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Abstract

We introduce a new information-theoretic measure of multipartite corre-
lations ∆P , by generalizing the entanglement of purification to multipartite
states. We provide proofs of its various properties, focusing on several en-
tropic inequalities, in generic quantum systems. In particular, it turns out
that the multipartite entanglement of purification gives an upper bound on
multipartite mutual information, which is a generalization of quantum mu-
tual information in the spirit of relative entropy. After that, motivated by
a tensor network description of the AdS/CFT correspondence, we conjec-
ture a holographic dual of multipartite entanglement of purification ∆W , as
a sum of minimal areas of codimension-2 surfaces which divide the entan-
glement wedge into multi-pieces. We prove that this geometrical quantity
satisfies all properties we proved for the multipartite entanglement of pu-
rification. These agreements strongly support the ∆P = ∆W conjecture.
We also show that the multipartite entanglement of purification is larger
than multipartite squashed entanglement, which is a promising measure
of multipartite quantum entanglement. We discuss potential saturation of
multipartite squashed entanglement onto multipartite mutual information
in holographic CFTs and its applications.
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1 Introduction

Quantum entanglement has recently played significant roles in condensed matter
physics [1, 2, 3], particle physics [4, 5, 6, 7, 8] and string theory [9, 10]. To study
the quantum entanglement in states of a quantum system, we often divide the
total system into a subsystem A and its complement Ac, and then compute the
entanglement entropy SA := −TrρA log ρA, where ρA is the reduced density matrix
of a given total state ρA := TrAcρtot. In the gauge/gravity correspondence [11], the
Ryu-Takayanagi formula [9, 10] allows one to compute the entanglement entropy
in CFTs by a minimal area of codimension-2 surface in AdS. This discovery opens
a new era of studying precise relations between spacetime geometry and quantum
entanglement [12, 13, 14, 15, 16, 17, 18, 19, 20].

Recently the holographic counterpart of a new quantity independent of en-
tanglement entropy, called the entanglement of purification EP [21], has been
conjectured [22, 23]. The entanglement of purification quantifies an amount of
total correlation, including quantum entanglement, for bipartite mixed states ρAB
acting on HAB ≡ HA ⊗HB. On the other hand, the entanglement entropy truly
measures quantum entanglement only for pure states |ψ〉AB. Indeed, it is not even
a correlation measure if a given total state is mixed. Thus, so called EP = EW
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conjecture fills a gap between correlations in mixed states and spacetime geometry.
This has been further studied in the literature [24, 25, 26, 27, 28].

Another important direction is to explore multipartite correlation measure and
its geometric dual. It is well known that there are richer correlation structures in
quantum systems consisting of three or more subsystems, especially about quan-
tum entanglement (see e.g. [29]). For example, there appear different separability
criteria for multipartite states. To understand operational aspects of an amount of
entanglement by means of (S)LOCC, one needs (infinitely) many kinds of standard
states, such as W and GHZ states. Therefore multipartite entanglement is much
more sophisticated than bipartite entanglement.

On the other hand, the holographic interpretation of multipartite correlations
is less known, though it can play a crucial role to understand the emergence of
bulk geometry out of boundary renormalization group flows as well as the idea
of ER=EPR [14, 30, 31, 32]. In the literature, one quantity Ĩ3 called tripartite
information, which is one particular generalization of mutual information I(A :
B) = SA + SB − SAB, attracts a lot of attention in holography [30, 33, 34, 35, 36].
However, it can be either positive or negative, which makes it a bit hard to use it
to diagnose physical properties of the system at times.

In this paper, we first introduce a new measure of multipartite quantum and
classical correlations ∆P in generic quantum systems. It is given by generalizing
the entanglement of purification to multipartite states. We study its information-
theoretic properties, especially focusing on various entropic inequalities. It turns
out that ∆P gives an upper bound on another generalization of quantum mutual
information introduced in [37, 38], the so called multipartite mutual information.

We then propose a holographic dual of multipartite entanglement of purification
∆W , as a sum of minimal areas of codimension-2 surfaces in the entanglement
wedge [39, 40, 41], motivated by the tensor network description of the AdS/CFT
correspondence [12, 16, 17, 18]. One typical example of ∆W was drawn in Fig.1.1.
We demonstrate that it satisfies all the properties of the multipartite entanglement
of purification by geometrical proofs. These agreements tempt us to provide a new
conjecture ∆P = ∆W .

We clarify in the appendix that ∆P is larger than the multipartite generaliza-
tion [37, 38] of squashed entanglement, which is a promising measure of genuine
quantum entanglement [42, 43, 44]. We also discuss the holographic counterpart
of squashed entanglement.

This paper is organized as follows: In Section 2, we give the definition of multi-
partite entanglement of purification ∆P and prove its information-theoretic prop-
erties. In Section 3, we introduce a multipartite generalization of the entanglement
wedge cross-section ∆W in holography and study its properties geometrically, and
find full agreement with those we proved in Section 2. Based on these facts, we
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Figure 1.1: An example of minimal surfaces which gives ∆W for a tripartite setup.

propose the conjecture ∆P = ∆W . In Section 4, we conclude and discuss future
questions. In appendix A, the universal relation between ∆P and multipartite
squashed entanglement was clarified and the holographic counterpart of squashed
entanglement was also discussed.

Note added : After all the results in this paper were obtained, [45] appeared
in which the authors defined the same multipartite generalization of EP (up to a
normalization factor) and tested a holographic dual which is different from ∆W .

2 Multipartite entanglement of purification

In this section, we will define a generalization of entanglement of purification for
multipartite correlations and prove its various information-theoretic properties.

Let us start from recalling the definition and basic properties of the entangle-
ment of purification [21, 46]. We consider a quantum state ρAB on a bipartite
quantum system HAB = HA ⊗ HB. The entanglement of purification EP for a
bipartite state ρAB is defined by

EP (ρAB) := min
|ψ〉AA′BB′

SAA′ , (2.1)

where the minimization is taken over purifications ρAB = TrA′B′ [|ψ〉 〈ψ|AA′BB′ ].
This is an information-theoretic measure of total correlations, namely, it captures
both quantum and classical correlations between A and B. In this point of view,
it is similar as the quantum mutual information I(A : B) = SA + SB − SAB. Nev-
ertheless, it is known that the regularized version of entanglement of purification
E∞P (ρAB) := limn→∞EP (ρ⊗nAB)/n has an operational interpretation in terms of EPR
pairs and local operation and asymptotically vanishing communication [21]. From
the definition, we can see that EP measures the value of quantum entanglement
between AA′ and BB′ in the optimally purified system.
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We simply write EP (ρAB) as EP (A : B) unless otherwise a given state specified.
We summarize some known properties of EP for the reader’s convenience:

(I) It reduces to the entanglement entropy for pure state ρAB = |ψ〉 〈ψ|AB,

EP (A : B) = SA = SB, for pure states. (2.2)

(II) It vanishes if and only if a given state ρAB is a product,

EP (A : B) = 0 ⇔ ρAB = ρA ⊗ ρB. (2.3)

(III) It monotonically decreases upon discarding ancilla,

EP (A : BC) ≥ EP (A : B). (2.4)

(IV) It is bounded from above by the entanglement entropy,

EP (A : B) ≤ min{SA, SB}. (2.5)

(Va) It is bounded from below by a half of mutual information,

EP (A : B) ≥ I(A : B)

2
. (2.6)

(Vb) For tripartite state ρABC , it has a lower bound,

EP (A : BC) ≥ I(A : B) + I(A : C)

2
. (2.7)

(VI) For tripartite pure state |ψ〉ABC , it is polygamous,

EP (A : BC) ≤ EP (A : B) + EP (A : C). (2.8)

(VIIa) For a class of states that saturate the subadditivity, i.e. SAB = SB−SA,
it reduces to the entanglement entropy,

EP (A : B) = SA when SAB = SB − SA. (2.9)

(VIIb) For a class of states that saturate the strong subadditivity, i.e. SAB +
SAC = SB + SC , it reduces to the entanglement entropy,

EP (A : B) = SA when SAB + SAC = SB + SC . (2.10)

These properties are not independent from each other and one can prove (VI)
from (I) and (Va), and also prove (VIIa) (or (VIIb)) from (III) and (Va) (or
(Vb)). All these properties are proven in generic quantum systems. (I) allows
us to regard EP as a generalization of entanglement entropy for quantifying an
amount of correlations for mixed states. We refer to [21, 46] for detailed proofs
and discussion.
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2.1 Definition

We define a new quantity that captures total multipartite correlations by gener-
alizing the entanglement of purification. We first note that we can rewrite the
definition of EP (2.1) as

EP (ρAB) =
1

2
min

|ψ〉AA′BB′
[SAA′ + SBB′ ], (2.11)

because SAA′ = SBB′ holds for any purifications |ψ〉AA′BB′ . This form of EP
motivate us to define a generalization of entanglement of purification for a n-
partite state ρA1···An as follows.

Definition 1. For n-partite quantum states ρA1···An , we define the multipartite
entanglement of purification ∆P as 1

∆P (ρA1:···:An) := min
|ψ〉A1A

′
1···AnA′n

n∑
i=1

SAiA′i
, (2.12)

where the minimization is taken over all possible purifications of ρA1···An .

We call it multipartite entanglement of purification and write ∆P (ρA1:···:An) =
∆P (A1 : · · · : An) unless we need to specify a given state. ∆P can be regarded as
the value of sum of quantum entanglement in an optimal purification |ψ〉A1A′1···AnA′n

,
between one of n-parties and the other n − 1 parts. For example, for tripartite
state ρABC , it can be represented as

∆P (A : B : C) := min
|ψ〉AA′BB′CC′

[SAA′ + SBB′ + SCC′ ], (2.13)

and the entanglement entropies SAA′ , SBB′ and SCC′ in the brackets characterize
quantum entanglement between AA′ : BB′CC ′, BB′ : AA′CC ′ and CC ′ : AA′BB′,
respectively. We also note that a purification that gives the optimal value in (2.13)
may not be unique in general, as is so for the entanglement of purification EP .

2.2 Other measures

Besides the entanglement of purification, there have been a lot of measures of
quantum and/or classical correlations which quantify bipartite correlations for

1The normalization factor is not essential in our discussion, so we take it so that the entropic
inequalities below become simple. We remark that it is common and even operationally mean-
ingful at times in quantum information theory to define a multipartite generalization of some
measure with 1

2 prefactor regardless to n. If we follow this convention for ∆P , some results in
this paper will seemingly change e.g. from ∆P ≥ I to ∆P ≥ I/2.
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mixed states - including mutual information and squashed entanglement [42, 43].
Their generalization for multipartite cases have also been proposed in the literature
[37, 38]. To see that multipartite entanglement is not just a sum of bipartite one,
let us consider the famous GHZ state in a 3-qubit system:

|GHZ〉 =
1√
2

(|000〉+ |111〉). (2.14)

For this state, the three qubits are strongly correlated by genuine tripartite en-
tanglement. The point is that, after one of the subsystems is traced out, the
remaining bipartite state is just a separable state and there is no quantum en-
tanglement. This is an example which shows that the structure of multipartite
quantum entanglement is much richer than bipartite ones.

To quantify an amount of correlations for multipartite states, there have been
several proposals by generalizing the mutual information. One well known quan-
tity, the so-called tripartite information is defined as (based on Ven diagram)

Ĩ3(A : B : C) := SA + SB + SC − SAB − SBC − SCA + SABC

= I(A : C) + I(A : B)− I(A : BC). (2.15)

This quantity plays an important role in holography and has been studied e.g. in
[30, 33, 34, 35]. The tripartite information Ĩ3, however, can take all of negative,
zero, or positive values in generic quantum systems, and especially it always van-
ishes for all pure states. These facts make it hard to be regarded as a standard
measure of correlations.

An alternative approach is introduced in [37, 38] and the authors called the
generalization as multipartite mutual information, defined by the relative entropy
between a given original state and its local product state:

I(A : B : C) := S(ρABC ||ρA ⊗ ρB ⊗ ρC) = SA + SB + SC − SABC , (2.16)

where S(ρ||σ) = Trρ log ρ−Trρ log σ. This definition is motivated by an expression
of the bipartite mutual information,

I(A : B) = S(ρAB||ρA ⊗ ρB). (2.17)

In general, the multipartite mutual information for n-partite state ρA1···An is defined
in the same manner:

I(A1 : · · · : An) := S(ρA1···An||ρA1 ⊗ · · · ⊗ ρAn) =
n∑
i=1

SAi
− SA1···An . (2.18)

This is clearly positive semi-definite and is monotonic under local operations [37].
Thus one may consider it as a more promising measure than Ĩ for the purpose
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of total multipartite correlations. Note that we can rewrite I(A1 : · · · : An) as a
suggestive form, which is a summation of bipartite mutual information:

I(A1 : · · · : An) = I(A1 : A2) + I(A1A2 : A3) + · · ·+ I(A1 · · ·An−1 : An). (2.19)

We will carefully distinguish these two types of generalizations of mutual informa-
tion, Ĩ and I, and we mainly discuss the latter one in the following context.

2.3 Properties of multipartite entanglement of purification

Here we explore properties of ∆P in generic quantum systems. Firstly, we can
immediately see the following property from the definition.

Lemma 2. If one of the subsystems is decoupled ρA1···An = ρA1···An−1 ⊗ ρAn, then
∆P (A1 : · · · : An−1 : An) = ∆P (A1 : · · · : An−1).

Proof. One can separately purify ρAn and the remaining parts, and then it directly
follows by definition.

Especially, for bipartite state ρAB, it reduces to the twice of entanglement of
purification: ∆P (A : B) = 2EP (A : B). This guarantees that ∆P is a generaliza-
tion of EP to multipartite states.

We expect that ∆P is a natural generalization of EP for multipartite correla-
tions and has similar properties. Indeed, one can prove the following properties
which are the counterparts of those of EP mentioned above.

Proposition 3. If a given n-partite state |φ〉A1···An
is pure, then the multipartite

entanglement of purification is given by the summation of entanglement entropy
of each single subsystem,

∆P (A1 : · · · : An) =
n∑
i=1

SAi
for pure states. (2.20)

Proof. Notice that |φ〉A1···An
itself is a purification, and that all the other purifica-

tions should have a form |ψ〉A1A′1···AnA′n
= |φ〉A1···An

⊗|φ′〉A′1···A′n′ . Thus adding ancil-

lary systems always increases the sum of entanglement entropy of purified systems,
and the minimum is achieved by the original state |ψ〉A1A′1···AnA′n

= |φ〉A1···An
.

This is a generalization of property (I) and makes it easy to calculate ∆P

for pure states. Note that in the case of pure state, the multipartite mutual
information also reduces to the sum of entanglement entropy: I(A1 : · · · : An) =∑n

i=1 SAi
− SA1···An =

∑n
i=1 SAi

. Thus we have ∆P = I for any pure multipartite
states.
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Proposition 4. ∆P vanishes if and only if a given n-partite state is fully product,

∆p(A1 : · · · : An) = 0⇔ ρA1···An = ρA1 ⊗ · · · ⊗ ρAn . (2.21)

Even though it can be directly proven, we postpone its proof after the propo-
sition 8. This property indicates that ∆P is not a measure of merely quantum
entanglement but of both quantum and classical correlations. This is expected
since it is a generalization of EP . Note that ∆P is not a measure of genuine n-
partite correlations, but also includes 2, · · · , n− 1-partite correlations in ρA1···An .

As a measure of correlations, it is natural to expect that ∆P decreases when
we trace out a part of one subsystem. Actually, this is true as we can see in the
following.

Proposition 5. ∆P monotonically decrease upon discarding ancilla,

∆P (XA1 : · · · : An) ≥ ∆P (A1 : · · · : An). (2.22)

Proof. It follows from the fact that all purifications of ρXA1···An are included in
these of ρA1···An . Namely, if |ψ〉XX′A1A′1···AnA′n

is a optimal purification for ρXA1···An ,

then it is also one of the (not optimal in general) purification of ρA1···An , thus

∆P (XA1 : · · · : An) = SA1(A′1XX
′)+SA2A′2

+· · ·+SAnA′n ≥ ∆P (A1 : · · · : An). (2.23)

Now we give an upper bound on ∆P in terms of a certain sum of entanglement
entropy. This is a generalization of property (IV).

Proposition 6. ∆P is bounded from above by

∆P (A1 : · · · : An) ≤ min
i

[SA1 + · · ·+ SA1···Ai−1Ai+1···Ai
+ · · ·+ SAn ]. (2.24)

Proof. For simplicity, we will first prove this bound for tripartite state ρABC . Let
us consider a standard purification of a given state ρABC =

∑
pk |φk〉 〈φk|ABC such

that

|ψ〉AA′BB′CC′ =

rank[ρABC ]∑
k=1

√
pk |φk〉ABC ⊗ |0〉A′ ⊗ |0〉B′ ⊗ |k〉C′ . (2.25)

For this purification we have ∆P (A : B : C) ≤ SAA′ + SBB′ + SCC′ . Note that
ρAA′ = ρA ⊗ |0〉 〈0|A′ and the same for B, and SCC′ = SAA′BB′ , it can be easily
shown that

SAA′ = SA, SBB′ = SB, SCC′ = SAB, (2.26)
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for the state (2.25). Thus we get ∆P (A : B : C) ≤ SA + SB + SAB. Commuting
A,B,C, we get three upper bounds on ∆P ,

∆P (A : B : C) ≤ min{SA + SB + SAB, SB + SC + SBC , SC + SA + SCA}. (2.27)

The generalization of this proof to n-partite cases is straightforward.

These upper bounds indicates that if we have a bipartite state ρAB, and con-
sider extensions ρABC , the upper bound of ∆P (A : B : C) is totally determined by
the information included in ρAB. In other words, we can not arbitrarily increase
the multipartite correlations by adding ancillary systems (the upper bound can
be reached by any purification |ψ〉ABC of ρAB, though it is not the only way to
saturate these bounds as we will see in corollary 10 and 11).

Next we state universal lower bounds on ∆P . We first show the following
inequality satisfied for any tripartite state ρABC .

Proposition 7. Tripartite entanglement of purification ∆P (A : B : C) is bounded
from below by

∆P (A : B : C) ≥ max{SA+SB +SC−SABC , 2(SA+SB +SC)−SAB−SBC−SCA}.
(2.28)

Proof. Let us take an optimal purification |ψ〉AA′BB′′CC′′ . For this state we have

∆P (A : B : C) = SAA′ + SBB′ + SCC′

= I(AA′ : BB′) + I(AA′BB′ : CC ′)

≥ I(A : B) + I(AB : C)

= SA + SB + SC − SABC , (2.29)

where in the third line we used the monotonicity of mutual information

I(AX : B) ≥ I(A : B). (2.30)

Moreover, for tripartite pure states |ψ〉AA′BB′CC′ , we have I(AA′BB′ : CC ′) =
I(AA′ : CC ′) + I(BB′ : CC ′). Thus we get

∆P (A : B : C) = I(AA′ : BB′) + I(BB′ : CC ′) + I(CC ′ : AA′)

≥ I(A : B) + I(B : C) + I(C : A)

= 2(SA + SB + SC)− SAB − SBC − SCA. (2.31)

9



These bounds have a suggestive form in terms of tripartite mutual information2:

∆P (A : B : C) ≥ max{I(A : B : C), I(A : B : C) + Ĩ3(A : B : C)}. (2.32)

In particular, ∆P is always greater or equal to the multipartite mutual information
I(A : B : C). We will see that this is also true for n-partite states in the following
proposition.

Proposition 8. The multipartite entanglement of purification ∆P (A1 : · · · : An)
is bounded from below by the multipartite mutual information,

∆P (A1 : · · · : An) ≥ I(A1 : · · · : An). (2.33)

Proof. The proof is essentially the same as that in tripartite case. Let us consider
an optimal purification |ψ〉A1A′1···AnA′n

for ρA1···An . Then we have

∆P (A1 : · · · : An) =
n∑
i=1

SAiA′i
=

n∑
i=1

SAiA′i
− SA1A′1···AnA′n

= I(A1A
′
1 : · · · : AnA′n)

≥ I(A1 : · · · : An), (2.34)

where we used the property of multipartite mutual information [37]

I(A1X : · · · : An) ≥ I(A1 : · · · : An). (2.35)

This is a generalization of property (Va), (Vb) and provides general relation-
ship between two types of multipartite total correlation measures I and ∆P . It
is worth to point out that these two quantities behave very similarly. Indeed, the
propositions 2, 3, 4, 5, and 6 are also true for multipartite mutual information.
One exception is, the lower bound of tripartite case, ∆P (A : B : C) ≥ I(A : B :
C)+ Ĩ3(A : B : C), which is obviously violated for I(A : B : C) when Ĩ3(A : B : C)
is positive.

The proposition 8 also allows us to give a simple proof of the proposition 4.

Proof. If a n-partite state is totally product ρA1···An = ρA1 ⊗ · · · ⊗ ρAn , then one
can get ∆P = 0 by purifying each subsystems independently. On the other hand,
if ∆P (A1 : · · · : An) = 0, then I(A1 : · · · : An) = S(ρA1···An||ρA1 ⊗ · · · ⊗ ρAn) = 0
following the proposition 8. Thus, the non-degeneracy of relative entropy leads to
ρA1···An = ρA1 ⊗ · · · ⊗ ρAn .

2Note that it leads to a general relationship ∆P (A : B : C) ≥ Ĩ3(A : B : C) for any quantum
states.
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Using the above arguments, some properties of ∆P follow as corollaries.

Corollary 9. For any pure n-partite state, ∆P is polygamous:

∆P (A1 : · · · : An−1 : BC) ≤ ∆P (A1 : · · · : An−1 : B) + ∆P (A1 : · · · : An−1 : C).
(2.36)

Proof. For any pure state |φ〉A1···AnBC
it follows from the proposition 3 that

∆P (A1 : · · · : An−1 : BC) =
n−1∑
i=1

SAi
+ SBC =

n−1∑
i=1

SAi
+ SA1···An−1

≤ 2
n−1∑
i=1

SAi

=
n−1∑
i=1

SAi
+ SB − SA1···An−1B +

n−1∑
i=1

SAi
+ SC − SA1···An−1C

≤ ∆(A1 : · · · : An−1 : B) + ∆(A1 : · · · : An : C), (2.37)

where in the first inequality we used the subadditivity of von Neumann entropy
recursively, in the third line SB = SA1···An−1C , SC = SA1···An−1B for pure states,
and in the last inequality the proposition 8.

As EP is so, the multipartite entanglement of purification is difficult to cal-
culate in general because of the minimization over infinitely many purifications.
Nevertheless, there is a class of quantum states for which one can rigorously cal-
culate ∆P in terms of entanglement entropy.

Corollary 10. For a class of tripartite states ρABC that saturate the subadditivity
SABC = SC − SAB, we have ∆P (A : B : C) = SA + SB + SAB.

Proof. From proposition 6 and 7, we have

SA + SB + SC − SABC ≤ ∆P (A : B : C) ≤ SA + SB + SAB. (2.38)

Therefore SC − SABC = SAB leads ∆P (A : B : C) = SA + SB + SAB.

Corollary 11. For a class of tripartite states ρABC that saturate both of the two
forms of the strong subadditivity, SA+SC = SAB+SBC and SB+SC = SAB+SAC,
then we have ∆P (A : B : C) = SA + SB + SAB.

Proof. From proposition 6 and 7, we have

2(SA + SB + SC)− SAB − SBC − SCA ≤ ∆P (A : B : C) ≤ SA + SB + SAB, (2.39)
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where the lower bound can be expressed as

2(SA + SB + SC)− SAB − SBC − SCA
=SA + SB + SAB + (SA + SC − SAB − SBC) + (SB + SC − SAB − SAC). (2.40)

Thus if the two strong subadditivity are simultaneously saturated, we get ∆P (A :
B : C) = SA + SB + SAB.

We also provide another lower bound on ∆P in terms of bipartite entanglement
of purification.

Proposition 12. ∆P is bounded from below by

∆P (A1 : · · · : An) ≥
n∑
i=1

EP (Ai : A1 · · ·Ai−1Ai+1 · · ·An). (2.41)

Proof. Let us prove it for tripartite cases for simplicity. For a state ρABC , we have

∆P (A : B : C) = min
|ψ〉AA′BB′CC′

[SAA′ + SBB′ + SCC′ ]

≥ min
|ψ〉AA′BB′CC′

SAA′ + min
|ψ〉AA′BB′CC′

SBB′ + min
|ψ〉AA′BB′CC′

SCC′

= EP (A : BC) + EP (B : CA) + EP (C : AB), (2.42)

then the bound follows.

3 Holography: multipartite entanglement wedge

cross section

In this section, we define a multipartite generalization of entanglement wedge
cross-section introduced in [22, 23], motivated by the tensor network description
of AdS geometry [12, 16, 17, 18].

3.1 Definition

We start by setting our conventions in holography. To compute entanglement
entropy in quantum field theories, we often choose a (maybe disconnected) sub-
system A on a time slice, and the Hilbert space of the field theory is factorized
into Htot = HA⊗HAc . Then the entanglement entropy for subsystem A in a state
ρtot, is defined as the von Neumann entropy of the reduced density matrix ρA,

SA := −TrρA log ρA , ρA = TrAcρtot . (3.1)
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In the AdS/CFT correspondence, the holographic entanglement entropy formula
[9, 10] tells us how to calculate entanglement entropy in dual gravity side. Consider
a state in d-dimensional holographic CFT which has a classical d+ 1 dimensional
gravity dual. In the present paper, we will restrict ourselves to static cases3.
The dual gravity solution of the given state ρtot will be a canonical time slice M
in gravity side. To compute the entanglement entropy for a chosen subsystem
A ⊂ ∂M , we are looking for a d − 1-dimensional surface ΓA in M with minimal
area, under the conditions that ∂ΓA = ∂A and ΓA is homologous to A. Then the
holographic entanglement entropy is determined by the minimal area4,

SA =
Area(ΓminA )

4GN

. (3.2)

Let us start to define our main interest, i.e. a multipartite generalization of
entanglement wedge cross-section ∆W . We mostly focus on tripartite case for
simplicity, though the generalization to more partite cases is rather straightfor-
ward. We take subsystems A, B and C on the boundary ∂M . In general ρABC
is a mixed state. Then one can compute the holographic entanglement entropy
SA, SB, SC and also SABC following (3.2). The corresponding minimal surfaces are
denoted by ΓminA , ΓminB , ΓminC , ΓminABC , respectively. The entanglement wedge MABC

[39, 40, 41] is defined as a region of M 5 with boundary A,B,C and ΓminABC :

∂MABC = A ∪B ∪ C ∪ ΓminABC . (3.3)

Notice that MABC gets disconnected when some of A,B,C or all of them are
decoupled. Also note that ∂MABC may include bifurcation surfaces in the bulk
such as in AdS black hole geometry.

Next, we divide arbitrarily the boundary ∂MABC (not MABC itself) into three

parts Ã, B̃, C̃ so that they satisfy

Ã ∪ B̃ ∪ C̃ = ∂MABC , (3.4)

and
A ⊂ Ã , B ⊂ B̃ , C ⊂ C̃ . (3.5)

The boundary of Ã, B̃, C̃ is denoted by DABC . Regarding each Ã, B̃, C̃ as a sub-
system of a geometric pure state, we can calculate

SÃ + SB̃ + SC̃ , (3.6)

3Even though we can define a covariant version of multipartite entanglement wedge cross-
section in a similar way for EW [22], the holographic proofs of its entropic inequalities for more
than 4-partite cases is not straightforward [48]. We leave it as a future problem.

4We work at the leading order of large N limit through the whole of present paper.
5More precisely, we consider a constant time slice of entanglement wedge and call it also

entanglement wedge, while the former is codimension-0 and the latter is codimension-1.
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by using holographic entanglement entropy formula (3.2). This is performed by
finding a minimal surface Σmin

ABC that consists of three parts ΣA, ΣB, ΣC , which
share the boundary DABC , such that

Σmin
ABC = ΣA ∪ ΣB ∪ ΣC , ∂Σmin

ABC = DABC , (3.7)

and
ΣA,B,C is homologous to Ã, B̃, C̃ inside MABC . (3.8)

Since ∂MABC is codimention-2, the surfaces DABC which plays the role of the
division of ∂MABC = Ã ∪ B̃ ∪ C̃, is codimension-3. In the case of AdS3/CFT2,
DABC is in general three separated points on ΓminABC , see Fig 3.1, 3.2.

B

𝐴

𝐶

Σ𝐴𝐵𝐶
𝑚𝑖𝑛

 𝐶

 𝐵
 𝐴

Figure 3.1: An example of tripartite entanglement wedge cross-section. The
black bold dashed lines represents the minimal surface ΓminABC , giving a part of the
boundary of MABC . The yellow thin dashed lines represents Σmin

ABC whose area
(divided by 4GN) is ∆W .
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B

𝐴

𝐶

Σ𝐴𝐵𝐶
𝑚𝑖𝑛

 𝐶

 𝐵
 𝐴

Figure 3.2: An example of tripartite entanglement wedge cross-section in a black
hole geometry. Each surface of Σmin

ABC is doubled.

Finally we minimize the area of Σmin
ABC over all possible divisions Ã, B̃, C̃ that

satisfy the conditions (3.4) and (3.5). This gives now a quantity we call the mul-
tipartite entanglement wedge cross section

∆W (ρABC) := min
Ã,B̃,C̃

[
Area(Σmin

ABC)

4GN

]
. (3.9)

For n-partite boundary subsystems, in general, the multipartite entanglement
wedge cross-section is defined in the same manner. Notice that when it is reduced
to the bipartite case, this definition is actually twice of the bipartite entanglement
wedge cross-section defined in [22, 23]. We sometimes write ∆W (ρABC) = ∆W (A :
B : C) to clarify a way of partition of subsystems.

In summary, ∆W computes the multipartite cross-sections of the entanglement
wedge MABC and it is a natural generalization of the bipartite entanglement wedge
cross-section. This can be used as a total measure of how strongly multiple parties
are holographically connected with each other. Below we study the properties of
∆W .

3.2 Properties of multipartite entanglement wedge cross-
section and the conjecture ∆W = ∆P

In the following, we investigate holographic properties of ∆W , inspired by those
of ∆P . To avoid unnecessary complexity, we mostly consider tripartite case only,
and it should be understood that the properties are easily generalized for n-partite

15



cases in somewhat trivial ways unless otherwise emphasized.

First, if ρABC is pure, from the definition (3.7), Σmin
ABC coincides with ΓminA ∪

ΓminB ∪ ΓminC . Therefore ∆W is equal to the sum of the entanglement entropy of A,
B and C:

∆W (A : B : C) = SA + SB + SC . (3.10)

As we mentioned above, for a partly decoupled entanglement wedges i.e. if
MABC = MAB

⊔
MC , where

⊔
denote that the geometries MAB,MC are totally

separated, then ∆W is reduced to (twice of) entanglement wedge cross-section.
This clearly leads that ∆W = 0 if and only if the entire entanglement wedge is
totally decoupled MA1···An =

⊔n
i=1MAn for multipartite setups.

One can easily show that ∆W decreases when we reduce one of the subregions
in A,B,C ≡ C1 ∪ C2:

∆W (A : B : C1 ∪ C2) ≥ ∆W (A : B : C1) , (3.11)

by using the so-called entanglement wedge nesting,

MX ⊂MXY , (3.12)

which holds for any boundary subregions X, Y [39, 40, 41].

One can also easily show an upper bound of ∆W by a graph proof (Fig.3.3):

∆W (A : B : C) ≤ SA + SB + SAB , (3.13)

By commuting A,B,C, one can further get

∆W (A : B : C) ≤ min[SA + SB + SAB, SB + SC + SBC , SA + SC + SAC ]. (3.14)
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B

𝐴

𝐶

Figure 3.3: The proof of an upper bound of ∆W . The sum of blue real lines
is SA + SB + SAB and the sum of dashed yellow lines are ∆W (ρABC). Clearly
∆W (ρABC) ≤ SA + SB + SAB holds somewhat trivially since SA + SB + SAB has
UV divergences while ∆W does not. When two of subsystems share the boundary,
∆W also diverges, but it is always weaker than SA + SB + SAB shown by a graph.

Furthermore, for tripartite setups, one can show two lower bounds of ∆W also
by graph proofs (Fig.3.4, Fig.3.5):

∆W (A : B : C) ≥ I(A : B : C) = SA + SB + SC − SABC . (3.15)

∆W (A : B : C) ≥ I(A : B : C)+Ĩ3(A : B : C) = 2(SA+SB+SC)−SAB−SBC−SAC .
(3.16)

Note that, however, in holography we always have I(A : B : C) ≥ I(A : B :
C)+ Ĩ3(A : B : C) because of negative tripartite information Ĩ3 ≤ 0 [30]. Therefore
the former is always tighter.

Similarly, for n-partite setup, one can easily show that

∆W (A1 : · · · : An) ≥ I(A1 : · · · : An), (3.17)

by drawing graphs.
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B

𝐴

𝐶

Figure 3.4: The proof of a lower bound of ∆W . The sum of dashed yellow
lines is ∆ABC + SABC and the sum of real blue lines are SA + SB + SC . Clearly
∆W (ρABC) + SABC ≥ SA + SB + SC follows since the entanglement entropy are
defined as minimal surfaces.

B

𝐴

𝐶

Figure 3.5: The proof of a lower bound of ∆W . The sum of dashed yellow lines is
∆ABC+SAB+SBC+SCA, and the sum of real doubled blue lines are 2(SA+SB+SC).
Clearly ∆W +SAB +SBC +SCA ≥ 2(SA+SB +SC) follows, since the entanglement
entropy are defined as minimal surfaces.

Note that the corollaries in the previous section automatically follows for ∆W

from the above discussion, while we can also show them by drawing graphs. We
also note that the proposition 12 for ∆W can be easily shown by graphs.
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One can view the above properties are the multipartite generalization of the
holographic properties of bipartite entanglement wedge cross-section. Motivated
by the same properties of ∆W and ∆P , we now make a conjecture that, the multi-
partite entanglement wedge cross-section ∆W we defined in this section is nothing
but the holographic counterpart of the multipartite entanglement of purification
∆P we defined in the last section (at the leading order O(N2)):

∆W = ∆P . (3.18)

3.3 Computation of ∆W in pure AdS3

Now we compute ∆W in the simple examples of AdS3/CFT2. We work in Poincaré
patch, and a static ground state of a CFT2 on a infinite line is described by a bulk
solution with the metric

ds2 =
dx2 + dz2

z2
, x ∈ (−∞,+∞), z ∈ [0,+∞) . (3.19)

The three subsystems we choose are the intervals A = [−b,−a−r], B = [−a+r, a−
r], C = [a+r, b], where b > a > 0 and r is relatively small compared to both a and b.
We require that the entanglement wedge of ABC is connected, as shown in Fig.3.6.
Following the definition of ∆W given in (3.9), in this set up the problem becomes
to find a triangle type configuration with the minimal length of three connected
geodesics, where the ending points of the geodesics are located on 3 semi-circles
separately, as shown in Fig.3.6. Since we focus on the case of 3 intervals A,B,C
which have a reflection symmetry x → −x, the reasonable minimal configuration
should also keep the reflection symmetry. This consideration reduces the problem
to find a special angle θ such that the length of 3 geodesics is minimal. Then, the
tripartite entanglement wedge cross-section ∆W is given by

∆W (A : B : C) = min
θ

[
L(θ)

4GN

]
. (3.20)

We obtained a compact formula of the length L as a function of a, b, r and θ,
however this formula is rather complicated. We instead show numerical θ depen-
dence of L as plotted in Fig.3.7 and evaluate the special values of both θ and L
satisfying the minimal length condition for a given a, b, r.

It is also straightforward to check the properties of ∆W studied before in this
particular setup.
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Figure 3.6: The computation of ∆W in pure AdS3.

0.5 1.0 1.5 2.0 2.5 3.0
Θ

20
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50

60

L

Figure 3.7: L − θ plot in the computation of ∆W with differ-
ent parameters. From top to bottom, the parameters of (a, b, r) are
(10, 100, 0.05), (10, 100, 0.1), (10, 100, 0.5), (10, 100, 0.75). ∆W ∗ 4GN and the the
optimal value of θ are (27.2046, θ → 1.56818) (24.432, θ → 1.5657), (17.9942, θ →
1.54531), (16.3723, θ → 1.53255), respectively.

3.4 Computation of ∆W in BTZ black hole

Now we turn to the BTZ black holes. A planar BTZ black hole describes a 2d
CFT on a infinite line at finite temperature. The metric of a fixed time slice of
BTZ is given by

ds2 =
1

z2

(
dz2

f(z)
+ dx2

)
, f(z) = 1− z2

z2H
, (3.21)
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where the temperature is related to the horizon by β = 2πzH . For simplicity we
choose 3 subsystems A, B, C as intervals [−`, 0], [0, `] and the remaining part of
the infinite line, respectively.

𝑧 = 𝑧𝐻

𝑥

𝐶

−𝒍

𝐶 𝐴 𝐵

+𝒍

𝑧

Figure 3.8: The computation of ∆W in BTZ.

As studied in [22], the geodesic length between the boundary and the horizon
is

L1 = log
β

πε
, (3.22)

where ε is the UV cutoff. The geodesic length between (−`, 0) and (0, 0) is 6

L2 = 2 log
β sinh(π`/β)

πε
, (3.23)

and the geodesic length between (−`, 0) and (`, 0) is

L3 = 2 log
β sinh(2π`/β)

πε
. (3.24)

At high temperature, ΣABC consists of six short lines of length L1, so the tripartite
cross-section is given by

∆W = 6L1 = 6 log
β

πε
=: A(1) . (3.25)

At low temperature, ΣABC consists of 3 geodesic lines connecting (−`, 0), (0, 0)
and (`, 0), so the ∆W is given by

∆W = 2L2 + L3 = 4 log
β sinh(π`/β)

πε
+ 2 log

β sinh(2π`/β)

πε
=: A(2) . (3.26)

6It is the same as the geodesic length between (0, 0) and (`, 0).
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The tripartite entanglement wedge cross-section ∆W is thus given by

∆W (A : B : C) =
1

4GN

min[A(1), A(2)] . (3.27)

We compare A(1) and A(2) and find the critical temperature

β∗ =
log
√
y∗

π`
, (3.28)

where y∗ is the positive root of

(y + y−1 − 2)(y − y−1) = 8 . (3.29)

Furthermore, one can confirm that there are only two phases A(1), A(2) separated
by the above critical temperature. When β < β∗, A

(1) is favored and when β > β∗,
A(2) is favored.

4 Conclusion

In this paper, we defined a generalization of entanglement of purification to multi-
partite states denoted by ∆P , and proved its various properties focusing on bounds
described by other entropic quantities. We demonstrate that ∆P satisfies desired
properties as a generalization of EP and provides an upper bound on the multi-
partite mutual information introduced in [37, 38]. In particular, we show that the
tripartite entanglement of purification ∆P (A : B : C) is bounded from below by a
sum of two different generalizations of mutual information. We also show that for
a class of tripartite quantum states which saturate the subadditivity or the strong
subadditivity, there is a closed expression of ∆P in terms of entanglement entropy.

Based on the holographic conjecture of entanglement of purification [22, 23],
we defined a generalization of entanglement wedge cross-section as the holographic
counterpart of the multipartite entanglement of purification ∆W , and show that
all the properties ∆P has are indeed satisfied by ∆W . It leads us to propose a
new conjecture ∆P = ∆W at the leading order O(N2) of large N limit. Alterna-
tively speaking, this implies the naive picture of purified geometry based on tensor
network description [16, 17, 18] still works for multipartite cases. As explicit ex-
amples, we calculated ∆W for several simple setups in AdS3/CFT2 including pure
AdS3 and black hole geometry.

Several future questions are in order: First, proof of ∆W properties in time-
dependent background geometry. The properties in this case are expected to be
very useful in understanding the dynamical process in quantum gravity systems,
since many interesting physical set up go beyond the bi-partite pattern. The en-
tropic inequalities for multipartite cases were actually discussed in [48] for covariant
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cases, there they argued that new techniques apart from the maximin surfaces [40]
are needed to prove them for 5 or more partite cases. Second, we expect that there
is an operational interpretation for ∆P just like EP has, such as the one based on
SLOCC for multipartite qubits. Third, looking for the new properties satisfied by
∆W but not always by ∆P is certainly interesting, because these are essentially the
new constraints on holographic states, such as the conjectured strong superaddi-
tivity of entanglement of purification in holography. We shall report the progress
in future publications.
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A The multipartite squashed entanglement and

holography

There have been a lot of measures of genuine quantum entanglement proposed. In
particular, the squashed entanglement [42, 43] is the most promising measure of
quantum entanglement for mixed states, as it satisfies all known desirable proper-
ties e.g. additivity. The squashed entanglement is defined by

Esq(ρAB) :=
1

2
inf
ρABE

I(A : B|E), (A.1)

where I(A : B|E) = I(A : BE) − I(A : E) = SAE + SBE − SABE − SE is the
conditional mutual information, and the minimization is taken over all possible
extensions ρAB = TrE[ρABE]. By taking E is trivial we see that by definition Esq
is less than or equal to half of the mutual information: Esq ≤ I/2.

In [37, 38], multipartite generalizations of Esq were also introduced. To define
the one we are interested, we first introduce a conditional multipartite mutual
information,

I(A1 : · · · : An|E) = I(A1 : A2|E) + I(A1A2 : A3|E) + · · ·+ I(A1 · · ·An−1 : An|E).
(A.2)

Using this, the (q-)multipartite squashed entanglement for n-partite state ρA1···An
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is defined by 7

Eq
sq(A1 : · · · : An) := inf

ρA1···AnE

I(A1 : · · · : An|E), (A.3)

where the minimization is taken over all possible extensions of ρA1···An .
Noting that a trivial extension ρA1···AnE = ρA1···An ⊗ |0〉 〈0|E gives I(A1 : · · · :

An|E) = I(A1 : · · · : An), we get a generic bound,

Eq
sq(A1 : · · · : An) ≤ I(A1 : · · · : An). (A.4)

Combining it with the proposition 8, we get a generic order of three different
measures of multipartite correlations.

Corollary 13. It holds for any n-partite quantum states that

Eq
sq(A1 : · · · : An) ≤ I(A1 : · · · : An) ≤ ∆P (A1 : · · · : An). (A.5)

Note that for any pure n-partite state these bounds are saturated and we have
Eq
sq = I = ∆P . Generally, Eq

sq ≤ ∆P is a desirable property, since ∆P is expected
to be a measure of both quantum and classical correlations while Eq

sq is only of
quantum ones.

A.1 Holographic counterpart of Esq

The definition of squashed entanglement (A.1) is similar to that of the entangle-
ment of purification (2.1). Both of them use a certain type of extension, indeed,
purification is a special set of extension. This observation motivates us to seek for
a holographic counterpart of Esq in the same spirit of EP or ∆P .

Let us regard a time slice of AdS as a tensor network which describes a quantum
state of CFT. In a gravity background with a tensor network description, one can
define a pure or mixed state for any codimension two convex surface, called the
surface/state correspondence [16, 17, 18]. Let us now take use of this picture to
study what the holographic counterpart of squashed entanglement could be if it
indeed exists8.

First, we consider a class of extensions from ρAB to ρABE which have classical
gravity duals described by tensor networks. The extensions are not necessarily
on the original AdS boundary, but each extended geometry should include the
entanglement wedge MAB and its boundary should be convex [16]. We assume

7Here we also define the multipartite squashed entanglemet without 1
2 prefactor following our

convention for ∆P .
8We are grateful to Tadashi Takayanagi for lots of fruitful comments on the following discus-

sion.
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that there exists an optimal extension for (A.1) in this class. Then we find that all
nontrivial such extensions give I(A : B|E) ≥ I(A : B). Indeed this is equivalent
to say that the holographic tripartite information is always negative: Ĩ3(A : B :
E) ≤ 0. This eventually leads that the optimal solution in (A.1) is given by half
of the mutual information in holography

Esq(A : B) =
1

2
I(A : B) . (A.6)

In the remaining text, we illustrate our argument in details.
To compute the squashed entanglement (A.1), we want to consider how much

correlation one can reduce between A and B by knowing the ancillary system E.
This is appropriately quantified by the tripartite information

Ĩ3(A : B : E) = I(A : B)− I(A : B|E). (A.7)

This quantity has been widely studied in holography. In particular, the so called
monogamy of mutual information (MMI) shows that Ĩ3(A : B : E) is always
negative in holography in the case E is on the original AdS boundary [30]

I(A : BE) ≥ I(A : B) + I(A : E) ⇔ Ĩ3(A : B : E) ≤ 0. (A.8)

Hence one can never reduce the correlation between A and B by knowing the
extension E located on the original AdS boundary, i.e. I(A : B|E) ≥ I(A :
B) holds in this case (Fig.A.1). Note that (A.8) is a characteristic property of
holographic states, since it is not generally satisfied by arbitrary tripartite quantum
states.
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Figure A.1: A proof of I(A : B|E) ≥ I(A : B) for an extension ρABE, where E is
on the original boundary [30]. The difference I(A : B|E) − I(A : B) is given by
the area of dashed orange codimension-2 surfaces minus that of solid blue ones,
which is clearly non-negative by the minimal property of RT-surfaces.

Now, we would like to assert that this type of monogamy (A.8) is still true in
more general holographic states we consider, as long as the entanglement entropy is
still given by a minimal area functional in dual geometry9. This is because the proof
of MMI in [30] does not rely on any peculiarity of asymptotic AdS boundary. In
particular, it does not concern whether the boundary is at the asymptotic infinity
or not. This fact temps us to assume that all extensions with classical gravity duals
satisfy the monogamy of mutual information (or equivalentally Ĩ3(A : B : E) ≤ 0).
This situation can be graphically illustrated for example in Fig.A.2.

9One can replace in this argument the area functional to any geometrical functional as long
as it is extensive [30]. In particular, the authors of [30] showed that higher curvature corrections
does not affect the MMI, and conjectured that it will be a common property of all large-N field
theories.
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Figure A.2: A proof of I(A : B|E) ≥ I(A : B) for an extension ρABE, where
E is on the minimal purification (i.e. RT-surface of SAB). The difference I(A :
B|E) − I(A : B) in this case is given by the area of the orange codimension-2
surfaces minus that of the blue ones, which is certainly non-negative. For simplicity
here we assumed that E is relatively small, but the same result is true for large E
(i.e. near the purification).

From the above argument we conjecture that one cannot reduce the correlation
between A and B by measuring an ancillary system E i.e. I(A : B|E) ≥ I(A : B)
holds for any extension with classical gravity dual. With the assumption that in
(A.1) there exists an optimal extension with a classical geometrical description,
the squashed entanglement in holography will be given by just half of the mutual
information (at O(N2)):

Esq(A : B) =
1

2
I(A : B) , (A.9)

which can clearly be achieved by a trivial extension. This tells that the inequality
Esq(A : B) ≤ I(A : B)/2 is saturated in holography10.

As a consistency check of this saturation conjecture, one can test whether the
holographic properties of them (such as the additivity) coincide or not. As men-
tioned above, the mutual information does not always satisfy the monogamy, while
the squashed entanglement does for any tripartite state [44]. The fact that the
mutual information becomes monogamous in holography actually provides a non-
trivial check of (A.6). One might also regard (A.6) as the origin of the MMI in

10This saturation can also be observed in a tensor network model of holography [32].
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holography.

Note that the saturation (A.6) is already implicated in [30], motivated by the
MMI itself.

Moreover, we expect that this kind of saturation also happens for multipartite
cases. Namely, we are tempted to test the saturation of (A.4) in holography (at
O(N2)):

Eq
sq(A1 : · · · : An) =? I(A1 : · · · : An). (A.10)

One of such non-trivial tests is given by the strong superadditivity of multipartite
squashed entanglement [37]:

Eq
sq(A1B1 : · · · : AnBn) ≥ Eq

sq(A1 : · · · : An) + Eq
sq(B1 : · · · : Bn). (A.11)

This is true in any 2n-partite state ρA1B1···AnBn . Note that the multipartite mutual
information does not satisfy this property in general. For example, if one considers
a quantum state

ρA1B1A2B2A3B3 =
1√
2

(|000000〉 〈000000|A1B1A2B2A3B3
+|111111〉 〈1111111|A1B1A2B2A3B3

),

(A.12)
This will lead to I(A1B1 : A2B2 : A3B3) = I(A1 : A2 : A3) = I(B1 : B2 : B3),
which clearly violates the inequality.

However, in holographic CFTs, one can show that the multipartite mutual
information does satisfy the strong superadditivity. This comes as follows:

I(A1B1 : · · · : AnBn) = I(A1B1 : A2B2) + I(A1B1A2B2 : A3B3) + · · ·
· · ·+ I(A1B1A2B2 · · ·An−1Bn−1 : AnBn)

≥ I(A1 : A2) + I(A1A2 : A3) + · · ·+ I(A1A2 · · ·An−1 : An)

+ I(B1 : B2) + I(B1B2 : B3) + · · ·+ I(B1B2 · · ·Bn−1 : Bn)

= I(A1 : · · · : An) + I(B1 : · · · : Bn), (A.13)

where we have used the monogamy of holographic mutual information recursively.
This observation gives us further evidence for our conjectured saturation in holog-
raphy (A.10).

To our best knowledge, there is no counter example for such saturation con-
jecture. If there is a property which Esq always satisfies but I does not always,
then one can try to test whether it holds for holographic mutual information. If it
does, this can be considered as additional positive evidence for our conjecture.11

11Note that related properties about holographic entanglement entropy are intensively studied
in [47] for multipartite setups.
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[27] R. EspÃndola, A. Guijosa, J. F. Pedraza, “Entanglement Wedge Reconstruc-
tion and Entanglement of Purification,” arXiv:1804.05855 [hep-th].

[28] Y. Nomura, P. Rath, N. Salzetta, “Pulling the Boundary into the Bulk,”
arXiv:1805.00523 [hep-th].

[29] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, “Quantum en-
tanglement,” Rev. Mod. Phys. 81 (2009) 865 quant-ph/0702225.

[30] P. Hayden, M. Headrick and A. Maloney, “Holographic Mutual Information is
Monogamous,” Phys. Rev. D 87 (2013) no.4, 046003 arXiv:1107.2940 [hep-th].

[31] V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf, S. F. Ross, “Multi-
boundary Wormholes and Holographic Entanglement,” Classical and Quantum
Gravity, 31 (18):185015, 2014, arXiv:1406.2663 [hep-th].

[32] S. Nezami, M. Walter, “Multipartite Entanglement in Stabilizer Tensor Net-
works,” arXiv:1608.02595 [quant-ph].

[33] P. Hosur, X. L. Qi, D. A. Roberts, B. Yoshida, “Chaos in quantum channels,”
JHEP 02 (2016) 004, arXiv:1511.04021 [hep-th].

[34] M. Rota, “Tripartite information of highly entangled states,” JHEP 04 (2016)
075 [arXiv:1512.03751 [hep-th].

[35] S. Mirabi, M. Reza Tanhayi and R. Vazirian, “On the Monogamy
of Holographic n-partite Information,” Phys. Rev. D 93, 104049 (2016),
arXiv:1603.00184 [hep-th].

[36] M. Alishahiha, M. R. M. Mozaffar, M. Reza Tanhayi, “On the Time Evolution
of Holographic n-partite Information,” JHEP 09 (2015) 165 arXiv:1406.7677
[hep-th].

[37] D. Yang, K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, W. Song,
“Squashed entanglement for multipartite states and entanglement measures
based on the mixed convex roof,” IEEE Trans. Inf. Theory 55, 3375 (2009),
arXiv:0704.2236 [quant-ph].

[38] D. Avis, P. Hayden, I. Savov, “Distributed Compression and Multiparty
Squashed Entanglement” J. Phys. A 41 (2008) 115301, arXiv:0707.2792 [quant-
ph].

31



[39] B. Czech, J. L. Karczmarek, F. Nogueira and M. Van Raamsdonk, “The
Gravity Dual of a Density Matrix,” Class. Quant. Grav. 29 (2012) 155009
arXiv:1204.1330 [hep-th].

[40] A. C. Wall, “Maximin Surfaces, and the Strong Subadditivity of the Covari-
ant Holographic Entanglement Entropy,” Class. Quant. Grav. 31 (2014) no.22,
225007 arXiv:1211.3494 [hep-th].

[41] M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, “Causality and
holographic entanglement entropy,” JHEP 1412 (2014) 162 arXiv:1408.6300
[hep-th].

[42] R. R. Tucci, “Entanglement of Distillation and Conditional Mutual Informa-
tion,” quant-ph/0202144.

[43] M. Christandl and A. Winter, ““Squashed entanglement”: An additive en-
tanglement measure,” J. Math. Phys. 45 (2004) 829, quant-ph/0308088.

[44] M. Koashi and A. Winter, “Monogamy of entanglement and other correla-
tions,” Phys. Rev. A 69 (2004) 022309, quant-ph/0310037.

[45] N. Bao, I. F. Halpern, “Conditional and Multipartite Entanglements of Pu-
rification and Holography,” arXiv:1805.00476 [hep-th].

[46] S. Bagchi and A. K. Pati, “Monogamy, polygamy, and other properties of
entanglement of purification”, Phys. Rev. A91 (2015) 042323 arXiv:1502.01272.

[47] N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully, M. Walter, “The Holo-
graphic Entropy Cone,” JHEP 09 (2015) 130, arXiv:1505.07839 [hep-th].

[48] M. Rota, S. J. Weinberg, “Maximin is Not Enough,” Phys. Rev. D 97, 086013
(2018), arXiv:1712.10004 [hep-th].

32


	Introduction
	Multipartite entanglement of purification
	Definition
	Other measures
	Properties of multipartite entanglement of purification

	Holography: multipartite entanglement wedge cross section
	Definition
	Properties of multipartite entanglement wedge cross-section and the conjecture W=P
	Computation of W in pure AdS3
	Computation of W in BTZ black hole

	Conclusion
	The multipartite squashed entanglement and holography
	Holographic counterpart of Esq


