coefficients and data. However, this argument does not work for
the Stokes system because after the mapping the pressure term and the divergence
equation give rise to extra terms which are not of Dini mean oscillation. In this
paper, we establish the Lq-mean oscillation estimate near curved boundary. To this
end, we fix a point x0 = (x01, x

′
0) ∈ ∂Ω and a coordinate system so that the C1,Dini

function χ defining ∂Ω near x0 satisfies |∇x′χ(x′0)| = 0. Then, in this coordinate
system, we employ the mapping of flattening boundary to control the Lq-mean
oscillation at x0. Therefore, our mean oscillation estimate at the boundary point
x0 depends on the coordinate system and the C1,Dini function χ associated with
x0; see Lemma 2.2. This makes the arguments much more involved.

The remainder of the paper is organized as follows. In the rest of this section,
we state our main results along with some definitions and assumptions. In Section
2, we provide the proofs of the main theorems. In Appendix, we provide the proofs
of some lemmas used in the paper.

For any x ∈ Ω and r > 0, we denote Ωr(x) = Ω ∩Br(x), where Br(x) is a usual
Euclidean ball of radius r centered at x. We denote B+

r (x) = Br(x) ∩ R
d
+, where

R
d
+ = {x = (x1, x

′) ∈ R
d : x1 > 0, x′ ∈ R

d−1}.

For 0 < q ≤ ∞, let Lq(Ω) be the space consisting of measurable functions on Ω
that are q-th integrable. We define

L̃q(Ω) = {f ∈ Lq(Ω) : (f)Ω = 0},

where (f)Ω is the average of f over Ω, i.e.,

(f)Ω = –

∫

Ω

f dx =
1

|Ω|

∫

Ω

f dx.

For 1 ≤ q ≤ ∞, we denote by W 1,q(Ω) the usual Sobolev space and by W 1,q
0 (Ω)

the completion of C∞
0 (Ω) in W 1,q(Ω). We define the Hölder semi-norm by

[f ]Cγ(Ω) := sup
x,y∈Ω
x 6=y

|f(x)− f(y)|

|x− y|γ
, 0 < γ < 1.
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We say that a measurable function ω : (0, a] → [0,∞) is a Dini function provided
that there are constants c1, c2 > 0 such that

c1ω(t) ≤ ω(s) ≤ c2ω(t) whenever
t

2
≤ s ≤ t ≤ a (1.3)

and that ω satisfies the Dini condition
∫ a

0

ω(t)

t
dt <∞. (1.4)

Definition 1.1. Let f ∈ L1(Ω).

(i) We say that f is uniformly Dini continuous in Ω if the function ̺f : (0, 1] →
[0,∞) defined by

̺f (r) := sup
x0∈Ω

sup
x,y∈Ωr(x0)

|f(x)− f(y)|

is a Dini function.
(ii) We say that f is of Dini mean oscillation in Ω if the function ωf : (0, 1] →

[0,∞) defined by

ωf (r) := sup
x∈Ω

–

∫

Ωr(x)

∣

∣f − (f)Ωr(x)

∣

∣ dy

satisfies the Dini condition
∫ 1

0

ωf(t)

t
dt <∞.

Remark 1.2. Assume that |Ωr(x)| ≥ A0r
d for all x ∈ Ω and 0 < r ≤ 1. If f

is of Dini mean oscillation in Ω, then f is uniformly continuous in Ω with its
modulus of continuity controlled by ωf . Moreover, since ωf satisfies the condition
(1.3) with (c1, c2) = (c1, c2)(d,A0) (see, for instance, [10, p. 495]), we have that
ωf : (0, 1] → [0,∞) is a Dini function.

Definition 1.3. Let Ω be a domain in R
d. We say that Ω has C1,Dini boundary if

there exist a constant R0 ∈ (0, 1] and a Dini function ̺0 : (0, 1] → [0,∞) such that
the following holds: For any x0 = (x01, x

′
0) ∈ ∂Ω, there exists a C1,Dini function

(i.e., C1 function whose derivatives are uniformly Dini continuous) χ : Rd−1 → R

and a coordinate system depending on x0 such that

̺∇x′χ(r) ≤ ̺0(r) for all r ∈ (0, R0), (1.5)

and that in the new coordinate system, we have

|∇x′χ(x′0)| = 0, ΩR0
(x0) = {x ∈ BR0

(x0) : x1 > χ(x′)}. (1.6)

Now, we state our main theorems.

Theorem 1.4. Let Ω be a bounded domain in R
d having C1,Dini boundary. Assume

that (u, p) ∈ W 1,2
0 (Ω)d × L̃2(Ω) is the weak solution of

{

Lu+∇p = Dαfα in Ω,

div u = g − (g)Ω in Ω,
(1.7)

where fα ∈ L2(Ω)d and g ∈ L2(Ω).

(a) If Aαβ , fα, and g are of Dini mean oscillation in Ω, then we have

(u, p) ∈ C1(Ω)d × C(Ω).
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(b) Let 0 < γ0 < 1 and ∂Ω be C1,γ0 , i.e., ̺0(r) = Nrγ0 for some constant N > 0.
If it holds that [Aαβ ]Cγ0 (Ω) + [fα]Cγ0(Ω) + [g]Cγ0(Ω) <∞, then we have

(u, p) ∈ C1,γ0(Ω)d × Cγ0(Ω).

Remark 1.5. By the same reasoning as [3, Remark 2.4], one can extend the results
in Theorem 1.4 to the solution of the system

{

Lu+∇p = f +Dαfα in Ω,

div u = g − (g)Ω in Ω,

where f ∈ Lq(Ω)d with q > d.

In the next theorem, we prove the global weak type-(1, 1) estimate for Du and
p.

Theorem 1.6. Let Ω be a bounded domain in R
d having C1,Dini boundary. Assume

that (u, p) ∈ W 1,q
0 (Ω)d × L̃q(Ω) is the weak solution of (1.7), where fα ∈ Lq(Ω)d,

g ∈ Lq(Ω), and q ∈ (1,∞). If Aαβ are of Dini mean oscillation in Ω and

̺0(r) + ωAαβ(r) ≤ C0(ln r)
−2, ∀r ∈ (0, 1/2), (1.8)

then for any t > 0, we have

∣

∣{x ∈ Ω : |Du(x)|+ |p(x)| > t}
∣

∣ ≤
C

t

∫

Ω

(|fα|+ |g|) dx, (1.9)

where the constant C depends only on d, λ, Ω, R0, ̺0, ωAαβ , and C0.

Remark 1.7. Under the hypothesis of Theorem 1.4 (a), the unique solvability of

the problem (1.7) is available in the solution space W 1,2
0 (Ω)d × L̃2(Ω) as well as

W 1,q
0 (Ω)d× L̃q(Ω) with q ∈ (1,∞), when fα ∈ Lq(Ω)d and g ∈ Lq(Ω); see the proof

of Theorem 1.6. Therefore, in Theorems 1.4 and 1.6, the weak solutions indeed
exist.

We present theW 1,q-estimate for aW 1,1-weak solution, which follows from The-
orem 1.4, the solvability result mentioned in Remark 1.7, and the argument in Brezis
[2] (see also [1, Appendix]). For a proof, one may refer to the proofs of [3, Theorems
2.5 and 5.4], where we proved the W 1,q-estimates for W 1,1-weak solutions to the
Stokes system with partially Dini mean oscillation coefficients in a ball and a half
ball.

Corollary 1.8. Let q ∈ (1,∞) and Ω be a bounded domain in R
d having C1,Dini

boundary. Assume that (u, p) ∈ W 1,1
0 (Ω)d × L̃1(Ω) is a weak solution of (1.7),

where fα ∈ Lq(Ω)d and g ∈ Lq(Ω). If Aαβ are of Dini mean oscillation in Ω, then

we have (u, p) ∈ W 1,q
0 (Ω)d × L̃q(Ω) with the estimate

‖u‖W 1,q(Ω) + ‖p‖Lq(Ω) ≤ C
(

‖u‖W 1,1(Ω) + ‖p‖L1(Ω) + ‖fα‖Lq(Ω) + ‖g‖Lq(Ω)

)

,

where the constant C depends only on d, λ, Ω, R0, ̺0, and ωAαβ .

We finish this section with a remark that, by Corollary 1.8 the results in Theo-
rems 1.4 and 1.6 still hold under the assumption that (u, p) ∈ W 1,1

0 (Ω)d × L̃1(Ω).
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2. Proof of main Theorems

Hereafter in the paper, we use the following notation.

Notation 2.1. For nonnegative (variable) quantities A and B, we denote A . B if
there exists a generic positive constant C such that A ≤ CB. We add subscript
letters like A .a,b B to indicate the dependence of the implicit constant C on the
parameters a and b.

2.1. Proof of Theorem 1.4. We shall derive a priori estimates for Du and p by
assuming that (u, p) ∈ C1(Ω)d × C(Ω). The general case follows from a standard
approximation argument.

Throughout this proof, we use the following notation and properties. Recall that
̺0 is the Dini function from Definition 1.3.

i. We set q = 1/2 and

Φ(x0, r) := inf
θ∈R

Θ∈R
d×d

(

–

∫

Ωr(x0)

|Du−Θ|q + |p− θ|q dx

)1/q

.

ii. For any x ∈ Ω and r ∈ (0, 1], we have

rd .d,R0,̺0
|Ωr(x)|. (2.1)

iii. For γ ∈ (0, 1) and κ ∈ (0, 1/2], we define

˜̺0(r) := ̺0(r) +

∞
∑

i=1

κγi
(

̺0(κ
−ir)[κ−ir < 1] + ̺0(1)[κ

−ir ≥ 1]
)

,

where we use Inverse bracket notation; i.e., [P ] = 1 if P is true and [P ] = 0
otherwise. By Lemma 3.1, ˜̺0 : (0, 1] → [0,∞) is a Dini function satisfying

˜̺0(t) .̺0
˜̺0(s) .̺0

˜̺0(t) whenever
t

2
≤ s ≤ t ≤ 1. (2.2)

Moreover, by the comparison principle for Riemann integrals, we have
∞
∑

j=0

˜̺0(κ
jr) .̺0,κ

∫ r

0

˜̺0(t)

t
dt <∞

for all r ∈ (0, 1].
iv. For γ ∈ (0, 1), κ ∈ (0, 1/2], and f ∈ L1(Ω), we denote

ω̃f (r) :=

∞
∑

i=1

κγi
(

ωf (κ
−ir)[κ−ir < 1] + ωf (1)[κ

−ir ≥ 1]
)

.

By Remark 1.2, (2.1), and Lemma 3.1, if f is of Dini mean oscillation in Ω,
then ω̃f : (0, 1] → [0,∞) is a Dini function satisfying

ω̃f (t) .d,R0,̺0
ω̃f(s) .d,R0,̺0

ω̃f (t) whenever
t

2
≤ s ≤ t ≤ 1.

Moreover, we have
∞
∑

j=0

ω̃f(κ
jr) .d,R0,̺0,κ

∫ r

0

ω̃f (t)

t
dt <∞ (2.3)

for all r ∈ (0, 1].
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To prove Theorem 1.4, we will use the following three lemmas related to Lq-mean
oscillation estimates for Du and p. The first lemma is about the interior estimates,
which is an adaptation of [3, Lemma 4.3].

Lemma 2.1. Let x0 ∈ Ω and γ ∈ (0, 1). Under the same hypothesis of Theorem

1.4 (a), there exists a constant κ1 ∈ (0, 1/2] depending only on d, λ, and γ, such
that the following hold.

(i) For any 0 < κ ≤ κ1 and 0 < r ≤ min{1, dist(x0, ∂Ω)/4}, we have

∞
∑

j=0

Φ(x0, κ
jr) .d,λ,γ,R0,̺0,κ Φ(x0, r)

+ ‖Du‖L∞(Br(x0))

∫ r

0

ω̃Aαβ (t)

t
dt+

∫ r

0

ω̃fα(t) + ω̃g(t)

t
dt.

(ii) For any 0 < κ ≤ κ1 and 0 < ρ ≤ r ≤ min{1, dist(x0, ∂Ω)/4}, we have

Φ(x0, ρ) .d,λ,γ,κ

(ρ

r

)γ

Φ(x0, r) + ‖Du‖L∞(Br(x0))ω̃Aαβ (ρ) + ω̃fα(ρ) + ω̃g(ρ).

Proof. By following the proof of [3, Lemma 4.3], we see that

Φ(x0, κr) ≤ C0κΦ(x0, r)

+ C0κ
−d/q

(

‖Du‖L∞(Br(x0))ωAαβ (r) + ωfα(r) + ωg(r)
)

for all 0 < κ ≤ 1/2 and 0 < r ≤ min{1, dist(x0, ∂Ω)/4}, where C0 = C0(d, λ) > 0.

We take κ1 = κ1(d, λ, γ) ∈ (0, 1/2] such that C0κ
1−γ
1 ≤ 1. Then for any 0 < κ ≤ κ1,

we have

Φ(x0, κr) ≤ κγΦ(x0, r) + C
(

‖Du‖L∞(Br(x0))ωAαβ (r) + ωfα(r) + ωg(r)
)

,

where C = C(d, λ, γ, κ). By iterating, we obtain for j ∈ {1, 2, . . .} that

Φ(x0, κ
jr) ≤ κγjΦ(x0, r)

+ C
(

‖Du‖L∞(Br(x0))ω̃Aαβ (κjr) + ω̃fα(κ
jr) + ω̃g(κ

jr)
)

,
(2.4)

where we used the fact that
j
∑

i=1

κγ(i−1)ω•(κ
j−ir) ≤ κ−γω̃•(κ

jr). (2.5)

Taking the summations of both sides of (2.4) with respect to j = 0, 1, 2, . . ., and
using (2.3), we see that the assertion (i) holds.

For given ρ ∈ (0, r], let j be an integer such that

κj+1 <
ρ

r
≤ κj.

If j = 0, then obviously we have

Φ(x0, ρ) .d,κ Φ(x0, r) .d,κ,γ

(ρ

r

)γ

Φ(x0, r).

On the other hand, if j ≥ 1, then by (2.4) with ρ in place of κjr, we get

Φ(x0, ρ) . κγjΦ(x0, κ
−jρ) + ‖Du‖L∞(Bκ−jρ(x0))ω̃Aαβ (ρ) + ω̃fα(ρ) + ω̃g(ρ)

.
(ρ

r

)γ

Φ(x0, r) + ‖Du‖L∞(Br(x0))ω̃Aαβ (ρ) + ω̃fα(ρ) + ω̃g(ρ).

Therefore, the assertion (ii) holds. The lemma is proved. �
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In the next lemma, we prove Lq-mean oscillation estimates of linear combinations
of Du and p at x0 ∈ ∂Ω. We note that the Lq-mean oscillation and its estimates
depend on the coordinate system associated with x0.

Lemma 2.2. Let x0 ∈ ∂Ω and γ ∈ (0, 1). Let us fix a C1,Dini function χ : Rd−1 →
R and a coordinate system associated with x0 satisfying (1.5) and (1.6) in Definition

1.3. In this coordinate system, we define

Ψ(x0, r) := inf
θ∈R

Θ∈R
d

(

–

∫

Ωr(x0)

|D1u−Θ|q +
d
∑

i=2

|DiχD1u+Diu|
q + |p− θ|q dx

)1/q

.

Then under the same hypothesis of Theorem 1.4 (a), there exist constants

R1 = R1(̺0, R0) ∈ (0, R0/4) and κ2 = κ2(d, λ, γ, R0, ̺0) ∈ (0, 1/8]

such that the following hold.

(i) For any 0 < κ ≤ κ2 and 0 < r ≤ 2R1, we have

∞
∑

j=0

Ψ(x0, κ
jr) .d,λ,γ,R0,̺0,κ Ψ(x0, r)

+
(

‖Du‖L∞(Ωr(x0)) + ‖p‖L∞(Ωr(x0))

)

∫ r

0

˜̺0(t) + ω̃Aαβ (t)

t
dt

+ ‖fα‖L∞(Ωr(x0))

∫ r

0

˜̺0(t)

t
dt+

∫ r

0

ω̃fα(t) + ω̃g(t)

t
dt.

(ii) For any 0 < κ ≤ κ2 and 0 < ρ ≤ r ≤ 2R1, we have

Ψ(x0, ρ) .d,λ,γ,R0,̺0,κ

(ρ

r

)γ

Ψ(x0, r)

+
(

‖Du‖L∞(Ωr(x0)) + ‖p‖L∞(Ωr(x0))

)(

˜̺0(ρ) + ω̃Aαβ (ρ)
)

+ ‖fα‖L∞(Ωr(x0)) ˜̺0(ρ) + ω̃fα(ρ) + ω̃g(ρ).

Proof. Recall that we use 0 = (0, 0′), x = (x1, x
′), and y = (y1, y

′) to denote points
in R

d. Without loss of generality, we assume that x0 = 0 ∈ ∂Ω and χ(0′) = 0.
We denote BR = BR(0), B

+
R = B+

R(0), and ΩR = ΩR(0). Since |∇x′χ(0′)| = 0, it
follows from (1.5) that there exists a constant R1 = R1(̺0, R0) ∈ (0, R0) satisfying

|∇x′χ(x′)| ≤ 1/2 if |x′| ≤ R1. (2.6)

Let Γ(y) = (y1 + χ(y′), y′) and Λ(x) = Γ−1(x) = (x1 − χ(x′), x′). We divide the
proof into several steps.

Step 1. In this step, we prove that

B+
R1/2

⊂ Λ(ΩR1
), (2.7)

Ωr/2 ⊂ Γ(B+
r ) ⊂ Ω2r for r ∈ (0, R1/2]. (2.8)

To prove (2.7), assume that y ∈ B+
R1/2

. Then we have

|y1 + χ(y′)|2 + |y′|2 ≤ 2|y1|
2 + 2|χ(y′)|2 + |y′|2

≤ |y|2 + |y1|
2 + 2|χ(y′)|2

<
R2

1

2
+ 2|χ(y′)|2.
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Notice from (2.6) that

|χ(y′)|2 = |χ(y′)− χ(0′)|2 ≤
|y′|2

4
<
R2

1

4
.

Combining the above two inequalities, we have |y1 + χ(y′)|2 + |y′|2 < R2
1, which

implies that y ∈ Λ(ΩR1
). Thus we get (2.7). Using a similar argument, we have

(2.8).
Step 2. In this step, we use the standard technique of flattening the boundary.

We denote

v(y) = u(Γ(y)), π(y) = p(Γ(y)), b(y) = (0, D2χ(y
′), . . . , Ddχ(y

′))⊤.

Since (u, p) satisfies (1.7), we have that














Dα(A
αβDβv) +∇π = DαFα +D1(πb) in B+

R1
,

div v = G+D1v · b in B+
R1
,

v = 0 on BR1
∩ ∂Rd

+,

where we set

Aαβ = DℓΛ
βDkΛ

αAkℓ(Γ), Fα = DkΛ
αfk(Γ), G = g(Γ)− (g)Ω.

Let 0 < r ≤ R1/4. For a given function f , we denote f = (f)B+
r
. Define an elliptic

operator L0 by

L0v = Dα(AαβDβv),

and observe that (v, π) satisfies














L0v +∇π = DαFα in B+
R1
,

div v = G +G in B+
R1
,

v = 0 on BR1
∩ ∂Rd

+,

where

Fα =
(

Aαβ −Aαβ
)

Dβv + Fα − Fα + δ1απb, G = G−G+D1v · b.

Here, δij is the usual Kronecker delta symbol. We decompose

(v, π) = (v1, π1) + (v2, π2), (2.9)

where (v1, π1) ∈ W 1,2
0 (B+

4r)
d × L̃2(B+

4r) is the weak solution of the problem

{

L0v1 +∇π1 = Dα(IB+
r
Fα) in B+

4r,

div v1 = IB+
r
G −

(

IB+
r
G
)

B+

4r
in B+

4r.

Here, IB+
r

is the characteristic function. By [3, Lemma 6.5] with scaling, we have
for t > 0 that

∣

∣{y ∈ B+
r : |Dv1(y)|+ |π1(y)| > t}

∣

∣ .d,λ
1

t

∫

B+
r

(|Fα|+ |G|) dy.
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This inequality implies that for τ > 0,
∫

B+
r

(|Dv1|+ |π1|)
q dy

=

(
∫ τ

0

+

∫ ∞

τ

)

qtq−1
∣

∣{y ∈ B+
r : |Dv1(y)|+ |π1(y)| > t}

∣

∣ dt

. |B+
r |τq +

(
∫

B+
r

|Fα|+ |G| dy

)

τq−1.

By optimizing over τ and taking the q-th root, we have

(

–

∫

B+
r

(|Dv1|+ |π1|)
q dy

)1/q

. –

∫

B+
r

(|Fα|+ |G|) dy. (2.10)

Since (v2, π2) = (v, π)− (v1, π1) satisfies














L0v2 +∇π2 = 0 in B+
r ,

div v2 =
(

IB+
r
G
)

B+

4r
+G in B+

r ,

v2 = 0 on Br ∩ ∂R
d
+,

by [3, Lemma 6.3], we have for any κ ∈ (0, 1/2],

(

–

∫

B+
κr

∣

∣D1v2 − (D1v2)B+
κr

∣

∣

q
+ |Dy′v2|

q +
∣

∣π2 − (π2)B+
κr

∣

∣

q
dy

)1/q

.d,λ κ inf
Θ∈Rd

(

–

∫

B+
r

|D1v2 −Θ|q + |Dy′v2|
q dy

)1/q

.

(2.11)

Observe from (2.9) that

(

–

∫

B+
κr

∣

∣D1v − (D1v2)B+
κr

∣

∣

q
+ |Dy′v|q +

∣

∣π − (π2)B+
κr

∣

∣

q
dy

)1/q

.

(

–

∫

B+
κr

∣

∣D1v2 − (D1v2)B+
κr

∣

∣

q
+ |Dy′v2|

q +
∣

∣π2 − (π2)B+
κr

∣

∣

q
dy

)1/q

+

(

–

∫

B+
κr

|Dv1|
q + |π1|

q dy

)1/q

.

Using this inequality together with (2.10) and (2.11), we obtain that

inf
θ∈R

Θ∈R
d

(

–

∫

B+
κr

|D1v −Θ|q + |Dy′v|q + |π − θ|q dy

)1/q

.d,λ κ inf
Θ∈Rd

(

–

∫

B+
r

|D1v −Θ|q + |Dy′v|q dy

)1/q

+ κ−d/q –

∫

B+
r

(|Fα|+ |G|) dy.

Thus, from the definitions of Fα and G, and the fact that

–

∫

B+
r

|b| dy = –

∫

B+
r

|b− b(0)| dy ≤ ̺0(r),
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we get

inf
θ∈R

Θ∈R
d

(

–

∫

B+
κr

|D1v −Θ|q + |Dy′v|q + |π − θ|q dy

)1/q

. κ inf
Θ∈Rd

(

–

∫

B+
r

|D1v −Θ|q + |Dy′v|q dy

)1/q

+ κ−d/q
(

‖Dv‖L∞(B+
r ) + ‖π‖L∞(B+

r )

)

(

̺0(r) + –

∫

B+
r

∣

∣Aαβ −Aαβ
∣

∣ dy

)

+ κ−d/q –

∫

B+
r

(
∣

∣Fα − Fα

∣

∣+
∣

∣G−G
∣

∣

)

dy.

(2.12)

We note that

sup
y,z∈B+

r

|DΛ(y)−DΛ(z)| ≤ ̺0(r), sup
y∈B+

r

|DΛ(y)| ≤ 1/2.

Using this and following the proof of [6, Lemma 2.1], we have

–

∫

B+
r

∣

∣Aαβ −Aαβ
∣

∣ dy .d,λ ̺0(r) + –

∫

B+
r

∣

∣Aαβ(Γ)−Aαβ(Γ)
∣

∣ dy.

Hence, by the change of variables, (2.8), and ̺0(r) .̺0
̺0(2r), we see that

–

∫

B+
r

∣

∣Aαβ −Aαβ
∣

∣ dy .d,λ,̺0
̺0(2r) + ωAαβ (2r).

Similarly, we have

–

∫

B+
r

(∣

∣Fα − Fα

∣

∣+
∣

∣G−G
∣

∣

)

dy .d,̺0
‖fα‖L∞(Ω2r)̺0(2r) + ωfα(2r) + ωg(2r).

Therefore, using the change of variables, (2.1), and (2.8), we get from (2.12) that

inf
θ∈R

Θ∈R
d

(

–

∫

Ωκr/2

|D1u−Θ|q +
d
∑

i=2

|DiχD1u+Diu|
q + |p− θ|q dx

)1/q

.d,λ,R0,̺0
κ inf

Θ∈Rd

(

–

∫

Ω2r

|D1u−Θ|q +
d
∑

i=2

|DiχD1u+Diu|
q dx

)1/q

+ κ−d/q
(

‖Du‖L∞(Ω2r) + ‖p‖L∞(Ω2r)

)

(̺0(2r) + ωAαβ (2r))

+ κ−d/q(‖fα‖L∞(Ω2r)̺0(2r) + ωfα(2r) + ωg(2r)).

(2.13)

for 0 < r ≤ R1/4 and κ ∈ (0, 1/2].
Step 3. We are ready to prove the lemma. By replacing κ/4, 2r, and R1/2 by

κ, r, and 2R1 in (2.13), we obtain for 0 < r ≤ 2R1 and κ ∈ (0, 1/8] that

Ψ(0, κr) ≤ C0κΨ(0, r)

+ C0κ
−d/q

(

‖Du‖L∞(Ωr) + ‖p‖L∞(Ωr)

)

(̺0(r) + ωAαβ (r))

+ C0κ
−d/q(‖fα‖L∞(Ωr)̺0(r) + ωfα(r) + ωg(r)),
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where C0 = C0(d, λ,R0, ̺0) > 0. We take κ2 = κ2(d, λ, γ, R0, ̺0) ∈ (0, 1/8] so that

C0κ
1−γ
2 ≤ 1. Then for any 0 < κ ≤ κ2, we have

Ψ(0, κr) ≤ κγΨ(0, r) + C
(

‖Du‖L∞(Ωr) + ‖p‖L∞(Ωr)

)

(̺0(r) + ωAαβ(r))

+ C(‖fα‖L∞(Ωr)̺0(r) + ωfα(r) + ωg(r)),

where C = C(d, λ, γ, R0, ̺0, κ) > 0. By iterating, we obtain for j ∈ {1, 2, . . .} that

Ψ(0, κjr) ≤ κγjΨ(0, r)

+ C
(

‖Du‖L∞(Ωr) + ‖p‖L∞(Ωr)

)

(˜̺0(κ
jr) + ω̃Aαβ (κjr))

+ C(‖fα‖L∞(Ωr) ˜̺0(κ
jr) + ω̃fα(κ

jr) + ω̃g(κ
jr)),

(2.14)

where we used (2.5) and

j
∑

i=1

κγ(i−1)̺0(κ
j−ir) ≤ κ−γ ˜̺0(κ

jr).

The estimate (2.14) corresponds to (2.4). The rest of the proof is identical to that
of Lemma 2.1 and is omitted. �

By combining Lemmas 2.1 and 2.2, we obtain the following Lq-mean oscillation
estimates for Du and p.

Lemma 2.3. Let x0 ∈ Ω and γ ∈ (0, 1). Under the same hypothesis of Theorem

1.4 (a), if R1 = R1(̺0, R0) is the constant from Lemma 2.2 and

κ = κ(d, λ, γ, R0, ̺0) = min{κ1, κ2},

where κ1 and κ2 are constants from Lemmas 2.1 and 2.2, then the following hold.

(i) For any 0 < r ≤ R1, we have

∞
∑

j=0

Φ(x0, κ
jr) .d,λ,γ,R0,̺0

r−d
(

‖Du‖L1(Ω3r(x0)) + ‖p‖L1(Ω3r(x0))

)

+
(

‖Du‖L∞(Ω3r(x0)) + ‖p‖L∞(Ω3r(x0))

)

∫ r

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt

+ ‖fα‖L∞(Ω3r(x0))

∫ r

0

̺♯0(t)

t
dt+

∫ r

0

ω♯
fα
(t) + ω♯

g(t)

t
dt,

(2.15)

where each integration is finite; see Remark 2.4

(ii) For any 0 < ρ ≤ r ≤ R1, we have

Φ(x0, ρ) .d,λ,γ,R0,̺0

(ρ

r

)γ

r−d
(

‖Du‖L1(Ω3r(x0)) + ‖p‖L1(Ω3r(x0))

)

+
(

‖Du‖L∞(Ω3r(x0)) + ‖p‖L∞(Ω3r(x0))

)

(̺♯0(ρ) + ω♯
Aαβ (ρ))

+ ‖fα‖L∞(Ω3r(x0))̺
♯
0(ρ) + ω♯

fα
(ρ) + ω♯

g(ρ).

(2.16)

Here, we set

̺♯0(ρ) := sup
ρ≤R≤R1

( ρ

R

)γ

˜̺0(R), ω♯
•(ρ) := sup

ρ≤R≤R1

( ρ

R

)γ

ω̃•(R).
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Remark 2.4. Note that ̺♯0 is a Dini function; see [6, pp. 463–464]. By the definition

of ̺♯0 and (2.2), we have

2−γ̺♯0(t) ≤ ̺♯0(s) .γ,̺0
̺♯0(t),

t

2
≤ s ≤ t ≤ R1.

Therefore, using the comparison principle for Riemann integrals, we get

∞
∑

j=0

̺♯0(κ
jr) .γ,̺0,κ

∫ r

0

̺♯0(t)

t
dt <∞, 0 < r ≤ R1. (2.17)

Similarly, we have

∞
∑

j=0

ω♯
f(κ

jr) .d,γ,R0,̺0,κ

∫ r

0

ω♯
f (t)

t
dt <∞, 0 < r ≤ R1, (2.18)

for any f having Dini mean oscillation in Ω.

Proof of Lemma 2.3. The estimate (2.15) is an easy consequence of the estimate
(2.16). Indeed, for j ∈ {0, 1, 2, . . .}, by taking ρ = κjr in (2.16), we have

Φ(x0, κ
jr) . κγjr−d

(

‖Du‖L1(Ω3r(x0)) + ‖p‖L1(Ω3r(x0))

)

+
(

‖Du‖L∞(Ω3r(x0)) + ‖p‖L∞(Ω3r(x0))

)

(̺♯0(κ
jr) + ω♯

Aαβ (κ
jr))

+ ‖fα‖L∞(Ω3r(x0))̺
♯
0(κ

jr) + ω♯
fα
(κjr) + ω♯

g(κ
jr).

(2.19)

Taking the summations of both sides of (2.19) with respect to j = 0, 1, 2, . . ., and
using (2.17) and (2.18), we conclude (2.15).

To complete the proof, it suffices to prove that (2.16) holds. Without loss of
generality, we assume that x0 = 0 ∈ Ω. We denote BR = BR(0) and ΩR = ΩR(0).
Let 0 < ρ ≤ r ≤ R1. Note that if r/6 < ρ ≤ r, then (2.16) follows from the
definition of Φ. Hence we only need to consider the case of 0 < ρ ≤ r/6. We
consider the following three cases:

r ≤ dist(0, ∂Ω), dist(0, ∂Ω) ≤ 4ρ, 4ρ < dist(0, ∂Ω) < r.

i. r ≤ dist(0, ∂Ω): Set R = r/4. Since B4R ⊂ Ω, by Lemma 2.1 (ii), we have

Φ(0, ρ) .
( ρ

R

)γ

Φ(0, R) + ‖Du‖L∞(BR)ω̃Aαβ (ρ) + ω̃fα(ρ) + ω̃g(ρ).

Thus from the fact that

ω̃•(ρ) ≤ ω♯
•(ρ), Φ(0, R) . R−d

(

‖Du‖L1(ΩR) + ‖p‖L1(ΩR)

)

,

we get (2.16).
ii. dist(0, ∂Ω) ≤ 4ρ: We take y0 ∈ ∂Ω such that dist(0, ∂Ω) = |y0|. We fix a C1,Dini

function χ and a coordinate system associated with y0 satisfying (1.5) and (1.6).
In this coordinate system, using (2.1) and the fact that Ωρ ⊂ Ω5ρ(y0), we have

Φ(0, ρ) .d,R0,̺0
Ψ(y0, 5ρ) +

(

–

∫

Ω5ρ(y0)

d
∑

i=2

|DiχD1u|
q dx

)1/q

,

where Ψ is given in Lemma 2.2. Note that

|Dx′χ(x′)| = |Dx′χ(x′)−Dx′χ(y′0)| ≤ ̺0(5ρ), x′ ∈ B′
5ρ(y

′
0).



STOKES SYSTEM 13

Using this together with Lemma 2.2 (ii), we obtain that

Φ(0, ρ) . Ψ(y0, 5ρ) + ̺0(5ρ)‖Du‖L∞(Ω5ρ(y0)) (2.20)

.
(ρ

r

)γ

Ψ(y0, r) +
(

‖|Du|+ |p|‖L∞(Ωr(y0))

)(

˜̺0(5ρ) + ω̃Aαβ(5ρ)
)

+ ‖fα‖L∞(Ωr(y0)) ˜̺0(5ρ) + ω̃fα(5ρ) + ω̃g(5ρ). (2.21)

Since it holds that

Ωr(y0) ⊂ Ω3r, ˜̺(5ρ) .γ ̺
♯
0(ρ), ω̃•(5ρ) .γ ω

♯
•(ρ),

Ψ(y0, r) . r−d
(

‖Du‖L1(Ω3r) + ‖p‖L1(Ω3r)

)

,

we get (2.16) from (2.21).
iii. 4ρ < dist(0, ∂Ω) < r: Set R = dist(0, ∂Ω)/4, and observe that

ρ < R, 5R < 2r ≤ 2R1.

Since B4R ⊂ Ω, by Lemma 2.1 (ii), we have

Φ(0, ρ) .
( ρ

R

)γ

Φ(0, R) + ‖Du‖L∞(BR)ω̃Aαβ (ρ) + ω̃fα(ρ) + ω̃g(ρ). (2.22)

We take y0 ∈ ∂Ω such that dist(0, ∂Ω) = |y0|. We fix a C1,Dini function χ
and a coordinate system associated with y0 satisfying (1.5) and (1.6). In this
coordinate system, similar to (2.21), we have

Φ(0, R) . Ψ(y0, 5R) + ̺0(5R)‖Du‖L∞(Ω5R(y0))

.

(

R

r

)γ

Ψ(y0, 2r) +
(

‖|Du|+ |p|‖L∞(Ω2r(y0))

)(

˜̺0(5R) + ω̃Aαβ (5R)
)

+ ‖fα‖L∞(Ω2r(y0)) ˜̺0(5R) + ω̃fα(5R) + ω̃g(5R). (2.23)

Combining (2.22) and (2.23), and using the fact that

Ω2r(y0) ⊂ Ω3r, Ψ(y0, 2r) . r−d
(

‖Du‖L1(Ω3r) + ‖p‖L1(Ω3r)

)

,

we get (2.16).

The lemma is proved. �

Now we are ready to prove the assertion (a) in the theorem.

Proof of Theorem 1.4 (a). In this proof, we fix γ ∈ (0, 1). Let R1 = R1(̺0, R0) ∈
(0, R0/4) be the constant from Lemma 2.2 and κ = κ(d, λ, γ, R0, ̺0) ∈ (0, 1/8] be
the constant from Lemma 2.3. We denote

U = |Du|+ |p|, G(r) =

∫ r

0

ω♯
fα
(t) + ω♯

g(t)

t
dt.

We first derive L∞-estimates for Du and p. Let x0 ∈ Ω and 0 < r ≤ R1. We
take θx0,r ∈ R and Θx0,r ∈ R

d×d to be such that

Φ(x0, r) =

(

–

∫

Ωr(x0)

|Du−Θx0,r|
q + |p− θx0,r|

q dx

)1/q

.

Similarly, we find θx0,κir ∈ R and Θx0,κir ∈ R
d×d for i ∈ {1, 2, . . .}. Recall the

assumption that (u, p) ∈ C1(Ω)d ×C(Ω). Thus, since the right-hand side of (2.19)
goes to zero as j → ∞, we see that

lim
i→∞

θx0,κir = p(x0), lim
i→∞

Θx0,κir = Du(x0). (2.24)
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By averaging the inequality

|Θx0,κr −Θx0,r|
q ≤ |Du−Θx0,κr|

q + |Du−Θx0,r|
q

on Ωκr(x0) and taking the q-th root, we have

|Θx0,κr −Θx0,r| . Φ(x0, κr) + Φ(x0, r).

Similarly, we have |θx0,κr − θx0,r| . Φ(x0, κr) + Φ(x0, r). Thus by iterating and
(2.24), we have

|Du(x0)−Θx0,r|+ |p(x0)− θx0,r| .
∞
∑

j=0

Φ(x0, κ
jr). (2.25)

This inequality together with Lemma 2.3 (i) implies

|Du(x0)−Θx0,r|+ |p(x0)− θx0,r|

. r−d‖U‖L1(Ω3r(x0)) + ‖U‖L∞(Ω3r(x0))

∫ r

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt

+ ‖fα‖L∞(Ω3r(x0))

∫ r

0

̺♯0(t)

t
dt+ G(r).

Note that

|Θx0,r|+ |θx0,r| . Φ(x0, r) + r−d‖U‖L1(Ωr(x0)) . r−d‖U‖L1(Ωr(x0)).

Combining the above two inequalities, we have

U(x0) ≤ C1r
−d‖U‖L1(Ω3r(x0)) + C1‖U‖L∞(Ω3r(x0))

∫ r

0

̺♯0(t) + ω♯
Aαβ(t)

t
dt

+ C1‖fα‖L∞(Ω3r(x0))

∫ r

0

̺♯0(t)

t
dt+ C1G(r),

where C1 = C1(d, λ, γ, R0, ̺0). We take r0 ∈ (0, R1] so that

C1

∫ r0

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt ≤

1

3d
.

Then for any x0 ∈ Ω and 0 < r ≤ r0, we have that

U(x0) ≤ C1r
−d‖U‖L1(Ω3r(x0)) + 3−d‖U‖L∞(Ω3r(x0))

+ 3−d‖fα‖L∞(Ω3r(x0)) + C1G(r).
(2.26)

Here, the constant r0 depends only on d, λ, γ, R0, ̺0, and ωAαβ .
Now let us fix x0 ∈ Ω and 0 < R ≤ R1. For k ∈ {2, 3, . . .}, we denote rk = R(1−

21−k). Since rk+1 − rk = 2−kR, we have Ω4r(y) ⊂ Ωrk+1
(x0) for any y ∈ Ωrk(x0)

and r = 2−k−2R. We take k0 sufficiently large such that 2−k0−2R1 ≤ r0. Then by
(2.26) with r = 2−k−2R, we have for k ≥ k0 that

‖U‖L∞(Ωrk
(x0)) ≤ C1

(

2k+2

R

)d

‖U‖L1(Ωrk+1
(x0)) + 3−d‖U‖L∞(Ωrk+1

(x0))

+ 3−d‖fα‖L∞(Ωrk+1
(x0)) + C1G(R).
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By multiplying both sides of the above inequality by 3−dk and summing the terms
with respect to k = k0, k0 + 1, . . ., we see that

∞
∑

k=k0

3−dk‖U‖L∞(Ωrk
(x0)) ≤ CR−d‖U‖L1(ΩR(x0)) +

∞
∑

k=k0+1

3−dk‖U‖L∞(Ωrk
(x0))

+ C‖fα‖L∞(ΩR(x0)) + CG(R),

where each summation is finite and C = C(d, λ, γ, R0, ̺0) > 0. By subtracting
∞
∑

k=k0+1

3−dk‖U‖L∞(Ωrk
(x0))

from both sides of the above inequality, we get the following L∞-estimate for Du
and p:

‖U‖L∞(ΩR/2(x0)) ≤ C
(

R−d‖U‖L1(ΩR(x0)) + ‖fα‖L∞(ΩR(x0)) + G(R)
)

(2.27)

for any x0 ∈ Ω and R ∈ (0, R1], where C = C(d, λ, γ, R0, ̺0, ωAαβ).
Next, we shall derive estimates of the modulus of continuity of Du and p. We

first claim that for any x ∈ Ω and 0 < ρ ≤ r ≤ R1/4, we have
∞
∑

j=0

Φ(x, κjρ) .d,λ,γ,R0,̺0

(ρ

r

)γ

r−d‖U‖L1(Ω10r(x))

+
(

‖U‖L∞(Ω10r(x)) + ‖fα‖L∞(Ω10r(x))

)

∫ ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(ρ).

(2.28)

We consider the following two cases:

4ρ ≤ dist(x, ∂Ω) and 4ρ > dist(x, ∂Ω).

i. 4ρ ≤ dist(x, ∂Ω): Since B4ρ(x) ⊂ Ω, by Lemma 2.1 (i), we have
∞
∑

j=0

Φ(x, κjρ) . Φ(x, ρ) + ‖Du‖L∞(Bρ(x))

∫ ρ

0

ω̃Aαβ (t)

t
dt

+

∫ ρ

0

ω̃fα(t) + ω̃g(t)

t
dt.

From Lemma 2.3 (ii), it follows that

Φ(x, ρ) .
(ρ

r

)γ

r−d‖U‖L1(Ω3r(x)) + ‖U‖L∞(Ω3r(x))(̺
♯
0(ρ) + ω♯

Aαβ(ρ))

+ ‖fα‖L∞(Ω3r(x))̺
♯
0(ρ) + ω♯

fα
(ρ) + ω♯

g(ρ).

Combining the above two inequalities, and using the fact that

ω̃•(ρ) ≤ ω♯
•(ρ) .

∫ ρ

0

ω♯
•(t)

t
dt, ̺♯0(ρ) .

∫ ρ

0

̺♯0(t)

t
dt, (2.29)

we get
∞
∑

j=0

Φ(x, κjρ) .
(ρ

r

)γ

r−d‖U‖L1(Ω3r(x))

+
(

‖U‖L∞(Ω3r(x)) + ‖fα‖L∞(Ω3r(x))

)

∫ ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(ρ).

(2.30)

This inequality implies (2.28).
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ii. 4ρ > dist(x, ∂Ω): Let i0 be the integer such that 4κi0+1ρ ≤ dist(x, ∂Ω) < 4κi0ρ.
Since B4κi0+1ρ(x) ⊂ Ω, by the same reasoning as in (2.30), we have

∞
∑

j=i0+1

Φ(x, κjρ) =
∞
∑

j=0

Φ(x, κj+i0+1ρ) .

(

κi0+1ρ

r

)γ

r−d‖U‖L1(Ω3r(x))

+
(

‖U‖L∞(Ω3r(x)) + ‖fα‖L∞(Ω3r(x))

)

∫ κi0+1ρ

0

̺♯0(t) + ω♯
Aαβ(t)

t
dt+ G(κi0+1ρ).

Thus we get (using κi0+1ρ ≤ ρ)
∞
∑

j=i0+1

Φ(x, κjρ) .
(ρ

r

)γ

r−d‖U‖L1(Ω3r(x))

+
(

‖U‖L∞(Ω3r(x)) + ‖fα‖L∞(Ω3r(x))

)

∫ ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(ρ).

(2.31)

We take y0 ∈ ∂Ω such that |y0| = dist(x, ∂Ω). We fix a coordinate system
associated with y0 satisfying (1.6). Observe that for j ∈ {0, 1, . . . , i0}, we have

Ωκjρ(x) ⊂ Ω5κjρ(y0).

Then similar to (2.20), we obtain

Φ(x, κjρ) . Ψ(y0, 5κ
jρ) + ̺0(5κ

jρ)‖Du‖L∞(Ω5ρ(y0)).

Summing the terms with respect to j = 0, 1, . . . , i0, and using the fact that

i0
∑

j=0

̺0(5κ
jρ) ≤

∞
∑

j=0

˜̺0(5κ
jρ) .

∫ 5ρ

0

̺♯0(t)

t
dt,

we have
i0
∑

j=0

Φ(x, κjρ) .

i0
∑

j=0

Ψ(y0, 5κ
jρ) + ‖Du‖L∞(Ω5ρ(y0))

∫ 5ρ

0

̺♯0(t)

t
dt. (2.32)

Recall that 0 < 5ρ ≤ 5r ≤ 2R1. Hence, by Lemma 2.2 and (2.29), we get the
following two inequalities:

i0
∑

j=0

Ψ(x, 5κjρ) . Ψ(y0, 5ρ)

+
(

‖U‖L∞(Ω5ρ(y0)) + ‖fα‖L∞(Ω5ρ(y0))

)

∫ 5ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(5ρ),

Ψ(y0, 5ρ) .
(ρ

r

)γ

Ψ(y0, 5r)

+
(

‖U‖L∞(Ω5r(y0)) + ‖fα‖L∞(Ω5r(y0))

)

∫ 5ρ

0

̺♯0(t) + ω♯
Aαβ(t)

t
dt+ G(5ρ).

Combining these together, we get from (2.32) that

i0
∑

j=0

Φ(x, κjρ) .
(ρ

r

)γ

r−d‖U‖L1(Ω10r(x))

+
(

‖U‖L∞(Ω10r(x)) + ‖fα‖L∞(Ω10r(x))

)

∫ ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(ρ),

(2.33)
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where we used the fact that Ω5r(y0) ⊂ Ω10r(x),

∫ 5ρ

0

̺♯0(t)

t
dt .

∫ ρ

0

̺♯0(t)

t
dt,

∫ 5ρ

0

ω♯
•(t)

t
dt .

∫ ρ

0

ω♯
•(t)

t
dt.

Therefore, we get (2.28) from (2.31) and (2.33).

Now we are ready to estimate the modulus of continuity of Du and p. Let x0 ∈ Ω
and 0 < R ≤ R1. Let x, y ∈ ΩR/4(x0) with ρ := |x − y| ≤ R/40. Then for any
z ∈ Ωρ(x) ∩ Ωρ(y), we have

|Du(x)−Du(y)|q

≤ |Du(x)− Θx,ρ|
q + |Θx,ρ −Θy,ρ|

q + |Du(y)− Θy,ρ|
q

≤ 2 sup
y0∈ΩR/4(x0)

|Du(y0)−Θy0,ρ|
q + |Du(z)−Θx,ρ|

q + |Du(z)−Θy,ρ|
q.

By taking average over z ∈ Ωρ(x) ∩ Ωρ(y) and taking the q-th root, we have

|Du(x)−Du(y)| . sup
y0∈ΩR/4(x0)

|Du(y0)−Θy0,ρ|+Φ(x, ρ) + Φ(y, ρ)

. sup
y0∈ΩR/4(x0)

(

∞
∑

j=0

Φ(y0, κ
jρ) + Φ(y0, ρ)

)

. sup
y0∈ΩR/4(x0)

∞
∑

j=0

Φ(y0, κ
jρ)

where we used (2.25) in the second inequality. Similarly, we get the same bound
for p, and thus, by using (2.28) and the fact that

ΩR/4(y0) ⊂ ΩR/2(x0) for y0 ∈ ΩR/4(x0),

we obtain

|Du(x)−Du(y)|+ |p(x)− p(y)| .
( ρ

R

)γ

R−d‖U‖L1(ΩR/2(x0))

+
(

‖U‖L∞(ΩR/2(x0)) + ‖fα‖L∞(ΩR/2(x0))

)

∫ ρ

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ G(ρ).

Therefore, by (2.27), we have

|Du(x)−Du(y)|+ |p(x) − p(y)|

≤ CR−d‖U‖L1(ΩR(x0))

(

(

|x− y|

R

)γ

+

∫ |x−y|

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt

)

+ C‖fα‖L∞(ΩR(x0))

∫ |x−y|

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt

+ CG(R)

∫ |x−y|

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt+ CG(|x− y|)

(2.34)

for any x, y ∈ ΩR/4(x0) with |x − y| ≤ R/40, where x0 ∈ Ω, 0 < R ≤ R1, and
C > 0 is a constant depending only on d, λ, γ, R0, ̺0, and ωAαβ . We note that if
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x, y ∈ ΩR/4(x0) with |x− y| > R/40, then by (2.27), we have

|Du(x)−Du(y)|+ |p(x)− p(y)|

≤ C

(

|x− y|

R

)γ
(

R−d‖U‖L1(ΩR(x0)) + ‖fα‖L∞(ΩR(x0)) + G(R)
)

.
(2.35)

The assertion (a) in Theorem 1.4 is proved. �

We now turn to the proof of the assertion (b) in the theorem.

Proof of Theorem 1.4 (b). In this proof, we set γ = 1+γ0

2 and ̺0(r) = Nrγ0 , where
γ0 ∈ (0, 1) and N > 0. Let R1 = R1(̺0, R0) ∈ (0, R0/4) be the constant from
Lemma 2.2 and κ = κ(d, λ, γ, R0, ̺0) ∈ (0, 1/8] be the constant from Lemma 2.3.
Here, we note that

R1 = R1(γ0, N,R0) and κ = κ(d, λ, γ0, N,R0).

By the same reasoning as in [3, Lemma 8.1 (b)], we have

˜̺0(r) = ̺0(r) +
∞
∑

i=1

κγi
(

̺0(κ
−ir)[κ−ir < 1] + ̺0(1)[κ

−ir ≥ 1]
)

.κ,γ0,N rγ0

and

ω̃f (r) =

∞
∑

i=1

κγi
(

ωf(κ
−ir)[κ−ir < 1] + ωf (1)[κ

−ir ≥ 1]
)

.κ,γ0
[f ]Cγ0(Ω)r

γ0

for any function f satisfying [f ]Cγ0(Ω) < ∞ and 0 < r ≤ R1. Then it follows from

the definitions of ̺♯0 and ω♯
f that

̺♯0(r) . rγ0 , ω♯
f (r) . [f ]Cγ0(Ω)r

γ0 .

Therefore, by (2.27), (2.34), and (2.35), we conclude that

‖Du‖L∞(ΩR/2(x0)) + ‖p‖L∞(ΩR/2(x0)) +Rγ0
(

[Du]Cγ0(ΩR/4(x0)) + [p]Cγ0(ΩR/4(x0))

)

≤ CR−d
(

‖Du‖L1(ΩR(x0)) + ‖p‖L1(ΩR(x0))

)

+ C‖fα‖L∞(ΩR(x0)) + CRγ0
(

[fα]Cγ0(Ω) + [g]Cγ0(Ω)

)

for any x0 ∈ Ω and R ∈ (0, R1], where C > 0 is a constant depending only on d,
λ, γ0, N , R0, and [Aαβ ]Cγ0 (Ω). This completes the proof of the assertion (b) in
Theorem 1.4, and that of Theorem 1.4. �

2.2. Proof of Theorem 1.6. To prove the theorem, we consider the following two
cases:

2 ≤ q <∞, 1 < q < 2.

i. 2 ≤ q < ∞: We only need to consider the case when q = 2. We adapt
the arguments in the proof of [6, Theorem 1.9], where the authors proved the
weak type-(1, 1) estimate for W 1,2-weak solutions to elliptic equations. By the
hypothesis of the theorem, Ω is a Lipschitz domain, which implies that the
W 1,2

0 -solvability of the problem
{

Lu +∇p = Dαfα in Ω

div u = g − (g)Ω in Ω
(2.36)
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is available (see, for instance, [4, Lemma 3.2]). Define a bounded linear operator
T on L2(Ω)d×d × L2(Ω) by

T (f1, . . . , fd, g) = (D1u, . . . , Ddu, p),

where (u, p) ∈ W 1,2
0 (Ω)d × L̃2(Ω) is the weak solution of (2.36). To get the

desired estimate (1.9), it suffices to show that T satisfies the hypothesis of the
following lemma.

Lemma 2.5. Let Ω be a bounded domain in R
d satisfying

|Ωr(x)| ≥ A0r
d for all x ∈ Ω and r ∈ (0, diamΩ]. (2.37)

Let T be a bounded linear operator from L2(Ω)k to L2(Ω)k, where k ∈ {1, 2, . . .}.
Suppose that for any x0 ∈ Ω, 0 < r < µ diamΩ, and g ∈ L̃2(Ω)k with supp g ⊂
Ωr(x0), we have

∫

Ω\Bcr(x0)

|Tg| dx ≤ C

∫

Ωr(x0)

|g| dx,

where µ ∈ (0, 1), c ∈ (1,∞), and C ∈ (0,∞). Then for any t > 0 and

f ∈ L2(Ω)k, we have

∣

∣{x ∈ Ω : |Tf(x)| > t}
∣

∣ .d,Ω,k,µ,c,C,A0

1

t

∫

Ω

|f | dx.

Proof. See [6, Lemma 4.1]. �

We note that by (2.1), Ω satisfies (2.37) with A0 = A0(d,R0, ̺0, diamΩ).
We claim that T satisfies the hypothesis of Lemma 2.5 with

µ =
1

4
min

{

1,
R1

diamΩ

}

, c = 4, C = C(d, λ,Ω, R0, ̺0, ωAαβ , C0) > 0.

Here and in this proof, R1, κ, ˜̺0, ω̃•, ̺
♯
0, and ω♯

• are those in the proof of
Theorem 1.4. Fix x0 ∈ Ω and 0 < r < µ diamΩ. Assume that (u, p) ∈
W 1,2

0 (Ω)d × L̃2(Ω) is the weak solution of (2.36), where fα ∈ L̃2(Ω)d and g ∈

L̃2(Ω) are supported in Ωr(x0). Let R ∈ [4r, diamΩ) so that Ω \ BR(x0) 6= ∅,
and let L∗ be the adjoint operator of L, i.e.,

L∗v = Dα(A
αβ
∗ Dβv), Aαβ

∗ = (Aβα)⊤.

Then by [4, Lemma 3.2], for given

φα ∈ C∞
0 (Ω2R(x0) \BR(x0))

d, ψ ∈ C∞
0 (Ω2R(x0) \BR(x0)),

there exists a unique (v, π) ∈W 1,2
0 (Ω)d × L̃2(Ω) satisfying

{

L∗v +∇π = Dαφα in Ω,

div v = ψ − (ψ)Ω in Ω,
(2.38)

and
‖|Dv|+ |π|‖L2(Ω) .d,λ,Ω ‖|φα|+ |ψ|‖L2(Ω2R(x0)\BR(x0)). (2.39)

By applying u and v as test functions to (2.38) and (2.36), respectively, we
have

∫

Ω

(Dαu · φα + pψ) dx

=

∫

Ωr(x0)

(

Dαv − (Dαv)Ωr(x0)

)

· fα +
(

π − (π)Ωr(x0)

)

g dx.
(2.40)
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Observe that

4r ≤ min{R1, R} < diamΩ.

Since φα = ψ = 0 in ΩR(x0), by (2.34), (2.35), and Hölder’s inequality, we
obtain that for any x, y ∈ Ωr(x0),

|Dv(x) −Dv(y)|+ |π(x)− π(y)|

≤ CR−d/2‖|Dv|+ |π|‖L2(ΩR(x0))

(

( r

R

)γ

+

∫ 2r

0

̺♯0(t) + ω♯
Aαβ (t)

t
dt

)

,
(2.41)

where γ = 1/2 and C = C(d, λ,Ω, R0, ̺0, ωAαβ). Combining (2.39) – (2.41),
and then using the duality, we see that

∫

Ω2R(x0)\BR(x0)

(|Du|+ |p|) dx .M

(

( r

R

)γ

+

∫ 2r

0

̺♯0(t) + ω♯
Aαβ(t)

t
dt

)

, (2.42)

where we set

M =

∫

Ωr(x0)

(|fα|+ |g|) dx.

Notice from (1.8) and [8, Eq. (3.5)] that

˜̺0(ρ) + ω̃Aαβ (ρ) ≤ C(ln ρ)−2, ∀ρ ∈ (0, 1/2),

where C = C(γ, κ, C0) = C(d, λ,R0, ̺0, C0). Then it is routine to verify that

̺♯0(ρ) + ω♯
Aαβ (ρ) ≤ C(ln ρ)−2, ∀ρ ∈ (0, R1],

and thus, we have

∫ 2r

0

̺♯0(t) + ω♯
Aαβ(t)

t
dt .

(

ln
1

r

)−1

.

This inequality together with (2.42) yields

∫

Ω2R(x0)\BR(x0)

(|Du|+ |p|) dx .

(

( r

R

)γ

+

(

ln
1

r

)−1)

M.

Let N be the smallest positive integer such that Ω ⊂ B2N+1r(x0). By taking
R = 2i+1r, i ∈ {1, 2, . . . , N − 1}, and using N − 1 . ln(1/r), we have

∫

Ω\B4r(x0)

(|Du|+ |p|) dx ≤ C

N−1
∑

k=1

(

2−kγ + (ln(1/r))−1
)

M ≤ CM,

where C = C(d, λ,Ω, R0, ̺0, ωAαβ , C0). Therefore, the map T satisfies the
hypothesis of Lemma 2.5.

ii. 1 < q < 2: In this case, we use an approximation argument together with
the result in the first case, and the W 1,q-estimate for the Stokes system in [4]
(see also [7]). By [4, Theorem 5.1 and Corollary 5.3], the W 1,q-estimate and
solvability are available when the domain Ω has Lipschitz boundary with a small
Lipschitz constant and the coefficients Aαβ have vanishing mean oscillations
(VMO):

lim
δ→0

sup
x∈Ω

sup
r∈(0,δ]

–

∫

Br(x)

|Aαβ − (Aαβ)Br(x)| dy = 0. (2.43)
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The coefficients Aαβ considered in this paper are VMO in the sense that (see
Remark 3.3)

lim
δ→0

sup
x∈Ω

sup
r∈(0,δ]

–

∫

Ωr(x)

|Aαβ − (Aαβ)Ωr(x)| dy = 0, (2.44)

which is slightly weaker than (2.43). However, it is easy to check that the proofs
of [4, Theorem 5.1 and Corollary 5.3] still work under the condition (2.44).

Now, we are ready to prove (1.9) when q ∈ (1, 2). Assume that (u, p) ∈

W 1,q
0 (Ω)d × L̃q(Ω) is the weak solution of (1.7), where fα ∈ Lq(Ω)d and g ∈

Lq(Ω). Let {fα,k} ⊂ L2(Ω)d and {gk} ⊂ L2(Ω) be sequences such that

fα,k → fα, gk → g in Lq(Ω) as k → ∞. (2.45)

By the W 1,2
0 -solvability of the problem (1.7), for k ∈ {1, 2, . . . , }, there exists a

unique weak solution (uk, pk) ∈W 1,2
0 (Ω)d × L̃2(Ω) of (1.7) with fα,k and gk in

place of fα and g. Then by the result in the first case, we see that

∣

∣{x ∈ Ω : |Duk(x)| + |pk(x)| > t}
∣

∣ ≤
C′

t

∫

Ω

(|fα,k|+ |gk|) dx, ∀t > 0,

where C′ = C′(d, λ,Ω, R0, ̺0, ωAαβ , C0). Moreover, since (u − uk, p − pk) ∈

W 1,q
0 (Ω)d × L̃q(Ω) satisfies

{

L(u − uk) +∇(p− pk) = Dα(fα − fα,k) in Ω,

div(u − uk) = g − gk − (g)Ω + (gk)Ω in Ω,

by the W 1,q-estimate and (2.45), we have

‖Du−Duk‖Lq(Ω) + ‖p− pk‖Lq(Ω)

. ‖fα − fα,k‖Lq(Ω) + ‖g − gk‖Lq(Ω) → 0 as k → ∞.

Observe that
∣

∣{x ∈ Ω : |Du(x)|+ |p(x)| > t}
∣

∣

≤
∣

∣{x ∈ Ω : |Duk(x)|+ |pk(x)| > t/2}
∣

∣

+
∣

∣{x ∈ Ω : |Du(x)−Duk(x)|+ |p(x) − pk(x)| > t/2}
∣

∣

.C′

1

t

∫

Ω

(|fα,k|+ |gk|) dx+
1

tq

∫

Ω

(|Du−Duk|+ |p− pk|)
q dx.

Since the right-hand side of the above inequality converges to

1

t

∫

Ω

(|fα|+ |g|) dx,

we get the desired estimate (1.9).

The theorem is proved. �

3. Appendix

In Appendix, we provide the proofs of some lemmas used in the previous section.

Lemma 3.1. Let ω : (0, a] → [0,∞) be a Dini function satisfying (1.3) and (1.4).
Set

ω̃(r) :=

∞
∑

i=1

κγi
(

ω(κ−ir)[κ−ir < a] + ω(a)[κ−ir ≥ a]
)

,
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where γ ∈ (0, 1) and κ ∈ (0, 1/2]. Then ω̃ : (0, a] → [0,∞) is also a Dini function

satisfying

ω̃(t) .c1 ω̃(s) .c2 ω̃(t) whenever
t

2
≤ s ≤ t ≤ a (3.1)

and that
∫ a

0

ω̃(t)

t
dt <∞. (3.2)

Proof. Set

ω̂(r) =

{

ω(r) if r < a,

ω(a) if r ≥ a,

and observe that

ω̃(r) =

∞
∑

i=1

κγiω̂(κ−ir).

Let t
2 ≤ s ≤ t ≤ a. To prove (3.1), it suffices to show that for any i ∈ {1, 2, . . .},

we have

ω̂(κ−it) .c1 ω̂(κ
−is) .c2 ω̂(κ

−it). (3.3)

For i satisfying κ−it < a, by (1.3) and the fact that

κ−it

2
≤ κ−is ≤ κ−it,

we have

ω̂(κ−it) = ω(κ−it) .c1 ω(κ
−is) = ω̂(κ−is) .c2 ω(κ

−it) = ω̂(κ−it),

which gives (3.3). On the other hand, for i satisfying κ−it ≥ a, we consider the two
cases:

κ−is < a, κ−is ≥ a.

If κ−is < a, then by (1.3) and the fact that

a

2
≤ κ−is < a,

we have

ω̂(κ−it) = ω(a) .c1 ω(κ
−is) = ω̂(κ−is) .c2 ω(a) = ω̂(κ−it),

which implies (3.3). If κ−is ≥ a, then by the definition of ω̂, we obtain that

ω̂(κ−it) = ω̂(κ−is).

Thus we prove that (3.3) holds. For the proof of (3.2), we refer to [5, Lemma 1].
The lemma is proved. �

Lemma 3.2. Let ω : (0, a] → [0,∞) be a Dini function satisfying (1.3) and (1.4).
Then for any ε > 0, there exists δ ∈ (0, 1), depending only on c1 and ε, such that

sup
r∈(0,δ]

ω(r) < ε.

Proof. Observe that

ω(r) ≤ C0 inf
s∈[r/2,r]

ω(s) ≤ C0

∫ r

r/2

ω(s)

s
ds
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for any r ∈ (0, a], where C0 = C0(c1). Therefore, for given ε > 0, if we take
δ = δ(c1, ε) > 0 such that

∫ δ

0

ω(s)

s
ds <

ε

C0
,

then ω(r) < ε for all r ∈ (0, δ]. �

Remark 3.3. From Remark 1.2 and Lemma 3.2, it follows that if f is of Dini mean
oscillation in Ω satisfying Definition 1.1 (ii), then f has vanishing mean oscillation
in the sense that

lim
δ→0

sup
x∈Ω

sup
r∈(0,δ]

–

∫

Ωr(x)

|f − (f)Ωr(x)| dy = 0.
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