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Abstract

We study systems of polynomial equations in several classes of finitely generated rings and
algebras. For each ring R (or algebra) in one of these classes we obtain an interpretation by
systems of equations of a ring of integers O of a finite field extension of either Q or F,(¢), for
some prime p and variable ¢. This implies that the Diophantine problem (decidability of systems
of polynomial equations) in O is Karp-reducible to the same problem in R. In several cases we
further obtain an interpretation by systems of equations of the ring F,[t] in R, which implies
that the Diophantine problem in R is undecidable in this case. Otherwise, the ring O is a ring
of algebraic integers, and then the long-standing conjecture that Z is always interpretable by
systems of equations in a ring of algebraic integers carries over to R. If true, it implies that the
Diophantine problem in R is also undecidable.

Some of the classes of finitely generated rings studied in this paper are the following: all
associative, commutative, non-unitary rings (a similar statement for the unitary case was obtained
by Eisentraeger); all possibly non-associative, non-commutative non-unitary rings that are finitely
generated as an abelian group; and several classes of finitely generated non-commutative rings.
Analogous statements are obtained for algebras over finitely generated associative commutative
unitary rings.

Another contribution of the paper is the technique by which the aforementioned results are
obtained. More precisely, we show that given a bilinear map f : A x B — C between finitely
generated abelian groups (or modules), under some mild assumptions, there exists a certain ring
(or algebra) R with nice properties which is interpretable by systems of equations in the multi-
sorted structure (A, B,C; f). This result fits nicely the study of rings (or algebras) since the
multiplication operation of such structures can be seen as a bilinear map between abelian groups
(or modules). This result is potentially applicable in many other settings, such as in the area of
group theory, see for example ﬂﬂ]
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1 Introduction

In this paper, we study systems of polynomial equations in different classes of rings and algebras. For
each R in one of these classes we interpret by systems of equations a ring of integers O of a number
field or a global function field (i.e. O is the integral closure of Z or F,[t] in a finite extension of Q or
F,(t), respectively). In particular, this reduces the Diophantine problem (decidability of systems of
polynomial equations) in O to the same problem in R. Hence if D(O) is undecidable, then also D(R)
is undecidable. It is known that D(O) is undecidable if O has positive characteristic [36], and it is
conjectured to be also undecidable if otherwise O is a ring of algebraic integers [5, 130].

A number field is a finite field extension of Q. A global function field is a finite extension of F,(t),
for some prime p. A ring of integers of a number field is called a ring of algebraic integers.

The Diophantine problem in a structure R, denoted D(R), asks whether there exists an algorithm
that, given a system of equations S with coefficients in R, determines if S has a solution in R or
not. The original modern version of the Diophantine problem (also called Hilbert’s Tenth Problem or
generalized Hilbert’s Tenth Problem) was posed by Hilbert for the ring of integers Z. This was solved
in the negative in 1970 by Matiyasevich [23] building on the work of Davis, Putnam, and Robinson [4].
Subsequently the same problem has been studied in a wide variety of rings, most notably in Q and
in rings of algebraic integers O, where it remains widely open. As mentioned above, a long-standing
conjecture [3, 130] states that Z is Diophantine in any such O (and thus D(O) is undecidable). This
conjecture has been verified in some particular cases [10, 134, 137], and it has been shown to be true
assuming the Safarevich-Tate conjecture [24].

The situation is much clearer for rings of integers of global function fields, i.e. for finite field
extensions of rational function fields of the form F,(¢) for some variable ¢t and some prime integer p.
Indeed, Shlapentokh [35] showed that F,[¢] is Diophantine in any such ring O, and consequently that
D(0) is undecidable.

Some commutative rings where the Diophantine problem remains open are most remarkably Q
(it is known however that this problem is undecidable in Z[S~!], for S an infinite set of primes of
Dirichlet density 1 [31]); the rational functions C(¢) (even though D(C(t1,t2)) is undecidable |20]);
and the field of Laurent series F,,((t)). We refer to [21, 130, 32, 37] for further information and surveys
of results in this direction.

Eisentraeger |1, Theorem 7.1] proved the general result that for any finitely generated associative
commutative unitary ring R, the Diophantine problem D(R) is undecidable conditionally on the
conjecture that D(0) is undecidable for any ring of algebraic integers. Moreover, she showed that
D(R) is undecidable in many cases, see [, Theorem 7.1] or Theorem 214 in this paper.

Regarding non-commutative rings, Romankov [33] showed that D(F') is undecidable in several
types of free rings F', which include free Lie rings, free associative or non-associative rings, and free



nilpotent rings. One can view these rings as free Z-algebras, it is essentail, since the proofs use unde-
cidability of the Diophantine problem in the coefficients Z. Using different methods Kharlampovich
and Miasnikov recently proved undecidability of D(A), for any of the following rings A: a free associa-
tive k-algebra, a free Lie k-algebra (of rank at least 3), and group k-algebras k(G) for various groups
G (including free, torsion-free hyperbolic, right-angled Artin, and other groups) [15, 17]. In all these
results the field k is arbitrary, possibly with decidable D(k).

We proceed to describe the results obtained in the present work. In this paper we convene that
all rings and algebras are possibly non-associative, non-commutative, and non-unitary unless stated
otherwise. A ring or algebra R is called unitary if and only if it has a multiplicative identity. Algebras
will over be considered over associtative commutative unitary ring, and we fix A to denote such ring.
Given a A-algebra L, we let L? be the A-module generated by all products of two elements of L. In
this paper the notion of ring is equivalent to the notion of Z-algebra.

he main tool used in this paper is the so-called interpretability by systems of equations (or e-
interpretability), which is a variation of the classical notion of the first-order interpretability, where
instead of arbitrary first-order formulas, finite systems of equations are used as the interpreting for-
mulas (see Definition for details). The main relevant property of such interpretations is that if
A; is e-interpretable in Ay then D(A;) is Karp-reducible to D(Az) by a polynomial time many-one
reduction (Karp reductions). All reductions mentioned in this paper are of this type.

In number theoretic terms, an interpretation by systems of equations is roughly a Diophantine
definition up to a Diophantine equivalence relation. Here Diophantine definitions are considered using
systems of equations, as opposed to single equations. We convene that all systems of equations and
all e-interpretations allow the use of any constant elements of the structures at hand, not necessarily
in the signature. See Subsections 2.T.3] and for further comments on these matters.

One of the main results of the paper is the following. By L, we refer to the language of rings
with constants. We write (R; £) to indicate that a structure R is considered with a language L.

Theorem 1.1. Let A be a ring (possibly non-associative, non-commutative, and non-unitary). As-
sume that A is finitely generated as an abelian group, and that A? is infinite. Then there exists a ring
of algebraic integers O such that (O; Lying) is e-interpretable (see below) in (A; Lying), and D(O; Lying)
is Karp-reducible to D(A, Lying). If otherwise A? is finite, then D(R; Lying) is decidable.

Theorem [[T]is further generalized to algebras. The language of A-modules L,,,4, or of A-algebras
La1q, consists in the usual language of groups Lgoup or of rings L4, respectively, together with
unary functions {- | A € A} representing multiplication by elements of A (see Subsection [Z3]).

Theorem 1.2. Let R be a (possibly non-associative, non-commutative, and non-unitary) algebra over
a finitely generated associative commutative unitary ring A. Suppose that R is finitely generated as
a A-module. Then if, R? = ({xy | x € R,y € R})x is infinite, there exists a ring of integers O of
a number field or a global function field such that (O; Lying) is e-interpretable in (R;Lqyg), and the
Diophantine problem D(O; Lying) is Karp-reducible to D(R; Lag). Moreover:

1. If R? is infinite and A has positive characteristic, then (Fp[t]; Lring) is e-interpretable in (R; Lag)
for some prime integer p, and D(R; Lqy) is undecidable.

2. If R? is finite and D(R; Lnoa) is decidable, then D(R; Lay) is decidable.
If A is a finite field, then all the above holds after replacing (R; Laig) by (R; Lring)-

Theorems [[.T] and are further extended to other classes of finitely generated rings and alge-
bras, including associative commutative non-unitary rings. We say that a non-unitary ring R has
characteristic n € N if n is the smallest nonnegative integer such that nr = 0 for all r € R.

Theorem 1.3. Let A be a finitely generated associative commutative non-unitary ring, with A% infi-
nite. Then there exists a ring of integers O of a number or a global function field such that (O; Lying)
is e-interpretable in (A; Lying), and D(O; Lying) is Karp-reducible to D(A; Lying)-



Moreover, if A has positive characteristic, then the following holds: O is the ring of integers of a
global function field; the ring of polynomials (Fp(t]; Lring) is e-interpretable in A for prime integer p;
and D(A; Lying) is undecidable.

In [7, Theorem 7.1], Eisentraeger studied the Diophantine problem in finitely generated associative
commutative unitary rings. The main result of that work is stated in this paper in Theorem 214
The above Theorem [[L3] together with the aforementioned result, provide insight on the Diophantine
problem in finitely generated associative commutative rings, unitary or not. Indeed, for any such
ring R, one can reduce D(O; Lying) t0 D(R; Lying) for some ring of integers O of a number or global
function field, and in a wide variety of cases O turns out to be a ring of integers of a global function
field, making D(R; Lying) undecidable due to Shlapentokh’s work [35)].

We also prove a statement analogous to Theorem [L3] for algebras:

Theorem 1.4. Let L be a finitely generated associative commutative non-unitary algebra over a
finitely generated associative commutative unitary ring ©, with L? infinite. Then there exists a ring
of integers O of a number field or a global function field such that (O; Lying) is e-interpretable in
(L; Laig), and D(O; Lring) is Karp-reducible to D(L; Lag).

Moreover, if © has positive characteristic, then O is the ring of integers of a global function field,
(Fplt]; Lring) is e-interpretable in (L; Lag) for some prime integer p, and D(L; L) is undecidable.

Our results also involve some classes of possibly non-associative and non-commutative algebras
and rings. We only give the statement for algebras, keeping in mind that the statement for rings is
obtained by taking A = Z. We need the following definition: Let L be a A-algebra, and let T" be a
generating set of R. If R is non-unitary then we let I,,(T) or I,, denote the A-ideal generated by all
products of n elements of T. If L is unitary then we let I,(T), or I, in short, denote the A-ideal
generated by all products of n elements of T\{\-1| A € A}, where 1 denotes the multiplicative identity
of R. We say that L is left-normed-generated with respect to T if for all n > 1, I,(T) is generated as
a A-module by a (possibly infinite) set of elements of the form (¢1(¢t2(... (tk—1tk)...))), with k = n
and t; € T for all 3.

Theorem 1.5. Let L be a finitely generated algebra (possibly non-associative, non-commutative and
non-unitary) over a finitely generated associative commutative unitary ring A. Suppose that L is left-
normed-generated with respect to some finite generating set T, and that (L/I,,(T))? is infinite for some
n = 1. Then there exists a ring of integers O of a number field or of a global function field such that
(O; Lying) is e-interpretable in (R; Laig), and D(O; Lying) is Karp-reducible to D(L; Laig). Moreover:

1. If A has positive characteristic p, then (Fp[t]; Lring) is e-interpretable in (L; Laig), and D(L; Laig)
is undecidable.

2. If L is a ring (i.e. A =17) then O is a ring of algebraic integers.
If A is Z or a finite field then all the above holds after replacing (L; Laig) by (L; Lring)-

We obtain the following applications of the result above. By [R/I,, R/I,] we denote the A-
submodule of R/I,, generated by {[z,y] | z,y € R/I,}.

Corollary 1.6. Let L be a finitely generated Lie A-algebra. Assume that [R/I,, R/I,] is infinite for
some n =1, and that A is finitely generated. Then the conclusions of Theorem [{.10 hold for L.

Corollary 1.7. Let F be a finitely generated free associative A-algebra (possibly non-commutative and
non-unitary) or a free Lie algebra of rank at least 2, with A finitely generated. Then the conclusions

of Theorem [.10] hold for F.

This complements the previously mentioned results of Romankov [33] and of Kharlampovich and
Miasnikov [15, [17] regarding free algebras. We remark that in [33] it is proved (among others) that
the algebras of Corollary [£.13] actually have undecidable Diophantine problem if A = Z.

It is known that the first order theory of any ring of integers of a number field or of a global
function field is undecidable. Therefore we obtain the following consequence:



Theorem 1.8. Suppose that A satisfies the hypotheses of any of the theorems and corollaries above.
Then the first-order theory of A in the corresponding language with constants is undecidable.

The above result extends Noskov’s work [29] where it is proved that all finitely generated infinite
associative commutative unitary rings have undecidable first-order theory.

From bilinear maps to associative commutative unitary algebras. The main techniques
developed in this paper allow to move from studying arbitrary rings and algebras (possibly non-
associative, non-commutative, and non-unitary) to studying finitely generated associative commuta-
tive unitary rings. The Diophantine problem in the latter scenario is more or less understood, modulo
the Diophantine problem of rings of integers of number fields, as was shown in |7, Theorem 7.1].

The reduction from arbitrary rings (algebras) to associative commutative unitary rings (algebras)
is achieved through the study of rings of scalars of bilinear maps between A-modules, where A is a
finitely generated associative commutative unitary ring (when dealing with rings we have A = Z).
These are relevant for us because much of the structure of a A-algebra (or a ring) can be “seen” in its
ring multiplication operation, which is indeed a A-bilinear map between A-modules. In fact, bilinear
maps also arise naturally in other structures, and in some cases, it is possible to apply the methods
presented in this paper to these, for example, in some classes of groups. In [11] we explore further
this line of work for several classes of solvable groups.

Next we describe further our approach with bilinear maps. Some of the ideas we present now were
introduced by the second named author in [25], and they have been used successfully to study different
first-order theoretic aspects of different types of structures, including rings whose additive group is
finitely generated [26], free algebras [16, [18, [19], and nilpotent groups [27, [28]. Our contribution is a
treatment of these ideas by means of systems of equations.

Observe that ring multiplication - of a A-algebra R is, by definition, a A-bilinear map between
A-modules. One can try to replace A by a “larger” associative commutative unitary ring A. To do
so, one needs to find a ring A that acts on R by A-module endomorphisms (thus making the additive
group of R into a A-module), in a way that - becomes a A-bilinear map between A-modules. In this
case, we say that A is a ring of scalars of the multiplication map -.

These considerations apply in the same way if one starts with an arbitrary A-bilinear map f :
N x N — M between A-modules N and M. If f is full and non-degenerate (see Subsection B.TI)
then one can define the largest ring of scalars of f, denoted R(f). This ring constitutes an important
feature of f, and in some sense, it provides an “approximation” to interpreting (in (N, M; f; Linod))
multiplication of constant elements from N and M by integer variables, or by variables taking values
in A. Another important property of R(f) is that it is interpretable in (N, M; f; L04) by first-order
formulas without constants [25]. In this paper, we prove that this is still true if one uses systems of
equations instead (with constants).

Theorem 1.9. If [ is full and non-degenerate, and if N and M are finitely generated, then both
Z(Sym(f)) and the largest ring of scalars R(f) of f are e-interpretable in the two sorted structure
(N, M; f, Linod)-

By Enda(N) we denote the algebra of A-endomorphisms of N. The ring Sym(f) is defined as
Sym(f) = {a € Enda(A) | f(ox,y) = f(z,ay) V ,y € A},

and Z(Sym(f)) denotes the center of Sym(f) (i.e. the set of elements from Sym(f) that commute
with all elements from Sym(f)). The interest we have for Z(Sym(f)) is mostly technical. This is
explained in Remark

We next provide an idea of the proof of Theorem There are two main observations. The first
goes as follows: Both Z(Sym(f)) and R(f) can be seen as subalgebras Ends(N). Let aq,...,ar be a
module generating set of N. Then each oo € Endy (N) can be identified with the tuple (aaq, ..., aax) €



NF* and so we can think of Z(Sym(f)) and R(f) as A-submodules of N* with an extra ring multipli-
cation operation. In particular we manage to first e-interpret the whole algebra Enda (N) in (N; L),

together with the action of any element of End(N) on the elements {ay,...,ax}.
The second idea is to use the properties of f in order to “express” statements about endomor-
phisms from Z(Sym(f)) and of R(f) in terms of their actions on ay,...,ar. For example, given

a, B,y € Z(Sym(f)), one has that v = af if and only if f(ya;,a;) = f(Bai, aa;) for all 1 <i4,j < k
(this is proved using bilinearity of f and the fact that f(afz,y) = f(Bz,ay) for all z and y). This
and the considerations in the previous paragraph can be combined to show (after some work) that
multiplication in Z(Sym(f)) is e-interpretable in (N, M; f, Ly04). The rest of the proof follows in a
similar fashion, with the e-interpretation of R(f) being more involved but of a likewise spirit.

In Subsection 3.3 we generalize Theorem [I.9 to the following result.

Theorem 1.10. Let f: A x B — C be a A-bilinear map between finitely generated A-modules. Then
there exists an associative commutative unitary ring © that is a A-algebra and is finitely generated as
a A-module, with the property that (©; L) is e-interpretable in F = (A, B,C; f, Limod). If A is the
ring Z or a field, then Lag and Lyoq can be replaced by Lying and Lgroup, Tespectively.

As mentioned above, the ring multiplication of any A-algebra R, finitely generated as a A-module,
is a A-bilinear map - : R x R — R between finitely generated A-modules, and (R, R, R; -, Linod) 1S
e-interpretable in (R; Lq4). Applying Theorem and transitivity of e-interpretations we manage
to move from the possibly non-associative, non-commutative, and non-unitary R to an associative,
commutative, unitary algebra.

As we discussed in the abstract of the present paper, we believe that the above Theorem .10
constitutes one of the main contributions of the paper, with potential applicability to other structures
other than rings or algebras.

2 Preliminaries

2.1 Interpretability by systems of equations

2.1.1 Multi-sorted structures

A multi-sorted structure A is a tuple A = (A;; fj,mk,ce | i€ 1,j € J ke K,le L), where the A; are
pairwise disjoint sets called sorts; the f; are functions of the form f; : A;; x---xA;, — A;, ., for some
i1,. .., im+1 € I; the ry are relations of the form ry : Ay x -+ x Ay — {0,1}, for some i7,...,4), € I;
and the ¢, are constants, each one belonging to some sort. The tuple (f;,7x,¢c | j€ J ke K,l e L) is
called the signature or the language of A. We always assume that A contains the relations ”equality
in A;”, for all sorts A;, but we do not write them in the signature.

All our terms will allow the use of any constant element in any sort, regardless of whether the
constant is in the signature of the structure at hand. For this reason, and without losing generality,
we will always work with (multi-sorted) structures without constants in the signature.

If A has only one sort then A is a structure in the usual sense. One can construct terms in a multi-
sorted structure in an analogous way as in uniquely-sorted structures. In this case, when introducing
a variable z, one must specify a sort where it takes values, which we denote A,.

A set S of generators of A is a collection of elements from different sorts such that any element
from any sort can be written as a term using only constants from S and from the signature of A (and
using function symbols).

Example 2.1. A ring is a structure (R, +,-,=) with one sort R, the operations of addition + and
multiplication -, and the equality relation =. When there is no risk of ambiguity we will always denote
a classical one-sorted structure, such as a ring or a group, simply by its sort, that is we denote a ring
(R, +,+,=) simply by R.



In this paper we understand left modules over a ring as one-sorted structures in the way explained
in Section [Z3]l An alternative formulation arises by considering two sorts A (the underlying abelian
group) and R (the ring acting on A), a group addition + 4, ring addition and multiplication + g, ‘g,
equality relations =g, =4, and an action operation - : R x A — A. We stress again that this is not
the approach taken in this paper.

Let Ay,..., A, be a collection of multi-sorted structures. We let (A, ...,.4,) be the multi-sorted
structure that is formed by all the sorts, functions, relations, and constants of each A;. Given a
function f or a relation r we use the notation (A, f) or (A,r) to denote the multi-sorted structure A
with the additional function f or relation 7.

Example 2.2. The following example will be used later in the paper. Let A, B, C' be abelian groups,
and let f : Ax B — C be a bilinear map, i.e. a map such that for all a € A the map f(a,-): B> Cisa
group homomorphism, and similarly, for all b € B the map f(-,b) : B — C is a group homomorphism.
Then one can consider the multi-sorted structure (A4, B, C, f). This is formed by the sorts A, B, C;
the group operations and relations of A, B, and C, and the operation given by the map f.
An example of a terms in (A, B,C, f) is f(x,b) + y where b is an element from B, and z,y are
variables taking values in A and C, respectively.

2.1.2 Diophantine problems and reductions.

Let A be a multi-sorted structure. An equation in A is an expression of the form r(r,...,7;), where
r is a signature relation of A (typically, the equality relation), and each 7; is a term in A (taking
values in an appropriate sort) where some of its variables may have been substituted by elements of
A. Such elements are called the coefficients (or the constants) of the equation. These may not be
signature constants. A system of equations is a finite conjunction of equations. A solution to a system
of equations A;3;(z1,...,2,) on variables z1,...,2, is a tuple (ay,...,a,) € Ay, X -+ X Az, such
that all equations 3;(aq, ..., a,) are true in A.

The Diophantine problem in A, denoted D(A), refers to the algorithmic problem of determining
if each given system of equations in A (with coefficients in a fixed computable set) has a solution.
Sometimes this is also called Hilbert’s tenth problem in A. An algorithm L is a solution to D(A) if,
given a system of equations S in A, determines whether S has a solution or not. If such an algorithm
exists, then D(A) is called decidable, and, if it does not, undecidable.

An algorithmic problem P is said to be Karp-reducible (or polynomial-time many-one reducible)
to another problem P if there is a polynomial-time algorithm that transforms inputs to problem P;
into inputs to problem P;, such that both problems have the same output given an input and the
transformed input, respectively.

A crucial observation is that if P; is undecidable, and P; is Karp-reducible to P,, then P, is
undecidable as well.

In some cases, one restricts the set of coefficients C' that can be used in the input equations of the
Diophantine problem of a structure. For instance, one typically takes C' = Z when studying D(Q)
(equivalently one can take C' = {0,1}). In this paper, we will always need that C' contains certain
coeflicients, namely those used in a certain e-interpretation, and maybe also the preimage of some
constants of the structure that is being e-interpreted. For this reason, and to simplify the exposition,
we agree that C is always the whole structure, or a suitable computable subset if the structure is not
countable.

2.1.3 Interpretations by systems of equations

In this section we review the notion of interpretability by systems of equations between multi-sorted
structures. Here we use a much more general setting since our arguments will require handling a
variety of multi-sorted structures.



Interpretability by systems of equations (e-interpretability) is the analog of the classic model-
theoretic notion of interpretability by first-order formulas (see |13, 22]). In e-interpretability one
requires that only systems of equations with coefficients are used, instead of first-order formulas.
From a number theoretic viewpoint, e-interpretability is roughly Diophantine definability by systems
of equations up to a Diophantine definable equivalence relation.

In this paper —in e-interpretations and Diophantine problems— we consider systems of equations
and not just single equations. This may contrast with some number-theoretic settings, where systems
of equations are equivalent to single equations, and both notions are treated interchangeably, i.e. when
studying integral domains whose field of fractions is not algebraically closed.

Definition 2.3. Let A be a structure with sorts {4; | i € I}. A basic set of A is a set of the form
Ai x - x A, for some m and i ’s.

Definition 2.4. Let M be a basic set of a multi-sorted structure M. A subset A M is called defin-
able by equations (or e-definable) in M if there exists a system of equations X4 (21, ..., Zm, Y1, -, Yk)
on variables (z1,...,%m,¥1,..-,Yx) = (X,y) such that x takes values in M, and such that for any
tuple a € M, one has that a € A if and only if the system X 4(a,y) on variables y has a solution in M.
In this case X4 is said to define A in M. The integer n is called the dimension of the e-definition.

From an algebraic geometric viewpoint, an e-definable set is a projection onto some coordinates
of an affine algebraic set. From a number theoretic point, it is a Diophantine definable set, allowing
to use systems of equations rather than a single equation.

Definition 2.5. Let A = (Ay,...;f,...,7r...) and M be two multi-sorted structures. One says that
A is interpretable by equations (or e-interpretable) in M if for each sort A; there exists a basic set
M(A4;) of M, a subset X; € M;, and a surjective map ¢; : X; — A; such that:

1. X; is e-definable in M, for all 1.

2. For each function f and each relation r in the signature of A (including the equality relation
of each sort), the preimage by ¢ = (¢1,...) of the graph of f (and of r) is e-definable in M,
in which case we say that f (or r) is e-interpretable in M. The same terminology applies to
functions and relations that are not necessarily in the signature of A.

The tuple of maps ¢ = (¢1,...) is called an e-interpretation of A in M. The map ¢ is called an e-
interpretation of Ry in Re. We will say that A is e-interpretable in M if there exists an e-interpretation
¢ of Ain M. It is usually clear, but not important, what the specific e-interpretation is.

The next lemma illustrates a key application of e-interpretability.

Lemma 2.6. Let R be a ring, not necessarily commutative or associative. Suppose I < R is an ideal
that admits a 1-dimensional e-definition in R. Then R/I is e-interpretable in R.

Proof. Let Xr(x,y1,...,Ym) be a system of equations giving a 1-dimensional e-definition of I in R,
so that a € R belongs to I if and only if X;(a, y1,-..,Ym) has a solution on y1,...,ym. It suffices to
check that the natural epimorphism 7 : R — R/I is an e-interpretation of R/I in R. First observe
that the preimage of 7 is the whole R, which is clearly e-definable in R. Regarding the preimage of
the equality relation of R/I, we have that 7(a;) = w(az) in R/I if and only if a; — a2 € I, i.e. if and
only if ¥7(a; —asg, y1,. - ., Ym) has a solution. From this it follows that the preimage of equality in R/,
ie. {a1,a2 € R|7m(a1) = m(az2)}, is e-definable in R by the system of equations X} (21, 22, Y1, .-, Ym)
obtained from Xj(x,y1,...,ym) after substituting each occurrence of x by 1 — xo, where z1 and x2
are fresh new variables.

By similar arguments, the preimages of the addition and multiplication operations of R/I are
e-definable in R: indeed, for any three elements aq,as,as € R we have that m(a1) + 7w(az) = w(ag) if
and only if a; + as — ag € I, and m(aq)w(az) = 7(as) if and only if ajas — a3 € 1. O



Interestingly, all finitely generated ideals of a ring are e-interpretable in it:

Lemma 2.7. Let I be a finitely generated ideal of a ring R. Then I is e-definable in R. As a
consequence, R/I is e-interpretable in R.

Proof. Let ay, ..., a, be a generating set of I. Then the equation z = >’ x;a; on variables (z, z1,...,2,)
e-defines I in R. Lemma now implies that R/I is e-interpretable in R. O

Note that any finitely generated ring R (as all rings considered in this work) is Noetherian, i.e. all
their ideals are finitely generated (this follows from Hilbert’s basis theorem). Thus any ideal I of R
is e-definable in R and R/I is e-interpretable in R.

Remark 2.8. It is clear from the proof that an analog of Lemma 2.6] holds for other structures, such
as groups with e-definable normal subgroups, modules with e-definable submodules, etc.

The following remark will be used several times without referring to it.

Remark 2.9. Let A = (A;f,...;r,...) and B = (B; f',...;7',...) be uniquely-sorted structures
such that A € B and all functions and relations of A are also functions and relations of 5. Assume
A is e-definable in B. Then, clearly, A is e-interpretable in B.

The next two results are fundamental. They follow from Lemma 212 which we present at the
end of this subsection.

Proposition 2.10 (E-interpretability is transitive). If A is e-interpretable in B and B is e-interpretable
in M, then A is e-interpretable in M.

Proposition 2.11 (Reduction of Diophantine problems). Let A and M be (possibly multi-sorted)
finitely generated structures such that A is e-interpretable in M. Then D(A) is Karp-reducible to
D(M). As a consequence, if D(A) is undecidable, then so is D(M).

Similarly, the first-order theory of A is Karp-reducible to the first-order theory (with constantdl )
of M, and the second is undecidable if the first is.

Both Propositions 2.10]and 2. IT are consequences of the following lemma, which states in technical
terms that if one structure is e-interpretable in the other, then one may “express” equations in the
first as systems of equations in the second. Similar results to this with analogous proof are well-known.
We include a proof for completeness.

Lemma 2.12. Let ¢ = (¢1,...) be an e-interpretation of a multi-sorted structure A = (Ay,...;f,...,7r, ...

in another multi-sorted structure M, with ¢; : X; € M(A;) — A; (see Definition [23]). Let o(x) =
o(x1,...,2n) be an arbitrary system of equations in A with each variable x; taking values in Aj,. Then
there exists a system of equations X5 (y1,...,¥n) in M, such that each tuple of variables y; takes val-
ues in M(A;,), and such that a tuple (by,...,b,) € [[i_, M(A;,) is a solution to $o(y1,...,¥n) if
and only if (b1,...,by) € [[1; Xj, and (¢, (b1),...,¢;.(by)) is a solution to o.

Proof. We claim that, by introducing new variables and new equations, we can rewrite o so that o
consists in a conjunction of equations o1 A - - - A 0, such that the following holds: For alli =1,...,m,
o; is either of the form z = f(x1, - x,), r(z1,...,2,), or 2 = a, where f is some function from A, the
symbol r is some relation from A, the symbols 1, ..., x,, z are variables, and « is any element from
the sorts of A. The lemma follows from the claim, since by the definition of e-interpretability, the
present lemma is true for each of o;, i = 1,...,m. Hence, it suffices to take X, to be X5, A -+ A s, .

We now prove the claim. We proceed by induction on the syntactic length |o| of o, the base cases
being clear. We can assume that o consists on a single equation. Suppose first that ¢ does not have the
desired form and that it is of the form z = f(¢1, ..., t) for some variable z, some function f, and some

1The considerations made regarding the use of constants in systems of equations and Diophantine problems apply
as well for first-order formulas and their decidability problems (see Paragraph 3 of Subsection [Z3] or Subsection 21.2]).



terms tq,...,t,, depending on some variables x1,...,xr. We can rewrite ¢ into the equivalent system

of equations z = f(Y1,..-,Ym) A Y1 = t1(T1,. .., Zk) A - A Ym = tm(21,...,2k), where y1,...,Ym
are new variables. The syntactic length of each one of these equations is strictly less than |o|, and
then we can proceed by induction. If o has the form r(¢1,...,¢,) for some relation r and some terms
t1,...,tm, we can proceed similarly by rewriting it as 7(y1, . . -, Ym) A AY1 = t1(T1, ..., TE) A  AYm =
tm(21,..., k). Finally if o has the form f(tq,...,tm) = g(t}, ..., t}) for some functions f, g and terms
t1, .oy tm, th, ..., th, we can rewrite sigma in the form z = f(¢1,...,tm) A 2 = g(#},...,t}). Each one
of the equations in the conjunction has syntactic length smaller than |o|, and again we can proceed
by induction. This proves the claim. O

We will use the following observations in different occasions:

Remark 2.13. Let A, B, and M be (possibly multi-sorted) structures. Suppose that all sorts among
the sorts of A and B are pairwise disjoint. Let A be a (possibly multi-sorted) structure which is the
result of adding functions, relations, constants, or more sorts to M. Suppose A is e-interpretable in
M. Then A is also e-interpretable in N.

Moreover, if both A and B are e-interpretable in M, then the multi-sorted structure (A, B) is also
e-interpretable in M.

2.2 The Diophantine problem in finitely generated associative commuta-
tive unitary rings

Recall that, given two associative commutative unitary rings R, S with S € R, and an element r € R,
we say that r is integral over S if there exists a monic polynomial p(x) € S[z] such that p(r) = 0. The
integral closure of S in R is defined as the subset of integral elements of R, and it forms a subring of
R. We will often denote it Og when the ring S is understood from the context, and we will refer to
Ogr as the ring of integers of R.

A number field is a finite field extension of Q. Given a field k, by k(t) we denote the set of rational
functions with coefficients in k£ and variable ¢. The integral closure of Z in a number field K is called
a ring of algebraic integers. A global function field is a finite field extension of Fp(¢) for some finite
field ), with a prime number p of elements.

Shlapentokh proved that the Diophantine problem is undecidable in any ring of integers of a global
function field (see 10.6.2 from [37]). On the other hand, it is conjectured that the same is true for any
ring of algebraic integers.

In the PhD thesis |7, Theorem 7.1] Eisentraeger proved the following relation between the Dio-
phantine problem of any infinite finitely generated commutative associative unitary ring, and the
Diophantine problem of rings of integers of number or global function fields. Recall that the charac-
teristic of a ring with unity is the minimum positive integer n such that 1 +.7. +1 = 0.

Theorem 2.14 (Theorem 7.1 in [7]). Let A be an infinite finitely generated associative commutative
unitary ring.

1. Assume that the characteristic of A is m > 0. If A has infinitely many elements, then Hilbert’s
Tenth Problem for A is undecidable.

2. Assume A has characteristic zero. If the Krull dimension of A is at least 2, then D(A; Lying)
is undecidable. If we assume that D(Ok; Lring) is undecidable for any ring of algebraic integers
Ok of integers of number fields is undecidable, then D(A; Lying) is undecidable.

We are interested in a variation, slightly stronger, formulation of this result, which we state below.
The proof of this alternative formulation can be obtained from the proof of Theorem 214 [7] by
making straightforward modifications. For completeness, we include an alternative yet similar proof
in the appendix at the end of this paper.

We need the notion of rank of an abelian group, and by extension of a ring. This is defined in a
variety of manners throughout the literature. Here we follow [9].
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Definition 2.15 (|9]). The rank of an abelian group A is the maximal number of nonzero elements
ai,...,a, € A such that whenever aja; + -+ + ana; = 0 for some integers ag,...,a, € Z, then
aa; =0forallt=1,... n.

The rank of a ring is defined as the rank of R seen as an abelian group (i.e. forgetting its multipli-
cation operation).

Remark 2.16. Let R be an integral domain. If R has zero characteristic then the rank of R coincides
with the dimension of R seen as a Z-module, which is the maximum number of Z-linearly independent
elements in R, i.e. elements aq, ..., a, such that whenever 22:1 a;a; = 0 for some integers «;, we have
a; =0 foralli=1,...,r. If R has positive characteristic p > 0, then the rank of R is the dimension
of R as a [F)-vector space.

Hence the notion of rank generalizes dimension of Z-modules and of vector spaces. As an example
we have that the rank of the non-integral domain R = Z[x]/(pz) is infinite. However, note that R has
only one linearly independent element over Z, hence R seen as a Z-module has dimension 1. On the
other hand, R does not admit the structure of a vector space over a finite field. Another illustrative
example is given by the integral domain Z[%], which has rank 1.

Theorem 2.17. Let R be an infinite finitely generated commutative ring with identity. Then there
exists a ring of integers O of a number or a global function field such that (O; Lying) is e-interpretable
in (R; Lying), and D(O; Lying) is Karp-reducible to D(R; Lying). Moreover, one of the following holds:

1. If R has positive characteristic p > 0, then the following holds: O 1is the ring of integers of
a global function field; the ring of polynomials (Fp[t]; Lring) is e-interpretable in (R; Lying) for
some variable t; and D(R; Lying) is undecidable.

2. If R has zero characteristic and it has infinite rank then the same conclusions as above hold:
O is the ring of integers of a global function field; the ring of polynomials (Fp[t]; Lring) is e-
interpretable in (R; Lying) for some prime p and variable t; and D(R; Lying) is undecidable.

3. If R has zero characteristic and it has finite rank n, then O is a ring of algebraic integers, and
D(R; Lying) is undecidable provided that D(O; Lying) s undecidable. Additionally, K is a field
extension of Q of degree at most n.

Proof. See Appendix O

2.3 Notation and conventions

Here we note and emphasize some relevant aspects of the notation used in the paper.

1. Unless stated otherwise, all rings and algebras are not necessarily associative, commutative, or
unitary.

Given an algebra R over a ring A, and a subset S € R, we let {(S)A be the left A-submodule of R
generated by a set S. We also let R? = (xy | z,y € R)\.

All modules are assumed to be left modules over commutative associative unitary rings. Similarly,
the underlying module of an algebra is assumed to be a left module over commutative associative
unitary rings. All arguments work in the same way if we replace all left modules by right modules or
all left module by bimodules.

3. The language of additive groups is Lgoup = (+). The language of A-modules is Lo =
(Lgroup, -A), where the -A = {-\ | X € A} are unary functions representing multiplication by scalars:
a(x) = Az. The language of rings L,y is (+,-). The language of A-algebras is Lqy = (+,-,-A).
If A admits a finite generating set S, then one can replace ‘A by -S = {-y | A € S} without loss of
generality.
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Hence, in an equation (or in a formula) over a A-module or A-algebra R, one is allowed to multiply
any element of R by any constant element of A. But this is as far as one can involve A: no variable
can take values in A, no quantification over A can be made, etc.

4. The notion of Z-module or Z-algebra with the languages above is equivalent, for the purposes of
studying decidability of the Diophantine problem, to the notion of abelian group or ring, respectively.

5. Sometimes we will want to look at an algebra L over a ring A as a A-module, or as a ring, or
as a group, forgetting about the corresponding additional operations of L. We will use the notation
(L; Lonod)s (L; Lying)s (L; Lgroup) when this is done, respectively. We will also write (L; Lqy) to
emphasize that L is considered with all its A-algebra operations. A similar terminology will be used
for other structures such as rings and modules.

This notation will be used extensively in expressions of the type (L;L1) is e-interpretable in
(K; L2). This means that the structure L with the operations of the language £ is e-interpretable in
K considered with the operations of £o. In the particular case that £, = Lo we will also say that L
1s e-interpretable in K in the language L.

3 From bilinear maps to commutative rings and algebras

A brief description of the arguments used in this section can be found in the last part of the introduc-
tion.

3.1 Ring of scalars of a full non-degenerate bilinear map

Throughout this subsection, A denotes an associative, commutative, unitary ring, possibly infinitely
generated.

A map f: N x N > M between A-modules N and M is A-bilinear if, for all a € N, the maps
lo: N - M and ro : N — M defined as ¢,(b) = f(a,b) and 7,(b) = f(b,a) are homomorphisms
of A-modules. We call f non-degenerate if whenever f(a,x) = 0 for all z € N, we have a = 0, and
also whenever f(z,a) = 0 for all x € N we have a = 0. The map f is called full if the A-submodule
generated by the image of f is the whole M.

The set of module endomorphisms of a A-module N, denoted Enda(N), forms an associative
unitary A-algebra once we equip it with the operations of addition and composition (henceforth called
multiplication). Given oo € Enda(N) and x € N, we write ax instead of a(x). An action of a ring A
on N is a ring homomorphism ¢ : A — Endx(N). Any such action ¢ endows N with a structure of
A-module. The action is called faithful if ¢ is an embedding.

Definition 3.1. Let A be a commutative associative unitary ring, let N and M be A-modules, and
let f: N x N — M be a A-bilinear map between N and M. A ring A is called a ring of scalars of f
if it is associative, commutative, and unitary, and there exist faithful actions of A on M and N such
that f(ax,y) = f(z,ay) = af(z,y) for all @ € A and all z,y € N.

Since the actions of a ring of scalars A of f on M and N are faithful, there exist ring embeddings
A — Endp(M) and A < Enda(N). For this reason and for convenience, we always assume that a
ring of scalars of f is a subring of Enda(N).

Definition 3.2. We say that A is the largest ring of scalars of f if for any other ring of scalars A’ of
f, one has A" < A as subrings of Enda(N). We denote such ring by R(f).

We will also need the following notation:
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Definition 3.3. Let A be an associative commutative unitary ring, and let N be a A-module. We
define the following subsets of Enda (N):

Sym(f) = {a € Endpx(N) | flaz,y) = f(z,ay) for all z,y € N}, (1)
Z(Sym(f)) = {a € Sym(f) | af = Ba for all § & Sym(f)} 2)

It is straightforward to check that both Sym(f) and Z(Sym(f)) are A-modules.

The next result was proved by the second author in [25]. We recover its proof since we will need
to elaborate on it in the next subsection.

Theorem 3.4 (cf. [25]). Let A be an associative commutative unitary ring, and let f : N x N > M
be a full non-degenerate bilinear map between A-modules. Then the largest ring of scalars R(f) of f
exists and is unique.

Proof. First observe that for all a;,as € Z(Sym(f)) and all z,y € N,

flaranr,y) = flaaz, ny) = f(z, a2a1y) = f(x, a1az2y),

and thus ajas € Sym(f). Since both «; and ay commute with any element from Sym(f), so does
agag. Hence, ayag € Z(Sym(f)), and so Z(Sym(f)) is a A-subalgebra of Enda(N).

Next, let A be an arbitrary ring of scalars of f. We will show A is a subring of Z(Sym(f)). Indeed,
by definition, A © Sym(f). To see that A < Z(Sym(f)), let « € A and § € Sym(f). Then, for all
z,y € N,

flaBz,y) = af(Br,y) = af (z,By) = flaz, By) = f(Baz,y).
Hence f((af—Ba)z,y) = 0for all z,y € N. Since f is non-degenerate and y is arbitrary, (af—pa)x =
0 for all z € N. It follows that a8 = Ba, and thus A € Z(Sym(f)).

By what we have seen so far, Z(Sym(f)) is an associative commutative unitary A-algebra that
acts faithfully on N. We now wish to find a subring of Z(Sym(f)), call it ©, that acts on M. Since
fis full, for all z € M we have z = ), f(x;,y;) for some x;,y; € N. Hence, one may try to define the
following action:

az = Zf(a:vi,yi) for aeA. (3)

However, this is not necessarily well-defined, because the same z € M may have different expressions
as sums of elements f(x;,y;). With this in mind, we let © be the set of all « € Z(Sym(f)) such that

S awiy) = 3 flaahy) whenever Y flany) = ) F(ah, o). 4)

Clearly, © is closed under addition and multiplication, and therefore it is a subring of Z(Sym(f))
with a well-defined action on M given by [B]). Since the action of © on N is faithful, and f is a
non-degenerate map, the action of © on M is faithful as well. It follows that © is a ring of scalars
of f. Moreover, any other ring of scalars A of f satisfies ), and thus, since A < Z(Sym(f)) by our
previous argument, we have A < ©. We conclude that © is the unique largest ring of scalars of f. [

Remark 3.5. It is clear from the proof above that R(f) is closed under multiplication by A. Hence,
R(f) admits the structure of a A-algebra.

3.2 E-interpreting Z(Sym(f)) and the largest ring of scalars

Throughout this subsection A denotes a Noetherian associative commutative unitary ring (possibly
infinitely generated). Recall that a ring is Noetherian if for every infinite ascending chain of ideals
I € I, < ... there exists n such that I,, = I,,, for all m > n. In this case, any finitely generated A-
module is Noetherian and finitely presented (see [6] or |[12]). We refer to Subsection 23] for important
notation and terminology conventions.

The goal of this subsection is to prove the following result.
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Theorem 3.6. Let f: N x N — M be a full non-degenerate bilinear map between finitely generated
A-modules. Then both Z(Sym(f)) (see Definition[33) and the largest ring of scalars R(f) of f are
finitely generated as A-modules, and they are e-interpretable as A-algebras in F = (N, M; f, Lmod)-
Moreover,

1. Z(Sym(f)), R(f), N, and M are all simultaneously finite, or they are all simultaneously infinite.

2. If A is a field, then (Z(Sym(f)); Lring) is e-interpretable in (N, M; f, Lgroup) (i-e. multiplication
by scalars is not required).

3. If A = Z, then both (Z(Sym(f)); Lring) and (R(f); Lring) are e-interpretable in (N, M; f, Lgroup)-

We state some lemmas and observations before proving Theorem B.6] starting with a useful de-
scription of Enda(N).

Remark 3.7. Let N be a A-module with finite module presentation {ai,...,am | X, ;i j =
1,...,T)a, where z;,; € A for all ¢,j. Each element « of Enda(N) uniquely determines an m-tuple
(aay,...,aa,) € N™, and one has ), x; ;(«a;) = 0 for all j. Conversely, any m-tuple from N™ with
this last property determines an element from Enda(N). Thus Enda(N) can be identified with the
set of m-tuples (a1, ..., an) € N™ that satisfy >}, z; ;04 = 0 for all j.

In the particular case that A is a field we have that N is a vector space. In particular, N is a
free A-module, and so it admits a finite presentation with an empty set of relations. In this case,
Endy(N) = N™ for some m’ < m. Let us mention a particular case when N is a free A-module. In
this case N admits a finite presentation with an empty set of relations. In this case, Endy(N) = N m’
for some m’ < m. This happens, for example, if A is a field or if A = Z and N is torsion-free.

The above identification of Enda(N) with a subset of N™ is used to prove the following result.
Lemma 3.8. Let N be a finitely generated A-module. Then the following hold:
1. (Enda(N); Lmod) is e-interpretable in (N; Linod)-

2. Let Sy = {a1,...,am} be a generating set of N, and define maps -a; : Enda(N) — N so that
-a; sends each o € Endp(N) to aa; € N. Denote -Sy = {-a1,...,-am}. Then the two-sorted
structure ENDA(N) = (Endp(N), N;-Sn, Lmod) s e-interpretable in (N; Liyod)-

3. In the particular case that A is a field or the ring of integers Z, the previous statements are still
valid after replacing Lyoq by Lgroup 0 all structures.

Proof. As mentioned above, since A is a Noetherian associative commutative unitary ring, any finitely
generated A-module is finitely presented with respect to any finite generating set. Let Y z;a;, j =
1,...,T be a finite set of relations of IV, with z;; € A for all ¢, j.

Following Remark B, identify each element o of Enda(N) with the m-tuple (ai,...,qn,) =
(aaq,...,aa,) € N™. By this same remark, any m-tuple a = (ay, ..., @) € N™ belongs to Enda(N)
if and only if > x;;a; = 0 for all j. This is a finite system of equations in (IV; Ly,04) with variables a;,
and so Enda(N) as a set is e-definable in (N; Ly04). As observed in Remark B if A is a field then
Endpy(N)=N ™ for some m’ < m, and so the e-definition consists in an empty equation. In particular,
it does not use multiplication by scalars. Hence Endy (N) is e-definable as a set in (N; Lgroup)-

The group addition of two tuples from the A-module Endy(N) is obtained by component-wise ad-
dition. Hence the graph of the addition operation of End (N) (which is a subset of N3™) is e-definable
in (N, Ly,04). By similar reasons, so are the graphs of the equality relation of Enda(N) and of mul-
tiplication by fixed elements of A (i.e. multiplication by scalars). This proves that (Enda(N); Limod)
is e-interpretable in (N; Limoeq). In the case that A is a field, (Enda(N); Lgroup) is e-interpretable in
(N Lgroup).

It follows that the two-sorted structure (Enda(N), N;Lyod) is e-interpretable in (N; Ly04). Fi-
nally, notice that, for a = (a1, ...,am) € Enda(N) and z € N, the tuple (o, z) = N™ x N belongs to
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the graph of -a; if and only if # = aa; = ;. In other words, for any tuple (y1,...,¥m+1) € Nt we
have
(Y1, Ym+1) € Graph(-a;) S N1 if and only if y; = ym+1,

hence the graph of -a; is e-definable in (N;Lgroup). This completes the proof that ENDy(N) is
e-interpretable in (N; Ly04)-

If A is a field then multiplication by scalars was not used in any equation other than when e-
interpreting the scalar multiplication of Enda (N). If A = Z then a A-module is just a group, because
nx =z + .7 + x for all n € Z. Hence, Item 3 holds. o

Remark 3.9. It follows from Lemma [3.§ and Remark that there exists an e-interpretation ¢ of
the three-sorted structure
F = (EndA(N)aNaM7f7 'SNv‘CmOd)

in F'=(N,M;f,Lmoa)- If Ais a field or Z, then one can replace Limoq by Lgroup-

Thus by transitivity of e-interpretations (Proposition [ZI0), in order to prove that (R(f); Laiy)
or (Z(Sym(f)); Layg) is e-interpretable in F' it suffices to show that it e-interpretable in Fy. For
this one must keep in mind that an equation in F} can involve constants and variables from N, M,
and Enda(N); the map f; actions of endomorphisms on the a;’s given by -Sy; and the operations
of (N;Lmod)s (M;Lmod), and (Enda(N); Liymeq) without its ring multiplication. For example, the
equation f(wa;,a;j) = f(a;, aa;) on the variable « is valid in Fy, whereas ajaga; = asaa; or ax = a;
is not (for variables oy, az,a € Enda(N), z € N).

We next prove the main result of this subsection.

Proof of Theorem [T8. First observe that End(N) is finitely generated as a A-module, because N™
is a Noetherian module and Fnds(N) embeds as a A-module into N, by Remark 7] By the same
reason both R(f) and Z(Sym(f)) are finitely generated as A-modules.

Denote F' = (N, M; f, Lmoa). We proceed to prove that (Z(Sym(f)); Lag) is e-interpretable in F.
By the previous Remark B9} it suffices to show that (Z(Sym(f)); Lay) is e-interpretable in Fy for
some generating set Sy = {a1,...,a,} of N.

We start by proving that Sym(f) can be e-defined as a subset of Enda(N) in Fy. Indeed, take
any x,y € N and write z = Y x;a; and y = Y, y,a; for some x;,y; € A. Since ax = Y x;aq; for all
a € Endy(N), we have f(ax,y) = > xy; f(aa;, a;), and similarly for f(x,ay). It follows that

Sym(f) = {a € Enda(N) | f(aas,aj) = f(ai,aa;) for all 1 <i,j < n}. (5)

Observe that aa; = -a;(a) for all ¢ = 1,...,n. Hence (B) can be written as a first-order sentence in
Fy. We conclude that Sym(f) is e-definable as a set in F; by the system of equations

A Lf Caila),ap) = flai,a;(a))] (6)

1<i,j<n

on the single variable « taking values in Enda(N). Note that (@) does not use multiplication by
scalars A.

Since the signature of Fy contains all operations of (Enda(N); Lmoed), we have that Sym(f) <
Enda(N) as a A-module is e-interpretable in Fj.

Next, we show that Z(Sym(f)) is e-definable as a set in Fy. As before, this immediately implies
that the A-module (Z(Sym(f)); Lmod) is e-interpretable in Fy. Let f1, ..., B be a finite generating set
of (Sym(f); Lmod). Then, a € Z(Sym(f)) if and only if o € Sym(f) and af; = Braforallt =1,... k.
This implies that

flaas, Braj) = f(ai, afiaj) = f(as, fraaj) = f(Bras, aa;) for all i, j,t. (7)
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We claim that () is a sufficient condition for an endomorphism a € Sym(f) to belong to Z(Sym(f)).
As a consequence one has that Z(Sym(f)) is definable as a set in F} by means of the following system
of equations on the variable a:

N\ [fCai(a),-a;(8) = fCai(Be), aj(a))], (8)

t=1,...k,
1<i,j<n

together with the system (), which ensures that a € Sym(f). Again, recall that aa; and Sia; are
written in Fy in the form -a;(a) and -a;(8;). As before, (8) does not use multiplication by the scalars
A.

To prove the claim, i.e. that () is a sufficient condition for « € Sym(f) to belong to Z(Sym(f)),
suppose (8) holds. Then f(Biaai,a;) = f(abfiai,aj) for all i,7,¢, and thus, for fixed ¢ and ¢,
f([Bt, ¢)as, aj) = 0 for all j, where [B;, o] = Bra— ;. By bilinearity of f and the fact that a1,...,a,
generate N, we have that f([8;, a]a;, ) = 0 for all x € N and for all 4,¢. Since f is non-degenerate,
[Bt, a]a; = 0 for all ¢,¢. This implies that [B¢,a]a = 0 for all x € N, and thus [5:,a] = 0 for all ¢.
This completes the proof of the claim.

We have seen that the A-module (Z(Sym(f)); Lmod) is e-interpretable in Fy. Moreover, multiplica-
tion by scalars A is only used for defining the the scalar multiplication of (Z(Sym(f)); Lmoed). Hence in
fact Z(Sym(f)) as a group is e-interpretable in (Enda(N), N, M; f,-Sn, Lgroup) (i-€. F1 after replacing
ﬁmod by ‘Cgroup)-

By analogous reasons as above, for any triple v1,v2,v3 € Z(Sym(f)) the equality 3 = 7172 holds
if and only if

f(vsai,a;) = f(y2ai,11a;) forall<i,j<n. (9)

Hence the ring multiplication of Z(Sym(f)) is e-interpretable in F; by means of (@) and appropriate
systems of the form (@) and (8) (which ensure that v; € Z(Sym(f))). We conclude that Z(Sym(f))
as a A-algebra is e-interpretable in Fy, and hence in F = (N, M; f, Linod)-

We now prove Items 2 and 3 of the statement of the Theorem As observed in the arguments
above, multiplication by scalars of F; was only used in order to e-interpret multiplication by scalars
of Z(Sym(f)). Hence (Z(Sym(f)); Lring) is e-interpretable in (Enda(N), N, M; f,-Sn, Lgroup). By
Lemma [B.8 and Remark [3.9] if A is either Z or a field, then the latter structure is e-interpretable in
(M, M; f, Lyroup). Hence (Z(Sym(f)); Lring) is e-interpretable as a ring in (M, M; f, Lyroup). This
concludes the proof of Items 2 and 3.

Next we show that (R(f); Lay) is e-interpretable in (N, M; f, L04). By the previous arguments
and by transitivity of e-interpretations, it suffices to prove that (R(f); Lay) is e-interpretable in F;.
First recall from the proof of Theorem B4l that R(f) is the set of all & € Z(Sym(f)) such that

i3 fay) = Y f@hyh), then Y flaws, i) = Y. floa),y)),
i=1 [ =1 3

for any ¢t > 1 and elements 1, ..., T, Y1, -, Yt Thy o Thy Y1, - - -, ¥4 in Nt This condition is equivalent
to
t t
if 2 f(@i,y:) =0, then Z flaxi,y;) = 0. (10)
i=1 i=1

We claim that « € Z(Sym(f)) satisfies (I0) if and only if it satisfies the following condition:

if Z zjkf(aj,ar) =0 for some z;r €A (1 <j,k<n), then Z zjkf(aaj,a) = 0. (11)

1<j,k<n 1<j,k<n

Indeed, the direct implication is immediate. Conversely, suppose that « satisfies ([I), and let ¢ > 1
and x1,...,%¢,Y1,---,Yt € N be such that Zf;l f(zi,y;) = 0. Write each z; and y; in terms of the
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generators ay, ..., ay,

n
Ti = Z z;jaj, and yl, = Zyi,kaku Tijs Yik € A
j=1 k

Since f is bilinear,
t

Z flag,y) = Z (Z x”ylk) f(aj,ar) =0.
i=1

1=1 1<j,k<n

Thus by (),

t

0= Z Z v jYikf(aaj, ar) = Z floxs, y;).

1<j,k<n i=1 i=1

This completes the proof of the claim.

The set S of all tuples (z;,;) € A such that 2i<ijen #ij f(aiy aj) = 0 forms a submodule of A",
and so it admits a finite generating set, say X = {s; |¢ =1,...,T}. Write s; = (s; 5 | 1 < j,k <n).
Then a € Z(Sym(f)) belongs to R(f) if and only if

t
Z (Z Qisi,j,k) flaaj,ar) =0, forall qi,...,q €A. (12)

1<j,k<n \i=1
Equivalently,

t
Z‘ﬁ( Z Si,j,kf(aajaak)) =0, forall qi,...,q€A. (13)

i=1 1<j,k<n

By making appropriate choices for the g¢;’s, one sees that (I3) holds if and only if each one of the
expressions inside the parenthesis is 0. It follows that R(f) is e-definable as a set in F}. Consequently,
R(f) is e-interpretable as a A-algebra in F1, since all the operations of (R(f); Lq4) are already present
in the signature of the latter. It follows that R(f) is e-interpretable as a A-algebra in (N, M; f, Lod)-

Finally we prove Item 1, i.e. that Z(Sym(f)), R(f), N, and M are all simultaneously either finite,
or all simultaneously infinite. We first claim that, in general, if © is an associative commutative unitary
ring, then any finitely generated faithful ©-module K is infinite if and only if © is infinite. Indeed,
if K is finite, then Fndg(K) is finite as well, because Endg(K) embeds as a ©-module into K", for
some n (see Remark B7). Since K is a faithful ©-module, there exists an embedding © — Endeg(K),
and hence O is finite as well. On the other hand, if K is infinite, then, since K is finitely generated,
there must exist k € K such that the set {6k | § € O} is infinite, hence © is infinite. The claim follows.

Observe that both N and M are faithful R(f)-modules, and that N is also a faithful Z(Sym(f))-
module. We claim that both these modules are finitely generated. Indeed, let Ay = {A € A | An =
0 for all n € N}, and define Ap; analogously. Then N (resp. M) is a finitely generated faithful
A/An-module (resp. A/Ap-module). Using that f is full and non-degenerate, one can see that N is
also a faithful A/Aj-module under the action (A + Apr)z = Az. With this action, A/Aps becomes a
ring of scalars of f, and so by maximality of R(f) we have A/Ay < R(f) < Z(Sym(f)) as subrings
of Endp(N). Similar arguments yield A/Ay < R(f) < Z(Sym(f)). Since N is finitely generated
as a A/Ax-module, it is also finitely generated as a R(f)-module. Similarly, N is finitely generated
as a Z(Sym(f))-module, and M is finitely generated as a R(f)-module. Observe also that all these
modules are faithful since Z(Sym(f)) and R(f) embed in Enda(N) by construction. This completes
the proof of the claim. Item 1 of the statement of the theorem follows now from this and the previous
claim. (]
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3.3 Arbitrary bilinear maps

In this subsection we keep the assumption that A is a Noetherian associative commutative ring with
identity (possibly infinitely generated). Our next goal is to generalize Theorem[B.0lto arbitrary bilinear
maps. Given a map A-bilinear map between finitely generated A-modules f: A x B — C, we let the
left and right annihilators of f be, respectively,

Anni(f) ={a€ A| f(a,y) =0 for all y € B},
Ann,(f) ={be B| f(x,b) =0 for all z € A}.

Theorem 3.10. Let f : A x B — C be a A-bilinear map between finitely generated A-modules. Then
there exists an associative, commutative, unitary A-algebra © such that (©; Lag) is finitely generated
as a A-module and it is e-interpretable in F = (A, B, C; f, Lymod). Moreover,

1. In case that A is a field or the ring Z, then (©; Lying) is e-interpretable in (A, B, C; f, Lgroup)-

2. © is infinite if and only if both A-modules (f(A, B))a and A/Anni(f) x B/Ann,(f) are infinite,
respectively. Here (f(A, B))x denotes the A-submodule of C' generated by the set {f(a,b) | a €
A,be B}.

The proof of this result relies on constructing from f a suitable full non-degenerate bilinear map
of the form g : X x X — Y, so that we can apply Theorem to it. Observe that f induces a full
non-degenerate A-bilinear map

fr o AfAnny(f) x B/ Ann.(f) — (f(A, B))A- (14)

Let us denote F' = (A, B,C; f, Limod), A1 = A/Ann(f), By = B/Ann.(f), C1 = {f(A4, B))a, and
Fy = (A1, B1,C4; f1, Limod). Note that Ay, By and Cy are finitely generated since A, B and C are
Noetherian modules. If A; = B, then f; satisfies the hypothesis of Theorem [3.6l Otherwise consider
the map

fQ Z(Al X Bl) X (Al X Bl) g Ol X Ol
((aab)v (alvb/)) = (fl(avb/)afl(a/ab))'

One can easily check that fy is a full non-degenerate A-bilinear map between finitely generated A-
modules. Denote Fy = (A1 x By, C1 x Ch; fa, Limod). Either fi or fo are of the desired form, hence
Theorem [3.6] can be applied to at least one of them. Moreover:

(15)

Lemma 3.11. Both F and F5 are e-interpretable in F'. The same is true if one replaces L,oq with
Loroup n 1, Fy, and F.

Proof. Let Sy = {a1,...,a,} and S = {b1,...,b,} be generating sets of A and B, respectively. The
submodules Ann;(f) and Ann,(f) are e-definable as sets in F' by the systems of equations f(z,b;) = 0,
i=1,....,m,and A;f(a;,y) =0,i=1,...,n, respectively. Here 2 and y are variables taking values
in A and in B, respectively. An element ¢ € C belongs to C, = (f(A, B)) if and only if there exist
elements \;j, ¢ =1,...,m, 7 =1,...,m, such that

Cc = Z )\i,jf(ai,bj) = ilf (i Ai,j@i,bj) .
j=

1<i,5<n,m i=1

It follows that C is e-definable as a set in F' by the equation z = >}, f(x;,b;) on variables z and
X ={z;|j=1,...,n}. The variable z takes values in C' and the variables from X take values in A.

The operations of Ann;(f), Ann,.(f) and C; are e-interpretable in F' because they are already
present in the signature of F'. Hence by Lemma and Remark 2.8 (A1; Limod) and (B1; Lied) are
e-interpretable as A-modules in (A; L,,04) and (B; Lyed), respectively. Moreover, from the proof of
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Lemma [2.6 and the fact that the e-definitions in F' of Ann;(f) and Ann,(f) do not use multiplication
by scalars, we have that (A1; L£group) and (B1; Lgroup) are e-interpretable in (A; L group) and (B; Lgroup ),
respectively.

The preimage in F' of the graph of f; is e-definable in F' by the system consisting on the two equa-
tions z = f(z,y) and z = Zj f(z;,b;) on variables z,z,y, X = {z1,..., %} taking values in C, A, B,
and A, respectively (note that the second equation is added to ensure that z takes values in Cy). Again
this equation does not use multiplication by scalars. We conclude that Fy = (A1, B1,C1; f1, Limod) 18
e-interpretable in (4, B, C; f, Lm04), and that the same holds if one drops multiplication by scalars in
both structures.

Finally, we claim that (A; x Bi; Limnmed) is e-interpretable in (A1, B1; Limod), and (C1 x C1; Lonod)
is e-interpretable in (C1; Limeq). Indeed, both A1 x By and C; x C; are basic sets of (A1, By) and
(1, and so they are defined as sets by empty systems of equations. Similarly as before, the equations
z = fi(z,y') and 2’ = fi(2/,y) on variables z,y,2’,y, z, 2’ taking values in A;, By, A1, By,C,Ch,
respectively, e-define the graph of fy in Fy. It follows that the whole two-sorted structure Fj is e-
interpretable in F, and also in F' by transitivity of e-interpretations. Moreover, in all e-interpretations
we constructed, multiplication by scalars A in one structure is only used to e-interpret multiplication
by scalars A in the other structure. Hence F5 is still e-interpretable in F' if one replaces L,0q by
Lgroup in the Fy and F'. O

Proof of Theorem [Z10 The result follows immediately after using Theorem [3.6lin order to e-interpret
(Z(Sym(f2)); Laig) or (Z(Sym(f1)); Layg) in F> or Fy, depending on whether or not A; = By, respec-
tively. Ttems 1 and 2 are a direct consequence of Items 1 and 3 of Theorem O

Remark 3.12. In Theorem BI0we e-interpreted Z (Sym(f2)) in Fy (or Z(Sym(f1)) in Fy if Ay = By).
Alternatively one can also e-interpret the largest ring of scalars R(f2) of fo in Fb (similarly for
f1). This may have some advantages if one seeks to study the structure of A, B, C' and f, because
R(f2) is determined by “more properties” of these than Z(Sym(f2)). However, when it comes to the
Diophantine problem, Z(Sym(f2)) is a more practical choice than R(f2), because it uses a simpler
e-interpretation. For instance, as we have seen, if A is a field then one can drop multiplication by

scalars in the e-interpretation of (Z(Sym(f2)); Lring), Whereas there is no apparent way to do the
same with (R(f2); Lring)-

4 Rings and algebras over finitely generated associative com-
mutative unitary rings

The following lemma is a combination of the results obtained so far. It constitutes the main “general
tool” presented in this paper. We will explore its consequences throughout the rest of the section. In
[11] it is applied further to the area of group theory. We refer again to Subsection for important
notation and terminology conventions.

Lemma 4.1. Let A be a associative commutative unitary ring, let f : Ax B — C be a A-bilinear map
between finitely generated A-modules, and write C1 = {Im(f))a. Suppose that (A, B,C; f, Lmod) 18
e-interpretable in some structure M. Then there exists an associative, commutative, unitary A-algebra
R such that R is finitely generated as a A-module and (R; Lqy4) is e-interpretable in M. Moreover, R
is infinite if and only iof C1 is infinite.

Furthermore, if Cy is infinite and A is finitely generated, then there exists a ring of integers O of
a number field or a global function field such that (O; Lying) is e-interpretable in (R; Lying), and in
M. Additionally in this case:

1. If A has positive characteristic p, then the ring of polynomials (Fp[t]; Lring) s e-interpretable in
M, and D(M) is undecidable.
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2. If A =7 then O is a ring of algebraic integers.

If A isZ or a field, then the whole lemma holds after replacing (A, B, C; f, Lmoa) by (4, B, C; f, Lgroup)
and (R; Laig) by (R; Lring), t.e. multiplication by scalars is not required.

Proof. By Theorem B.I0 there exists an associative commutative unitary A-algebra R such that
R is finitely generated as a A-module and (R; Lqy) is e-interpretable in (A, B, C; f, Limoq). Hence
(R; Lag) is e-interpretable in (R; Lg4y) by transitivity of e-interpretations. The statement regarding
the cardinality of R follows from Item 2 of Theorem

Suppose that C1 is infinite and that A is finitely generated. Then R is infinite and finitely generated
as aring. Hence, by Theorem 2T T there exists a ring of integers O of a number field or a global function
field such that (O; Lying) is e-interpretable in (R; Ly4ng), and hence in M.

If A has positive characteristic p > 0, then so does R, because it is a unitary algebra over A. Hence
(Fp[t]; Lring) is e-interpretable in M, by Item 1 of Theorem 217 and by transitivity. If A = Z, then R
is finitely generated as an abelian group, hence O is a ring of algebraic integers by Item 3 of Theorem
217

If A is Z or a field, then (R; L,ny) is e-interpretable in (A, B, C; f, Lyroup), by Item 1 of Theorem
[BI0 Therefore if the latter is e-interpretable in M, then the lemma holds after replacing L4, by
Ering and Emod by Egroup- O

4.1 Rings and algebras which are finitely generated as modules

Throughout this subsection, A denotes a finitely generated associative commutative unitary ring,
possibly infinitely generated.

The following is one of the main results of the paper. The case A = Z will be considered separately
afterwards. We recall that the language L4, of a A-algebra refers to the language of rings together
with multiplication by any constant element from A (however variables cannot take values in A), see
Subsection 23] for more details.

Theorem 4.2. Let R be a (possibly non-associative, non-commutative, and non-unitary) algebra over
a finitely generated associative commutative unitary ring A. Suppose that R is finitely generated as
a A-module. Then if, R> = {{zy | x € R,y € R})x is infinite, there exists a ring of integers O of
a number field or a global function field such that (O; Lying) is e-interpretable in (R;Lay), and the
Diophantine problem D(O; Lying) is Karp-reducible to D(R; Lq14). Moreover:

1. If R? is infinite and A has positive characteristic, then (Fp[t]; Lying) is e-interpretable in (R; Lay)
for some prime integer p, and D(R; Lqy) is undecidable.

2. If R% is finite and D(R; Limoq) is decidable, then D(R; Lay) is decidable.
If A is a finite field, then all the above holds after replacing (R; Laig) by (R; Lying)-

Proof. The ring multiplication operation - of R induces a A-bilinear map between finitely generated
A-modules - : R x R — R, with (Im(-))» = R?. Since the three-sorted structure (R, R, R;, Liod) is
e-interpretable in (R; Lq4), the result, except Item 2, follows from Lemma [£.1]

We now prove Item 2. Let ¥ be a system of equations in the A-algebra R. By adding new
variables and equations in an analogous way as done in the proof of Lemma 212, we may rewrite
that ¥ into an equivalent system of equations, still denoted X, of the following form: the new X
consists in a system of equations in the A-module (R; L,,04) (i-e. a system of A-linear equations), in
conjunction with a system of equations of the form z; = y121,22 = y222,...,2x = yrpzx where the
TlyeeesThyYls- - Yk, 21, - - -, 2k are variables taking values in R. Note that no variable appears more
than once in this last part of the system.

Note that Ann,;(-) and Ann,(-) are finite index submodules of R, by Item 2 of Theorem 310 Let
S; = {a1,...,as} and S, = {b1,...,b:} be full systems of coset representatives of R/Ann;(-) and
A/Ann,(-), respectively. Let also Sk be a finite generating set of R.
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For each variable y € {y1,...,yr}, do the following: choose a coset representative a € {a1,...,as},
and introduce a new variable /. Then replace each occurrence of y in ¥ by a + y’. We now wish to
make y’ to take values in Ann,(-). The system of equations A,es,ur = 0 on the variable u e-defines
Anny(-) in R. Hence, we add the system A,eg,y'r = 0 to ¥ in order to ensure that y’ takes values in
Anny(-). Notice that A,es,y'r = 0 is a system of equations in the A-module (R; L04)-

We now proceed in an analogous way with each variable z € {21, ..., z;}, this time replacing z by
b+ 2z’ for some b € {b1,...,b:}, and adding the system of equations A,eg,7z' = 0 to X, in order to
ensure that z’ takes values in Ann,(+).

Let ¥/ be the resulting system of equations after making all the above transformations. Since there
are finitely many coset representatives, the number of all possible resulting systems ¥’ is finite. Let
Y1,...,2m be all of them. It is clear that ¥ has a solution if and only if ¥; has a solution for some
t=1,...,m.

We now prove that it is possible to decide algorithmically if each one of the ¥; has a solution or
not, in which case our proof is concluded. Indeed, each ¥; consists in some equations in the A-module
(R; Limod), together with some equations of the form = = (a+y')(b + 2’), where ¥’ and 2’ are variables
taking values in Ann;(-) and in Ann,(-), respectively. Hence each equation x = (a + 3')(b+ 2’) can be
replaced by = = ab, which is an equation in (R; L,,04). Thus ¥; is equivalent to a system of A-linear
equations. By assumption, we can algorithmically check if ¥; has a solution. O

The following is a particular case of the previous Theorem It is stated separately due to its
independent interest.

Theorem 4.3. Let A be a ring (possibly non-associative, non-commutative, and non-unitary). As-
sume that A is finitely generated as an abelian group, and that A? is infinite. Then there exists a
ring of algebraic integers O such that (O; Lying) is e-interpretable in (A; Lring), and D(O; Lying) is
Karp-reducible to D(A, Lying). If otherwise A? is finite, then D(R; Lying) is decidable.

Proof. The first part of the theorem follows in the same way as Theorem 42 taking A = Z and
observing that here O is a ring of algebraic integers by Item 2 of Lemma £l The last part follows by
Item 2 of Theorem [£2] since here (4; Limoq) is a finitely generated abelian group and D(A4; Lyroup) is
decidable [8], hence D(A; Ly04) is decidable. O

4.2 Finitely generated associative, commutative non-unitary rings and al-
gebras

In this subsection we study associative commutative rings and algebras that do not have an identity
element. We begin with a lemma that allows us to e-interpret a certain unitary algebra.

Lemma 4.4. Let A be a finitely generated associative commutative non-unitary algebra over a (pos-
sibly infinitely generated) associative commutative unitary ring ©. Then there exists an associative
commutative unitary ring A and an associative commutative unitary A-algebra B such that B is finitely
generated as a A-module, and (B; L) is e-interpretable in (A; Layy). Additionally, A% is infinite if
and only if B is infinite.

Proof. Define A = ©@A to be the set of formal sums of elements from © and from A, equipped with the
natural addition and multiplication operations. More precisely, A = O D A = {(6,a) | 0 € ©O,a € A}
and A is endowed with the following ring operations: (01,a1) + (02,a2) = (61 + 02,41 + a2) and
(01,a1) - (02,a2) = (0102, 01a2 + H2a1 + a1az). We have that A is an associative commutative unitary
ring.

Moreover, A acts naturally by endomorphisms on A, i.e. (8,a)-a’ = 0a’ + aa’ for all (6,a) € A and
all «’ € A. With this action A is a A-algebra. During this proof we write Ay and Ag to refer to A
seen as a A-algebra or as a ©-algebra, respectively. The operation of multiplication by a given scalar
0@ a € A is e-interpreted in (Ae; Lay) by the equation y = 0x + az on variables y, z taking values in
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A. Hence (Ap; L) is e-interpretable in (Ag; Lqy). Suppose that Ag is generated as a ©-algebra by
n elements S4 = {ai1,...,a,}. Then, since each element of A can be written as a linear combination
of monomials from ©laq,...,a,], we have that A, is generated as a A-module by S4, since for all
x € A there exists y1,...,yn € A such that = >, y;a;. Hence A is finitely generated as a A-module.

The ring multiplication of Ay is a A-bilinear map between finitely generated A-modules - : Ax A —
A. Moreover, (Ax, An, Ap;+, Lmod) is e-interpretable in (Aa; Lqig), which in turn is e-interpretable
in (Ae; Lay). Hence, by the first part of Lemma 1] and by transitivity of e-interpretations, there
exists an associative commutative unitary A-algebra Dy, which is finitely generated as a A-module,
and (Da; Layg) is e-interpretable in (Ae; Laig)-

Finally, we note that (A,)? = (Im(-))a is infinite if and only if D, is also infinite, by Lemma
€1l O

We are ready to study associative commutaty non-unitary algebras. We convene that the charac-
teristic of a non-unitary ring A is defined as the maximum positive integer n such that nxz = 0 for all
z € R.

Theorem 4.5. Let L be a finitely generated associative commutative non-unitary algebra over a
finitely generated associative commutative unitary ring ©, with L? infinite. Then there exists a ring
of integers O of a number field or of a global function field such that (O; Lying) is e-interpretable in
(L; Laig), and D(O; Lying) is Karp-reducible to D(L; Lag).

Moreover, if © has positive characteristic, then O is the ring of integers of a global function field,
(Fplt]; Lring) is e-interpretable in (L; Lag) for some prime integer p, and D(L; L) is undecidable.

Proof. Let B be the associative commutative unitary A-algebra, finitely generated as a A-module,
given by Item 1 of Lemma 4] where A = © @ B. Suppose that L? is infinite. By this same lemma,
B is infinite, and since B is unitary we have that B2 = B is infinite as well. Note further that if ©
has positive characteristic then so does A. The result now follows by transitivity of e-interpretations
and by Theorem applied to B. O

Finally, we formulate and slightly modify the previous Theorem for the particular case when
L is a ring, i.e. when © = Z.

Theorem 4.6. Let A be a finitely generated associative commutative non-unitary ring, with A2 infi-
nite. Then there exists a ring of integers O of a number or a global function field such that (O; Lying)
is e-interpretable in (A; Lying), and D(O; Lying) is Karp-reducible to D(A; Lying)-

Moreover, if A has positive characteristic, then the following holds: O is the ring of integers of a
global function field; the ring of polynomials (Fp[t]; Lring) is e-interpretable in A for prime integer p;
and D(A; Lying) is undecidable.

Proof. Let n be the characteristic of A. Then A is a finitely generated Z/nZ-algebra, where if n = 0
we understand that Z/nZ = Z. Moreover, multiplication by scalars from Z/nZ is e-interpretable in
(A, Lying) since (k+nZ) -z = z+.%. +x for any z € A and any equivalence class (k+nZ) € Z/nZ with
representative 0 < k < n — 1. Hence (A, Lqy) is e-interpretable in (A, Lying). The result now follows
by applying the previous Theorem LB on (4, L,,), and by transitivity of e-interpretations. O

4.3 Finitely generated rings and algebras satisfying an infiniteness condi-
tion

In this subsection A denotes an associative commutative unitary ring, possibly infinitely generated.

We next apply Theorems and [£.3]to certain classes of non-commutative finitely generated rings
and algebras L which are not necessarily finitely generated as modules. The approach consists in
e-defining an ideal I, in L that contains “enough” products of at least n elements of L (for example,
the ideal generated by all such products), so that the quotient L/I,, is infinite and finitely generated
as a module. Then it suffices to apply the results from Section 1] together with transitivity of
e-interpretations. This approach presents two challenges:
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1. I, can be difficult to e-define if L is non-associative (hence Definition ELg]).

2. L/I, may be finite. For instance, if L is unitary (i.e. it has an identity element) one cannot
simply take I,, to be the ideal generated by all products of n elements of L, since then I,, = L,
and L/I, = 0 (hence the next definition).

Definition 4.7. Let L be a A-algebra, and let T be a generating set of L. If L is non-unitary then
we let I,(T) or I,, denote the A-ideal generated by all products of n elements of T.

If L is unitary then we let I,,(T) or I, denote the A-ideal generated by all products of n elements
of T\{\-1| X € A}, where 1 denotes the multiplicative identity of L.

Throughout the rest of the section, L denotes a finitely generated A-algebra, possibly non-associative,
non-commutative, non-unitary, and not finitely generated as a A-module. We fix a finite set T =
{ay,...,amn} as in Definition 7] and we define the ideals I, accordingly.

Definition 4.8. Let L be a A-algebra and let T' = {a1, a2, ...} be a generating set of L. Then L is
called left-normed-generated with respect to T if, for all n > 1, I,,(T) is generated as a A-module by
all left-normed products {(a;, (@i, (... (ai_,ai,)...))) | k=n, 1 <iy,..., i}

Notice that any associative algebra is left-normed-generate with respect to any generating set.

Lemma 4.9. Suppose that L is a left-normed-generated A-algebra with respect to some finite gener-
ating set, and let n = 1. Then (L/In; Lying) and (L/1,; Lay) are e-interpretable in (L; Lring) and
(L; Laig), respectively. Moreover, L/I,, is a A-algebra which is finitely generated as a A-module.

Proof. Let T = {a1,...,am} be a finite generating set of L. Then each element of I,, is a finite sum
of elements of the form

Maiy (@i, (oo (@ip_qai,)--.)), AeEA, k=n. (16)

Hence each element as in ([I6]) can be written as (a;, (... (a;,_,y)...)) for some y € L in the non-unitary
case. Consequently, if L is non-unitary, then I, is e-definable as a set in (L; Lying) by the equation

T = > (i (- (@i Yigoosin 1) -+ +) (17)

1<iy,..., fn—1<M

on variables x and {y;, ... i,_, } (the e-definition is in (L; £ine) because it makes no use of multiplication
by scalars A). Observe however that (I']) would not work in the case that L is unitary, since a solution
to (M) may yield x € I,,_1, for example if each y;, . is a A-multiple of 1. This can be solved by,
in this case, taking the equation

T = Z (@i (- (@1 (@i Yiryoin) - -) (18)

~~77:n71

instead of (7). Hence, in both cases (L/I,; Lring) and (L/I,; Lag) are e-interpretable in (L; Lying)
and (L; L44) by Lemma 26

Finally, note that L/I,, is generated as a A-module by the projection of all products of less than
n elements of T, together with 1 + I,, if L is unitary. It follows that L/I,, is finitely generated as a
A-module. O

We now state the main result of this subsection. The ideals I,, are defined with respect to any set
T satisfying the conditions of Definition 7]

Theorem 4.10. Let L be a finitely generated algebra (possibly non-associative, non-commautative and
non-unitary) over a finitely generated associative commutative unitary ring A. Suppose that L is
left-normed-generated with respect to some finite generating set, and that (L/I,)? is infinite for some
n = 1. Then there exists a ring of integers O of a number field or a global function field such that
(O; Lying) is e-interpretable in (L; Laig), and D(O; Lying) is Karp-reducible to D(L; Layg). Moreover:

23



1. If A has positive characteristic p, then (Fp[t]; Lring) is e-interpretable in (L; Laig), and D(L; Laig)
is undecidable.

2. If L is a ring (i.e. A =17) then O is a ring of algebraic integers.
If A is Z or a finite field then all the above holds after replacing (L; Laig) by (L; Lring)-

Proof. By Lemma [L9, L/I, is a A-algebra, it is finitely generated as a A-module, and it is e-
interpretable as an algebra in (L; L£414). The same result states that (L/I,,, Lring) is e-interpretable as
a ring in (L; Lying). By hypothesis, we can take n so that (L/I,,)? is infinite. Now the result follows
by Theorems and 3] applied to L/I,,, and by transitivity of e-interpretations. O

We next apply the previous theorem to the class of Lie algebras, which are popular examples of
non-associative, non-commutative and non-unitary algebras. First, we prove that Lie algebras are
left-normed-generated.

Lemma 4.11. Any countably generated Lie algebra L is left-normed-generated with respect to any
countable generating set.

Proof. Let A = {a1,az,...} be a generating set of L. In [2] it is proved that any free Lie algebra
F = F(by,bo,...) generated by B = {by1,bs,...} is freely generated as a module by a subset of the
set B = {(bi; (biy (- .. (biy_,bi,).-))) | k=1, 1 <i41,...,9}. In particular, it is left-normed-generated
with respect to B. Let m : F' — L be the natural projection of F' onto L sending b; to a; for all ¢ > 1.
We denote by I and IL the ideals of F' and L, respectively, generated by all products of at least n
elements from B and from A, respectively. Observe that «(I}") = IL.

For each n > 1, let S, be a subset of {[bi,, [biy, [- -+, [Dix_1s0i]---1]] | k= n, 1 <'iq,...,i5} such
that the ideal Il of F is generated by all A-multiples of S,,. Then m(If) = IL is generated by all
A-multiples of 7(S,,). Now 7(S,,) is a subset of

{[ﬂ-(bil)v [ﬂ-(biz)v [ c [Tr(bik71)5 ﬂ-(blk)] o ]]] | k= n, 1< ATE ik}a
hence L is left-normed generated with respect to 7(B) = A. O

The next two corollaries follow immediately from Theorem E.T0land Lemma 11l By [L/I,, L/I,]
we denote the A-submodule of L/I,, generated by {[z,y] | z,y € L/I,}.

Corollary 4.12. Let L be a finitely generated Lie A-algebra. Assume that [L/I,, L/1,] is infinite for
some n =1, and that A is finitely generated. Then the conclusions of Theorem [{.10] hold for L.

Corollary 4.13. Let F be a finitely generated free associative A-algebra (possibly non-commutative
and non-unitary) or a free Lie algebra of rank at least 2, with A finitely generated. Then the conclusions

of Theorem [.10] hold for F'.

Proof. If F is a free Lie algebra, let I,, be taken with respect to any free generating set of F, n > 1.

If F is a free associative algebra freely generated by {1, ai,...,an}, let I, be taken with respect to
{a1,...,am}, n = 1. In both cases (F/I,)? is infinite for all n > 3. Therefore the result follows from
Theorem and the previous Corollary O

Corollary LT3 complements Romankov’s [33], and Kharlampovich and Miasnikov’s |15, [17] papers
on free algebras. In the first reference |33], it is proved that D(F'; Lying) is undecidable for many
types of free rings F'. In particular, it is proved that the algebras of Corollary 413 have undecidable
Diophantine problem if A = Z. In |15, [17] it is proved that D(F; Lyiny) is undecidable if A is an
arbitrary field, and F' is a free associative non-commutative unitary algebra, or a free Lie algebra of
rank at least 3. Note that an infinite field is necessarily infinitely generated, hence our Corollary .13
does not intersect with [15, [17].
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4.4 Undecidability of first-order theories

The first-order theory T (or elementary theory) of a structure M in a language £ is the set of all
first-order sentences in £ that are true in M. One says that T is decidable if there exists an algorithm
that, given a sentence ¢ in L, determines if ¢ is true in M or not, i.e. if ¢ belongs to T'. If such an
algorithm does not exist then 7' is said to be undecidable.

The first-order theory with constants of M in the language L is the set of first order sentences that
are true in M, allowing the use of any constant element from M in the sentences.

Noskov proved in [29] that the first-order theory of an infinite finitely generated associative com-
mutative unitary ring is undecidable in the language of rings with constants. In particular this is
true for the ring of integers of any number field or global function field. Hence using transitivity of
e-interpretations and Proposition 2.T1] we immediately obtain the following:

Theorem 4.14. Let L be a ring or an algebra satisfying the hypotheses of one of the Theorems [2.17,
43 -3, [2-3, [{-6, [£.10, or Corollaries [[-13 and [J-.13. Assume L? is infinite. Let L denote Lying if L
is a ring (this includes the case when L is a Z-algebra) or if L is an algebra over a field and it does
not satisfy the hypothesis of Theorem[[.3 Otherwise let L = Lq4. Then the first-order theory of L in
the language L with constants is undecidable.

5 Appendix: finitely generated associative commutative uni-
tary rings

In this section we prove Theorem 217, which we restate next. The definition of rank we use is given
in Definition 2.15]

Theorem 5.1. Let R be an infinite finitely generated commutative ring with identity. Then there
exists a ring of integers O of a number or a global function field such that (O; Lying) is e-interpretable
in (R; Lring), and D(O; Lying) is polynomial-time Karp-reducible to D(R; Lying). Moreover, one of the
following holds:

1. If R has positive characteristic p > 0, then the following holds: O 1is the ring of integers of
a global function field; the ring of polynomials (Fp[t]; Lring) is e-interpretable in (R; Lying) for
some variable t; and D(R; Lying) is undecidable.

2. If R has zero characteristic and it has infinite rank then the same conclusions as above hold:
O is the ring of integers of a global function field; the ring of polynomials (Fp[t]; Lring) is e-
interpretable in (R; Lying) for some prime p and variable t; and D(R; Lying) is undecidable.

3. If R has zero characteristic and it has finite rank n, then O is a ring of algebraic integers, and
D(R; Lying) is undecidable provided that D(O; Lying) s undecidable. Additionally, K is a field

extension of Q of degree at most n.

As we mentioned, this result is almost identical to Theorem 7.1 in Eisentraeger thesis [7] (see The-
orem [ZT4]in this paper for the statement in [7]). Since we are interested in having an e-interpretation
of a ring of integers O in R, rather than just a reduction of the Diophantine problems, and for
completeness, we provide a proof in this appendix.

We postpone the proof for later in this section. Next we introduce some intermediate notions and
results that we will need.

Proposition 5.2. Let R be a finitely generated integral domain whose field of fractions K is a number
or a global function field. In the case that K is a global function field of characteristic p, assume that
R contains Fp[t]. Then the ring of integers O of K is e-interpretable in R. Furthermore, if K has
positive characteristic p, then Fp[t] is e-interpretable in R, and the Diophantine problem D(R) is
undecidable.
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We proceed to provide a proof. First, we review some necessary notions and results. Proposition
is essentially a restatement of some of the results from [37]. There, instead of e-interpretability,
the notion of Dioph-generation is used:

Definition 5.3 (Definition 2.1.5 [37]). Let Ry and Rz be two integral domains with fields of fractions
Fy and Fs, respectively. Assume that neither F; nor Fy is algebraically closed. Let F' be a finite
extension of Fy such that F} € F. Further, assume that for some integers k and m there exists a base
{wi,...,wi} of F over Fy and a polynomial f(aq,...,ak,b,21,...,2y) with coefficients in Ry such
that f(a1,...,ax,b,21,...,2y,) = 0 implies that b # 0, and

k
Rl ={Ztiwi | Elal,...,ak,b,xl,...,xmeRg,
=1

bt1 = aq,...,bty = ag, f(a1,...,ax,b,21,...,2m) = 0}.
Then we say that Ry is Dioph-generated over Ro.
The corresponding statement is the following:

Theorem 5.4 (|37]). Let R be a finitely generated integral domain whose field of fractions K is a
number or a global function field. In the case that K is a global function field of characteristic p, assume
that R contains Fp[t]. Then the ring of integers O of K is Dioph-generated over R. Furthermore, if
R has positive characteristic p, then Fp[t] is Dioph-generated over R, and the Diophantine problem
D(R) is undecidable.

Next we use the above Theorem [5.4lin order to prove Proposition[5.4l It suffices to prove a suitable
equivalence between the notions of e-interpretability and of Dioph-generation.
The next definition will be used only in an auxiliary manner in the next Lemma

Definition 5.5 (Definition 2.1.1 [37]). Let R be an integral domain with field of fractions F. Let
k,m be positive integers and let A € F* be some subset of F¥. Assume further that there exists a
polynomial f(aq,...,ak, b, x1,...,x,,) with coefficients in R such that, forall ay, ..., ax, b, z1,...,Zm €
R, we have f(a1,...,ak,b,21,...,2,) =0=>b# 0, and
A=A{(tr,....tx) € F*|3a1,...,ax,b,21,..., 2 € R,

bty = ay,...,btg = ag, flar,...,ak,b,21,...,Tm) = 0}.

Then A is said to be field-Diophantine over R.
Next we provide a condition for Dioph-generation to imply e-definability.

Lemma 5.6. Let Ry, Ry be integral domains with Ry S Ry. Then Ry is Dioph-generated over Ry if
and only if R1 admits a 1-dimensional e-definition in Rs.

Proof. Suppose R; is Dioph-generated over Ry. By Corollary 2.1.10 in [37], R; is field-Diophantine
over Ry. Now by Lemma 2.1.2 in [37] (taking A to be Ry, R to be Rz, and k = 1) we have that
R, is e-definable in Ry (note that in [37] an e-definition is called Diophantine definition, see 1.2.1
[37]). Moreover, from the proof of Lemma 2.1.2 in |37] we see immediately that the e-definition is
1-dimensional.

Now assume R; admits a 1-dimensional e-definition in Ry. Then again by Lemma 2.1.2 in [37]
we have that R; is field-Diophantine over Ry. Moreover, the proof of this lemma shows that R; is
field-Diophantine over Rs taking k£ = 1 in the notation of Definition (and taking A to be Ry, and
R to be Ry). We now claim that R; is Dioph-generated over Ry. Indeed, it suffices to take, following
the notation in Definition B3] F' = Fy, the basis {1} of F over F5, and the polynomial f from the
field-Diophantine definition of R; in Rs. O
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Proof of Proposition[5.2 It follows immediately from Theorem [5.4] Lemma 5.6l and Remark 29 O
We will need the following observation:

Remark 5.7. Let R be a countable commutative ring of finite rank and positive characteristic k.
Then R is finite: indeed, this follows from one of Priifer theorems, as in this case R is a bounded
abelian group since kR = 0 (see Theorem 5.2 in [9]).

Furthermore, if 1 > Ry — Ry — R3 — 1 is a short exact sequence of rings, then the rank of Ro
is at least the rank of Ry, and at most the rank of Ry plus the rank of Rj (see Exercise 3, Chapter
3.4 in [9]). Finally, if A is a finitely generated R-module, and R has finite rank, then A as an abelian
group also has finite rank (this follows from the fact that an abelian group B has rank k if and only if
k is the largest integer such that B contains a subgroup By which is the direct sum of k cyclic groups,
and for all b € B there exists an integer n # 0 such that nb € By).

We are ready to prove Theorem [5.11

Proof of Theorem [51l Throughout the proof we will use the facts that e-interpretability is transitive,
by Proposition .10} and that the quotient by any ideal of a Noetherian ring R is e-interpretable
in R, by Lemma 2.7 More precisely, we successively replace R by appropriate quotients of R until
obtaining an infinite finitely generated subring R’ of a number or a global function field K. We then
use Proposition from the previous section, and obtain first an e-interpretation of Og in R’ for
some number or global function field K, and then an e-interpretation in R by the aforementioned
transitivity property and Lemma 2.7 Moreover, since R’ is a quotient of R, Items 1 and 3 of the
statement follow rather quickly. Item 2, the case when R has infinite rank and zero characteristic,
requires an extra intermediate step where a suitable quotient of the form R/pR is found, for some
prime p.

Step 1: Reduction to integral domains. Let R be a finitely generated infinite commutative ring.
Suppose first that R is not an integral domain. We will find a quotient of R which is an infinite finitely
generated integral domain and which is e-interpretable in R. Let N = {x € R | 2™ = 0 for some m € N}
be the nilradical of R, i.e. the ideal formed by all nilpotent elements of R. Equivalently, N is the
intersection of all minimal prime nonzero ideals of R. There are finitely many such ideals q1, ..., g,
in a Noetherian ring (see Theorem 87 of [14]), hence N = ¢; n -+ N q,. We claim that n > 1. Indeed,
R contains at least one nonzero maximal ideal, since otherwise R would be a finitely generated ring
which is a field, and so R would be finite (see Exercise 6 in Chapter 7 of [1]). Since maximal ideals
are prime, we have n > 1.

We now claim that there exists ¢ such that R/q; is infinite. We also claim that if R has infinite
rank, then there exists ¢ such that R/g; has infinite rank (in particular, R/g; is infinite by Remark
E7). Indeed, note first that R/N admits an embedding into the direct sum R/q1 @ - - - @ R/q,, via the
well-defined map r + N — (r + ¢1) ®--- ® (r + q»,). Hence, if all R/qg; are finite, then R/N is finite.
If all R/q; have finite rank, then also R/N has finite rank by Remark b7

Now, the R/N-module N*/N®*! is finitely generated as a R/N-module (since it is finitely generated
as aring) for all i = 1,...,n— 1. It follows that if R/N is finite then N?/N'! is also finite. The same
is true for the rank: if R/N has finite rank, then N?/N*! also has finite rank by Remark [5.71 Since
N™ = 0 for some m, it follows that if R/N is finite then also R is finite, a contradiction. Similarly, it
follows that if R/N has finite rank then so does R, by Remark [5.71 Hence the claim is proved.

Note that if R has zero characteristic and finite rank then R/g; has also zero characteristic, since
otherwise it would be finite.

In views of the previous arguments, we can assume from now on that R is an infinite finitely
generated integral domain. Note that, by Remark 2.16] now the notion of rank is the same as vector
space dimension (for positive characteristic) and of Z-module dimension (for zero characteristic).

Step 2: The case of infinite rank and zero characteristic. We now assume that R is a finitely gen-
erated integral domain of zero characteristic and infinite rank. We will e-interpret in R an infinite
finitely generated integral domain of positive characteristic. This will allow us to assume, in the next
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steps of the proof, that R either has finite rank and zero characteristic, or infinite rank and positive
characteristic. In particular, this reduces the hypothesis of Item 2 in the statement of the theorem to
the hypothesis of Item 1.

Note that for every prime integer p, R/pR is e-interpretable in R by Lemma [2.7 Hence this step
will be complete once we prove that there exists a prime p such that R/pR is infinite.

We first claim that R must contain a transcendental element over Q (we identify R with its
embedding in its field of fractions, which is a field extension of Q). Indeed, assume not, so that every
element of R is a root of a polynomial with integer coefficients. In particular, each element in a finite
generating set of R, say r1,...,7¢, is the root of some polynomial in Z[z]. Since R is generated as
a ring by r1,...,r¢, the field of fractions of R is generated as a field by rq,...,rs. Since all r; are
algebraic over Q (i = 1,...,¢), the field of fractions of R is a finite field extension of Q, i.e. it is a
finite-dimensional Q-vector space. It follows that R has finitely many Z-linearly independent elements,
and so R has finite rank, a contradiction. The claim is proved.

Now pick a transcendental element x € R. Then the subring of R generated by 1 and z is isomorphic
to Z[z]. We identify this subring with Z[z]. Given an integer prime ¢ let ¢, : R — R/qR be the
natural quotient map. We will show that ¢,(Z[z]) is infinite for some ¢. This will imply immediately
that R/qR is infinite as well, and hence this step will be complete.

Let ¢q|z2] be the restriction of ¢, on Z[x]. We will find a prime ¢ such that ker(¢q|z[.1) = ¢Z[x],
from where it follows that ¢q(Z[x]) = F,4[z] is infinite.

Indeed, first note that ker(¢q|z[]) = ¢RNZ[x]. Define A = {r € R | nr € Z[x] for some n € N\{0}}.
We have ker(¢q|z[s]) = ¢R N Z[x] = qA n Z[x]. If A = Z[x] it follows that ker(¢q|z[.]) = ¢Z[z] as
required. Hence assume Z[z] & A. Note that A is a finitely generated subring of R and that it can
be identified with a subring of Q[z]. Hence any element of Q[x] can be written as p(z)/n for some
p(z) € Z[z] and some n € N\{0}. Let ai,...,ar be a finite generating set of A as a ring, and let
p1(x),...,pr(x) and ny,...,ng be polynomials from Z[xz] and non-zero integers, respectively, such
that a; = p;(x)/n; for all ¢ = 1,..., k. Since Z[z] € A, at least one of the n; is larger than 1. Let ¢
be a prime integer that is coprime with all n;. It follows that every element of A can be written in
the form p(z)/n where n = 1 is coprime with ¢, and p(x) € Z[z]. Then any element from gA which
belongs to Z[x] must belong to qZ[z]. Hence ker(¢q|z.1) = ¢A n Z[x] = qZ[z], as required.

Step 8: Reduction to Krull dimension 1. From now on we assume that either the hypothesis of Item
1 or of Item 3 of the statement of the theorem hold. Hence R is an infinite fintely generated integral
domain either of finite rank and zero characteristic, or of infinite rank and positive characteristic.
The Krull dimension of R is the largest integer k£ for which there exists a proper ascending chain
of prime ideals pg < p1 < ... < pr < R. Such k is finite under our assumptions (see Section 8.2.1
of [6]). Tt is not possible that k = 0, since in this case R would be a finitely generated Artinian
domain (see Proposition 9.1 in [6]), and thus a finitely generated field (see Proposition 8.30 of [3]),
a contradiction because, as referred to earlier, a finitely generated ring which is a field is necessarily
finite. Hence k > 1. We may assume that k = 1, since if k¥ > 2 then R/pix_; is a finitely generated
integral domain, e-interpretable in R, and of Krull dimension 1. The latter implies that R/px_1 is
infinite. This implies that R/py_1 has finite rank and zero characteristic, or infinite rank and positive
characteristic, depending on which of these two properties R satisfies, respectively.

Step 4: Reduction to a subring of a number or a global function field. Assume R is a finitely generated
infinite integral domain of Krull dimension 1, either of infinite rank and positive characteristic, or of
finite rank and zero characteristic. We claim that one of the following hold:

1. R is a subring of a number field (if R has zero characteristic). This is proved in 2.2 of |29].

2. There exists a prime integer p and a transcendental element ¢ € R over F, such that F,[t] € R
and R is integral over F,[¢]. It follows that R is a subring of a finite field extension K of F,(t),
with Fp,[t] € R. In particular, R has positive characteristic.

This follows from the Noether normalization lemma (Theorem A1l of Chapter 8.2 in [6]), which
states that any finitely generated k-algebra is a finitely generated module over k[yi, ..., yd],
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where k is any field and d is the Krull dimension of the algebra. Hence in our case R is a finitely
generated F,[t]-module, and so it is integral over F,[¢].

Step 5: Reduction to rings of integers. Assume R satisfies Item 1 or Item 2 of the previous step. Then
the field of fractions K of R is a number or a global function field. Since R is finitely generated,
Proposition implies that the ring of integers Ok of K is e-interpretable in R (note that Item 2
above grants us the requirement that R contains F,[t]). By transitivity (Proposition 2ZI1), Ok is
e-interpretable in R, and therefore D(Of ) is Karp-reducible to D(R) (Proposition [Z1T]).

If R has finite rank n, then it has zero characteristic, because it is infinite. Hence, R is a subring of
a number field, and O is a ring of algebraic integers. Moreover, since R as a Z-module has dimension
n, we have that K is an n-dimensional Q-vector space, i.e. K is field extension of QQ of degree n.

If R has characteristic p > 0, then Proposition (2] and transitivity of e-interpretations and
reduction of Diophantine problems (Propositions and [ZTT)) yield that F,[¢] is e-interpretable in
R, and that D(R) is undecidable.

Step 6: Conclusion. Let R be the ring given initially in the statement of the theorem, and let O
be the ring of integers obtained in the previous Step 5. As discussed at the beginning of the proof,
Og is e-interpretable in R and D(Of) is Karp-reducible to R. Moreover, we have, following each one
of the previous Steps 1 through 5, that each one of Items 1, 2, and 3 in the statement hold: indeed,
Ttem 2 reduces to Item 1, and in the rest of cases the fact that R has zero or positive characteristic
does not change throughout all steps. Hence the Items 1 and 3 hold due to Step 5. O
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