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A NOTE ON SMALL SETS OF REALS

TOMEK BARTOSZYNSKI AND SAHARON SHELAH

Abstract. We construct an example of a combinatorially large measure zero
set.

1. Introduction.

We will work in the space 2ω equipped with standard topology and measure.
More specifically, the topology is generated by basic open sets of form [s] = {x ∈
2ω : s ⊂ x} for s ∈ 2a, a ∈ ω<ω. The measure is the standard product measure
such that µ([s]) = 2−|dom(s)| and let N be the collection of all measure zero sets.

Measure zero sets in 2ω admit the following representation (see lemma 4):
X ∈ N iff and only if there exists a sequence {Fn : n ∈ ω} such that

(1) Fn ⊆ 2n for n ∈ ω,

(2)
∑

n∈ω

|Fn|

2n
<∞,

(3) X ⊆ {x ∈ 2ω : ∃∞n x↾n ∈ Fn}.

The main drawback of this representation is that sets Fn have overlapping do-
mains. The following definitions from [1] and [3] offer a refinement.

Definition 1. (1) A set X ⊆ 2ω is small (X ∈ S) if there exists a sequence
{In, Jn : n ∈ ω} such that
(a) In ∈ [ω]<ℵ0 for n ∈ ω,
(b) In ∩ Im = ∅ for n 6= m,
(c) Jn ⊆ 2In for n ∈ ω,

(d)
∑

n∈ω

|Jn|

2|In|
<∞

(e) X ⊆ {x ∈ 2ω : ∃∞n x↾In ∈ Jn}
Without loss of generality we can assume that {In : n ∈ ω} is a partition of ω into finite sets.

(2) We say that X is small⋆ (X ∈ S⋆) if in addition sets In are disjoint
intervals, that is, if there exists a strictly increasing sequence of integers
{kn : n ∈ ω} such that In = [kn, kn+1) for each n.

Let (In, Jn)n∈ω denote the set {x ∈ 2ω : ∃∞n x↾n ∈ Jn}.

It is clear that S⋆ ⊆ S ⊆ N .
Small sets are useful because of their combinatorial simplicity. To test that

x ∈ X ∈ S the real x must pass infinitely many independent tests as in Borel-
Cantelli lemma. Furthermore, various structurally simple measure zero sets are
small. In particular,

(1) if X ∈ N and |X | < 2ℵ0 then X ∈ S⋆, [1]
(2) if X is contained in a countable union of closed measure zero sets then

X ∈ S⋆, [3]
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(3) if F is a filter on ω (interpreted as a subset of 2ω) and F ∈ N then F ∈ S⋆,
[2], [4]

Definition 2. For families of sets A,B let A⊕ B be

{X : ∃a ∈ A ∃b ∈ B (X ⊂ a ∪ b)}

Clearly, if J is an ideal then J ⊕J = J . Likewise, A∪(A⊕A)∪(A⊕A⊕A)∪. . .
is an ideal for any A.

Theorem 3. [1]
S⋆ ⊕ S⋆ = S ⊕ S = N = N ⊕N .

The main result of this paper is to show that the above result is best possible,
that is S⋆ ( S ( N . It was known ([1]) that S⋆ ( N .

2. Preliminaries

To make the paper complete and self contained we present a review of known
results.

Lemma 4. Suppose that X ⊂ 2ω. X has measure zero iff and only if there exists
a sequence {Fn : n ∈ ω} such that

(1) Fn ⊆ 2n for n ∈ ω,

(2)
∑

n∈ω

|Fn|

2n
<∞,

(3) X ⊆ {x ∈ 2ω : ∃∞n x↾n ∈ Fn}.

Proof. ←− Note that {x ∈ 2ω : ∃∞n x↾n ∈ Fn} =
⋂

m∈ω

⋃

n≥m{x ∈ 2ω : x↾n ∈
Fn}. Now,

µ





⋃

n≥m

{x ∈ 2ω : x↾n ∈ Fn}



 ≤
∑

n≥m

µ ({x ∈ 2ω : x↾n ∈ Fn}) ≤
∑

n≥m

|Fn|

2n
−→ 0.

−→ If X has measure zero then there exists a sequence of open sets {Un : n ∈ ω}
such that

(1) µ(Un) ≤ 2−n, for each n,
(2) X ⊆

⋂

n∈ω Un.

Find a sequence of {snm : n,m ∈ ω} such that

(1) snm ∈ 2<ω,
(2) [snm] ∩ [snk ] = ∅ when k 6= m,
(3) Un =

⋃

m∈ω[s
n
m].

For k ∈ ω let Fk = {snm : n,m ∈ ω, |snm| = k}. Note that X ⊆ {x ∈ 2ω :

∃∞k x↾k ∈ Fk} and that
∑

k∈ω

|Fk|

2k
≤

∑

n∈ω µ(Un) ≤ 1. �

Theorem 5. [1] S⋆ ⊕ S⋆ = S ⊕ S = N .

Proof. Since N is an ideal, N ⊕ N = N . Consequently, it suffices to show that
S⋆ ⊕ S⋆ = N . The following theorem gives the required decomposition.

Theorem 6 ([1]). Suppose that X ⊆ 2ω is a measure zero set. Then there exist
sequences 〈nk,mk : k ∈ ω〉 and 〈Jk, J ′

k : k ∈ ω〉 such that

(1) nk < mk < nk+1 for all k ∈ ω,
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(2) Jk ⊆ 2[nk,nk+1), J ′
k ⊆ 2[mk,mk+1) for k ∈ ω,

(3) the sets
(

[nk, nk+1), Jk
)

k∈ω
and

(

[mk,mk+1), J
′
k

)

k∈ω
are small⋆, and

(4) X ⊆
(

[nk, nk+1), Jk
)

k∈ω
∪
(

[mk,mk+1), J
′
k

)

k∈ω
.

In particular, every null set is a union of two small⋆ sets.

Proof. Let X ⊆ 2ω be a null set.
We can assume that X ⊆ {x ∈ 2ω : ∃∞n x↾n ∈ Fn} for some sequence 〈Fn : n ∈

ω〉 satisfying conditions of Lemma 4.
Fix a sequence of positive reals 〈εn : n ∈ ω〉 such that

∑∞
n=1 εn <∞.

Define two sequences 〈nk,mk : k ∈ ω〉 as follows: n0 = 0,

mk = min







j > nk : 2nk ·
∞
∑

i=j

|Fi|

2i
< εk







,

and

nk+1 = min







j > mk : 2mk ·
∞
∑

i=j

|Fi|

2i
< εk







for k ∈ ω.

Let Ik = [nk, nk+1) and I ′k = [mk,mk+1) for k ∈ ω. Define

s ∈ Jk ⇐⇒ s ∈ 2Ik & ∃i ∈ [mk, nk+1) ∃t ∈ Fi s↾dom(t) ∩ dom(s) =

t↾dom(t) ∩ dom(s).

Similarly

s ∈ J ′
k ⇐⇒ s ∈ 2I

′
k & ∃i ∈ [nk+1,mk+1) ∃t ∈ Fi s↾dom(t) ∩ dom(s) =

t↾dom(t) ∩ dom(s).

It remains to show that (Ik, Jk)k∈ω and (I ′k, J
′
k)k∈ω are small sets and that their

union covers X .
Consider the set (Ik, Jk)k∈ω . Notice that for k ∈ ω

|Jk|

2Ik
≤ 2nk ·

nk+1
∑

i=mk

|Fi|

2i
≤ εk.

Since
∑∞

n=1 εn < ∞ this shows that the set (In, Jn)n∈ω is null. An analogous
argument shows that (I ′k, J

′
k)k∈ω is null. Finally, we show that

X ⊆ (In, Jn)n∈ω ∪ (I ′n, J
′
n)n∈ω.

Suppose that x ∈ X and let Z = {n ∈ ω : x↾n ∈ Fn}. By the choice of Fn’s set Z
is infinite. Therefore, one of the sets,

Z ∩
⋃

k∈ω

[mk, nk+1) or Z ∩
⋃

k∈ω

[nk+1,mk+1),

is infinite. Without loss of generality we can assume that it is the first set. It
follows that x ∈ (In, Jn)n∈ω because if x↾n ∈ Fn and n ∈ [mk, nk+1), then by the
definition there is t ∈ Jk such that x↾[nk, nk+1) = t. �

�

Now lets turn attention to the family of small sets S. Observe that the repre-
sentation used in the definition of small sets is not unique. In particular, it is easy
to see that



4 TOMEK BARTOSZYNSKI AND SAHARON SHELAH

Lemma 7. Suppose that (In, Jn)n∈ω is a small set and {ak : k ∈ ω} is a partition

of ω into finite sets. For n ∈ ω define I ′n =
⋃

l∈an
Il and J ′

n = {s ∈ 2I
′
n : ∃l ∈

an ∃t ∈ Jl s↾Il = t↾Il}. Then (In, Jn)n∈ω = (I ′n, J
′
n)n∈ω.

Lemma 8. Suppose that (In, Jn)n∈ω and (I ′n, J
′
n)n∈ω are two small sets. If {In :

n ∈ ω} is a finer partition than {I ′n : n ∈ ω}, then (In, Jn)n∈ω ∪ (I ′n, J
′
n)n∈ω) is a

small set.

Proof. Define I ′′n = I ′n for n ∈ ω and let

J ′′
n = J ′

n ∪
{

s ∈ 2I
′
n : ∃k ∃s ∈ Jk(Ik ⊆ I ′n & s↾Ik ∈ Jk)

}

.

It is easy to see that (In, Jn)n∈ω ∪ (In, Jn)n∈ω) = (I ′′n , J
′′
n)n∈ω. �

Since members of S do not seem to form an ideal we are interested in character-
izing instances when a union of two sets in S is in S.

Theorem 9. Suppose that (In, Jn)n∈ω and (I ′n, J
′
n)n∈ω are two small sets and

(In, Jn)n∈ω ⊆ (I ′n, J
′
n)n∈ω. Then there exists a set (I ′′n , J

′′
n)n∈ω such that (In, Jn)n∈ω ⊆

(I ′′n , J
′′
n )n∈ω ⊆ (I ′n, J

′
n)n∈ω and partition {I ′′n : n ∈ ω} is finer than both {In : n ∈ ω}

and {I ′n : n ∈ ω}.

Proof. Let start with the following:

Lemma 10. Suppose that (In, Jn)n∈ω and (I ′n, J
′
n)n∈ω are two small sets. The

following conditions are equivalent:

(1) (In, Jn)n∈ω ⊆ (I ′n, J
′
n)n∈ω,

(2) for all but finitely many n ∈ ω and for every s ∈ Jn there exists m ∈ ω and
t ∈ J ′

m such that
(a) In ∩ I ′m 6= ∅,
(b) s↾(In ∩ I ′m) = t↾(In ∩ I ′m),

(c) ∀u ∈ 2I
′
m
\In t↾(In ∩ I ′m)⌢u ∈ J ′

m.

Proof. (2)→ (1) Suppose that x ∈ (In, Jn)n∈ω . Then for infinitely many n, x↾In ∈
Jn. For all but finitely many of those n′s, conditions (b) and (c) of clause (2)
guarantee that for some m such that In ∩ I ′m 6= ∅, x↾(In ∩ I ′m)⌢x↾(I ′m \ In) ∈ J ′

m.
Consequently, x ∈ (I ′n, J

′
n)n∈ω.

¬(2) → ¬(1) Suppose that condition (2) fails. Then there exists an infinite set
Z ⊆ ω such that for each n ∈ Z there is sn ∈ Jn such that for every m such that
In ∩ I ′m 6= ∅ exactly one of the following conditions holds:

(1) sn↾(In ∩ I ′m) 6= t↾(In ∩ I ′m) for every t ∈ J ′
m,

(2) there is t ∈ J ′
m such that sn↾(In ∩ I ′m) = t↾(In ∩ I ′m) but for some u =

un,m ∈ 2I
′
m
\In , t↾(In ∩ I ′m)⌢un,m 6∈ J ′

m.

By thinning out the set Z we can assume that no set I ′m intersects two distinct sets

In for n ∈ Z. Also for each m ∈ ω fix tm ∈ 2I
′
m such that tm 6∈ J ′

m.
Let x ∈ 2ω be defined as follows:

x(l) =























sn(l) n ∈ Z and l ∈ In and un,m is not defined
0 if n ∈ Z and l ∈ I ′m \ In and In ∩ Im 6= ∅ and un,m is not defined
sn(l) if n ∈ Z and l ∈ In ∩ I ′m and un,m is defined
un,m(l) if n ∈ Z and l ∈ I ′m \ In and and In ∩ Im 6= ∅ and un,m is defined
tm(l) if l ∈ Im and Im ∩ In = ∅ for all n ∈ Z

.
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Observe that the first two clauses define x↾I ′m when I ′m ∩ In 6= ∅ for some n ∈ Z
and un,m is undefined, the next two clauses define x↾I ′m when I ′m ∩ In 6= ∅ for some
n ∈ Z and un,m is defined, and finally the last clause defines x↾I ′m when I ′m∩In = ∅
for all n ∈ Z. It is easy to see that these cases are mutually exclusive and that
x ∈ (In, Jn)n∈ω since x↾In = sn ∈ Jn for n ∈ Z. Finally note that x 6∈ (I ′n, J

′
n)n∈ω

since by the choice of un,m (or property of sn) x↾I
′
m 6∈ J ′

m for all m. �

Suppose that (In, Jn)n∈ω and (I ′n, J
′
n)n∈ω are two small sets and (In, Jn)n∈ω ⊆

(I ′n, J
′
n)n∈ω. Consider the partition consisting of sets {In ∩ I ′m : n,m ∈ ω}. For

each non-empty set In ∩ I ′m we define J ′′
n,m ⊆ 2In∩I′m as follows:

s ∈ J ′′
n,m if there is t ∈ J ′

m such that s↾(In ∩ I ′m) = t↾(In ∩ I ′m) and for all

u ∈ 2I
′
m
\In t↾(In ∩ I ′m)⌢u ∈ J ′

m.
Observe that the definition of J ′′

n,m does not depend on Jn.
Note that

∑

m,n∈ω,In∩I′
m
6=∅

|J ′′
m,n|

2|In∩I′
m
|
=

∑

m∈ω

∑

n∈ω,In∩I′
m
6=∅

|J ′′
m,n|

2|In∩I′
m
|
=

∑

m∈ω

∑

n∈ω,In∩I′
m
6=∅

|J ′′
n,m| · 2

|I′
m
\In|

2|I
′′
k
| · 2|I

′
m
\In|

≤
∑

m∈ω

|J ′
m|

2|I
′
m
|
<∞.

To finish the proof observe that for x ∈ 2ω, whenever x↾(In ∩ I ′m) ∈ J ′′
n,m then

x↾I ′m ∈ J ′
m. Similarly, if x↾In ∈ Jn then by Lemma 10 there is m such that x↾(In ∩

I ′m) ∈ J ′′
m,n It follows that (In, Jn)n∈ω ⊆ (In,m, J ′′

n,m)n,m∈ω ⊆ (I ′m, J ′
m)m∈ω. �

3. Small sets versus measure zero sets

In this section we will prove the main result.

Theorem 11. There exists a null set which is not small, that is S ( N .

Proof. We will use the following:

Lemma 12. For every ε > 0 and sufficiently large n ∈ ω there exists a set A ⊂ 2n

such that
|A|

2n
< ε and for every u ⊂ n such that

n

4
≤ |u| ≤

3n

4
, and B0 ⊂ 2u and

B1 ⊂ 2n\u such that
|B0|

2|u|
≥

1

2
and

|B1|

2|n\u|
≥

1

2
we have (B0 ×B1) ∩ A 6= ∅.

Proof. The key case is when ε is very small and sets B0, B1 have relative measure

approximately
1

2
. In such case B0 × B2 has relative measure

1

4
yet it intersects

A. Fix large n ∈ ω and choose A ⊂ 2n randomly. That is, for each s ∈ 2n, the
probability Prob(s ∈ A) = ε and for s, s′ ∈ 2n, events s ∈ A and s′ ∈ A are
independent. It is well known that for a large enough n the set constructed this
way will have measure ε (with negligible error).

Fix n/4 ≤ |u| ≤ 3n/4 and let

Bu =

{

(B0, B1) : B0 ⊂ 2u, B1 ⊂ 2n\u and
|B0|

2|u|
,
|B1|

2|n\u|
≥

1

2

}

.

Note that |Bu| ≤ 22
|u|+2|n\u|

≤ 22
3n
4

+1

.
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For (B0, B1) ∈ Bu, Prob((B0 × B1) ∩ A = ∅) = (1 − ε)|B0×B1| ≤ (1 − ε)2
n−2

.
Consequently,

Prob(∃(B0, B1) ∈ Bu (B0 ×B1) ∩ A = ∅) ≤ |Bu|(1− ε)2
n−2

≤ 22
3n
4

+1

(1− ε)2
n−2

.

Finally, since we have at most 2n possible sets u,

Prob(∃u ∃(B0, B1) ∈ Bu (B0 ×B1) ∩ A = ∅) ≤

2n|Bu|(1− ε)2
n−2

≤ 22
3n
4 +n+1(1− ε)2

n−2

≤ 22
7n
8 (1− ε)2

n−2

≤

22
7n
8 (1 − ε)

1
ε
ǫ2n−2

≤
22

7n
8

2ε2n−2
−→ 0 as n→∞.

Therefore there is a non-zero probability that a randomly chosen set A has the
required properties. In particular, such a set must exist.

�

Let {k0n, k
1
n : n ∈ ω} be two sequences defined as k0n = n(n+ 1) and k1n = n2 for

n > 0.
Let I0n = [k0n, k

0
n+1) and I1n = [k1n, k

1
n+1) for n ∈ ω. Observe that the sequences

are selected such that

(1) |I0n| = 2n+ 2 and |I1n| = 2n+ 1 for n ∈ ω,
(2) I0n ⊂ I1n ∪ I1n+1 for n > 0,
(3) I1n ⊂ I0n−1 ∪ I0n for n > 1,

(4) |I0n ∩ I1n| = |I
1
n ∩ I0n−1| = n for n > 1,

(5) |I0n ∩ I1n+1| = |I
1
n ∩ I0n| = n+ 1 for n > 1.

Finally, for n > 0 let J0
n ⊂ 2I

0
n and J1

n ⊂ 2I
1
n be selected as in Lemma 12 for

εn = 1
n2 . Easy calculation shows that for n ≥ 140 the sets J0

n and J1
n are defined

and have the required properties.
Suppose that (I0n, J

0
n)n∈ω ∪ (I1n, J

1
n)n∈ω ⊂ (I2n, J

2
n)n∈ω.

Case 1 There exists i ∈ {0, 1} and infinitely many n,m ∈ ω such that

|Iim|

4
≤ |Iim ∩ I2n| ≤

3|Iim|

4
.

Without loss of generality i = 0. Let {ak : k ∈ ω} be a partition of ω into finite

sets. For n ∈ ω define I ′n =
⋃

l∈an
I2l and J ′

n = {s ∈ 2I
′
n : ∃l ∈ an ∃t ∈ J2

l s↾I2l =

t↾I2l }. By Lemma 7, we know that (I ′n, J
′
n)n∈ω = (I2n, J

2
n)n∈ω no matter what is the

choice of the partition {ak : k ∈ ω}.
Consequently, let us choose {ak : k ∈ ω} and an infinite set Z ⊆ ω such that

(1) for every m ∈ Z there is n ∈ ω such that
|I0m|

4
≤ |I0m ∩ I ′n| ≤

3|I0m|

4
.

(2) for every m ∈ Z there exists n ∈ ω such that I0m ⊂ I ′n ∪ I ′n+1,

(3) for every n ∈ ω there is at most one m ∈ Z such that I0m ∩ I ′n 6= ∅.

To construct the required partition {ak : k ∈ ω} we inductively glue together sets

I2l as follows: suppose that m is such that there is n such that
|I0m|

4
≤ |I0m ∩ I2n| ≤

3|I0m|

4
. Then we define an = {n} and an+1 = {u : I0m ∩ I2u 6= ∅ and u 6= n}. Let

Z be the subset of the collection of m’s selected as above that is thin enough to
satisfy condition (3).
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Recall that (I0n, J
0
n)n∈ω ⊆ (I2n, J

2
n)n∈ω = (I ′n, J

′
n)n∈ω.

Working towards contradiction fix m ∈ Z, and let I0m ⊆ I ′n ∪ I ′n+1 (in this case
I ′n = I2n). By Lemma 10 it follows that if m is large enough then for every s ∈ J0

m

either

(1) for every u ∈ 2I
′
n
\I0

m we have s↾(I0m ∩ I ′n)
⌢u ∈ J ′

n, or

(2) for every u ∈ 2I
′
n+1\I

0
m we have s↾(I0m ∩ I ′n+1)

⌢u ∈ J ′
n+1.

Let J ′′
n = {s ∈ 2I

0
m
∩I′

n : ∀u ∈ 2I
′
n
\I0

m s⌢u ∈ J ′
n} and J ′′

n+1 = {s ∈ 2I
0
m
∩I′

n+1 :

∀u ∈ 2I
′
n+1\I

0
m s⌢u ∈ J ′

n+1}.

Clearly
|J ′′

n |

2|I
′
n
∩I0

m
|
≤
|J ′

n|

2|I
′
n
|
≤

1

2
and

|J ′′
n+1|

2|I
′
n+1

∩I0
m
|
≤
|J ′

n+1|

2|I
′
n+1

|
≤

1

2
.

Let Bn = 2I
0
m
∩I′

n \ J ′
n and Bn+1 = 2I

0
m
∩I′

n+1 \ J ′
n+1.

It follows that
|Bn|

2|I
0
m
∩I′

n
|
,
|Bn+1|

2|I
0
m
∩I′

n+1
|
≥

1

2
. By Lemma 12 and the definition of set

(I0m, J0
m)m∈ω there is sm ∈ (Bn×Bn+1)∩J

0
m. Consequently there is tm ∈ 2I

′
n
∪I′

n+1

such that tm↾I0m = sm ∈ Jm
0 but tm↾I ′n 6∈ J ′

n and tm↾I ′n+1 6∈ J ′
n+1. For each n ∈ ω

choose rn ∈ 2I
′
n \ J ′

n. Define x ∈ 2ω as

x↾I ′n =

{

tm↾I ′n if I0m ∩ I ′n 6= ∅
rn if I0m ∩ I ′n = ∅ for all m ∈ Z

.

It follows that x ∈ (I0n, J
0
n)n∈ω but x 6∈ (I ′n, J

′
n)n∈ω = (I2n, J

2
n)n∈ω, contradiction.

Case 2 For every i ∈ {0, 1}, almost every n ∈ ω and every m ∈ ω,

|I2n ∩ Iim| ≤
|Iim|

4
.

This is quite similar to the previous case.
We inductively choose {ak : k ∈ ω} and define I ′n’s and J ′

n’s as before. Next
construct an infinite set Z ⊆ ω such that

(1) for every m ∈ Z there exists n ∈ ω such that I0m ⊂ I ′n ∪ I ′n+1 and
|I0m|

4
≤

|I0m ∩ I ′n|, |I
0
m ∩ I ′n+1| ≤

3|I0m|

4
.

(2) for every n ∈ ω there is at most one m ∈ Z such that I0m ∩ I ′n 6= ∅.

Since |I2k∩I
i
m| ≤

|Iim|

4
for each k,m we can get (1) by careful splitting {k : I0m∩I

2
k 6=

∅} into two sets.
The rest of the proof is exactly as before.

To conclude the proof it suffices to show that these two cases exhaust all possi-

bilities. To this end we check that if for some i ∈ {0, 1}, m,n ∈ ω, |I2n∩I
i
m| >

3|I1m|

4
then for some j ∈ {0, 1} and k ∈ ω,

3|Ijk|

4
≤ |I2n ∩ Ijk| ≤

3|Ijk|

4
.

This will show that potential remaining cases are already included in the Case 1.
Fix i = 0 and n ∈ ω (the case i = 1 is analogous.)
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By the choice of intervals I0m and I1m, it follows that if |I2n ∩ I0m| >
3|I0m|

4
then

|I2n∩I
1
m| >

|I1m|

4
. If |I2n∩I

1
m| ≤

3|I1m|

4
then we are in Case 1. Otherwise |I2n∩I

1
m| >

3|I1m|

4
and so |I2n ∩ I0m+1| >

|I1m+1|

4
. Continue inductively until the construction

terminates after finitely many steps settling on j and k.
�

Theorem 13. Not every small set is small⋆, that is S⋆ ( S.

Proof. The proof is a modification of the previous argument.
Let I0n, I

1
n, J

0
n and J1

n for n ∈ ω be like in the proof of 11. Let Ī0n = {2k : k ∈ I0n}

and Ī1n = {2k + 1 : k ∈ I1n} for n ∈ ω and let J̄0
n ⊂ 2Ī

0
n , J̄1

n ⊂ 2Ī
1
n for n ∈ ω be the

induced sets. Note that ({Ī0n, Ī
1
n}, {J̄

0
n, J̄

1
n})n∈ω is a small set. We will show that

this set is not small⋆. Suppose that ({Ī0n, Ī
1
n}, {J̄

0
n, J̄

1
n})n∈ω ⊆ (In, Jn)n∈ω, where

In = [kn, kn+1) for an increasing sequence {kn : n ∈ ω}.
Without loss of generality we can assume that for every n ∈ ω there exists

i ∈ {0, 1} and m ∈ ω such that

(1) Iim ⊆ In ∪ In+1,

(2)
|Iim|

4
≤ |In ∩ Iim| ≤

3|Iim|

4
,

(3)
|Iim|

4
≤ |In+1 ∩ Iim| ≤

3|Iim|

4
.

To get (1) we combine consecutive intervals In to make sure that each Iim belongs
to at most two of them. Points (2) and (3) are a consequence of the properties of
the original sequences {I0n, I

1
n : n ∈ ω}, namely that each integer belongs to exactly

two of these intervals and that intersecting intervals cut each other approximately
in half. The following example illustrates the procedure for finding i and m: If kn
is even then kn/2 belongs to I0j ∩ I

1
k with k − j equal to 0 or 1. The value of i and

m depend on whether kn/2 belongs to the lower or upper half of the said interval.
The case when kn is odd is similar.

The rest of the proof is exactly like Case 1 of Theorem 11. �
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