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A NOTE ON SMALL SETS OF REALS

TOMEK BARTOSZYNSKI AND SAHARON SHELAH

ABSTRACT. We construct an example of a combinatorially large measure zero
set.

1. INTRODUCTION.

We will work in the space 2 equipped with standard topology and measure.
More specifically, the topology is generated by basic open sets of form [s] = {x €
2% : s C x} for s € 2%, a € w<¥. The measure is the standard product measure
such that u([s]) = 2719°m)| and let AV be the collection of all measure zero sets.

Measure zero sets in 2¢ admit the following representation (see lemma 4):

X € N iff and only if there exists a sequence {F}, : n € w} such that

(1) F,, C2™ for n € w,

(2) Xnew 50 <0
(3) X C{zxe2¥:3F°nzlne F,}.
The main drawback of this representation is that sets F;, have overlapping do-
mains. The following definitions from [1] and [3] offer a refinement.

Definition 1. (1) A set X C 2¢ is small (X € S) if there exists a sequence
{I, Jpn : n € w} such that
(a) I, € [w]<N forn € w,
(b) In,N Iy =0 forn#m,
(c) Jn C 2 forn € w,
Jn
(d) ZnEw % <0

(e) X C{ze2¥:3%n x[l, € J,}

Without loss of generality we can assume that {I, : n € w} is a partition of w into finite sets.

(2) We say that X is small* (X € S*) if in addition sets I, are disjoint
intervals, that is, if there exists a strictly increasing sequence of integers
{kn : n € w} such that I, = [kn, kni1) for each n.
Let (I, Jn)new denote the set {x € 2¥ : 3%°n z[n € J,}.

It is clear that S* C S C N.
Small sets are useful because of their combinatorial simplicity. To test that
x € X € S the real z must pass infinitely many independent tests as in Borel-
Cantelli lemma. Furthermore, various structurally simple measure zero sets are
small. In particular,
(1) if X € N and |X| < 2% then X € S*, [1]
(2) if X is contained in a countable union of closed measure zero sets then
X € 8%, [3]
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(3) if F'is a filter on w (interpreted as a subset of 2¥) and F' € N then F € S§*,
2], [4]
Definition 2. For families of sets A, B let A® B be
{X:3ac ATFHecB (X CaUb)}

Clearly, if J is an ideal then J&®J = J. Likewise, AU(A®A)U(ABGADA)U. ..
is an ideal for any A.

Theorem 3. [1]
SFeS =SeS=N=NaN.

The main result of this paper is to show that the above result is best possible,
that is S* € & C N. It was known ([1]) that S* C N.

2. PRELIMINARIES

To make the paper complete and self contained we present a review of known
results.

Lemma 4. Suppose that X C 2. X has measure zero iff and only if there exists
a sequence {F,, : n € w} such that
(1) F, C2" forn € w,

|En|
(2) Znéw 2—77, < OO,

(B) X C{xre2¥:I®nzne F,}.

Proof. +— Note that {z € 2* : 3%°n x[n € Fp} = e, Upsmiz € 29 1 xn €
F,}. Now,

i U{xé?”:x[nan} < Zu({xé?":x[nan})S Zg—:|—>0

n>m n>m n>m
— If X has measure zero then there exists a sequence of open sets {U,, : n € w}
such that
(1) u(U,) <27 for each n,
(2) X €Nyew Un:
Find a sequence of {s}, : n,m € w} such that
(1) 53, € 2%,
(2) [sp]N[st] =0 when k # m,
(3) U = Upneulst.
For k € wlet Fy, = {s : n,m € w, |s%| = k}. Note that X C {z € 2¢ :

F;
3%k xk € Iy} and that ), |2—:| <D new i(Un) <1 |

Theorem 5. [1] S*®&S*=SHS=N.

Proof. Since N is an ideal, NN ® N = N. Consequently, it suffices to show that
S* & 8* = N. The following theorem gives the required decomposition.

Theorem 6 ([1]). Suppose that X C 2% is a measure zero set. Then there exist
sequences (ny, my : k € w) and (Ji, J}, : k € w) such that
(1) ng < mg < ngs for al k € w,
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(2) Jj C 2lwmnss) g1 C olmeminn) for ke w,
(3) the sets ([nk,nk+1), Jk)kew and ([mk,mk+1), J//C)kew are small*, and
!
(4) X C ([nk, mh41)s I) oy, Y ([ mii)s Ji) e
In particular, every null set is a union of two small* sets.

Proof. Let X C 2“ be a null set.

We can assume that X C {z € 2% : 3°n z[n € F,} for some sequence (F), : n €
w) satisfying conditions of Lemma 4.

Fix a sequence of positive reals (g, : n € w) such that Y~ | &, < cc.

Define two sequences (ng, my : k € w) as follows: ng = 0,

— |Fil
mj = min j>nk:2"k-z2z <€y,
i=j
and
o |Fi
Nk+1 = Min j>mk;2mk~z 2; <epp fork ew.

i=j
Let I, = [nk, nk+1) and Ij, = [my, mg41) for k € w. Define
s€Jy, <= s€2 & Ji € [my,npy1) 3t € F; s{dom(t) Ndom(s) =
t[dom(t) N dom(s).
Similarly

seJ, « se2% & 3i € [npg1, mry1) 3t € F; sldom(t) Ndom(s) =
t[dom(¢) N dom(s).
It remains to show that (I, Ji)kew and (I}, J},)kecw are small sets and that their

union covers X.
Consider the set (Ix, Jk)kew. Notice that for k € w

|Jk| nf:l (L]
i= mi

Since 220:1 €n < oo this shows that the set (I, J,)new is null. An analogous
argument shows that (I}, J})rew is null. Finally, we show that

X g (Invt]n)new U (I/ J/)new-

n? n

Suppose that x € X and let Z = {n € w: z[n € F,}. By the choice of F,’s set Z
is infinite. Therefore, one of the sets,

ZN U [mg,ng+1)  or ZN U [MEt1, MEt1),
kEw k€w
is infinite. Without loss of generality we can assume that it is the first set. It
follows that = € (I, Jn)new because if zn € F,, and n € [mg,ng41), then by the
definition there is ¢ € Jj, such that z|[ng, ng+1) = t. O

O

Now lets turn attention to the family of small sets S. Observe that the repre-
sentation used in the definition of small sets is not unique. In particular, it is easy
to see that
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Lemma 7. Suppose that (I, Jn)new is a small set and {ax : k € w} is a partition
of w into finite sets. For n € w define I}, = \U;c, L and J}, = {s € 2l - 3l e
an 3t € Jy 1L =1L}, Then (In, Jn)new = (I, ' Jncw-

n? n

Lemma 8. Suppose that (I, Jn)new and (I}, J) )new are two small sets. If {I, :
n € w} is a finer partition than {I, :n € w}, then (I, Jp)new U (I}, I} )new) 1S a
small set.

Proof. Define I/ = I/ for n € w and let
J=J U {s el Ik Is € Ju(Ip C I & ]Iy, € Jk)}.
It is easy to see that (I, Jn)new U (In, Jn)new) = (I I ) necw- O

Since members of S do not seem to form an ideal we are interested in character-
izing instances when a union of two sets in S is in S.

Theorem 9. Suppose that (I, Jn)new and (I, J! )ncw are two small sets and

n? n

(In, Jn)new € (I, I new. Then there exists a set (I, J! ) new such that (I, Jn)new C

n»“Yn n»“n

IV, I new € (1), I} ) new and partition {I)) : n € w} is finer than both {I,, : n € w}

nirYn n»Yn

and {I/,: n € w}.
Proof. Let start with the following:

Lemma 10. Suppose that (I, Jn)new and (I, J! )necw are two small sets. The
following conditions are equivalent:
(1) (Inu Jn)nEw g (17/17 J',IL)REU.H
(2) for all but finitely many n € w and for every s € J,, there exists m € w and
t € J;, such that
(a) InN I, #0,
(b) sM(In N 1},) = tI(In N 1},),
(c) Yu € 2lm\In t)(I, N IL,) " u € JY,.

Proof. (2) — (1) Suppose that x € (I, Jy)new. Then for infinitely many n, x|, €
Jpn. For all but finitely many of those n’s, conditions (b) and (c¢) of clause (2)
guarantee that for some m such that I, NI, # 0, x[(L, N I,) "z}, \ I.) € J.,.
Consequently, z € (I}, J} )new-
—(2) — —(1) Suppose that condition (2) fails. Then there exists an infinite set
Z C w such that for each n € Z there is s,, € J, such that for every m such that
I, NI, # () exactly one of the following conditions holds:
(1) spl(InN1I),) #t1(I, N1,) for every t € J) |
(2) there is t € J/, such that s,[(I, N1I,) = t[(I, N1],) but for some u =
Upm € 25\ 4N (L VI tn & T
By thinning out the set Z we can assume that no set I}, intersects two distinct sets
I, for n € Z. Also for each m € w fix t™ € 2%m such that t™ ¢ J!. .
Let x € 2“ be defined as follows:

sn(l) n € Z and | € I, and uy,,m, is not defined

0 ifneZandl el \I,and I,,N I, # 0 and u,, ., is not defined
z(l) =< su(l) ifneZand!lel,NI, and uy,m, is defined

Un,m(l) fneZandlel, \I, and and I, N IL,, # 0 and u, ., is defined

t™(1) iflel,and I,NI, =0 forallneZ
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Observe that the first two clauses define x[I], when I N1, # (0 for some n € Z
and Uy, is undefined, the next two clauses define 2|1}, when I}, N1, # () for some
n € Z and Uy, , is defined, and finally the last clause defines x[I], when I}, NI, =0
for all n € Z. It is easy to see that these cases are mutually exclusive and that
x € (I, Jn)new since I, = s, € J,, for n € Z. Finally note that & (I),, J) ) new
since by the choice of uy, m (or property of s,) z[I], & J/, for all m. O

Suppose that (I, Jn)new and (I}, J/ )new are two small sets and (I, Jp)new C

n? n

(I}, J! )new- Consider the partition consisting of sets {I, NI}, : n,m € w}. For

each non-empty set I,, N I}, we define J;,,,, C 2INI'm g follows:
s € Jy, if there is t € J, such that s[(I, N I;,) = t[(I, N I},) and for all

u € 2\ tI(I, NI u e J,.
Observe that the definition of J}),, does not depend on Jj,.
Note that

| |7
Z Q\ImI | Z Z ol.NI,,| —

m,new,l,NI # mew new,l,NI #0

FAE ol \Inl |77
> X Lo 2T 2T = Ze: oI, <

mewnew,l,NI],

To finish the proof observe that for x € 2¢, whenever z[(I, N I},) € Jj, ,, then
a1}, € J/ . Similarly, if x[I,, € J, then by Lemma 10 there is m such that z[(I,, N
I;,) € Jy, ., It follows that (I, Jn)new € (Inms Iy m)nmew S (s I )mew- O

3. SMALL SETS VERSUS MEASURE ZERO SETS

In this section we will prove the main result.
Theorem 11. There exists a null set which is not small, that is S T N.
Proof. We will use the following:

Lemma 12. For every € > 0 and sufficiently large n € w there exists a set A C 2™

A
such that |2—n| < ¢ and for every u C n such that % <l|ul < %Tn, and By C 2% and
B B 1
By € 2"\% guch that |2|0‘| > 3 and ||n\ll| > 5 we have (Bg x B1) N A # (.

Proof. The key case is when ¢ is very small and sets By, B have relative measure

1
approximately —. In such case By x By has relative measure — yet it intersects

A. Fix large n € w and choose A C 2" randomly. That is, for each s € 2", the
probability Prob(s € A) = ¢ and for s,s’ € 2™, events s € A and s’ € A are
independent. It is well known that for a large enough n the set constructed this
way will have measure e (with negligible error).

Fix n/4 < |u| < 3n/4 and let

— . U n\u |B0| |B1| 1
B, = {(B07Bl) :Bp C 2% By C2™" and STal* Tmal > 50

3n +1

<9227

n\ul

Note that |B,| < 22™'+2
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For (B, By) € By, Prob((By x By) NA = 0) = (1 —¢)BoxBil < (1 —¢)2" ",
Consequently,

3n _
+1 on 2

Prob(3(Bo, B1) € By (Bo x BI)NA=0)< [B,J(1—¢)> " <22 (1—¢)
Finally, since we have at most 2™ possible sets u,

Prob(flu H(Bo,Bl) € B, (BO X Bl) NA= @) <

27172 27172

n— an
2n|Bu|(1 . 8)2 2 < 924 +n+1(1 . 8)

<2 T(1—5) <
n 1 _on—2 22%
22% (1 —¢):?" <% —0asn— oo
9e2m

Therefore there is a non-zero probability that a randomly chosen set A has the

required properties. In particular, such a set must exist.
O

Let {k Kk} :n € w} be two sequences defined as kY = n(n + 1) and k}, = n? for
n > 0.
Let I = [k2, k0. ,) and I} = [k}, k% ) for n € w. Observe that the sequences
are selected such that
(1) 1% =2n+2and |I}|=2n+1for n € w,
(2) I2cI}ull,, forn >0,
(3) Il CIO LUl forn>1,
(4) |Ioﬁ11| =I}NI8_ || =nforn>1,
(B) [I9NIL, | = |IlﬂI0| =n+1 forn> 1.

Finally, for n > 0 let JO C 21" and J c 21n be selected as in Lemma 12 for
en = -3. Easy calculation shows that for n > 140 the sets J) and J} are defined
and have the required properties.

Suppose that (12, J9)new U (I}, I new C (12, J2) new-

CASE 1 There exists ¢ € {0,1} and infinitely many n,m € w such that

15| 31T|
4 4

Without loss of generality ¢ = 0. Let {ay : k € w} be a partition of w into finite
sets. For n € w define I}, = ¢, 7 and J, = {s €2l : A € a, It € J? s[I} =
t]I7}. By Lemma 7, we know that (In, IV new = (I2, J?) new no matter what is the
choice of the partition {ay : k € w}.

Consequently, let us choose {ay : k € w} and an infinite set Z C w such that

3|10
) 4|<|IOHI’|< 31| |
(2) for every m € Z there exists n € w such that I, C I, UT} ,,
)
c

<|IEnI? <

(1) for every m € Z there is n € w such that

3) for every n € w there is at most one m € Z such that 12, NI/, # ().

To construct the required partition {ay : k € w} we inductively glue together sets
2 as follows: suppose that m is such that there is n such that 4 | <9 NI% <

3]0
310m| . Then we define a,, = {n} and an11 = {u: I9, NI? # 0 and u # n}. Let

Z be the subset of the collection of m’s selected as above that is thin enough to
satisfy condition (3).
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Recall that (127 Jg)new - (Ifu Jvzz)new = (17/7,7 J;z)neu-
Working towards contradiction fix m € Z, and let I9, C I, U I/, (in this case
I, = I2). By Lemma 10 it follows that if m is large enough then for every s € J2,
either
(1) for every u € 252\ we have s[(I% N I,) ~u € J., or

(2) for every u € 2%n+1\n we have s[(I% N Il ) TuelJ .
Let J/ = {s € 2ln" vy € 20\ s™u € J!} and Jig={s¢€ 2Im i
Vu € 2hii\m g7y € Jhia}-

E A T
Clearly oy < gmoy = 3 84 Sramy < g S 3
Let By, = 2/m™0 \ J/ and Byyq = 20"\ J7 .
It follows that SIEATT JIEAT ] > ok By Lemma 12 and the definition of set
m n m n+1

(12, J9 ) mew there is s, € (B X Byy1)NJY. Consequently there is t,, € 2/n"ln+1

such that t;, [0, = sy, € J§* but ty, |1, & J), and t, 1}, & J}, ;. For eachn € w
choose r,, € 2In \ J!. Define z € 2 as

oo el IO D
" Tn if 19 NI, =0forallme Z
It follows that = € (12, J%)new but @ & (I}, J) )new = (12, J2)new, contradiction.

n»“n

CASE 2 For every i € {0, 1}, almost every n € w and every m € w,

) It
2ar) <

This is quite similar to the previous case.
We inductively choose {ar : k € w} and define I;’s and J)’s as before. Next
construct an infinite set Z C w such that

I

m |

(1) for every m € Z there exists n € w such that I3, C I} UI) ., and 4 <

3|10
19,0130, 118, 0 T < 2ol

(2) for every n € w there is at most one m € Z such that 12, NI}, # 0.

) I
Since [IZNIE,| < % for each k, m we can get (1) by careful splitting {k : I, NI? #

0} into two sets.
The rest of the proof is exactly as before.

To conclude the proof it suffices to show that these two cases exhaust all possi-
3|1
4

bilities. To this end we check that if for some i € {0,1}, m,n € w, [I2NT¢ | >
then for some j € {0,1} and k € w,
3117
4

This will show that potential remaining cases are already included in the CASE 1.
Fix ¢ =0 and n € w (the case i = 1 is analogous.)

3|
<|mng| <=
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|17

By the choice of intervals I9, and I} —"™ then

L, it follows that if [I2 N I%| >
Il
2OIL[ > % 1|2 < Snl

3|1, |

then we are in CASE 1. Otherwise [IZNI},| >

and so [I2 N 1D 4| > m—+1|

terminates after finitely many steps settling on j and k.

Continue inductively until the construction

O
Theorem 13. Not every small set is small*, that is S* C S.

Proof. The proof is a modification of the previous argument.

Let 19, I}, J% and J} for n € w be like in the proof of 11. Let I? = {2k : k € IO}
and I! = {2k +1:k € IL} for n € w and let JO C 2%, J1 c 27 for n € w be the
induced sets. Note that ({I0,I}},{J°, J}})new is a small set. We will show that
this set is not small*. Suppose that ({12, I}}, {J2, J1})new € (In, Jn)new, where
I, = [kn, kn41) for an increasing sequence {k, : n € w}.

Without loss of generality we can assume that for every n € w there exists

i € {0,1} and m € w such that
(1) I' C Iy U lnsn,

()l ]
(3)|Iz|

To get (1) we combine consecutlve intervals I,, to make sure that each I, belongs
to at most two of them. Points (2) and (3) are a consequence of the properties of
the original sequences {I?,I! : n € w}, namely that each integer belongs to exactly
two of these intervals and that intersecting intervals cut each other approximately
in half. The following example illustrates the procedure for finding i and m: If &k,
is even then k,, /2 belongs to IJQ NI} with k — j equal to 0 or 1. The value of i and
m depend on whether k,, /2 belongs to the lower or upper half of the said interval.
The case when k,, is odd is similar.

The rest of the proof is exactly like Case 1 of Theorem 11. O

<|I,N1, |<

< |y NI, |<
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