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TITS BUILDINGS AND K-STABILITY

GIULIO CODOGNI

Abstract. A polarized variety is K-stable if, for any test configuration, the
Donaldson-Futaki invariant is positive. In this paper, inspired by classical
geometric invariant theory, we describe the space of test configurations as a
limit of a direct system of Tits buildings. We show that the Donaldson-Futaki
invariant, conveniently normalized, is a continuous function on this space. We
also introduce a pseudo-metric on the space of test configurations. Recall that
K-stability can be enhanced by requiring that the Donaldson-Futaki invariant
is positive on any admissible filtration of the co-ordinate ring. We show that
admissible filtrations give rise to Cauchy sequences of test configurations with
respect to the above mentioned pseudo-metric.

1. Introduction

The Yau-Tian-Donaldson conjecture predicts that the existence of a canonical
metric on a polarized variety (X,L) is equivalent to an appropriate algebraic no-
tion of stability, which should generalize the classical geometric invariant theory
stability.

In classical geometric invariant theory, the Hilbert-Mumford criterion asserts
that a point is stable if and only if the Hilbert-Mumford weight is positive on every
non-trivial one parameter subgroup.

The suggested generalization of geometric invariant theory is K-stability, which
says that a polarized variety (X,L) is K-stable if for every non almost trivial test
configuration the Donaldson-Futaki invariant is positive. In this theory, the role
of one parameter subgroups is played by test configurations, the Donaldson-Futaki
weight is a Hilbert-Mumford weight, and the Hilbert-Mumford criterion is turned
into a definition.

Nowadays, it is widely accepted that the notion of K-stability should be en-
hanced. In [26], a stronger notion is proposed: test configurations are identified

with finitely generated admissible filtrations, and (X,L) is called K̂-stable if the
Donaldson-Futaki invariant is positive on every admissible filtration, not just on
the finitely generated ones. The Donaldson-Futaki invariant of a non-finitely gen-
erated admissible filtration is defined by approximating the filtration with honest
test configurations, and then taking the limit along this approximation. We will
recall the relevant definitions in Section 5.

In classical geometric invariant theory, non-zero one parameter sup-groups are
parametrised by the rational points ∆(Q) of a a space ∆, which is usually called the
Tits building or flag complex. The Hilbert-Mumford weight, conveniently normal-
ized, becomes a function on ∆. This space can be endowed with various geometric
structures, which can be used for different goals; for example, they are used to
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2 G. CODOGNI

show the existence and the uniqueness of a maximally destabilizing one parameter
subgroup for unstable points, see [18] and [22].

As observed by Y. Odaka in [21], test configurations are parametrised by an ap-
propriate direct system of Tits buildings {∆r(Q)}r∈N, where ∆r is the Tits building
parametrising one parameter subgroups of SL(H0(X, rL)). We denote by ∆∞(Q)
this direct limit, and we investigate two different structures that one can put on
this space.

Tits building can be defined as abstract simplicial complex, this point of view
gives a topology on ∆r which we call the simplicial topology. The Hilbert-Mumford
weight is continuous with respect to this topology. In Theorem 3.5, we will show
that the morphisms appearing in the direct system {∆r(Q)}r∈N are continuous with
respect to the simplicial topology on ∆r(Q). We call simplicial topology the direct
limit topology induced on ∆∞(Q). The following result, proved in Section 4, is a
corollary of the above mentioned continuity result.

Theorem 1.1. The normalized Donaldson-Futaki weight is continuous with respect
to the simplicial topology on the sub-set T of ∆∞(Q) of non almost trivial test
configurations.

Let us stress that the maps appearing in the direct system {∆r(Q)}r∈N do not
preserve the simplicial structures, hence ∆∞(Q) does not have a natural simplicial
structure.

The second structure that we want to discuss is a metric structure. Each Tits
building ∆r can be endowed with a metric dr; we call this metric the Tits metric,
and the induced topology the Tits topology. The Tits topology is coarser than the
simplicial topology. Using the direct system {∆r(Q)}r∈N, we are able to induce
in Definition 3.6 a limit pseudo-metric d∞ on ∆(Q). This metric is defined as a
limsup, and in Proposition 3.7 we show that this limsup is actually a limit. Our
next result shows that this metric gives a convenient set-up to study K̂-stability.

Theorem 1.2 (=Theorem 5.2). Let F be non-finitely generated admissible filtration
with non-zero L2 norm; then the sequence of points in ∆∞ associated to the sequence
of test configurations approximating F is a Cauchy sequence for the pseudo-metric
d∞.

The notions of admissible filtrations and L2 norm will be recalled later on.
In Section 7, we explain the relation between classical Tits building and sym-

metric spaces. We suggest a relation between the Tits building ∆∞ and the space
of Kähler metrics. Taking this point of view, it is natural to ask about maximal
flat subspaces of the space of Kähler metrics.

The interplay between the simplicial and the Tits topology, as well as the be-
haviour of the Donaldson-Futaki invariant with respect to the Tits metric, are
topics which deserve further investigations. Mimicking the arguments used in geo-
metric invariant theory by [18] and [22], a convenient convexity result about the
Donaldson-Futaki invariant would imply the existence and unicity of a maximally
destabilizing test configurations.

Relations with other works. It is possible to define a map from the space
∆∞ to an appropriate quotient of the space of non-archimedean metrics on the
analytification of (X,L) introduced in [2] and [3]. This map should be continuous
for the simplicial topology. We do not investigate this topic in this note.
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K-stability can also be defined in the non-projective setting, see [8], [9] and [24].
In this set-up, a test configuration is a space X endowed with a Kähler form rather
than a line bundle. This configurations do not come naturally from the action of
a one parameter sub-group, so Tits building are not available in this setting. It
would be interesting to find an alternative way to describe the space ∆∞.

The automorphism group Aut(X,L) acts naturally on ∆∞ preserving the pseudo-
metric. When Aut(X,L) is not reductive, the pair (X,L) is expected to be not

K-stable, or at least not K̂-stable. In [5], it is introduced a canonical admissi-
ble filtration, called Loewy filtration, which should be destabilising exactly when
Aut(X,L) is not reductive. An interpretation of the Loewy filtration as a Cauchy
sequence in ∆∞ could be a useful step towards the proof of this conjecture.

Notations. We work over an algebraically close field k of characteristic zero. We
fix a normal projective variety X of dimension n and a very ample and projectively
normal line bundle L over X . We use the additive notation for line bundles, so
mL = L⊗L.

Acknowledgements. We had the pleasure and the benefit of conversations about
the topics of this paper with S. Boucksom, R. Dervan, M. Jonsson, J. Ross, J.
Stoppa and F. Viviani. The author was also supported by the FIRB 2012 -Moduli
spaces and their applications, and the ERC StG 307119 - Stability in Algebraic and
Differential Geometry.

2. Tits buildings

In this section, following [23] and [17, Section 2.2], we recall the definition of
the Tits building ∆ associated to a finite dimensional complex vector space V , and
some of its properties. In the literature, Tits buildings are sometime called spherical
buildings or flag complexes.

Let m be the dimension of V , and assume that m ≥ 3. The first definition of ∆
is as an abstract simplicial complex. Simplexes correspond to parabolic sub-group
of SL(V ); a simplex corresponding to a parabolic group P1 lies in the boundary of
a simplex corresponding to a parabolic group P2 if and only P2 ⊂ P1. Vertexes are
given by maximal parabolic subgroups; maximal simplexes are m− 2 dimensional.

Recall that parabolic subgroups correspond to flags of V : to a flag we associated
its stabiliser. We thus have the following equivalent description of ∆: each vertex
corresponds to a proper vector subspace of V ; a group of vertexes form a simplex
if and only if the associated subspaces form a flag in V .

We can now start enhancing the structure of ∆. We identify each simplex with
the standard one, in particular we have co-ordinates xi; let ∆(Q) be the set of point
with rational co-ordinates. We introduce the following definition

Definition 2.1 (Weighted flag). A weighted flag is the data of a flag

{0} ⊂ F1V ⊂ F2V · · ·Fk−1V ⊂ FkV = V

and weights w = (w1, . . . , wk) such that wi < wi+1 and
∑

wi = 0. The weights
can be either rational or real numbers. Two flags (F,w) and (G,w′) are equivalent
if there exists a constant c, called the scaling constant, such that FiV = GiV and
and wi = cw′

i for every i.
The weight of a vector v is the maximum wi such that v ∈ FiV .
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We say that a basis {v1, . . . , vn} of V is adapted to a flag F if, for every i, there
exists a subset of {v1, . . . , vn} which forms a basis of FiV .

The Tits building ∆ parametrise weighted flag up to equivalence: the flag cor-
responds to the simplex, and the weight to the co-ordinates of the point.

We now associate to each one parameter subgroup λ of SL(V ) a weighted flag,
hence a point [λ] of ∆(Q). Let w1, . . . , wk be the weights of λ, ordered in an
increasing way; let

Fi(V ) =
⊕

j≤i

Vwj

where Vwj
is the eigenspace of weight wj of λ. Assigning weight wi to FiV , we

obtain the flag associated to λ. As shown in [17, Proposition 2.6], the parabolic
sub-group P (λ) stabilising this flag consists of all g in SL(V ) such that the limit
limt→0 λ(t)gλ(t)

−1 does exist. This limit, when it exists, centralizes λ, so it pre-
serves the eigenspaces of λ; see the proof of [17, Proposition 2.6] for a more precise
description of the limit.

Two 1PS’s gives the same point in ∆ if and only if the associated flags are
equivalent. In other words, ∆(Q) is equal to set of one parameter subgroups of
SL(V ) modulo the equivalence relations:

λ ∼ γ if λ = pγp−1 p ∈ P (λ)

λ ∼ γ if λa = γb a, b ∈ Z

The next piece of structure is given by the apartment. Apartments correspond to
maximal tori of SL(V ): given a maximal torus T , the corresponding apparent AT

is the closure in ∆ of the one parameter sub-groups of T . A flag F is in AT if and
only if the eigenvectors v1, . . . , vn of T form a basis adapted to F . The key remark
is that an apartment is a finite simplicial complex homeomorphic to a sphere, or a
simplicial sphere for short. The following standard lemma will be very important

Lemma 2.2. ( [17, Lemma II.2.9]) Given two points p and q of ∆, there exists at
least an apartment containing both of them.

The previous lemma can also be interpreted in the following way: given two
points p and q in ∆(Q), there exists two commuting 1PS’s λ and γ of SL(V ) such
that p = [λ] and q = [γ].

The building, so far, is an abstract simplicial complex. Looking at its geometric
realisation, we can endow it with a topology, which we call the simplicial topology.
The simplicial complex ∆ is not locally of finite type, so we need some care in the
description of this structure. Apartments are finite simplicial complex homeomor-
phic to a sphere. On the entire space ∆, the topology is defined as the direct limit
of the topology of finite sub-complexes. Since any finite sub-complex is contained in
a finite number of apartments, a subset U of ∆ is open if and only if its intersection
with any apartment is open. Similarly, a function on ∆ is continuous with respect
the simplicial topology if and only if its restriction to each apartment is continuous.

We are now in position to introduce the Tits metric on ∆(Q).

Definition 2.3 (Tits metric). Let p and q be two points of ∆(Q); pick two com-
muting 1PS’s λ and γ such that p = [λ] and q = [γ], and write λ = exp tA and
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γ = exp tB; then we let

d(p, q) = arccos

(

Tr(AB)
√

Tr(A2)Tr(B2)

)

One can show that this definition is independent of the chosen one parameter
subgroups, see for instance [17, Section 2.2]. Moreover, this metric can be extended
by continuity to ∆.

Let us describe an interpretation of the Tits metric as angular distance. Take a
maximal torus T containing both λ and γ, this gives an apartment AT containing
both p and q. Let Γ(T ) be the lattice of one parameter subgroups of T . The
Killing metric on Γ(T ) is a quadratic form which is equivariant for the action by
conjugation of the normalizer of T in G, it is unique up to a scalar. Denote by E the
space Γ(T )⊗R equipped with the Killing metric. Then, AT can be identified with
the unit sphere in E, and the Tits metric is nothing but the angular distance. Since
the Killing metric unique up to a scalar, the angular distance on AT is uniquely
defined.

Since any two points are contained in an apartment, and the apartment is iso-
metric to a sphere endowed with the angular distance, we have that any two points
can be connected by a geodesic and diam(∆) = π. The geodesic is not unique
because, for instance, two points can be contained in many different apartments,
and the geodesic constructed above depends on the apartment.

The topology induced by the Tits metric on each apartment is equal to the
simplicial topology. However, on ∆, the topology induced by the Tits metric is
coarser than the simplicial topology.

3. Tits building and test configurations

Let X be a projective variety over an algebraically closed field of characteristic
zero, and L a very ample and projectively normal line bundle on X . We also fix a
generator t of the space of one parameter subgroups ofGm, and faithful action ofGm

on A1; let 0 be the fixed point of the action and 1 another point of A1. We recall
the definition of test configuration, which is due to S. Donaldson [11, Definition
2.1.1].

Definition 3.1 (Test configuration). Let r be a positive integer. An exponent r
test configuration (X ,L) for (X,L) consist of the following data

(1) a scheme X together with a flat map π : X → A1;
(2) a Gm action on X such that the morphism π is equivariant;
(3) a relatively ample line bundle L on X together with a linearisation of the

Gm action.

Moreover, we require that the fibre over 1 is isomorphic to (X, rL).
A test configuration is very (respectively semi-) ample if L is very (semi-) ample.

A test configuration is trivial if (X ,L) is isomorphic to (X × A1, rL ⊠ OA1), and
the Gm action is trivial on X . A test configuration is normal if X is normal.

Let ν : X̂ → X be the normalization, then (X̂ , ν∗L) has a natural structure of
test configuration, we call it the normalization of (X ,L). A test configuration is
almost trivial if its normalization is trivial.

A non-polarized test configuration is the datum of an X with a Gm action as
above, without the choice of a line bundle L.
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Basic properties of test configurations are described in [1, Section 2]. There are
three main operation one can perform on test configurations.

Definition 3.2. Base change: Let bp : A
1 → A1 be the map defined by

z 7→ zp. We can make a base change (X ,L) via bp obtaining a new test
configuration.

Scaling: Consider the trivial action of Gm on X , and fix a faithful lifting of
this action to L, so that the induced action on H0(X0,L0) is a homothety.
We can scale the action of Gm on L by adding c times this action, where c
is in Z.

Rising the line bundle: We can replace L with mL, for any positive integer
m.

We now recall the definition of the L2 norm of a test configuration. For every
k, the test configuration gives rise to a Gm action on H0(X0, kL0); let Tk be an
infinitesimal generator of this action. We denote by T k the traceless part of Tk, in
symbols

T k = Tk −
Tr(Tk)

h0(X0, kL0)
Id

Then Tr(T 2
k) is, for k big enough, a degree n + 2 polynomial in k, where n is the

dimension of X , see for instance [25, Equation 4] or [1, Theorem3.1]. We let

||(X ,L)||2L2 = lim
k→∞

(kr)−n−2 Tr(T 2
k)

Remark that ||(X ,L)||L2 = ||(X ,mL)||L2 for every m.
Let now Vr = H0(X, rL)∨. Given a 1PS λ of SL(Vr), we can construct a test

configuration by taking the flat closure of the λ-orbit of X in PVr. Any very ample
exponent r test configuration arise as orbit of a 1PS of GL(Vr), see [20, Proposition
3.7]. By performing a base change and scaling the linearisation, we can always
assume that this 1PS lies in SL(Vr). We have now the following key observation of
Odaka [21].

Theorem 3.3. Let ∆r be the Tits building of Vr. Then, points of ∆r(Q) are in
bijective correspondence with very ample exponent r test configurations, modulo base
change and scaling.

Proof. The only thing we have to check is that if the weighted flags associated to two
1PS’s are equivalent, then also the corresponding test configuration are equivalent.
This is done in [21, Theorem 2.3]. �

Almost triviality of a test configuration can be characterized in term of the
associated filtration of Vr , see [1, Proposition 2.12]. The following lemma, which is
contained in the proof of [20, Proposition 3.7] is also very important

Lemma 3.4. There exists a Gm-equivariant trivialization of π∗L; this gives a Gm-
equivariant isomorphism between H0(X, rL)∨ and H0(X0,L0), where the Gm action
on the first vector space is given by the one parameter subgroup inducing the test
configuration.

From the point of view of K-stability, it is quite natural to identify the test
configuration (X ,L) and (X ,mL). Because of this, we look at the direct systems
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formed by the buildings ∆r and the morphisms

ιr,k : ∆r(Q) → ∆rk(Q)
(X ,L) 7→ (X , kL)

Theorem 3.5 (= Theorem 6.1). For every i and k, the map ιr,k is continuous for
the simplicial topology.

We postpone it to Section 6; let us point out that in the proof we also describe
explicitly the morphisms ιr,k, and these morphisms do not preserve the simplicial
structure of ∆r. In other words, if one sees ∆r as a direct limit of simplicial
spheres, the maps ιr,k are well defined on the resulting topological space ∆r, but
do not preserve the direct system structure of ∆r, and it does not make sense to
ask if the two limit commute. We are now going to define the central object of
study of this paper.

Definition 3.6 (Space of test configurations). The space of test configurations is
the space ∆∞(Q) defined as the direct limit

∆∞(Q) := lim
r

∆r(Q) .

The simplicial topology on ∆∞(Q) is the direct limit of the simplicial topology on
∆r(Q).

The pseudo-metric on d∞ is the pseudo-metric given by

d∞(p, q) = lim sup
r

dr(p, q)

where dr is the Tits metric on ∆r(Q). The Tits topology on ∆∞(Q) is the topology
induced by d∞.

Remark that p and q can be seen as points of ∆r for every r divisible enough,
so the previous expression for d∞ makes sense. Moreover, since diam(∆r) = π for
every r, d∞ is finite and diam(∆∞) ≤ π.

The space ∆∞(Q) parametrizes all test configurations, modulo the three opera-
tions defined introduced in 3.2, namely modulo scaling, base change and rising the
line bundle.

Proposition 3.7. The limsup appearing in Definition 3.6 is actually a limit; in
other words,

d∞(p, q) = lim
r

dr(p, q)

Proof. Let (X1,L1) and (X2,L2) be very ample test configurations associated to p
and q. By raising L1 and L2 to suitable powers, we can assume that they have the
same exponent. When r is divisible by the exponent, we have the Tits metric

dr(p, q) = arccos

(

Tr(ArBr)
√

Tr(A2
r)Tr(B

2
r )

)

,

where Ar and Br are generators of two commuting one parameter subgroups of
SL(H0(X, rL)∨) inducing respectively (X1, rL1) and (X2, rL2). The denominator
of dr(p, q) is well known to be, for r divisible enough, a polynomial of degree n+2,
see for instance [25, Equation 4] or [1, Theorem 3.1]. We are going to show that
also the numerator is a polynomial of degree n+ 2.

Choose a non-polarised test configuration X dominating equivariantly both X1

and X2; this can be constructed by resolving simultaneously the indeterminacy
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of the maps X × P1
99K Xi, cf [1, Section 6.6]. Let α be the Gm action on X .

Denote by Mi be the pull-back of Li to X . The restriction of M1 +M2 on Xt, for
t 6= 0, is isomorphic to 2rL, hence H0(X0,M1+M2|X0

)∨ can be identified in a Gm

equivariant way with H0(X, 2rL)∨ and the infinitesimal generator of the action of
α is exactly Ar +Br. By applying [1, Theorem 3.1] we show that Tr(Ar +Br)

2 is
a polynomial of degree n+ 2. Since also TrA2

r and TrB2
r are polynomial of degree

n+ 2, we conclude that the same is true for TrAkBk.
�

It is also natural to consider the space

∆∞ := lim
r

∆r

endowed with its simplicial topology. We have a natural inclusion ∆∞(Q) ⊂ ∆∞,
and we can extend d∞ to a metric on ∆∞. We do not know about relation between
∆∞ and the completion of ∆∞(Q) with respect to d∞.

4. Donaldson-Futaki invariant and the symlicial topology

We first briefly recall some facts about the Hilbert-Mumford weight, following
[17, Chapter 2]. Let the group SL(V ) act on a projective variety Z, and linearise
the action to a line bundle H . Pick a closed point z in Z. For any 1PS λ of SL(V )
we can consider the Hilbert-Mumford weight µ(λ) with respect to z and H .

Fix now an SL(V ) invariant norm || − || on the 1PS’s of SL(V ). The ratio
ν(λ) = µ(λ)/||λ|| is a well defined function on the Tits building ∆(V ); moreover, ν
is continuous for the simplicial topology.

Following [20, Section 3] and [25], we introduce the Chow weights and the
Donaldson-Futaki weight. Fix an exponent r, and let Vr = H0(X, rL). We choose
as SL(Vr)-invariant norm on the space of 1PS’s of SL(Vr) the norm || exp(tA)|| =
r−n−2 TrVr

A2. Remark that λ is already taken in the special linear group, so A
is traceless. In particular, || exp(tA)|| is equal to r−n−2 Tr(T 2

1), where T 1 is the
operator introduced in Section 3.

The group SL(Vr) acts on the appropriate Hilbert scheme Zr, and the variety
X gives a point [X ] in Zr. Choosing the correct line bundle on Zr, the associated
normalized Hilbert-Mumford weight is the normalised Chow weight:

chowr : ∆r → R

This line bundle is the pull-back of the Chow line bundle from the Chow scheme,
via the cycle-class map from the Hilbert scheme to the Chow scheme. The normal-
ization of he Chow line bundle is such that the r-th normalized Chow weight of an
exponent r test configuration is

chowr(X ,L) = ||λ||−1 ra0
b0

where h(k) = a0k
n + O(kn−1) is the Hilbert polynomial of (X, rL), and w(k) =

b0k
n+1 + O(kn) is the trace of the operator Tk introduced in Section 3. Remark

that w(r) = 0, because we started off with a λ in the special linear group, however
w(k) is a non-trivial polynomial of degree n+ 1 for k big enough.

Pulling-back via the maps ιr,k, we have the higher Chow weights

chowrk : ∆r → R ,
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so that

chowkr(X ,L) = ||λ||−1

(

kra0
b0

−
w(k)

h(kr)

)

Let T ⊂ ∆∞(Q) be the subset of test-configurations with non-zero L2 norm,
and Tr its intersection with ∆r. Fix a point in Tr, the value of the Chow weight at
that point is, for k big enough, equal to a Laurent polynomial

chowkr = df +ℓ(k)

where df is the constant term and ℓ(k) is the principal part of the Laurent poly-
nomial, in particular ℓ(k) converges to zero when k goes to infinity. This gives an
invariant

df : T → R

defined as df(p) = limk chowkr(p), where r is such that p lies in ∆r.
The invariant df is by definition the Donaldson-Futaki invariant of a test config-

uration divided by its L2 norm.

Lemma 4.1. Fix r, then there exists a positive integer K such that chowkr is a
Laurent polynomial for all exponent r test configuration and all k divisible by K.

Proof. Fixed a test configuration (X ,L), the Chow invariant chowkr is a polynomial
as soon as Hi(X0, kL0) vanishes for all i > 0, see [1, Theorem 3.1 and Corollary
3.2]. Fixed the exponent, central fibres are parametrized by a Hilbert scheme, so
the result follows from a general statement of the form: if T is a noetherian scheme,
and Y → T is a projective morphism with a relatively ample line bundle L, then
there exists a K such that Hi(Yt, kLt) = 0 for all t in T , all i > 0, and all k divisible
by K; this is well-known, see for instance [19, Theorem 1.2.13 and its proof]. �

We have now the following proposition.

Proposition 4.2. The normalised Donaldson-Futaki invariant df is continuous
with respect to the simplicial topology on T ⊂ ∆∞(Q).

Proof. Since the topology on ∆∞(Q) is the direct limit topology, it is enough to
show that df is continuous when restricted to Tr, for every r. We know that chowkr

is continuous on Tkr for every k and r; since, by Theorem 3.5, the maps ιk,r are
continuous, chowkr is continuous on Tr. By Lemma 4.1, for k divisible enough
chowkr is a Laurent polynomial in k, so all its coefficients have to be continuous as
functions on Tr. This proves the claim. �

Remark 4.3. At least for smooth varieties over the complex numbers, because of
Donaldson work [12], we know that df is bounded below on T . The lower bound
can be described in term of the curvature of Kähler metrics in the class c1(L).

When X is a normal variety, a test configuration has zero L2 norm if and only
if it is almost trivial, [7, Theorem 1.3] and [1, Corollary B]. Let us now give the
definition of K-stability

Definition 4.4 (K-stability). A normal polarised variety (X,L) is K-semistable if
df(X ,L) ≥ 0 for every test configuration (X ,L). It is K-stable if it is K-semistable
and df(X ,L) = 0 if and only if (X ,L) is almost trivial.
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5. Filtrations and the completion with respect to the Tits metric

In this section we study filtrations of the co-ordinate ring R of (X,L). Recall
that the K-stability of (X,L) is equivalent to the K-stability of (X, kL) for every
k, so we can assume without loss of generality that L is projectively normal.

Definition 5.1 (Admissible filtration). A filtration F of R is the datum of an
increasing flag on each graded piece H0(X, kL) = Vk, indexed by Z. We say that
the filtration is

Multiplicative: if

FiVa ⊗ FjVb → Fi+jVa+b ,

for every a, b, j and k;
Point wise right bounded: If for every fixed k we have that

FiVk = Vk

for i >> 0; this is also said exhaustive;
Linearly left bounded: If there exists a negative constant C such that

FCkVk = {0}

for every k.

A filtration is admissible if it satisfies the three properties listed above. We let
FiR = ⊕kFiH

0(X, kL).

There are two operations that we can perform on filtrations. We can scale them,
which means replacing Fi with Fci for some fixed constant c, and we can shift them,
which means replacing FiH

0(X, kL) with Fi+ckFiH
0(X, kL), for a fixed constant

c.
Given a multiplicative filtration F , we can construct its Rees algebra

Rees(F ) =
⊕

i

FiRti

we say that a filtration is finitely generated if its Rees algebra is finitely generated.
As explained in [27] and [25], taking the Proj of the Rees algebra of an admissible

finitely generated filtration one obtains a test configuration. More generally, there
is a correspondence between finitely generated admissible filtrations of the rings R
and test configurations, see [1, Proposition 2.15]. Under this correspondence, scale
the filtration corresponds to a base change, shift the filtration corresponds to scale
the linearisation, see Definition 3.2.

Following [25], we can approximate a non-finitely generated admissible filtration
with finitely generated ones. Let F be an admissible filtration; denote by χ(m)

the k[t]-sub-algebra of Rees(F ) generated by the finite dimensional vector space
⊕iFiH

0(X, rmL)ti ⊕Rit
N , for N big enough. We now let

F
(m)
i H0(X,mkL) = {s ∈ H0(X,mkL) s.t. sti ∈ χ(m)}

this defines a finitely generated admissible filtration of R. Let (X (m),L(m)) be the
corresponding test configuration. Then one defines

||F ||L2 = lim inf
m→∞

||(X (m),L(m))||L2

In [25] it is shown that this liminf is actually a limit.
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Given a flag F , for every m we can construct a weighted flag of H0(X,mL) up
to scaling, in the sense of Definition 2.1. This is done by first giving weight i to
the piece Fi, and then subtracting a common rational constant to all weights to
normalise the trace. The filtration obtained in this way has rational weights; we
denote by pm the corresponding point in ∆m(Q). As explained in [25, Section 3.2],
the test configuration associated to this weighted filtration is equivalent to the Proj
of the Rees algebra of F (m).

If the filtration is finitely generated, then F (m) = F for m big enough, and the
sequence {pm} is eventually constant as a sequence in ∆∞(Q). On the other hand,
when the filtration is not finitely generated, the test configurations associated to the
points pm are different, so a non finitely generated filtration defines a non-constant
sequence in ∆∞.

Theorem 5.2. Let pm be the sequence of points in ∆∞(Q) associated to an ad-
missible filtration F such that ||F ||L2 6= 0; then, this is a Cauchy sequence for the
pseudo-metric d∞.

Proof. We need to show that, for every j, the distance d∞(pm, pjm) converges to
zero when m goes to infinity. More explicitly, we have to show that

lim
m

lim sup
k

Tr(A
(m)
k A

(jm)
k )

√

Tr((A
(m)
k )2)Tr((A

(jm)
k )2)

= 1

where, for each m, the limit is taken on all k divisible by both m and jm; the

A
(m)
k and A

(jm)
k are infinitesimal generator of commuting 1PS representing pm and

pjm in ∆k. Because of the hypothesis on the norm, the limit of the denominator
normalised by k−n−2 is not zero, so we can compute the limit of the numerator and
the denominator separately.

To start with, let us recall that lim supk

√

k−n−2Tr((A
(m)
k )2) converges to the L2

norm of the test configuration associated to pm, and the limit limm ||pm||L2 is equal
to the L2 norm ||F ||L2 of the filtration F , as explained in [25], see in particular
Lemma 8. The same is true for pjm.

We now have to deal with the numerator. Fix m and k. The multiplicativity of
F implies, for every j, the following inclusion relation

χ(m) ∩R(jm)[t] ⊆ χ(jm) ,

where R(jm) is the Veronese ring ⊕ℓH
0(X, jmℓL). This inclusion in turn implies

that, for every i and k, we have

F
(jm)
i H0(X,mkjL) ⊆ F

(m)
i H0(X,mkjL) .

Choosing a basis ofH0(X,mkjL) adopted to both F (m) and F (jm), we can translate
the above inclusions in the following inequalities.

Tr((A
(m)
k )2) ≤ Tr(A

(m)
k A

(jm)
k ) ≤ Tr((A

(jm)
k )2)

Taking the limit on k and then m, arguing as before we conclude that

lim
m

lim sup
k

k−n−2 Tr(A
(m)
k A

(jm)
k ) = ||F ||2L2

�
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6. Description of the morphisms between Tits buildings

In this section we describes explicitly the maps

ιr,k : ∆r(Q) → ∆rk(Q)
(X ,L) 7→ (X ,L⊗k)

Our main result is the following.

Theorem 6.1. For every i and k, the map ιr,k is continuous for the simplicial
topology.

We can assume without loss of generality that r = 1; moreover, we fix k, so, to
simplify the notation, we write ι for ιk,r , ∆ for ∆r and ∆k for ∆rk. Let ∆S be the

Tits building of the vector space Symk H0(X,L).
In Section 6.1, we will define a Segre map S : ∆(Q) → ∆S(Q), and prove that it

is continuous. In Section 6.2, we will define a retraction map ρ : ∆S(Q) → ∆k(Q),
and prove that it is continuous. In Section 6.3, we will show that ι is actually the
composition of S and ρ, concluding the proof of Theorem 6.1.

6.1. Segre morphism of building. For an algebraic group G, let Γ(G) be the

set of 1PS’s of G. Let V = H0(X,L) and VS = Symk H0(X,L). We have a Segre
map

S : Γ(SL(V )) → Γ(SL(VS))
γ 7→ γ⊗k

The Segre map defined on 1PS’s induces a morphism of building; we describe
directly this morphisms on weighted flags. Denote by M be the collection of multi-
indexes I = (i1, . . . , im) with

∑

ij = k. Let v be a basis of V adapted to a
weighted flag (F,w) associated to γ. We denote by S(v) the basis of VS formed by
monomials in the element of v; in particular, for I ∈ M and v ∈ v, we denote by
vI the corresponding monomial in S(v). Let T (w) =

∑

I∈M wI . To each monomial

vI we assign weight wI − T (w): this defines a weighted flag (S(F ), S(w)). The
weighed flag associated to S(γ) is exactly (S(F ), S(w)), so this gives a description
of the map

S : ∆ → ∆S

The Segre map preserves apartments in the following sense. Let A be an apart-
ment of ∆ associated to a basis v. Then, S(A) is contained in the apartment AS

associated to the basis S(v).
Let us show that S : A → AS is continuous for every apartment A. Co-ordinates

of points in an apartment are given just by the weights. In particular, for I ∈ M ,
the I-th co-ordinate of (S(F ), S(w)) is wI − T (w); benign the new co-ordinate a
polynomial in the old one, the map S is continuous. Since the simplicial topology
on ∆ is the direct limit of the topology on the apartments, we conclude that S is
continuous on ∆.

6.2. Retraction of buildings. Let i : W →֒ V be an inclusion of vector spaces.
We can define the corresponding retraction of building

ρ : ∆(V ) → ∆(W )

as follows. Let (F,w) be a weighted flag in ∆(V ). Choose a basis of V adapted
both to F and W . This amounts to choose a representative γ of F which preserves
globally W ; we denote by U the γ-invariant complement of W in V . We now let
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ρ((F,w)) to be the normalised weighted flag associated to the 1PS γ|W . Remark
that the action of γ on W could be trivial; in this case, ρ is not defined at (F,w).

Remark 6.2 (The map ρ as a retraction). By choosing a complement U of W
in V , there is a natural inclusion of Γ(SL(W )) in Γ(SL(V )), which in turn gives
an inclusion of building i : ∆(W ) → ∆(V ); the map ρ is the right-inverse of this
inclusion.

We can give the following alternative description of ρ, which does not depend
the choice of the representative γ. We let ρ(F ) to be the flag defined by ρ(F )iW =
FiV ∩W ; we assign weight wi to ρ(F )i. This definition is ill-posed, and we need to
refine it. The first pathology is that ρ(F )iW is not, in general, a proper sub-space
of W , if this happens we skip this step of the flag and we relabel the indexes. If
all the subspaces ρ(F )iW are not proper sub-spaces of W , then we do not define ρ
at (F,w). We can also have repetitions; in symbols, for some i, we can have that
ρ(F )i = ρ(F )i+1. When this happens, we skip the step i + 1 of the flag, and we
relabel the indexes. To have well-defined flag, we still have to normalise the weight.
With this description, we can prove the following lemma.

Lemma 6.3. The retraction ρ defined above is a continuous map for the simplicial
topology.

Proof. Since the simplicial topology on ∆ is the direct limit of the topology on the
apartments, it is enough to show that ρ restricted to any apartment A is continuous.

Let A be an apartment in ∆(V ) and v the corresponding basis. Co-ordinates
on A are given by the weights w. Let B be an apartment in ∆(W ), and u the
corresponding basis. The map ρ : UA ∩ ρ−1B → B is given just by the projection
onto some of the co-ordinates, i.e. the weigh of ui in (ρ(F ), ρ(w)) is just wj for
an appropriate index j. This shows that ρ restricted to A ∩ ρ−1B is continuous.
Since this holds for all apartments B of ∆(W ), we have proven that ρ restricted A
is continuous. �

Remark 6.4 (Pathologies). Let us stress that ρ does not preserve many geometric
features of ∆(V ). To start with, ρ is not open: indeed, already locally on an
apartment A, we can see that ρ is like a linear projection followed by a linear
inclusion, and the latter is not open. This restriction does not preserve neither the
simplicial structure nor the apartments. Moreover, ρ does not preserve geodesics.
To see this, one can take two flags F and G such that does not exists an apartment
which contains F , G and W , where we see W as a one step flag, so a vertex of
∆(V ).

6.3. Proof of Theorem 6.1. Let us start off by looking at the Segre morphism

S : PH0(X,L)∨ → P Symk H0(X,L)∨

A test configurationX embedded PH0(X,L)∨ can be re-embedded in aGm-equivariant

way in P Symk H0(X,L)∨ via S. The test configuration (S(X ),O(1)) is isomorphic
to (X ,Lk); in particular, (S(X ),O(1)) is trivial if and only if (X ,Lk) is trivial. If
λ is a 1Ps of SL(H0(X,L)∨) inducing X , then S(γ) induces (S(X ),Lk).

Let now [γ] be a point of ∆S , assume it acts non-trivially on S(X), so that
it induces a non-trivial test configuration (we mean non-trivial in the sense of
Definition 3.1). This test configuration has exponent k, because the restriction of
O(1) to X is Lk. We define ρ([γ]) to be the point of ∆k(Q) which represents the
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test configuration induced by γ (we can think at ∆k(Q) as the moduli space of
exponent k test configurations, and ρ as a classifying map).

The composition of ρ and S makes sense, because S(λ) acts non-trivially on X ,
and it is equal to ι because of the above discussion. To prove Theorem 6.1, we have
to show that the map ρ defined above is the retraction of buildings introduced in
Section 6.2.

Take V = Symk H0(X,L)∨ and W = H0(X, kL)∨. There is a natural inclusion
of W in V given by the co-multiplication, let ρ be the associated retraction. The
embedding of X in PV factors trough the embedding of X in PW . Let (F,w) be
a weighted flag in ∆(V ), and take a representative γ which preserves W . Remark
that ρ is defined at (F,w) if and only if the action of γ on W is not trivial; this
is equivalent to ask that the action on X is not trivial, hence that γ induces a
non-trivial test-configuration.

The action of γ onX is equal to the action of γ|W onX , hence ρ((F,w)) represent
the test configuration obtained by letting γ acting on X ⊂ PV , as requested. This
concludes the proof of Theorem 6.1.

7. Analogy with classical symmetric spaces

In this section we work over the complex numbers. The Tits building ∆(V )
of a vector space V can be introduced as boundary of the symmetric space H :=
SL(V )/SU(V ), and this gives also an alternative point of view on apartments, see
for example [4]. We briefly recall this theory, and suggest an analogy for our Tits
building ∆∞.

The Killing metric on the Lie algebra of SL(V ) defines a constant scalar cur-
vature metric with negative curvature on the homogeneous space H . Let o be the
image of the identity in H . A one parameter subgroup λ of SL(V ) defines a map
from C∗/S1 ∼= R+ to H , the image is a geodesic starting at o. One can equivalently
define ∆(V ) as the set of all geodesics starting at o. One parameter subgroups are
also from this point of view rational points of ∆(V ). It is then possible to define a
topology on H̄ := H ∪∆(V ), which turns H̄ into a compact space.

The image of a d dimensional torus of SL(V ) in H is a flat subspace, which
means that it is isometric to a d dimensional Euclidean space. Maximal tori give
maximal flat subspaces of H . One can introduce the notion of rank of H as the
dimension of a maximal flat subspace of H , and this turns out to be equal to the
rank of SL(V ). Let T be a maximal torus and ET its image in H . The boundary
of ET , which can be defined by intersecting the closure of ET in H̄ with ∆(V ), is
the apartment AT defined in Section 2. In a more colloquial language, we can say
that apartments are boundaries of maximal flat subspaces.

In view of the Yau-Tian-Donaldson conjecture, it is natural to think at ∆∞ as
the boundary of the space H of Kähler metrics on L. This space has a natural
Riemannian metric, as advocated in [13]. Since H is infinite dimensional, standard
results of Riemannian geometry does not go trough. We can look at H as a metric
space rather than an infinite dimensional manifold, and in this set up H, or rather
its completion, is known to be a CAT(0) spaces, see for instance [10, Theorem 4.11]
and references therein. With the formalism of CAT(0) spaces one can proves many
basic result such as the uniqueness of geodesics, see [6].

This point of view suggests that the notion of apartment for ∆∞ should be relate
to maximally flat subspace in the space of Kähler potentials. In this set up also the
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notion of maximally flat subspace is troublesome, we might define them as spaces
which are isometric to a Hilbert space. Again, this is discussed in [13, Section 6].

In classical geometric invariant theory, one can define the normalized Hilbert-
Mumford weight on ∆(V ) as the slope of the Kempf-Ness functional on H , see
for instance [2, Section 5.1]. The Kempf-Ness functional is convex and Lipschitz,
so one can use results from the theory of CAT(0) spaces to prove the existence of
maximally destabilising one parameter subgroups, see [16] and [15]. One could try
a similar approach to study optimally destabilizing test configurations by replacing
the Kempf-Ness functional with the Mabuchi or the Ding functional. However, none
of these functionals seems to be Lipschitz, so we do not know how to generalize this
approach.
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