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DUALIZING, PROJECTING, AND RESTRICTING GKZ
SYSTEMS

AVI STEINER

Abstract. Let A be an integer matrix, and assume that its semi-
group ring C[NA] is normal. Fix a face F of the cone of A. We
show that the projection and restriction of an A-hypergeometric
system to the coordinate subspace corresponding to F are isomor-
phic; moreover, they are essentially F -hypergeometric.

We also show that, if A is in addition homogeneous, the holo-
nomic dual of anA-hypergeometric system is itself A-hypergeometric.
This extends a result from [Wal07], proving a conjecture of Nobuki
Takayama in the normal homogeneous case.

1. Introduction

Let A ∈ Zd×n be an integer matrix with columns a1, . . . , an such
that ZA = Zd; we abuse notation and also use A to denote the set of
its columns. Assume that NA is pointed, i.e. that NA ∩ −NA = 0.
Associated to this data, Gel′fand, Graev, Kapranov, and Zelevinskĭı
defined in [GGZ87, GZK89] a family of modules over the sheaf DCn

of algebraic linear partial differential operators on Cn today referred
to either as GKZ- or A-hypergeometric systems. These systems are
defined as follows:
The Euler operators of A are the operators Ei := ai1x1∂1 + · · · +

ainxn∂n (i = 1, . . . , d), and the toric ideal of A is the C[∂1, . . . , ∂n]-ideal
IA := 〈∂u+ − ∂u− |Au = 0,u ∈ Zn〉. The A-hypergeometric system cor-
responding to the parameter β ∈ Cd is then defined to be

(1.0.1) MA(β) := DCn/ (DCnIA +DCn{E1 − β1, . . . , Ed − βd}) .

If the condition that ZA = Zd is relaxed, MA(β) may still be defined
as above by first choosing a Z-basis of ZA; the resulting DCn-module
is independent of this choice.

1.1. Projection and restriction. Explicit formulas for restriction
(i.e. pullback via the D-module inverse image) to a coordinate sub-
space were computed in [CJT03, Th. 4.4] and [FFCJ11, Th. 4.2] for
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certain classes of GKZ systems. These formulas were generalized in
[FFW11, Th. 2.2] under certain hypotheses about the genericity of the
parameter β and the size of the coordinate subspace. We focus on a
different situation, and explicitly compute, when the semigroup ring
C[NA] is normal, the restriction of MA(β) to the coordinate subspace
CF corresponding to a face F � A (see (2.3.4) for the notation CF ).
Moreover, we show (Theorem 5.8) that this restriction is in fact equal
to the projection (i.e. the pushforward via the D-module direct image)
of MA(β) to CF . Note that, unless F = A, the subspace CF does not
satisfy the size requirements of [FFW11, Th. 2.2], hence there is no
nontrivial overlap between this paper and [FFW11].
Our approach is to use the notion of mixed and dual mixed Gauss–

Manin systems (see §2.4) introduced in [Ste17]. We first study these in
slightly more generality in §3. In §4, we generalize the notion of quasi-
equivariant D-module (introduced by T. Reichelt and U. Walther in
[RW17]) to what we are calling twistedly quasi-equivariant D-modules
(Definition 4.2). We then follow a similar process to that in [RW17] to
relate the restriction and projection of such modules (Lemma 4.4) and
to show that mixed and dual mixed Gauss–Manin systems are twist-
edly quasi-equivariant (Proposition 4.5). These results are combined in
§5 first to compute the restriction and projection to CF of dual mixed
Gauss–Manin and mixed Gauss–Manin systems, respectively (Theo-
rem 5.4), and then to do the same for normal A-hypergeometric sys-
tems (Theorem 5.8).

1.2. Duality. N. Takayama conjectured that the holonomic dual of
an A-hypergeometric system is itself a GKZ system (after applying the
coordinate transformation x 7→ −x if A is non-homogeneous, i.e. if the
columns of A do not all lie in a hyperplane). U. Walther, in [Wal07],
provided a class of counterexamples to this conjecture. However, each
of these counterexamples is rank-jumping (i.e. the holonomic rank is
higher than expected), and in the same paper, Walther shows that for
generic parameters, Takayama’s conjecture does indeed hold. In par-
ticular, when the semigroup ring C[NA] is normal, he proves ([Wal07,
Prop. 4.4]) that the set of all parameters β for which the holonomic
dual of MA(β) is not a GKZ system has codimension at least three.
We show in Theorem 6.3 using the notion of mixed and dual mixed
Gauss–Manin systems that if A is homogeneous, this set is in fact
empty.

Acknowledgements. Support by the National Science Foundation
under grant DMS-1401392 is gratefully acknowledged. We would also



DUALIZING, PROJECTING, AND RESTRICTING GKZ SYSTEMS 3

like to thank Uli Walther for his support and guidance, and Thomas
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2. Notation and conventions

In §2.1, we define various notations and conventions related to vari-
eties, derived categories, D-modules, and mixed Hodge modules. §2.2
recalls the notions of fiber and cofiber support. §2.3 defines various
notations related to the semigroup NA, and in §2.4 we recall and dis-
cuss the notions of mixed and dual mixed Gauss–Manin parameters
and systems.

2.1. General geometric conventions/notation. Varieties, smooth
or otherwise, are not required to be irreducible, are defined over C,
and are always considered with the Zariski topology. The closure of
a subset Z of a topological space X is written Z. If X is a smooth
variety, denote by DX its sheaf of algebraic linear partial differential
operators.

2.1.1. Derived categories. The category of mixed Hodge modules on
a variety X is denoted MHM(X). The bounded derived category of
MHM(X) is denoted Db MHM(X). If X is smooth, the bounded de-
rived category of DX-modules with coherent and holonomic cohomol-
ogy are denoted by Db

c (DX) and Db
h(DX), respectively. If Z is a closed

subvariety, a superscript Z in the notation for any of these categories
denotes the full subcategory of objects whose cohomology is supported
in Z.

2.1.2. D-module functors. (cf. [HTT08]) The holonomic duality func-
tor ([HTT08, Def. 2.6.1]) is denoted D. Let f : X → Y be a mor-
phism of smooth varieties. We write f+ for the D-module direct im-
age, f† := Df+D for the D-module exceptional direct image, f+ :=
Lf ∗[dimX − dimY ] for the D-module inverse image, and f † := Df+D

for the D-module exceptional direct image. If X1 and X2 are smooth
varieties and M•

i ∈ Db(DXi
) (i = 1, 2), the exterior tensor product (see

[HTT08, p38]) of M•
1 and M•

2 is

M•
1 ⊠M•

2 := DX1×X2
⊗p−1

1
DX1

⊗Cp
−1

1
DX2

(p−1
1 M•

1 ⊗C p−1
1 M•

2).

Note that [HTT08] denotes the functors f+, f
+, f†, and f † by

∫

f
, f †,

∫

f !
, and f⋆, respectively. They define the first two on pages 33 and 40,

respectively, while they define the second two in Def. 3.2.13 on page
91.
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2.1.3. Fourier–Laplace transform. (cf. [Bry86, pp85-102]) The Fourier–
Laplace transform is denoted by FL. By definition, FL(M•) is the
pullback of M• ∈ Db(DCn) by the C-algebra automorphism of DCn

taking xi 7→ ∂/∂xi and ∂/∂xi to −xi. The inverse Fourier transform is
denoted by FL−1 and is defined similarly.
For a description of FL in terms of D-module direct and inverse

image functors, see [DE03].

2.1.4. Mixed Hodge modules. Let M• be a complex of mixed Hodge
modules, and let F be a functor of D-modules. If the mixed Hodge
module structure on M• induces a mixed Hodge module structure on
F (M•), we will always take F (M•) to be this induced mixed Hodge
module unless otherwise specified.

2.2. Fiber and cofiber support. We recall from [Ste17, Def. 3.1] the
notions of fiber and cofiber support. The fiber support of a (bounded)
complex M• of OX -modules is

(2.2.1) fSuppM• :=
{

x ∈ X
∣

∣

∣
k(x)⊗L

OX,x
M•

x 6= 0
}

.

If M• ∈ Db
c (DX), its cofiber support is

(2.2.2) cofSuppM• := fSuppDM•.

2.3. Toric and GKZ conventions/notation. The semigroup ring
of A is SA := C[NA] = C[∂1, . . . , ∂n]/IA. The toric variey of A is
XA := Var(IA), and the torus of A is TA := SpecC[ZA]. Given β ∈ Cd,
define the DTA

-module

(2.3.1) Oβ
TA

:= DTA
/DTA

{ ti∂ti + βi | i = 1, . . . , d } = OTA
t−β.

(For a more intrinsic definition of Oβ
TA
, see [Ste17, eq. (2.1.9)]). Set

(2.3.2) M̂A(β) := FL−1(MA(β)).

Definition 2.1. A submatrix F of A is called a face of A, written F � A,
if F has d rows and R≥0F is a face of R≥0A. A facet of A is a face of
rank d− 1.

The torus embedding t 7→ (ta1, . . . , tan) of TA into Cn defined by A
induces an action of TA on Cn which makes TA-equivariant the inclusion
XA ⊆ Cn. If F � A is a face, the TA-orbit of XA corresponding to F is

(2.3.3) OA(F ) := TA · 1F ,

where the ith coordinate of 1F is 1 if ai ∈ F and 0 otherwise. Set

(2.3.4) CF := { x ∈ Cn | xi = 0 for all ai /∈ F } .
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Definition 2.2. For a facet G � NA, there is a unique linear form
hG = hG,A : Z

d → Z, called the primitive integral support function of
G, satisfying the following conditions:

(1) hG(Z
d) = Z.

(2) hG(ai) ≥ 0 for all i.
(3) hG(ai) = 0 for all ai ∈ G.

2.3.1. Euler–Koszul complex. We recall the definition of Euler–Koszul
complex KA

• (SA;EA − β) from [MMW05]:

KA
• (SA;EA − β) := K•

(

·(EA − β);DCn/DCnIA
)

;

i.e. it is the Koszul complex of left DCn-modules defined by the (right)
action of the sequence EA − β = E1 − β1, . . . , Ed − βd on the left
DCn-module DCn/DCnIA. The more general Euler–Koszul complexes
defined in [MMW05] will not be needed. The inverse Fourier–Laplace

transform of KA
• (SA;EA − β) is denoted by K̂A

• (SA;EA − β).

2.4. Mixed and dual mixed Gauss–Manin systems. Given a TA-
stable open neighborhood U ⊆ Cn of TA and a β ∈ Cd, set

(2.4.1) MGM(U, β) := ̟†ι+O
β
TA

and MGM∗(U, β) := ̟+ι†O
β
TA
,

where ι : TA →֒ U is the torus embedding and ̟ : U →֒ Cn is inclusion.

Definition 2.3. A complexM• ∈ Db
h(DCn) ismixed Gauss–Manin (resp.

dual mixed Gauss–Manin) if it is isomorphic to MGM(U, β) (resp.
MGM∗(U, β) for some U and β.

Definition 2.4. A parameter β ∈ Cd is mixed Gauss–Manin (resp. dual

mixed Gauss–Manin) if K̂A(SA;EA − β) is mixed Gauss–Manin (resp.
dual mixed Gauss–Manin).

Note that the definitions of mixed and dual mixed Gauss–Manin
parameters in [Ste17, Def. 8.15] is different than that in Definition 2.4.
However, the two definitions are equivalent by [Ste17, Th. 8.17 and
8.19].

3. Alternating direct images

In this section we discuss a generalization of mixed and dual mixed
Gauss–Manin systems which we will refer to by the name “alternating
direct images”.
In §3.1, we characterize in terms of fiber and cofiber support when a

D-module or mixed Hodge module is isomorphic to a given alternating
direct image.
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In §3.2, we use the results of §3.1 to characterize, under a certain
openness condition, when a D-module or mixed Hodge module is iso-
morphic to some alternating direct image.
In §3.3, we specialize Corollaries 3.5 and 3.6 to the GKZ case (Theo-

rem 3.7). As a consequence, we obtain Corollary 3.8, which states that
for GKZ systems, being dual mixed Gauss–Manin is the same as being
mixed Gauss–Manin and not rank-jumping.

3.1. Characterizing alternating direct images passing through
a fixed U . Let

Z
ι
−→ U

̟
−→ X

be inclusions of smooth (locally closed) subvarieties, where U is open
in X , and set ϕ := ̟ ◦ ι. We associate to this situation the alternating
direct image functors ̟+ι† and ̟†ι+.

Remark 3.1. Note that if N • is in Db,Z
c (DX) or D

b(MHMZ(X)), then
ϕ+N • is canonically isomorphic to ϕ†N •. To see this, notice that
because ̟ is an open embedding, ̟† = ̟+; now shrink U so that ι is
a closed immersion, then apply Kashiwara’s equivalence.

Lemma 3.2. Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))). Then

̟+ι†M• is the unique object in Db,Z
c (DX) (resp. in Db(MHMZ(X)))

such that

(1) the restriction to Z is isomorphic to M•;
(2) the fiber support is contained in U ; and
(3) the cofiber support intersected with U is contained in Z.

Proof. We first show that ̟+ι†M• satisfies the required properties.
Because both ι and ̟ are inclusions of (locally closed) subvarieties,
̟+ι†M• is supported on Z. Applying ϕ+ to ̟+ι†M•, we get

ϕ+̟+ι†M
• = ι+ι†M

• = ι†ι†M
• = M•,

where the second equality follows for the same reason as in Remark 3.1.
So the restriction to Z is M•. Let ix denote inclusion of a point x ∈ X .
If x /∈ U , then i+x̟+ι†M• vanishes by [Ste17, Lem. 3.3], so the fiber
support is contained in U . If x ∈ U \Z, then also by [Ste17, Lem. 3.3],

i†x̟+ι†M
• = i†xι†M

• = 0.

So, the cofiber support intersected with U is contained in Z.
We now prove uniqueness. Suppose N • also satisfies the properties.

Then the equality of ϕ+N • and M• induces a morphism f : ι†M• →
̟+N •. By property 3, i†xf = 0 for all x ∈ U \ Z, while by property 1,
the restriction ι+f is an equality. Hence, cone(f) has empty fiber
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support, and therefore it vanishes by [Ste17, Cor. 3.6]. Thus, f is
an isomorphism. By duality, the same argument applied to the case
Z = U and M• = ̟+N • gives an isomorphism N • → ̟+ι†M

•. �

Lemma 3.3. Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))). Then

̟†ι+M
• is the unique object in Db,Z

c (DX) (resp. in Db(MHMZ(X)))
such that

(1) the restriction to Z equals M•;
(2) the cofiber support is contained in U ; and
(3) the fiber support intersected with U is contained in Z.

Proof. This follows from Lemma 3.2 by duality. �

Remark 3.4. Let M• ∈ Db(MHM(Z)). Lemmas 3.2 and 3.3 imply that
if there are open neighborhoods U and U ′ of Z such that ̟+ι†M• and
̟′

†ι
′
+M

• are isomorphic as DX -modules, then they are also isomorphic
as mixed Hodge modules.

3.2. The relatively open (co)fiber support case. If the fiber sup-
port of ϕ†M• is relatively open, then we may shrink U so that U ∩Z =
fSupp̟+ι†M• without changing ̟+ι†M•. Similarly, if the cofiber
support of ϕ+M• is relatively open, then we may shrink U so that
U ∩ Z = cofSupp̟†ι+M• without changing ̟†ι+M•. As an immedi-
ate consequence, we get the following corollaries of Lemmas 3.2 and 3.3:

Corollary 3.5. Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))), and

assume that the fiber support of ϕ†M• is relatively open. Let N • ∈

Db,Z
c (DX) (resp. in Db(MHMZ(X))). Then there exists an open neigh-

borhood U ⊆ X of Z such that (in the notation of §3.1) ̟+ι†M• ∼= N •

if and only if all of the following conditions hold:

(1) ϕ+N • ∼= M•;
(2) fSuppN • ∩ cofSuppN • ⊆ Z; and
(3) fSuppN • is relatively open.

Corollary 3.6. Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))), and

assume that the cofiber support of ϕ+M• is relatively open. Let N • ∈

Db,Z
c (DX) (resp. in Db(MHMZ(X))). Then there exists an open neigh-

borhood U ⊆ X of Z such that (in the notation of §3.1) ̟†ι+M• ∼= N •

if and only if all of the following conditions hold:

(1) ϕ+N • ∼= M•;
(2) fSuppN • ∩ cofSuppN • ⊆ Z; and
(3) cofSuppN • is relatively open.
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3.3. A different characterization of mixed and dual mixed Gauss–
Manin parameters. Specializing Corollaries 3.5 and 3.6 to the GKZ
case, we get Theorem 3.7 below. Before stating it, we recall the def-
inition of the set of A-exceptional parameters. This is the set EA of
parameters β for which the holonomic rank of MA(β) is larger than
for a generic parameter. Note that EA also has a description in terms
of local cohomology (see [MMW05]).

Theorem 3.7. Let β ∈ Cd.

(1) β is dual mixed Gauss–Manin for A if and only if

β /∈ EA and fSuppM̂A(β) ∩ cofSuppM̂A(β) = TA.

(2) β is mixed Gauss–Manin for A if and only if

fSupp K̂A
• (SA;EA − β) ∩ cofSupp K̂A

• (SA;EA − β) = TA.

Proof. (1) By [Ste17, Th. 8.17], a dual mixed Gauss–Manin parameter
is not A-exceptional. By [Ste17, Lemma 8.8], if β /∈ EA, then the

fiber support of M̂A(β) is relatively open; in particular, as ϕ†O
β
TA

is

isomorphic to M̂A(β
′) for some β ′ /∈ EA ([Ste17, Rmk. 8.16]), the fiber

support of ϕ†O
β
TA

is relatively open. Now use Corollary 3.5.
(2) By [Sai01, Prop. 2.2 (4)], the orbit-cone correspondence, and

[Ste17, Th. 7.4], the cofiber support of K̂A
• (SA;EA−β) is relatively open

for all β. In particular, as ϕ+O
β
TA

is isomorphic to K̂A
• (SA;EA − β) for

some β ′ ([SW09, Cor. 3.7]), the cofiber support of ϕ+O
β
TA

is relatively
open. Now use Corollary 3.6. �

Corollary 3.8. A parameter is dual mixed Gauss–Manin for A if and
only if it is mixed Gauss–Manin for A and not A-exceptional.

4. Twisted quasi-equivariance

Reichelt and Walther introduced in [RW17, Def. 3.2] the notion of
a quasi-equivariant DE module. For the purposes of this paper, we
need to generalize this notion slightly (Definition 4.2) to incorporate
a “twist” by a rank one integrable connection on C∗ à la [Hot98]. In
Lemma 4.4, this generalization is used to to relate certain projections
and restrictions of twistedly equivariant D-modules. Proposition 4.5
shows that, when properly interpreted, every mixed and dual mixed
Gauss–Manin module is twistedly equivariant. Note that Lemma 4.4
and proposition 4.5 are generalizations of [RW17, Lem. 3.3 and 3.4].

We begin by recalling the notion of a fibered C∗-action on a trivial
vector bundle. Let π : E → X be a trivial vector bundle on a smooth
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affine variety X , and denote by

i : X →֒ E

the zero section. Set
E∗ := E \ i(X).

Definition 4.1 ([RW17, Def. 3.1]). A C∗ action µ : C∗×E → E is fibered
if

(1) µ preserves fibers;
(2) µ extends under the inclusion C∗ →֒ C to a morphism (also

denoted µ) C× E → E;
(3) 0 ∈ C multiplies into the zero section, i.e. µ : {0} × E → i(X);

and
(4) C fixes the zero section.

Definition 4.2. Let µ : C∗ × E → E be a fibered action on E, let µ′

be the restriction of this action to E∗, and let λ ∈ C. A complex
M• ∈ Db

h(DE) is λ-twistedly C∗-quasi-equivariant if

(4.0.1) µ′∗M•
|E∗

∼= Oλ
C∗ ⊠M•

|E∗.

A complex M• is twistedly C∗-quasi-equivariant if it is λ-twistedly C∗-
quasi-equivariant for some λ.

Remark 4.3. Note that because µ′ is smooth of relative dimension 1,
(4.0.1) is equivalent to

(4.0.2) µ′+M•
|E∗

∼= Oλ
C∗ [1]⊠M•

|E∗

and also to

(4.0.3) µ′†M•
|E∗

∼= Oλ
C∗ [−1]⊠M•

|E∗.

The following lemma is proved in exactly the same way as is [RW17,
Lem. 3.3]. The only change to the proof is that “OGm

” must be replaced
throughout with “Oλ

C∗”. No issues occur with doing so, and no issues
occur with the passage to the derived category as opposed to modules.

Lemma 4.4. If M• ∈ Db
h(DE) is λ-twistedly C∗-quasi-equivariant,

then π+M
• ∼= i†M• and π†M

• ∼= i+M•.

We now generalize [RW17, Lem. 3.4]. The basic idea of the proof
is the same. However, sufficiently many technical details need to be
modified that we feel it necessary to provide the proof in full.

Proposition 4.5. Let F � A be a face, and view Cn as a vector bundle
over CF via the coordinate projection π : Cn → CF . Let β ∈ Cd. Then
there exists a fibered C∗-action on Cn such that for all TA-stable open
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neighborhoods U ⊆ Cn of TA, both MGM(U, β) and MGM∗(U, β) are
twistedly quasi-equivariant.

Proof. Write E for Cn viewed as vector bundle over CF . Since NA is
pointed and F is a face, there exists a u ∈ Zd such that 〈ai,u〉 = 0
for ai ∈ F and 〈ai,u〉 > 0 for ai /∈ F . We show that the monomial
action µ : C∗ × E → E induced by v := A⊤u, i.e. t · (x1, . . . , xn) =
(tv1x1, . . . , t

vnxn), satisfies the requirements of the proposition.
Step 1: µ is a fibered action.
Proof of Step 1. Condition (1) of Definition 4.1 holds because vi = 0

for all ai ∈ F . Because in addition vi > 0 for all ai /∈ F , the action
extends to C; so, condition (2) holds. Conditions (3) and (4) follow
immediately from the definition of this extension. This finishes the
proof of Step 1.

Step 2: µ̃∗Oβ
TA

∼= O〈u,β〉
C∗ ⊠Oβ

TA
, where µ̃ denotes the monomial action

on TA induced by u.

Proof of Step 2. Let f : µ̃∗Oβ
TA

→ O〈u,β〉
C∗ ⊠ Oβ

TA
be the OC∗×TA

-

module isomorphism taking the generator 1 ⊗ t−β to the generator
s−〈u,β〉 ⊗ t−β , where s denotes the coordinate on C∗. The action of
1⊗ ti∂ti on both generators is multiplication by −βi, while the action
of s∂s on both generators is multiplication by −〈u, β〉. Therefore, f is
an isomorphism of DC∗×TA

-modules. This finishes the proof of Step 2.
Step 3: Both MGM(U, β) and MGM∗(U, β) are 〈u, β〉-twistedly quasi-

equivariant.
Proof of Step 3. Since the two statements are equivalent via duality,

we only prove the first. Consider the following commutative diagram:

(4.0.4)

C∗ × TA C∗ × (U ∩ E∗) C∗ × E∗

TA U ∩ E∗ E∗

id×ι′

µ̃

id×̟′

µ′′ µ′

ι′ ̟′

Here, ι′ is the torus embedding, ̟′ is inclusion, µ′ is the restriction of
µ to E∗, and µ′′ is the restriction of µ to U ∩E∗. By construction, the
action µ factors through the action of TA. So, because U is TA-stable,
it is also C∗-stable, and therefore both squares in (4.0.4) are Cartesian.
Then

µ′†MGM(U, β)|E∗
∼= µ′†̟′

†ι
′
+O

β
TA

∼= (id×̟′)†µ
′′†ι′+O

β
TA

∼= (id×̟′)†(id× ι′)+µ̃
†Oβ

TA

∼= (id×̟′)†(id× ι′)+(O
〈u,β〉
C∗ [−1]⊠Oβ

TA
)
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∼= O〈u,β〉
C∗ [−1]⊠̟′

†ι
′
+O

β
TA

∼= O〈u,β〉
C∗ [−1]⊠MGM(U, β)|E∗,

where the second isomorphism is by base change, the third is by base
change together with the fact that µ′′ and µ̃ are smooth of the same
relative dimension, and the fourth is by Step 2 and the smoothness of
µ̃. Now use Remark 4.3. This finishes the proof of Step 3 and thereby
the proposition. �

5. Projections and restrictions

In §5.1, we use the framework of a C∗-fibered vector bundle to show
that the projection and restriction of alternating direct images are also
alternating direct images. We apply this in §5.2 to mixed and dual
mixed Gauss–Manin systems.
In §5.3, we specialize these results to the case of normal SA, culminat-

ing in Theorem 5.8, where we compute the restriction and projection
of MA(β) to the coordinate subspace corresponding to a face of A.

5.1. Restricting and projecting twistedly quasi-equivariant al-
ternating direct images. Let X be a smooth affine variety, π : E →
X a C∗-fibered vector bundle, and as before, denote by i : X →֒ E the
zero section. Consider the following diagrams:

Z
ι

−−−−→ U
̟

−−−−→ E and i−1(U)∩π(Z)
ι′

−−−−→ i−1(U)
̟′

−−−−−→ X.

Here, Z is smooth and locally closed in X , U is an open subset of E
containing Z, and the morphisms are inclusion. Set ϕ := ̟ ◦ ι and
ϕ′ := ̟′ ◦ ι′.

Proposition 5.1. Let M• ∈ Db
h(DZ). Assume that U ⊇ π−1(i−1(U))

and π(Z) is locally closed.

(1) If N • := ̟+ι†M• is twistedly C∗-quasi-equivariant, then

i+N • ∼= ̟′
+ι

′
†(i ◦ ϕ

′)+N •.

(2) If N • := ̟†ι+M• is twistedly C∗-quasi-equivariant, then

π+N
• ∼= ̟′

†ι
′
+(i ◦ ϕ

′)†N •.

Proof. (1) By Lemma 3.2, the fiber support of i+N • is contained in
i−1(U). Suppose x ∈ i−1(U) ∩ cofSupp i+N •. Then by Lemma 4.4

and the base change formula, (π|Ex)†i
†
Ex
N • 6= 0, where Ex := π−1(x)

is the fiber of E over x, and iEx : Ex →֒ E is inclusion. So, i†Ex
N • 6= 0,

and therefore Ex ∩ cofSuppN • 6= ∅. On the other hand, x ∈ i−1(U),
so because U ⊇ π−1(i−1(U)), we have that Ex ⊆ U . Hence, Ex ∩
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cofSuppN • is a non-empty subset of Z by Lemma 3.2, and therefore
π(x) ∈ π(Z) ∩ i−1(U). Thus,

i+N • ∼= ̟′
+ι

′
†ϕ

′+i+N • ∼= ̟′
+ι

′
†(i ◦ ϕ

′)+N •.

(2) This follows from (1) by duality together with Lemma 4.4. �

It may appear at first that the assumption that U ⊇ π−1(i−1(U))
in Proposition 5.1 is too restrictive to apply in the situation of Propo-
sition 4.5. However, as we will see in Lemma 5.3, U can always be
enlarged to satisfy this assumption without changing MGM(U, β) or
MGM∗(U, β).

5.2. Restricting and projecting GKZ systems. Before stating The-
orem 5.4, we recall the below facts about mixed and dual mixed Gauss–
Manin systems. Also recall from (2.3.3) that OA(F ) is the TA-orbit of
the toric variety XA which corresponds to F .
Here and in the rest of this article, we follow that convention that

∧

Ck lives in cohomological degrees −k through 0.

Fact 5.2. Let β ∈ Cd, and let U ⊆ Cn be a TA-stable open neighborhood
of TA. Write iOA(F ) for the inclusion OA(F ) →֒ Cn.

(1) If OA(F ) ⊆ cofSuppMGM(U, β), then

i+OA(F ) MGM∗(U, β) ∼=
⊕

λ+ZF

Oλ
TF

⊗C

∧

CdA/F ,

where the direct sum is over those λ+ZF ∈ CF/ZF for which
β−λ ∈ Zd. This follows from [Ste17, Lem. 8.14(b), Rem. 8.16,
and Eq. (8.3.3)].

(2) If OA(F ) ⊆ fSuppMGM∗(U, β), then

i†OA(F )MGM(U, β) ∼=
⊕

λ+ZF

Oλ
TF

⊗C

∧

CdA/F ,

where the direct sum is over those λ+ZF ∈ CF/ZF for which
β−λ ∈ Zd. This follows from Fact 5.2(1) and [Ste17, Rmk. 8.18].

Let F � A be a face, and let πF : Cn → CF and iF : C
F →֒ Cn be

coordinate projection and inclusion, respectively.

Lemma 5.3. Let β ∈ Cn and M• ∈ Db
c (DCn). Let U ⊆ Cn be a TA-

stable open neighborhood of TA, and let U ′ = U ∪ π−1
F (i−1

F (U)). Then

MGM∗(U, β) ∼= MGM∗(U ′, β) and MGM(U, β) ∼= MGM(U ′, β).

Proof. It suffices to show that U ′∩XA = U∩XA. The containment U ′∩
XA ⊇ U ∩XA is immediate. For the other containment, let OA(G) ⊆
U ′, and suppose OA(G) ⊆ π−1

F (i−1
F (U)). Then iF (πF (OA(G))) ⊆ U .
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But iF (πF (OA(G))) = iF (OF (G∩F )) = OA(G∩F ), so OA(G∩F ) ⊆ U .
Therefore, because U is open, the orbit-cone correspondence implies
that OA(G) ⊆ U . Thus, U ′ ∩XA = U ∩XA. �

Theorem 5.4. Let β ∈ Cn, and let U ⊆ Cn be a TA-stable open
neighborhood of TA.

(1) If β /∈ CF +Zd, then πF+ MGMA(U, β) = i+F MGM∗
A(U, β) = 0.

(2) If β ∈ CF + Zd, then

i+F MGM∗
A(U, β)

∼=
⊕

λ+ZF

MGM∗
F

(

i−1
F (U), λ

)

⊗C

∧

CdA/F

and

πF+ MGMA(U, β) ∼=
⊕

λ+ZF

MGMF

(

i−1
F (U), λ

)

⊗C

∧

CdA/F ,

where the direct sums are over those λ + ZF ∈ CF/ZF for which
β − λ ∈ Zd.

Proof. We only prove the dual MGM case. The MGM case follows by
duality together with Lemma 4.4.
For ease of notation, set π = πF and i = iF . By Lemma 5.3, we may

replace U with U∪π−1(i−1(U)) (note that this leaves i−1
F (U) unchanged)

to assume that U ⊇ π−1(i−1(U)). In addition, π(TA) = TF , which is
locally closed in CF . Therefore, Proposition 5.1(1) applies to give

i+ MGM∗
A(U, β)

∼= ̟′
+ι

′
†(i ◦ ϕF )

+ MGM∗
A(U, β),

where ι′ = ϕF : TF →֒ i−1(U) ∩ TF and ̟′ : i−1(U) ∩ TF →֒ CF is
inclusion. If β /∈ CF + Zd, then i−1(U) ∩ TF = i−1(U ∩ OA(F )) = ∅
by Fact 5.2, and therefore, i+ MGM∗

A(U, β) = 0. So, assume that
β ∈ CF + Zd. Then i−1(U) ∩ TF = i−1(OA(F )), and therefore i ◦ ϕ′ is
just the inclusion OA(F ) →֒ Cn. Now use Fact 5.2 together with the
additivity of the D-module functors. �

5.3. Normal case. Throughout this section, SA is assumed to be nor-
mal. Lemma 5.5 is a technical lemma which we will use (both in this
section and in §6) to move a parameter β within the class of those
parameters whose A-hypergeometric system is isomorphic to that of β.
Lemma 5.6 will be needed in the proof of Theorem 5.8. Recall from
Definition 2.2 the definition of the primitive integral support functions
hG.

Lemma 5.5. Let β ∈ Cd. Then there exists a γ ∈ Zd such that for all
facets G � A,

(1) hG(γ) 6= 0 if hG(β) /∈ Z;
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(2) hG(γ) > 0 if hG(β) ∈ N; and
(3) hG(γ) < 0 if hG(β) ∈ Z<0.

Proof. Consider the system of equations

{ hG(x) = hG(β) | G � A is a facet with hG(β) ∈ Z } .

This has a solution in Cd, namely β, and therefore has a solution in
Rd. Let α be one such solution. Then α describes a hyperplane

Hα = { f ∈ (Rd)∗ | f(α) = 0 } .

Denote by H≥0
α the set of f ∈ (Rd)∗ such that f(α) ≥ 0, and similarly

for H>0
α , H≤0

α , and H<0
α .

Let us now consider the sets Pα = { hG | hG(α) ≥ 0 } and Nα =
{ hG | hG(α) < 0 }. By construction, R≥0Pα ∩ R≥0Nα = {0}. Let Z
be an affine hyperplane in (Rd)∗ transverse to the dual cone (R≥0A)

∨.
Then Z ∩ R≥0Pα and Z ∩ R≥0Nα are convex, compact, and disjoint.
Hence, there exists a hyperplane L in Z separating Z ∩ R≥0Pα and
Z ∩ R≥0Nα. Choose a γ ∈ Rd such that Hγ ∩ Z = L and H>0

γ ⊇
Z∩R≥0Pα. Then H<0

γ ⊇ Z∩R≥0Nα. Then by convexity, H>0
γ ⊇ R≥0Pα

and H<0
γ ⊇ R≥0Nα. In particular, H>0

γ ⊇ Pα and H<0
γ ⊇ Nα. Because

Qd is dense in Rd, we may modify γ so that it is in Qd. Clearing
denominators, we may take γ to be in Zd. �

Note that because we are in the normal case, we may define

(5.3.1) sRes(A) = Cd \
{

β ∈ Cd
∣

∣ hG(β) ≥ 0 whenever hG(β) ∈ Z
}

.

We will take this as the definition of sRes(A) since we are only dealing
with normal A. However, (5.3.1) follows from the general definition
given in [SW09] by applying [Ste17, Th. 9.3 and Lem. 9.1] along with
[SW09, Cor. 3.8]

Lemma 5.6. Let β ∈ CF + Zd, and let F � A be a face. Then there
exists a λ ∈ CF ∩ (β + Zd) such that for all facets F ′,

(1) hF ′(λ) ∈ N implies that hG(β) ∈ N for all facets G of A with
G ∩ F = F ′; and

(2) hF ′(λ) ∈ Z<0 implies that hG(β) ∈ Z<0 for all facets G of A
with G ∩ F = F ′.

Proof. Step 1: The lemma holds for β ∈ Zd.
Proof of Step 1. By induction on the rank of F , we may assume that

F is a facet of A. Let F1, . . . , Fℓ be the facets of F . For each i, let Gi be
the facet of A whose intersection with F is Fi. For each I ⊆ {1, . . . , ℓ},
consider the sets

XI := { x ∈ RF | hFi
(x) ≥ 0 for all i ∈ I }
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YI :=
{

x ∈ Rd
∣

∣ hGi
(x) ≥ 0 for all i ∈ I

}

.

When XI is nonempty, neither is YI , and XI and YI are chambers of the
arrangments {RF1, . . . ,RFℓ} and {RG1, . . . ,RGℓ}, respectively. But
these two arrangements are combinatorially equivalent by construction,
so they have the same number of chambers. Hence, XI is nonempty
if and only if YI is nonempty. Since both arrangements are central,
XI ∩ ZF is nonempty if and only if YI ∩ Zd is nonempty. Therefore,
if β ∈ YI , then any λ ∈ XI ∩ ZF has the required properties. This
finishes the proof of Step 1.
Step 2: The lemma holds for general β.

Proof of Step 2. Apply Lemma 5.5 to β to get a γ ∈ Zd. Apply
Step 1 to γ to get an α ∈ ZF . Let λ0 ∈ CF ∩ (β + Zd) \ sRes(A). By
adding sufficiently many copies of

∑

ai∈F
ai to λ0, we may assume that

(5.3.2) hF ′(λ0) ≥ |hF ′(α)|

for all facets F ′ of F with hF ′(λ0) ∈ Z. Set λ = λ0 + α. Let F ′ be a
facet of F , and let G be a facet of A with G ∩ F = F ′.
Suppose hF ′(λ) ∈ N. Then because hF ′(α) ∈ Z, hF ′(λ0) must be an

integer and therefore a non-negative integer. Then by (5.3.2), hF ′(α) ≥
0. Hence, hG(γ) ≥ 0, which by construction of γ means that hG(β) ∈ N.
Next, suppose hF ′(λ) ∈ Z<0. As before, this implies that hF ′(λ0)

is a non-negative integer. But then hF ′(α) must be negative. Hence,
hG(γ) ≤ 0, which by construction of γ means that hG(β) ∈ Z<0. This
finishes the proof of Step 2 and thereby the lemma. �

The following example shows that even if hG(β) ∈ Z for every facet
G of A with G ∩ F = F ′, it is still possible that hF ′(λ) /∈ Z.

Example 5.7. Let

A =

[

1 1 1
0 1 2

]

and F =

[

1
2

]

.

The only facet of F is ∅, and the only facet of A whose intersection
with F is ∅ is the facet G = [1, 0]⊤. The primitive integral support
functions of these facets are h∅,F (c, 2c) = c and hG,A(a, b) = b. Then
hG,A(c, 2c) = 2c, so hG,A|CF = 2h∅,F .
Consider the parameter β = (1/2, 1). This parameter is already in

CF . Since h∅,F (β) = 1/2 is not in Z, the same is true of h∅,F (λ) for
every λ ∈ CF ∩ (β + Z2). However, hG,A(β) = 2 ∈ Z.

Theorem 5.8. Assume SA is normal, let F � A be a face, and let
β ∈ Cd.

(1) If β /∈ CF + Zd, then πF+MA(β) = i+FMA(β) = 0.
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(2) If β ∈ CF +Zd, then there exists a λ ∈ CF ∩ (β+Zd) such that

πF+MA(β) ∼= MF (λ)⊗C

∧

CdA/F ∼= i+FMA(β).

Proof. Recall that the Fourier–Laplace transform interchanges πF+ and
i+F . Therefore, the theorem is equivalent to the same statement with

MA(β) and MF (λ) replaced with M̂A(β) and M̂F (λ), respectively.
We prove this Fourier–Laplace transformed statement.
Choose open subsets U, V of Cn such that U ∩XA = fSuppM̂A(β)

and V ∩XA = cofSuppM̂A(β). [Ste17, Th. 9.3] establishes that

(5.3.3) MGM∗
A(U, β)

∼= M̂A(β) ∼= MGMA(V, β).

If β /∈ CF+Zd, then Theorem 5.4(1) applies to give the Fourier–Laplace
transformed version of (1).
Suppose β ∈ CF + Zd. By normality, the direct sums in Theo-

rem 5.4(2) collapse to a single summand. Therefore, taking into ac-
count (5.3.3), it remains to show that there exists a λ ∈ CF ∩ (β+Zd)
such that

(5.3.4) MGM∗
F

(

i−1
F (U), β

)

∼= M̂F (λ) ∼= MGMF

(

i−1
F (V ), β

)

.

By [Ste17, Th. 9.3 together with Lem. 9.1(c) and (d)], (5.3.4) holds for
any λ satisfying the conditions in Lemma 5.6. Now use that Lemma 5.6
guarantees that such a λ exists. �

6. Duality of normal GKZ systems

Throughout this section, SA is assumed to be normal. In Theo-
rem 6.3, we assume in addition that A is homogeneous (Recall that A
is homogeneous if its columns all lie in a hyperplane).
Lemma 6.1 shows that for all parameters β, there is a parameter

β ′ ∈ −β + Zd such that M̂A(β
′) has the cofiber support one would

expect for the holonomic dual of M̂A(β). Proposition 6.2 uses this to

prove that this M̂A(β
′) is indeed the holonomic dual of M̂A(β). The

Fourier–Laplace transform of this result, together with a monodromic-
ity argument, gives Theorem 6.3.

Lemma 6.1. Let β ∈ Cd. Then there exists a β ′ ∈ −β + Zd such that

cofSuppM̂A(β
′) = fSuppM̂A(β).

If β does not lie on the C-span of any facet, then β ′ may be taken to
be −β.

Proof. By [Ste17, Lem. 9.1(c) and (d)], it suffices to show that there
exists a β ′ ∈ −β + Zd for all facets G � A,

hG(β
′) ∈ N if and only if hG(β) ∈ Z<0.
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Choose γ ∈ Zd as in Lemma 5.5. Then M̂A(β) and M̂A(β + γ) have
the same fiber support (by [Ste17, Lem. 9.1(c)]) and are therefore iso-
morphic by [Ste17, Th. 9.2]. Moreover, β+γ does not lie on the C-span
of any facet. Replacing β with β+γ, we may assume that β itself does
not lie on the C-span of any facet.
Let β ′ = −β. Then hG(β) is never zero, so hG(β

′) ∈ N if and only if
hG(β) ∈ Z<0, as hoped. �

Proposition 6.2. Let β ∈ Cd. Then there exists a β ′ ∈ −β + Zd such
that DM̂A(β) ∼= M̂A(β

′). If β does not lie on the C-span of any facet,
then β ′ may be taken to be −β.

Proof. By [Ste17, Th. 9.2], there exists an open U ⊆ Cn with U ∩
XA = fSuppM̂A(β) such that M̂A(β) ∼= MGM∗(U, β). Applying the

holonomic duality functor gives DM̂A(β) ∼= MGM(U,−β). Now use
[Ste17, Th. 9.2] again along with Lemma 6.1. �

Theorem 6.3. Assume that A is homogeneous. Let β ∈ Cd. Then
there exists a β ′ ∈ −β + Zd such that DMA(β) ∼= MA(β

′). If β does
not lie on the C-span of any facet, then β ′ may be taken to be −β.

Proof. By [Rei14, Lem. 1.13], the homogeneity condition implies that
every A-hypergeometric system is monodromic. By [Bry86, Prop. 6.13]
(or rather the restatement of it for D-modules which appears in [Rei14,
Th. 1.4]), if M is monodromic, then DFLM ∼= FLDM. Now use
Proposition 6.2. �
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et analyse microlocales. MR 864073 2.1.3, 6
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